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The advent of high-throughput sequencing technologies has made data
from DNA material readily available, leading to a surge of microbiome-
related research establishing links between markers of microbiome health and
specific outcomes. However, to harness the power of microbial communities
we must understand not only how they affect us, but also how they can be in-
fluenced to improve outcomes. This area has been dominated by methods that
reduce community composition to summary metrics, which can fail to fully
exploit the complexity of community data. Recently, methods have been de-
veloped to model the abundance of taxa in a community, but they can be
computationally intensive and do not account for spatial effects underlying
microbial settlement. These spatial effects are particularly relevant in the mi-
crobiome setting because we expect communities that are close together to be
more similar than those that are far apart. In this paper, we propose a flexible
Bayesian spike-and-slab variable selection model for presence-absence in-
dicators that accounts for spatial dependence and cross-dependence between
taxa while reducing dimensionality in both directions. We show by simulation
that in the presence of spatial dependence, popular distance-based hypothe-
sis testing methods fail to preserve their advertised size, and the proposed
method improves variable selection. Finally, we present an application of our
method to an indoor fungal community found within homes across the con-
tiguous United States.

1. Introduction. The development and increased accessibility of high-
throughput sequencing technologies have steadily decreased the cost of study-
ing DNA (Reuter, Spacek and Snyder (2015), Heather and Chain (2016)). This
has made analysis of microbial communities found in environmental samples eas-
ier. Armed with previously cost-prohibitive data, investigators have published a
flurry of work leveraging microbiome information with applications in varied
fields including forensics, ecology, archeology and public health. To date, much
of this work has focused on studying abiotic and biotic factors that structure mi-
crobial communities and on identifying links between microbiome characteristics
(e.g., composition or diversity) with specific outcomes. For example, studies have
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shown that microbiome composition can identify the source of a sample (Grantham
et al. (2015)), linked changes in the gut microbiome to immune system dysfunc-
tion (Round and Mazmanian (2009)), tied reduced microbial diversity to obesity
(Turnbaugh et al. (2009)), and connected imbalances in composition to Type 2 dia-
betes (Qin et al. (2012)). Though there has been an increased focus on defining the
characteristics and markers of “healthy” microbiome communities for various sys-
tems within the body (Human Microbiome Project Consortium (2012), Ravel et al.
(2011)), the tools to understand which factors may exert influence on microbiome
composition are limited.

In this paper, we consider data from Barberán et al. (2015), which contains
presence-absence indicators for over 57,000 fungal taxa based on dust samples
from 1331 homes in the contiguous United States. In addition, we have geographic,
climatic and household covariate information at each sampling location covering a
wide range of explanatory variables. Our objective is to develop a testing procedure
to identify covariates that influence microbiome composition that is applicable to
high-dimensional, spatial, binary data and leverages the multivariate dependence
between microorganisms.

Previous studies have demonstrated that a home’s location, design, its occu-
pants, and their activities, can all influence the microbiome composition present in
dust within the home (Barberán et al. (2015), Kettleson et al. (2015), Dannemiller
et al. (2016)). These studies generally reduce the data to summary measures (e.g.,
richness, Shannon Diversity index) or a measurement of dissimilarity in composi-
tion between samples such as Bray–Curtis dissimilarity (Bray and Curtis (1957)).
Often, investigators then test for association between environmental covariates and
these summaries using nonparametric permutation-based tests, the most popular
of which are “ANalysis Of SIMilarities” (ANOSIM; Clarke (1993)) and “PERmu-
tational Multivariate ANalysis Of VAriance” (PERMANOVA; Anderson (2001),
McArdle and Anderson (2001)). A tenuous assumption of these tests is exchange-
ability across sampling locations; we show that violation of this assumption in-
flates Type I error rates. This is of particular importance in our motivating ex-
ample because Barberán et al. (2015) note that nearby sampling locations exhibit
more similar fungal communities than those that are far apart, and thus the as-
sumption of exchangeability is known to be violated. In addition, Warton, Wright
and Wang (2012) notes that ecological count data often does not conform to the
mean-variance relationship implicitly assumed in distance metrics, and that this
misspecification can make distance-based approaches unreliable for these applica-
tions.

Distance-based methods are also limited in interpretability. Because they parti-
tion the pairwise distances between samples, we cannot determine precisely how
a covariate affects the composition or which taxa are directly affected. In a set-
ting where an investigator may endeavor to target an intervention at a specific
taxon or group of taxa, these tests are insufficient. Techniques such as redun-
dancy analysis and canonical correspondence analysis are commonly used tools
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that can allow these relationships to be specified, but they too rely on permutation-
based tests with an underlying assumption of independence across sampling lo-
cations. Recently, methods addressing similar concerns have been developed for
use on the compositional taxa counts (Chen and Li (2013), Grantham et al. (2017),
Wadsworth et al. (2017), Zhao et al. (2015), Wang and Zhao (2017)). However,
these methods are not appropriate for binary data and do not address spatial de-
pendence in the data. Additionally, the proposed methods in Chen and Li (2013)
and Wang and Zhao (2017) rely on optimization routines that may not be suitable
for problems with thousands of sample locations and tens of thousands of taxa.
Grantham et al. (2017) introduces a mixed effects model that accounts for correla-
tion between taxa, but not between sampling locations.

