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Multivariate compositional count data arise in many applications includ-
ing ecology, microbiology, genetics and paleoclimate. A frequent question in
the analysis of multivariate compositional count data is what underlying val-
ues of a covariate(s) give rise to the observed composition. Learning the re-
lationship between covariates and the compositional count allows for inverse
prediction of unobserved covariates given compositional count observations.
Gaussian processes provide a flexible framework for modeling functional re-
sponses with respect to a covariate without assuming a functional form. Many
scientific disciplines use Gaussian process approximations to improve pre-
diction and make inference on latent processes and parameters. When pre-
diction is desired on unobserved covariates given realizations of the response
variable, this is called inverse prediction. Because inverse prediction is of-
ten mathematically and computationally challenging, predicting unobserved
covariates often requires fitting models that are different from the hypoth-
esized generative model. We present a novel computational framework that
allows for efficient inverse prediction using a Gaussian process approxima-
tion to generative models. Our framework enables scientific learning about
how the latent processes co-vary with respect to covariates while simultane-
ously providing predictions of missing covariates. The proposed framework
is capable of efficiently exploring the high dimensional, multi-modal latent
spaces that arise in the inverse problem. To demonstrate flexibility, we apply
our method in a generalized linear model framework to predict latent climate
states given multivariate count data. Based on cross-validation, our model has
predictive skill competitive with current methods while simultaneously pro-
viding formal, statistical inference on the underlying community dynamics of
the biological system previously not available.
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1. Introduction. A variety of data are used as proxies for climate, including
tree rings, ice cores and pollen, with each data source requiring specialized statisti-
cal methods. Therefore, improving statistical techniques for reconstructing paleo-
climate from proxy data are necessary to better understand past climate. Many cli-
mate proxies are nonnegative multivariate observations that occur on the unit sim-
plex and arise when there is interest in explaining the proportion of a total. These
types of data are called compositional count data and examples include fungal as-
says (Grantham et al. (2015), Saucedo-Garcia et al. (2014)), molecular sequence
data of soil microbes (Lauber et al. (2009)) and paleoecological data (Booth
(2008), Brewer, Jackson and Williams (2012), Haslett et al. (2006), Paciorek and
McLachlan (2009), Parnell et al. (2015), Salter-Townshend and Haslett (2012)).
In general, compositional data are N x d counts Y where, fori =1,..., N, y; is
the d-dimensional composition for observation i (a given location or core depth)
and Z‘f=1 yij = M; is the total count of all species for observation i. When M;
is not informative of the total abundance of the composition, these data are called
compositional count data and are one of the most common sources of paleoclimate
proxy data. The observed composition at site i is assumed to depend on a set of
covariates x; that are only observed in the modern period and must be predicted for
the past (see Nolan et al. (2019) for an example). In this manuscript, we develop
novel statistical methods for generating predictions of unobserved climate x; from
observed compositional count data y;.

We present a new probabilistic model framework for paleoclimate reconstruc-
tion using compositional count data and apply our model alongside currently used
Bayesian and deterministic transfer function methods to two compositional count
datasets. Both of the application datasets are further subdivided into two subsets:
(1) the modern calibration dataset where both the species compositions and climate
variables are known and the (2) reconstruction data where only the species compo-
sitions are observed. The goal of paleoclimate reconstructions is to use the modern
calibration dataset to learn model parameters and then use these parameters to pre-
dict the missing climate variables using the reconstruction data. We focus entirely
on model performance for the modern calibration data because cross-validation is
only possible during the modern calibration period. Therefore, we focus on the
modern data only, with the assumption that models that perform well on the mod-
ern data will generalize to the reconstruction data. The two application datasets we
consider are the compositional count of testate amoebae species in bogs relative to
water table depth (a proxy measurement of hydroclimate) and the compositional
count of pollen grains in lake sediments relative to average July temperature.

1.1. Testate amoeba data. Testate amoeba are a group of protists character-
ized by the presence of a test (i.e., shell) which live in a range of habitats includ-
ing soils, wetlands and peat bogs. Because testate amoebae leave behind a decay-
resistant test when they die and the tests can be used to identify different species
of amoebae, sediment cores can be used as a record of the historical distribution of
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testate amoeba species. If the distribution of testate amoebae species is sensitive to
environmental conditions, examination of the distribution of species through time
can be used to infer past climate.

Many studies have demonstrated a sensitivity of testate amoebae from om-
brotrophic peatlands to moisture conditions (i.e., water table depth) (Amesbury,
Barber and Hughes (2012), Booth, Lamentowicz and Charman (2010), Charman
(2007)). To reconstruct water table depth (in cm), we used a modern-era data set
with 356 replicates of testate amoeba assemblages including 24 species along a
water depth gradient (Booth (2008)). We assumed that the species compositions of
testate amoebae at a given water table depth are more likely to be correlated with
compositions at other bog locations with similar water table depths than nearby
locations in the same bog with different water table depths. We also made the
assumption that the response of testate amoebae species to water depth is fixed
through time. Under these assumptions, we used the data shown in Figure 1(a)
to examine the relationship between the distribution of testate amoebae and water
table depth. While many studies have used testate amoebae to reconstruct water
depth, much remains to be learned about the ecology of the testate amoeba com-
munities. Important ecological questions include how the testate amoebae species
respond to the underlying environment (water table depth) and how they interact.

1.2. Pollen data. The second data source we consider is a set of pollen counts
collected at 152 sites in the Upper Midwestern United States from sediments dat-
ing to the time of European settlement. The counts of pollen were identified to
genus level and then grouped based on shared ecological characteristics into 16
categories. Pollen data have been studied extensively with many reconstructions
of species compositions on the landscape (Dawson et al. (2016), Paciorek and
McLachlan (2009)) and reconstructions of paleoclimate variables from pollen data
(Wahl, Diaz and Ohlwein (2012), Williams and Shuman (2008), Haslett et al.
(2006)). We are interested in predicting temperature using the Parameter elevation
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(a) Testate amoeba data. (b) Pollen data.

F1G. 1. Observed data with environmental covariate along the x-axis and species counts on the
y-axis. Each color represents one of the d observed species. Figure (a) shows the testate amoeba
data and Figure (b) shows the pollen data.
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Regression on Independent Slopes Model (PRISM) 30 year normal July tempera-
ture product in °C (PRISM Climate Group, Oregon State University) as a covari-
ate. Figure 1(b) shows the relationship between species abundances and average
July temperature. We made the assumption that there is no spatial correlation in
pollen counts conditional on July temperature, although the model could be ex-
panded in future work to incorporate spatially correlated random effects.

2. Model. We begin with a brief introduction to the currently used determinis-
tic transfer function methods for paleoclimate reconstruction using compositional
data. After introducing the most commonly used methods, we address the short-
comings of these methods to motivate the development of new probabilistic mod-
els. Next, we describe other Bayesian methods for paleoclimate reconstruction and
describe the assumptions of these models that lead to the development of our model
framework. We conclude this section by introducing the novel model framework
and discuss how it solves many of the issues with previous methods.

2.1. Transfer function methods. The most widely used methods used in re-
constructing climate from compositional data are generally known as “transfer
functions.” The three transfer function methods we consider are weighted averag-
ing (WA), the modern analog technique (MAT) and maximum likelihood response
curves (MLRC). WA, MAT and MLRC are methods that do not specify a joint
likelihood for the data. WA generates reconstruction predictions by first learning
parameters from the calibration data then applying those parameters to the recon-
struction data. Learning model parameters from the calibration data occurs in three
steps. First, WA estimates a nonparametric bootstrap distribution of “optimum”
climate giving the prediction p; for species j as ft; = (O, yijxi)/(Q_r_; yij)
using the modern calibration data, where y;; is the observed proportion of species
j in sample i and x; is the climate variable for sample i. Second, out-of-bootstrap-
sample estimates of climate X; Eor sample i are generated by taking a weighted sum
of the species “optima” Xx; = Zéil—ly’y’:’ (Birks et al. (1990), ter Braak and van Dam
(1989)). The WA method induces a strong shrinkage effect because the prediction
X; is a mean of means. The third step in generating the calibration model corrects
for this shrinkage. The shrinkage to the mean is corrected by boosting the X;s with
either a linear or spline regression between out-of-bootstrap-sample x; and X; re-
sulting in a final model that is “de-shrunk” (Birks and Simpson (2013), Schapire
(1990)). The most common implementations of WA in software then summarize
the bootstrap sample with the bootstrap mean and variance to generate predictions
under the assumption of a normal distribution (throwing away the information in
the bootstrap sample). For samples 7 in the reconstruction data, predictions of pale-
i1y

X5y i)
the normal approximation to the bootstrap distribution. The uncertainty for the pa-
leoclimate prediction can be broken down into two sources: (1) the uncertainty

oclimate X; are generated using X; = with uncertainties estimated from
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from the individual sample and (2) the average prediction error over the dataset.
In practice, the average prediction error over the dataset dominates the uncertainty
(often 95%+ of the total uncertainty in our experience). Therefore, the frequentist
confidence interval widths are almost independent of the observed composition.

MAT is commonly known in the statistics and machine learning literature as k
nearest neighbors. For each of the i samples in the reconstruction data, a pseudo-
distance is calculated to each of the i = 1, ..., n observations in the calibration
data. There are a variety of possible metrics, but the most commonly used in the
literature is square chord distance (Overpeck, Webb and Prentice (1985)). The pre-
diction ; for samples in the reconstruction data is a (potentially weighted) average
of the covariate of interest for the k£ nearest samples in the calibration data. Confi-
dence intervals for the MAT prediction is generated by bootstrapping the calibra-
tion data with uncertainties estimated using out-of-bootstrap-sample uncertainties
and assuming a normal error distribution.

MLRC fits a curve to each marginal species component of the composition then
takes a weighted average of these curves to generate a prediction. The idea behind
MLRC is that, at certain ranges of the climate space, different species would have
higher/lower abundance. In implementation, a logistic nonlinear regression is fit
to the presence/absence of each species marginally and the model predictions are
made by finding the covariate value that gives rise to the highest probability of
the observed composition. The simpler WA was developed to borrow the ideas
of a functional response of the species to climate by reducing the computational
and numerical challenges of MLRC (Birks et al. (1990), ter Braak and van Dam
(1989)).

The transfer functions described above have been successful in reconstructing
site-level point estimates of paleoclimate; however, transfer function methods have
shortcomings. First, the transfer function methods estimate uncertainty using out-
of-sample-bootstrap prediction errors that result in nearly uniform estimates of un-
certainty for the reconstruction samples. This is not a desirable property because
the the sample sizes used to generate the compositions change and the uncertainty
estimates do not reflect the sampling intensity. In addition, there are compositions
where the unobserved covariate can be predicted with higher precision than other
samples based on domain knowledge, whereas current transfer functions methods
are not capable of doing this. A third shortcoming is the sensitivity to compositions
with zero counts; species with zero compositions are removed from the calibration
dataset but sometimes the reconstruction datasets can have nonnegligible counts
of these species. Removing these potentially meaningful species from the analy-
sis could have an effect on the estimation process. Finally, both WA and MLRC
model the response of each species marginally, ignoring the co-dependence and
covariance among the composition.

In addition, the transfer function methods each have specific issues. In WA,
species that are in high abundance dominate the prediction and the prediction is
less sensitive to less abundant species. For MAT, there is no clear consensus on
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what similarity metric is best and the final reconstruction might be sensitive to this
choice. Under the “no-analog” setting (Overpeck, Webb and Webb III (1992) and
Jackson and Williams (2004)) where the set of compositions are different between
calibration and reconstruction datasets (i.e., there are no good “analogs” of the
composition in the reconstruction data present in the calibration data because the
distributions of species compositions are different), methods like WA and MAT
show degraded predictive performance (Appendix S5, Tipton et al. (2019)). What
makes the no-analog problem particularly nefarious is that one only uses the mod-
ern calibration data to evaluate model predictive performance leading to overly
optimistic results when predictions are made using the reconstruction data. MLRC
has been not widely used due to poor predictive performance and large confidence
interval estimates—we include MLRC in our comparison as it is a likelihood-based
method that serves as a methodological inspiration for our model.