Thorson et al. (2015) provides a spatial factor analysis approach to modeling
the distribution of compositional taxa counts that provides computational advan-
tages to the methods above. However, this method uses constructed spatial factors
rather than environmental covariates directly, making it ill-suited to identify par-
ticular covariates that influence microbiome composition. Warton (2011) proposes
a permutation-based test that analyzes the community response and is applicable
to presence-absence data, but it too relies on an assumption of spatial indepen-
dence and is computationally expensive, and thus it is infeasible for large prob-
lems. Ovaskainen, Hottola and Siitonen (2010) apply multivariate logistic regres-
sion to the binary community response, but their focus is on estimating the corre-
lation between taxa and not on variable selection or covariate testing. Additionally,
the direct estimation of the cross-species correlation matrix makes this approach
infeasible for a problem of this size. Clark et al. (2017) provides a framework
to unify disparate data types, including presence-absence indicators, but it does
not account for spatial dependence, does not incorporate dimension reduction, and
does not perform variable selection or covariate testing. Ovaskainen et al. (2016)
and Ovaskainen et al. (2017) propose a spatial model for covariate effects on mul-
tiple species, but the model is parametric, full rank, and does not perform global
hypothesis testing. Shirota, Gelfand and Banerjee (2017) proposes a nonparamet-
ric model for presence-absence data, but their aim is prediction rather than variable
selection and testing for covariate effects.

As an alternative, we propose a flexible Bayesian variable selection method that
uses a spike-and-slab prior and accounts for spatial dependence between nearby
samples and cross-dependence between taxa. In particular, we model the spatial
dependence using a flexible, principal components based approach, which is non-
stationary in general. A unique feature of microbiome data is the large number
of taxa, and we exploit this feature to estimate a nonstationary spatial covariance
function using data-driven basis functions (Lorenz (1956)) and to relax the nor-
mality assumption common in spatial analysis (Gelfand, Kottas and MacEach-
ern (2005), Nelsen (1999), Petrone, Guindani and Gelfand (2009), Reich and
Fuentes (2007), Rodríguez, Dunson and Gelfand (2010)). We provide a global test
of whether or not environmental covariates affect microbiome composition that
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is interpretable, reliable and has fully characterized uncertainty. In addition, our
method produces clusters of taxa and tests for covariate effects on individual taxa.

The remainder of the paper is structured as follows: in Section 2, we further
describe the data; in Section 3, we detail the modeling procedure; in Section 4,
we propose a procedure to estimate data-driven basis functions; in Section 5, we
present a simulation study comparing our proposed method to several competitors;
and in Section 6, we apply the proposed method to an indoor fungal community
and compare our results to a previous study. Finally, we conclude with a brief
summary in Section 7.

2. Motivating data. Wild Life of Our Homes (WLOH; yourwildlife.org) is
a citizen-science project focused on studying microbial diversity in and around
our homes. As part of the project, participants received sampling kits and instruc-
tions specifying nine standardized locations around their homes at which samples
should be taken (Dunn et al. (2013)). The returned swabs were prepared using
the direct PCR approach (Flores, Henley and Fierer (2012)), which amplifies the
DNA present in the samples and allows them to be sequenced and classified into
Operational Taxonomic Units (OTUs). The total amount of genetic information in
a sample is an artifact of the sequencing process, and as a result, the raw number
of sequenced reads identified for a given OTU is not comparable across samples.
Thus, rather than analyzing the read counts directly, we consider the presence-
absence indicators for each taxon. This transformation to presence-absence does
not entirely remove the effects of the sequencing process from the data. For exam-
ple, a sample with a low total number of reads may still incorrectly consider too
many taxa as absent. However, the transformation tempers the effect in most other
cases.

In addition to supplying sample swabs, participants were asked to complete a
questionnaire providing details about the home’s location, design features and its
occupants. Geographic and climatic information were collected based on latitude
and longitude from the Climate Research Unit Time Series v3.21 Dataset (Harris
et al. (2014)) and the National Land Cover Database (Fry et al. (2011)) for a total
of over 170 covariates.