Others have introduced Bayesian hierarchical models for reconstruction of pa-
leoclimate using compositional data that overcome some of the issues with the
transfer function methods. For instance, Vasko, Toivonen and Korhola (2000) in-
troduced a Bayesian hierarchical model framework (BUMMER) to model compo-
sitional count data. BUMMER assumes that the marginal response of each species
to climate follows a symmetric, unimodal Gaussian response curve. The BUM-
MER model uses a Dirichlet-multinomial likelihood (1) and assumes the latent
random effect log(«;;) for observation i of species j in (2) has the form of a Gaus-
sian kernel

bj — Xi)2>

2
2cj

log(a;j) = exp(a_,- -
where a; is an offset that models baseline abundance, b; models the mode of the
symmetric, unimodal response and c? is a parameter that models the spread of
the functional response. In practice the data are often functional types or oper-
ational taxonomic units (OTUs) that combine many different species, each hav-
ing one or more optimum responses that might respond asymmetrically to cli-
mate. Bhattacharya (2006) used a Dirichlet process mixture of unimodal Gaussian-
shaped curves to model the response of each species to climate; however, the
Dirichlet process approach is computationally demanding and is difficult to scale
to large numbers of species. We will demonstrate that our model framework pro-
duces predictions that have similar skill to BUMMER when the symmetric, uni-
modal assumption is valid while greatly outperforming BUMMER predictive skill
when the symmetric, unimodal assumption is violated.

We introduce a novel reconstruction framework that we call the multivariate
Gaussian process model (MVGP) in the next section. In constructing the model,
we show how the MVGP model addresses the criticisms of the models described
above. Another strength of the MVGP model is the ability to estimate the marginal
response curves for each species as well as the correlations among the functional
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responses between species. Modeling inter-species correlations allows for further
learning about the underlying ecology of the system as well as provides data-driven
guidance on which taxa to combine together based on similar functional responses.

2.2. Compositional data model. Recall that compositional count data are
N x d counts Y where, fori =1,..., N, y; is the d-dimensional composition
for observation i (a given location or core depth) and Z‘le yij = M, is the total
count of all species for observation i. Because the data are counts, we specify the
data model

y; ~ Multinomial (M;, p;),

where the d-dimensional vector p; = (p;.1, ..., pi.q)’ represents the probabilities
of sampling species j at location i under the constraint Z?Zl pij =L

To ensure identifiability in multinomial models, one often assumes a reference
category and fixes the value of the reference in the latent space. A consequence
of including a reference category is that the random process p; lives in a (d — 1)-
dimensional space. Because we are interested in allowing each species to have its
own marginal response to the covariate while accounting for how these responses
co-vary, we do not include a fixed reference category. In addition, visual inspection
of the data and preliminary model fits suggest the compositional data are overdis-
persed. Therefore, we assign a mixing distribution for the probabilities p; using the
Dirichlet distribution, which allows modeling of each of the d functional responses
to the covariates while adding a mechanism for overdispersion.

The Dirichlet distribution is commonly used to model distributions with sum-
to-one constraints, including probabilities. We assume

pi ~ Dirichlet(«;),
where the o;; > 0. Because the &; do not have a sum-to-one constraint, we model
each of the d species directly using an appropriate link function. The choice of a
conjugate prior model for p; allows us to integrate out the latent variable p;, giving
rise to the Dirichlet-multinomial distribution
y; ~ Dirichlet-Multinomial (M;, a;)

ey
= /Multinomial(yi |M;, p;) Dirichlet(p; |a;) dp;,

where, for i =1, ..., N independent observations of the d-dimensional vector y;
of counts, the data model is

d
_ Qi) 4T (vij + aij)
T(M; + Y5 i) i Dlewj)
To enforce the positive support of «;, we use the log link function log(a;) = u +
¢; + €;, where ¢; is a vector of random effects that is conditional on the value

of the climate covariate and &; is a vector of Gaussian error that accounts for
overdispersion and is uncorrelated with ;.

[yile;]
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2.3. Gaussian process model. The latent functional responses for the corre-
lated random effect ¢ are modeled using Gaussian processes. For i =1,..., N
replicates of the d-dimensional multivariate latent response log(e;) = (log(e;1),
..., log(a;ig))’, we define the correlated multivariate Gaussian processes with
nugget as

() log(at;)) =p +¢; + &,

where p is a vector of means and/or fixed effects. For each observation i =
1,..., N, the marginal distribution of the random effect ¢; = (1, ..., ia) is
mean zero Gaussian with covariance matrix X that accounts for the relationships
among the observations (inter-species correlations). An important scientific ques-
tion is how the d functional responses co-vary across covariate space. For example,
when modeling distributions of species, similar functional responses to a covariate
may indicate existence of a biologically relevant functional group. Thus, inference
on X allows for formal learning about the underlying ecological relationships. We
assume &; ~ N(0, X,) is an independent and identically distributed Gaussian error
vector that accounts for overdispersion in the data not explained by the Dirichlet
mixture of multinomial distributions and can be added or removed from the model
as necessary because it is not required for the generalized linear model.

For each dimension j = 1,...,d, the marginal random effect &;.y j=
(C1,jse-es {N,j)’ is a Gaussian process with
3) ¢1n.; ~N(0,C(X, 0)),
where C(X, 0) is a correlation matrix with 7, i'th entry C; ;7 = c(x;, X;/, 6) repre-

senting the latent correlation between observations at covariate values x; and x;/,
where X; is the ith row of the N x g matrix of covariates X. Hence, we assume the
joint distribution of the random effects is { = (&1, ..., ¢y) ~N(0,C(X,0) @ X).
Each of the d marginal Gaussian processes have unit variance for identifiability in
the separable Kronecker product. The model can be generalized by allowing the
covariance structure to be nonseparable, but such extensions are not explored in
this manuscript.

A common class of correlation functions is the Matérn class, of which the Gaus-
sian and exponential correlation functions are examples (Stein (1999)). The Matérn
correlation function is given by

1 268;: v 281
e X 0) = 10 VI( - ﬁ) icv<ﬂ>,
V)S ol 0

where §;; is the Euclidean distance between x; and x;/, § = (p, v)’, p is a spatial
range parameter, and /C, () is the modified Bessel function of the second kind
with smoothness (differentiability) determined by the parameter v > 0. By letting
v — 00, the Matérn correlation function converges to the Gaussian correlation
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Gaussian MVGP by Species Simulated Correlations
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(a) Simulated Gaussian process response. (b) Simulated correlations among species.

FI1G. 2. Simulation of correlated Gaussian processes for the log-scale random effect. Notice in
the left figure that species one and two show a visually similar functional response to each other
with respect to the covariate value, as do species three and four. The correlations are quantified by
the correlation matrix on the right showing that species one and two have a positively correlated
Sfunctional response, which is seen by the similarity in functional shape of the figure on the left.
Likewise, species three and four have a similar functional shape and strong positive correlation. The
other pairwise comparisons have different functional shapes and associated negative correlations.

function, and setting v = 0.5 results in the exponential correlation function. For
the examples in this manuscript, we use the exponential correlation function

diir
C(Xi,Xl'/,G) =exp - )
0

where 6 = p, although the framework accommodates arbitrary correlation func-
tions in general.

An example realization of a four-dimensional correlated Gaussian process on
the log-scale of the latent random effect (Figure 2(a)) shows how the log-scale
random effect varies in covariate space while allowing for the different dimen-
sions (species) of the process to co-vary. The flexible nature of the multivariate
Gaussian process allows for statistical learning about both the latent functional re-
lationships for each species and how the functional responses interact among the
species. For example, Figure 2(a) shows how species one and two co-vary in their
respective functional responses due to a strong positive correlation (Figure 2(b)).
We can see the influence of the correlation on the Gaussian process realizations
where the first and second Gaussian processes (third and fourth) have very similar
shapes while the other pairwise combinations have different shapes. The similar
shapes between processes one and two (three and four) are because the processes
are highly correlated with pairwise correlation 0.87 (0.88). The pairwise correla-
tions of processes one and three, one and four, two and three, and two and four
are —0.76, —0.6, —0.7 and —0.57, respectively. These negative correlations in-
dicate that these species have a different functional response to the underlying
covariate relative to each other. In the ecological setting, a positive correlation in
functional response could represent a relevant functional group while a negative
functional correlation could represent inhibition or competition (Morales-Castilla
et al. (2015), Warton et al. (2015)).
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We rewrite ¢ to improve computational efficiency in our MCMC algo-
rithm. Using the upper triangular Cholesky decomposition ¥ = R'R, define
=R, ...,9yR) . For j=1,...,d, we define

M.y, jleC, -10) ~N(0, C(X, 9))

as independent Gaussian processes and rewrite the latent process (2) on the log-
scale as

4) log(etj) = +R'y; + &,

where the marginal distribution of ; ~ N(0, I)) is multivariate standard Gaussian
and the inter-species covariances are induced by the lower Cholesky matrix R.

2.4. Prior model.

2.4.1. Prior on the missing covariates. To complete the model specification,
we assign prior distributions to the remaining parameters. Because we are con-
structing a model for prediction of the missing, unobserved covariates given the
observed covariates, we assign priors for the set of possible covariate values. For
spatial and temporal problems, the support of X can be restricted to the domain of
interest. For predictions in covariate space, the support of X should assign positive
probability over the range of possible covariate values. We assign exchangeable
priors on each of the i = 1,..., N unobserved covariate values

&) X; ~N(py, 1.5%x),

with wy and X x chosen as the sample mean and covariance of the set of ob-
served covariates. While this prior might not be fully Bayesian (it uses the ob-
served covariates as a prior for the unobserved covariates), we argue that, a priori,
it is reasonable to assume the past values of the covariate are similar to the cur-
rent values with additional variation in the past relative to current values. Other
prior specifications are possible as long as the prior is Gaussian (e.g., a correlated
Gaussian spatio-temporal process) because the algorithm defined in Section 2.6
leverages a Gaussian prior distribution to efficiently sample the missing covari-
ates. We assumed the Gaussian process correlation function is isotropic, hence
c(xz, -, 0) depends on x: only through the set of pairwise distances to all of the
other X (both observed and unobserved). Thus, given an estimate for the distance
from a location, there are possibly many potential covariate values that can have
posterior probability mass, giving rise to multiple modes in the posterior (i.e., the
correlation function is a many-to-one function from which we aim to generate in-
verse predictions). The inclusion of multiple correlated Gaussian processes helps
to constrain the multimodal estimation but does not fully resolve the multimodal
problem when signal to noise ratio in the data model is low. The problem is also
exacerbated by a non-Gaussian likelihood associated with the compositional data.
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MVGP prediction for Testate Amoeba Data MVGP prediction for Pollen Data
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(a) Held-out testate amoeba data. (b) Held-out pollen data.

FI1G. 3. 95% predictive distributions for 25 held-out observations from the testate amoeba data
in Figure (a) and the pollen data in Figure (b) sorted to be increasing in the held-out covariate.
The dots are at the held-out true values and the violin plots represent posterior distributions. Notice
that the prediction distributions show evidence of the multimodality induced by the symmetry of the
correlation function and the MCMC algorithm is capable of efficiently exploring the multiple modes.
In addition, the MVGP model produces posterior distributions that have varying width for different
samples.

An example of the multimodal posterior distribution of the covariate is shown in
Figures 3(a) and 3(b). The multimodality in the conditional posterior of x: presents
a challenge which requires an MCMC sampling algorithm that is capable of ex-
ploring multiple modes efficiently (hence the Gaussian prior (5); see Section 2.5
and Section 2.6 for details).

2.4.2. Prior on the covariance X. The canonical inverse-Wishart prior for the
covariance matrix X is often used for convenience because the inverse-Wishart is
conjugate to a Gaussian likelihood, but the prior has some well-known shortcom-
ings (Barnard, McCulloch and Meng (2000), O’Malley and Zaslavsky (2008)). In
our case, the likelihood is non-Gaussian and we do not have the computational ben-
efits of a conjugate prior. For these reasons, we explore an alternative prior on the
covariance. We use a Cholesky decomposition ¥ = R’R to induce the covariance
that is vague and places marginal prior probability nearly uniformly over the space
of possible correlations while assuming the marginal variances are independent of
the correlations. We follow the separation strategy introduced in Barnard, McCul-
loch and Meng (2000) and model the marginal covariance X = diag(t)S diag(t)
using a diagonal matrix diag(t) with standard deviations T = (ty,, ..., T7)’ on the
diagonal, and 2 is an arbitrary positive definite correlation matrix. We model the
upper diagonal Cholesky decomposition Rg of the correlation matrix € = R Rg
directly, reducing computational cost by avoiding computation of the Cholesky de-
composition (Pourahmadi (1999, 2000), Smith and Kohn (2002)). Thus, we place a
prior directly on the upper diagonal Cholesky matrix R = Rg, diag(7) by modeling
Rg and 7.

Following Lewandowski, Kurowicka and Joe (2009) and the Stan Devel-
opment Team (2016), we construct a prior for the Cholesky decomposition
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of Rg with upper diagonal elements constructed from B = (g) random vari-

ables ¢ = (¢1,...,¢p) whose marginal support is the interval (—1,1). We
model the ¢, as independent beta random variables where, for b =1, ..., B,
¢p ~ 2Beta(Yp, ¥p) — 1 is a beta distribution scaled to the interval (—1,1).
Lewandowski, Kurowicka and Joe (2009) call ¢; partial correlations in a regular
vine and arrange ¢ in an upper triangular matrix

0 ¢1 ¢ -+ dp_as2
0 0 ¢3 -+ ¢B—a+t3
¢ = E .'. b
0O 0 0 ... bp
0O O o --. 0

where the i, jth elements of ® (when i < j) are interpreted as the correlation be-
tween the projections of the ith and jth random variables on the plane orthogonal
to all variables with row index i’ less than i. From the partial correlations ¢, we
construct the Cholesky factor R, using the recursive relationship (Stan Develop-
ment Team (2016))

ifi > j,
ifi=j=1,

NHO

-1

]‘[,/ -7, if1<i=j,

b, ifl=i<j, and

n,/ QDIZJ ifl <i<j,

Rai j =

where Rq; j and ®; ; are the i, jth elements of Rg and @, respectively.

To complete the prior on the separation model for X, we follow the recom-
mendations in Gelman (2006) and assign independent half-Cauchy priors on the
standard deviations T, where for j =1,...,d, t; ~ half-Cauchy(0, s ;). To sample
from the half-Cauchy priors efficiently, we use the result from Armagan, Dun-
son and Clyde (2011) where, for j =1,...,d, r ~ Gamma(z, Aj) with mix-

ing parameter A ; ~ Gamma(z, 2) mducmg a half Cauchy (0, s ) distribution on
the standard dev1at10n ;. The prior on the uncorrelated residual error covari-
ance X, is constructed using the same separation strategy as for X. Depending
on model performance in cross-validation in the generalized linear mixed model
framework, the uncorrelated random effect €; can be included or dropped from the
model.
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2.5. Computational considerations. When the covariates X are fixed and
known, parameter estimation for model (2) requires on the order of O(d Ntf)tal)2
operations, with the computationally costly inversion and determinant of the
Niotal X Niotal dimensional matrix C dominating the computation of the likelihood,
where Nt = N + N is the total number of locations. If Niotal 1s large, inver-
sion of this matrix alone is computationally challenging. For the inverse problem,
where the goal is estimation of a set of N unknown covariates x;, the compu-
tational cost is prohibitive for even small Nioa), because each MCMC iteration
(or optimization step) over the N missing covariates is O(dNE(’)tal) and needs to
be repeated for each of the N unobserved covariates resulting in the prohibitive
computational cost of O(N dNS)tal). Thus, there is need for a computationally
tractable approach for estimation under a multivariate Gaussian process model.
One approach is to use a rank one Cholesky update on the full rank correlation
matrix, which updates the Cholesky of the correlation matrix C given a single
row change in X. The rank one Cholesky update has the much lower computa-
tional cost of O(d Nt%)tal) to update the unobserved covariates because this opera-
tion uses sums of outer products of vectors, but these operations must be repeated
N times resulting in total computational complexity of O (N d Nt%)tal) + 0 N%ml)
and we found the algorithm numerically unstable and too computationally expen-
sive (Seeger (2004)).

A number of approaches to dimension reduction for Gaussian process models
have been proposed in the literature when the goal is traditional prediction (called
Kriging in the geostatistical literature), with respective advantages and disadvan-
tages. Lindgren, Rue and Lindstrom (2011) proposed approximating the Gaussian
process with a Markov random field by transforming the data to a regular lattice.
The Gaussian Markov Random Field approach requires the space over which the
Gaussian process occurs to be known, which is not appropriate for our problem.
It may be possible to allow for changing locations on the lattice, but the compu-
tational difficulty in implementing this method is substantial. Another approach
for reducing computational cost in Gaussian process models is to approximate the
likelihood in the spectral domain (Fuentes (2007), Paciorek (2007), Stein (1999)).
Spectral methods are difficult to implement for the traditional prediction problem,
let alone for inverse prediction, because they require expert tuning and require the
space over which the random process occurs to be known. Another class of meth-
ods can be described as local approximations and express the joint likelihood as a
product of conditional distributions. Examples of local likelihood methods include
the nearest neighbor Gaussian process (Datta et al. (2016)) and the compositional
likelihood introduced by Vecchia (1988). These methods suffer from issues in the

2Although in practical implementations, the limiting computational bottleneck is the calculation

of the Cholesky decomposition of C, which is of order O(Nt3

otal /3) and must be repeated for each of
the d Gaussian processes.
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inverse prediction problem because the meaning of local is ill-defined when the
values over which the Gaussian process occurs are unknown.

A final class of methods for approximating Gaussian processes are linear com-
binations of stochastic processes, including kernel convolutions, wavelet regres-
sion and other methods that can broadly be described as basis function expan-
sions (Banerjee et al. (2008), Cressie and Johannesson (2008), Hefley et al. (2017),
Higdon (2002), Kammann and Wand (2003), Nychka et al. (2015)). Basis function
methods allow the random effect to be separate from the space over which the
Gaussian process occurs by interpolating from a set of fixed locations, commonly
referred to as knots. Instead of the location information residing in the correlation
function, the information about location occurs in the basis expansion. Thus, any
computation that depends on the unknown covariates requires matrix multiplica-
tion instead of matrix inversion. Although there are many different basis function
models, we choose the predictive process (Banerjee et al. (2008)). The predictive
process approximation to the Gaussian process has the properties that the param-
eters of the low-rank process have the same interpretation as the parameters of the
full-rank process, and the predictive process is the best low-rank approximation
of order ¢ in terms of minimizing Kullback—Leibler divergence (Csatd (2002)).
Another advantage of the predictive process is that one can implement our pro-
posed model for any arbitrary positive definite correlation function, allowing for a
broad, flexible class of Gaussian process models where inverse prediction is pos-
sible.

By assuming the Gaussian process can be represented by a low-rank predictive
process approximation of order £, we approximate the marginal model for the
random effect (3) as

My~ e (X X5, 0)CH(X*,0) 'y}
=Z(X.X*,0)n?,

where C*(X*, ) is the correlation matrix created by evaluating the correlation
function ¢(X*, X*, #) at the £ fixed knots X*, ¢*(X, X*,0) = ¢(X, X*, 0) is the
cross-correlation of the process at the covariate locations X and the knots X*,
ZX,X*, 0)=c*(X,X*, 0)C*(X*, X*, 0)_1 is the basis expansion matrix that con-
tains known and unknown covariate values, and the low-rank random process de-
fined at the knots is the Gaussian predictive process

7, ~N(0, C*(X*, X", 6)).

Most importantly for the inverse problem, the location information (known and
unknown) is in the matrix Z(X, X*, #) rather than the correlation function. Thus,
estimating the unknown Gaussian process hyperparameters requires the O (d¢3) <
ol N[%)tal) inversion of the reduced-rank matrix C*(X*, X*, #) once per MCMC
iteration (this can be done using a cached Cholesky decomposition that is reused
for each of the N missing covariates) and evaluation of the likelihood for each
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observation with an unknown covariate is now reduced from the O (d Nt30tal) ma-
trix inversion for the full model to the O (d¢?) vector-matrix multiplication z; p*,
where z; is the ith row of Z(X, X*, #). Hence, we have reduced the computa-
tional cost from O(N d Né)tal) to O(d £3) + O(N d¢?). The reduced computational
cost for estimating unknown covariates means the predictive process approach is
well suited for our model framework, despite the predictive processes’ well-known
shortcomings of producing estimates that are overly smooth at fine-scales (Finley
et al. (2009), Stein (2014)).

Using the predictive process, we write our approximate Gaussian process ran-
dom effect as

(©6) ¢f =R (zn*)
and rewrite the latent random effect on the log-scale (4) as
(7 log(a;) =p+&7 + &

2.6. Implementation. The posterior we sample from using MCMC is

[’7*7 02’ )"Ga TZ, )"‘L’v P, ¢7 {X/}§V21|{Yi’i = 1’ LR Ntotal}]

Niotal

o [ [yilw*, o2, 72 p][n*172, p][021As2][2g2]
i=1

N
x [t2a2] (A2 1001[0] [ [ 171,
i=1

which is high dimensional and multimodal. Thus, we develop a MCMC algorithm
that is fast, efficient and can explore a multimodal distribution effectively. The
elliptical slice sampler is a highly efficient method for sampling from parame-
ters whose prior distribution is multivariate Gaussian because the elliptical slice
sampler has no tuning parameters, jointly updates parameters of interest, reduces
random walk behavior and allows for exploration of multimodal full-conditionals
(Murray, Adams and MacKay (2010)). We found the elliptical slice sampler to
be highly effective in sampling the high-dimensional predictive process random
effect n* and the multimodal unobserved missing covariates x:; elliptical slice
sampling vastly outperformed importance sampling within Gibbs and Metropo-
lis within Gibbs algorithms (Gelfand and Smith (1990)). For other parameters, we
use an adaptive random walk Metropolis within Gibbs algorithm, with multivariate
proposals on the log- or logit-scale if appropriate (Roberts and Rosenthal (2009)).

All the probabilistic models were fit using 200,000 MCMC iterations, discard-
ing the first 50,000 iterations as burn-in and fixing the adaptive proposal distribu-
tions for the remaining 150,000 iterations. Each algorithm was run for four parallel
chains, thinning every 150 iterations to reduce output file size resulting in 4000
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posterior samples. Convergence was assessed using the Gelman—Rubin R statis-
tic (Gelman, Rubin et al. (1992)). For the predictive process, we assign 30 knots
evenly spaced over a range extending 1.5 standard deviations of the observed cli-
mate state beyond the minimum and maximum observed climate state. Based on
repeated model fits, we found the inference obtained from the MVGP model to be
insensitive to the number and location of knots.

To increase computational speed, we coded the algorithm in C++ using the
ReppArmadillo package (Eddelbuettel and Sanderson (2014)) within the R
computing environment (R Core Team (2016)). We fit competing models in R us-
ing the rioja package (Juggins (2015)).

3. Empirical model evaluation. We evaluate the performance of the model
framework using a simulation study as well as a cross-validation experiment us-
ing the two representative compositional count datasets. For paleoclimate proxy
databases, there are often one or two environmental covariates that are measured
in common across different studies. Therefore, we focus on the predictive per-
formance of the model framework to a single covariate variable in what follows.
To explore the impact of model assumptions on predictive performance we con-
sider two simulation experiments. For the first experiment, we simulated data from
the BUMMER model. The second experiment simulated data under the MVGP
model. For each of these datasets, we can compare the estimates of the parame-
ters from the equivalent simulated model to demonstrate that each model (BUM-
MER and MVGP) is capable of recovering the underlying simulated parameters.
In addition, we can compare the influence of the symmetric, unimodal assumption
of BUMMER relative to MVGP in simulated data. The simulation-based exper-
iments evaluate predictive performance using out-of-sample test data simulated
from the model under consideration. We also estimate the missing covariates us-
ing the transfer-function methods and compare with predictions generated using
the proposed model. For comparisons, we also fit a simplified generalized additive
model (GAM) version of the MVGP model using a B-spline approximation to the
latent functional response with a Dirichlet-multinomial likelihood.

For the cross-validation experiments, we evaluate model performance using the
calibration testate amoeba and pollen data. Model performance is assessed by com-
paring predictive skill using k-fold cross validation for each of the candidate mod-
els. To balance computation time and to avoid model stability issues by holding-
out too much data, we cross-validated over 12-fold hold-out data sets chosen at
random. All of the empirical model experiments do not include the additional
overdispersion term ¢&; as inclusion of this term did not improve predictive skill
in cross-validation.

3.1. Model evaluation. We evaluated the reconstructions using mean square
prediction error (MSPE), mean absolute error (MAE), empirical 95% coverage for
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either central Bayesian 95% credible intervals or 95% frequentist confidence inter-
vals, and the continuous ranked probability score (CRPS) (Gneiting (2011)). One
desirable property of a scoring rule is propriety. A proper scoring rule is one which,
under expectation, selects the optimal predictive model. A strictly proper scoring
rule is one which, under expectation, selects the optimal predictive model and no
others. MSPE (MAE) has the advantage of being widely used, easy to understand
and easy to implement, but is not a strictly proper scoring rule for arbitrary like-
lihoods. To understand why MSPE (MAE) is not strictly proper, one can envision
two models that yield the same predictive mean but different predictive variances.
The best model is the one with empirical coverage closest to the nominal rate, but
MSPE (MAE) is unable to distinguish between the two predictions and is thus not
strictly proper. However, MSPE (MAE) is proper because the best model has the
lowest score, on average. To ensure that our scores are proper, we define the point
forecast as the mean (median) of the predictive distribution when using MSPE
(MAE). Instead of looking at Bayesian credible interval or frequentist confidence
interval coverage and MSPE or MAE jointly, one can use a strictly proper scoring
rule that integrates this idea formally. CRPS is a scoring rule that rewards pre-
dictions that are close to the true value while also rewarding proper estimation of
uncertainty (Gneiting, Balabdaoui and Raftery (2007)). The CRPS is defined for
the cumulative predictive distribution F' and out-of-sample realization yoos as
o0

CRPS(F, yoos) = f (FO) =10y = yoos))>dy.

—00
When fitting a Bayesian model using sampling methods, including MCMC, one
can approximate the CRPS using

CRPS = m Z Z|y(k) - y(K)| - E Z’y(k) — Yoos
k=1k=1 k=1

’

where y® and y®) are the kth and «th samples from the posterior predictive
distribution. For the nonprobabilistic WA, MAT and MLRC methods that produce
point forecasts, the CRPS score is equivalent to MAE.

3.2. Results. For the first simulated data experiment, the BUMMER model
that assumes a symmetric, unimodal functional response of each species to cli-
mate was used to generate the data. Details about the simulation parameters can be
found in Appendix S1 (Tipton et al. (2019)). Predictive scores in Table 1(a) show
that, for data simulated under the BUMMER model, the BUMMER model slightly
outperforms MVGP and the simpler GAM across all metrics and all the probabilis-
tic methods outperform the transfer function methods. This is unsurprising as the
BUMMER model was used to simulate the data and is the correct model; however,
the GAM and MVGP models produce predictions with essentially equal skill. The
transfer function methods fail to perform as well as the probabilistic models under
the simulated BUMMER data.
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TABLE 1
Results for predicting unobserved covariate values using simulated data. Smaller MSPE, MAE and
CRPS values indicate better model performance. Central Bayesian credible interval and frequentist
confidence interval coverage values closer to the nominal 95% credible interval indicate better
model performance

(a) Simulated BUMMER data

CRPS MSPE MAE 95% CI coverage
MVGP 0.6502 1.4008 0.9105 95.0000
GAM 0.6456 1.3683 0.9121 96.0000
BUMMER 0.6397 1.3480 0.9154 93.5000
WA 1.1143 1.8814 1.1143 98.0000
MAT 1.1057 1.9993 1.1057 98.5000
MLRC 1.6331 4.3291 1.6331 100.0000

(b) Simulated MVGP data

CRPS MSPE MAE 95% CI coverage
MVGP 0.5162 1.2637 0.6793 96.0000
GAM 0.5394 1.3372 0.7113 96.5000
BUMMER 0.7198 1.7937 1.0057 96.0000
WA 1.0962 1.9467 1.0962 96.0000
MAT 0.9413 1.6814 0.9413 95.0000
MLRC 1.3245 3.3055 1.3245 95.0000

For the second simulation experiment, we simulated compositional count data
from the MVGP model and generated predictions using the candidate models (Ap-
pendix S2, Tipton et al. (2019)). The results in Table 1(b) show the MVGP model
performs best across all metrics with the simpler GAM model performing nearly
as well. The BUMMER model shows decreased predictive skill because the sym-
metric, unimodal functional response assumption has been violated. The transfer
function methods fail to perform as well as MVGP and GAM, with MAT outper-
forming WA and MLRC. The MVGP model estimated the parameters simulated
from the MVGP model accurately, demonstrating that MVGP is useful for predic-
tion and inference (Appendix S2, Tipton et al. (2019)). By providing good pre-
dictions and accurately estimating the simulated parameters in data similar to the
observed data of interest, the MVGP framework is shown to be useful for both
prediction and inference using the simulated data. From this experiment, we have
shown that the BUMMER model shows degraded predictive performance when
the assumption of a symmetric, unimodal functional response is violated.

We used 12-fold cross-validation to test model performance on the testate
amoeba and pollen data to better explore the predictive performance of the can-
didate models. Details for the experiments can be found in Appendices S3 and
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TABLE 2
Cross-validation scores for experiment three using the application data. Smaller MSPE, MAE and
CRPS values indicate better model performance. Central Bayesian credible interval and frequentist
confidence interval coverage values closer to the nominal 95% credible interval indicate better
model performance

(a) Testate amoeba data

CRPS MSPE MAE 95% CI coverage
MVGP 0.2959 0.2793 0.3897 78.3708
GAM 0.2966 0.2933 0.3943 79.7753
BUMMER 0.3073 0.3020 0.4077 75.8427
WA 0.4014 0.2924 0.4014 94.3820
MAT 0.3867 0.2340 0.3867 98.8764
MLRC 0.4088 0.4310 0.4088 92.6966

(b) Pollen data

CRPS MSPE MAE 95% CI coverage
MVGP 0.2746 0.2178 0.3864 87.5000
GAM 0.2828 0.2119 0.3912 78.9474
BUMMER 0.2895 0.2485 0.4001 79.6053
WA 0.3711 0.2287 0.3711 94.0789
MAT 0.3486 0.1821 0.3486 100.0000
MLRC 0.3880 0.2722 0.3880 96.7105

S4 (Tipton et al. (2019))for the testate amoeba and pollen data, respectively. The
cross-validation experiment results in Table 2(a) (testate amoeba data) and Ta-
ble 2(a) (pollen data) demonstrate that the MVGP and GAM models generate the
best probabilistic predictions, whereas MAT produced the best point predictions
with MVGP, GAM and WA performing similarly on these metrics. For the CRPS
metric MVGP, GAM and BUMMER are the best performing models in that order.
The MAT produced confidence intervals with slightly higher than expected cov-
erage; MVGP and GAM produced central 95% Bayesian credible intervals with
lower than expected empirical coverage. In general, the cross-validated central
Bayesian credible interval coverage for MVGP, GAM and BUMMER is low for
the real data sets, perhaps due to additional overdispersion that is not accounted for
in the data model. The MLRC method produced the worst predictions across both
studies, but is included because MLRC is a functional response method like MVGP
and GAM and is robust to the no-analog problem (Appendix S5, Tipton et al.
(2019)). By being competitive with currently used predictive methods, the cross-
validation experiment demonstrates the potential of the MVGP inverse prediction
framework for paleoclimate reconstruction. The predictions shown in Figure 3(a)
and 3(b) demonstrate that the model generates reasonable predictive distributions,
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Testate Amobae Composition vs. Water Table Depth
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(a) Posterior mean response. (b) Posterior correlations.

FIG. 4. Posterior model fit for the testate amoeba data. Figure (a) shows the fitted latent response of
each species’ contribution to the composition with respect to water table depth, sorted by increasing
maximal species response to water table depth from top left to bottom right. Figure (b) shows the
posterior mean pairwise correlations in response to water table depth among testate amoeba species,
sorted by increasing maximal species response to water table depth from bottom left to top right. Red
colors show positive correlations and blue colors show negative correlation.

but the multimodality suggests that the posterior mean (or median) implied by use
of MSPE (MAE) might not always a good description of the predictive distribution
for MVGP and GAM—hence the decreased performance on the point prediction
metrics of MSPE and MAE.

The MVGP, BUMMER and GAM models also allow for inference that is not
available with the transfer function methods (WA, MAT and MLRC). The ability to
make inference on the latent functional relationship between composition data and
unobserved covariates is valuable. Figures 4(a) and 5(a) show the MVGP posterior
mean response of each testate and pollen species to water table depth and average
July temperature, respectively. Using these figures, researchers can make mean-
ingful inference about the ecological niche that different species are exploiting.

Pollen Composition vs. Average July Temperature Posterior Correlations
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FIG. 5. Posterior model fit for the pollen data. Figure (a) shows the fitted latent response of each

species’ contribution to the composition with respect to average July temperature, sorted by increas-
ing maximal species response to temperature from top left to bottom right. Figure (b) shows the
posterior mean pairwise correlations in response to average July temperature among species, sorted
by increasing maximal species response to average July temperature from bottom left to top right.
Red colors show positive correlations and blue colors show negative correlation.
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For example, in Figure 4(a) the species Assulina muscorum (assmus) is dominant
in environments with water table depths deep below the peatland surface while
the species Hyalosphenia elegans (hyaele) is more prevalent when water tables
are near the surface. In Figure 5(a), there is a pronounced multimodal response
of Pinus species to average July temperature. The Pinus taxa is a combination of
different pine species that each have a different ecological niche and would be ex-
pected to have a multimodal functional response that would not be detected under
the BUMMER model.

The posterior mean estimates of the correlations among functional responses
shown in Figure 4(b) and Figure 5(b) provide insight into potential interactions
among species. For example, some members of the same genus, such as Nebula
(neb) and Assulina (ass), show positive correlations in their functional response
to water depth. Not surprisingly though, there are a number of unrelated species
that show high correlations, such as Trigonopyxis arcula (triarc) and Assulina
spp (assmus, asssem), likely because they occupy similar niches with respect to
surface moisture and other environmental conditions. This is supported in Fig-
ure 4(b) by the presence of positive correlations near the diagonal of the corre-
lation matrix. The positive correlations near the diagonal in Figure 4(b) suggest
species that have maximal responses that are near each other display a correlation
in the functional response to water table depth. Importantly, species with similar
energetic strategies, in particular mixotrophic species like Hyalosphenia papilio
(hyapap) and Heleopera sphagni (helsph) that contain endosymbiotic zoochorel-
lae also have high correlations, likely due to similar water-table depth tolerances as
well as light requirements. Likewise Figure 5(b) shows the positive correlations of
plant species with maximal responses at either the cool or hot end of the average
July temperature gradient. For example, Pinus and Betula are highly correlated
in their functional response, which is not surprising as these taxa frequently oc-
cur together. Species with high correlations could be clustered together in future
statistical analysis to reduce the number of parameters that need to be estimated
and might also save analysts time by reducing the need for taxonomic precision in
some cases. These inferential questions cannot be answered by the transfer func-
tion techniques commonly used to model compositional data, demonstrating the
value of the MVGP modeling approach.

4. Discussion. This work developed a flexible, novel model framework for
prediction of unobserved climate from compositional count data. We have shown
the MVGP model is capable of providing predictions that are of equal or supe-
rior skill to current methods depending on the properties of the underlying data.
Although MVGP might not always be the most skilled model in cross-validation
using the observed data, the MVGP model is robust to the issues commonly seen
in using compositional count data to reconstruct climate including the “no-analog”
setting. In “no-analog” data, the cross-validation scores for MVGP dominate the
other models (Appendix S5, Tipton et al. (2019)). Thus, although MVGP does not
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uniformly outperform WA and MAT in cross-validation, the empirical robustness
of MVGP to the “no-analog” problem (Appendix S5, Tipton et al. (2019)) and per-
formance on data simulated from the BUMMER model suggests that our model
framework is more robust to data seen in practice.

We have shown that the MVGP model can be a useful inferential tool by fitting
the model to simulated data and showing that the inference accurately reproduces
simulated parameters. This is important because posterior inference that we obtain
from the MVGP provides learning about the underlying processes that is not avail-
able in the transfer function methods WA and MAT while making fewer assump-
tions than the current Bayesian methodology of BUMMER. The learning about
the correlations in functional responses can be used to validate the groupings of
taxa into similar functional types and provide the basis for a data-driven method
of grouping taxa based on similar functional responses. Using the learning of the
underlying processes giving rise to the data, we can guide future model and dataset
development to iteratively improve paleoclimate reconstructions.

The statistical and computational framework developed in this manuscript al-
lowed us to fit a complex model to compositional count data in a reasonable
amount of time. We presented an algorithm for predicting unobserved inputs into
a Gaussian process model by resolving a computational bottleneck that allowed
for use of the highly flexible Gaussian process functional form to be used for in-
verse prediction. We also implemented an MCMC sampling technique that can
efficiently explore the multimodal posterior generated by the inverse prediction
framework.

Finally, MVGP and the other probabilistic methods for climate reconstruction
have greater flexibility in future development. It is natural to extend the proba-
bilistic models to include temporal or spatial autocorrelation by assigning the un-
observed covariates X a correlated prior. Possible autocorrelation structures can
account for either continuous or discrete observations in space and time. In ad-
dition, because the likelihood is probabilistic, one can account for radio-dating
uncertainty through weighting the likelihoods using an estimated age-depth model
to more fully account for uncertainty. The impact of these changes is difficult to
include in a cross-validation experiment but better incorporates domain knowl-
edge of how the climate processes evolve in time and space. Given that the MVGP
model is competitive in predictive skill with current modeling efforts, the ability
to extend MVGP to correlated spatio-temporal reconstructions is a great benefit.
Additional improvements in reconstruction skill could also be seen by combining
MVGP with other proxy data sources to provide more precise inference of paleo-
climate.

SUPPLEMENTARY MATERIAL

Code for replication of results and appendices (DOI: 10.1214/19-A0AS1281
SUPP; .zip). The zip file includes detailed analyses in the appendices as well as
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code and data for replication of the analyses presented in the manuscript and ap-
pendices.
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