From samples collected between 2012 and 2015, data was successfully se-
quenced for 1331 homes spanning the 48 contiguous United States and the District
of Columbia indicating the presence of 57,304 distinct fungal taxa. Of these, we
focus on m = 763 taxa identified in Barberán et al. (2015) as being more prevalent
indoors than outdoors and on a set of p = 20 potentially influential covariates sim-
ilar to those in their analysis. The presence or absence at each sampling location
for two of these taxa are mapped in Figure 1. In the left panel, Trichosporon asahii,
which is commonly found living on human skin, is seen to be widespread while in
the right panel, Perenniporia narymica is seen to occur mainly in the mid-Atlantic
region. Thus, there is evidence both that there is spatial dependence underlying the
presence of fungal taxa and that the strength of that dependence varies across taxa.

http://yourwildlife.org
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FIG. 1. Map of presence (purple circle) or absence (gray ×) for two primarily indoor fungal taxa
at each sampling location.

3. Nonparametric spatial model. Let Yj (s) be the binary indicator that OTU
j = 1, . . . ,m is present in the sample at spatial location s. Suppose that we
have a set of p covariates, X(s) = [X1(s), . . . ,Xp(s)], such as those described
in Section 2. We assume there exists a latent continuous process Zj(s) such that
Yj (s) = 1{Zj(s) > 0}. The latent process is modeled as

(3.1) Zj(s) = βj0 + X(s)βj + ej (s),

where βj0 is an intercept and βj = (βj1, . . . , βjp)′ are regression coefficients that
together model the probability that OTU j is present in a particular location. The
final term, ej (s), is a multivariate Gaussian spatial process with E[ej (s)] = 0 and
Var[ej (s)] = 1 that models dependence not captured in the covariates between
spatial locations and between OTUs. This defines a probit link for the binary re-
sponses, P[Yj (s) = 1 | X(s)] = �[βj0 + X(s)βj ], where � is the standard normal
cumulative density function. The assumption that Var[ej (s)] = 1 is necessary be-
cause the covariate magnitudes are identifiable only up to the ratio of effect size to
variance.

Our primary goal is to develop a test to identify factors that influence micro-
biome composition. A covariate influences the composition if it affects the proba-
bility that any of the taxa will be present in a location, and thus we test the global
hypotheses

(3.2) H0r : βjr = 0 for all j versus H1r : βjr �= 0 for some j.

The structure of this global test provides a means to identify an influential factor
even if it affects only a small subset of the OTUs.

It remains to describe the modeling procedure for the individual components
identified in (3.1). In Section 3.1 we specify a Bayesian variable selection model
for the regression coefficients, βj , and in Section 3.2 we specify a nonparametric
Bayesian model for the multivariate spatial process, ej (s).
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3.1. Identifying influential covariates. We use a spike-and-slab prior for the
coefficients, βjr , to perform variable selection (George and McCulloch (1993),
Mitchell and Beauchamp (1988), Kuo and Mallick (1998)). We assume that each
coefficient can be written as βjr = γjrδjr for an inclusion indicator, γjr ∈ {0,1},
and magnitude, δjr ∈ R. This formulation allows us to simplify the hypotheses
in (3.2) in terms of the number of OTUs for which the r th covariate is included,
Mr = ∑m

j=1 γjr :

(3.3) H0r : Mr = 0 versus H1r : Mr > 0.

To evaluate this, we calculate the posterior probability of the null hypothesis,
P(Mr = 0 | Y), and compare to a threshold t ∈ [0,1]. If the posterior probability of
the null hypothesis is below the threshold, then the covariate is deemed influential.

Because we do not want to include the intercept in the variable selection pro-

cess, we give it a separate prior βj0
iid∼ N(0, τ−1

0 ) with τ0 ∼ Gamma(a0, b0). Simi-

larly, the magnitudes have the standard conjugate formulation, δjr
indep∼ N(0, τ−1

r )

with τr
indep∼ Gamma(ar , br). The inclusion indicators are distributed γjr

indep∼
Bernoulli(πr), where πr is the prior inclusion probability for the associated co-
variate.

The prior on πr is chosen to induce sparsity in the coefficients such that the
prior probability of the global null hypothesis in (3.3) is 0.5, reflecting no prior
knowledge of whether or not a covariate is influential. In particular, the inclusion
probabilities have prior density

(3.4) P(πr) = ω

[
1

B(1, θ)
(1 − πr)

θ−1
]

+ (1 − ω),

a mixture of Beta(1, θ) and U(0,1) distributions weighted by ω ∈ [0,1] and with
θ ≥ 1. This prior has large mass on the sparse model with πr near 0, as is common
in high-dimensional Bayesian variable selection (Castillo and van der Vaart (2012),
Zhou et al. (2015), Ročková and George (2018)), but remains flexible enough to
allow substantial probability for large values of πr . As ω approaches 1, the prior
inclusion probabilities are driven toward 0, leading to sparser coefficient vectors as
in the often used Beta(1, θ) special case, and as ω decreases to 0 the uniform com-
ponent dominates and covariates will be added more readily. We can also influence
the level of sparsity in the coefficients through the parameter characterizing the
Beta distribution, θ . If θ = 1 then the prior is simply U(0,1), and the coefficient
vectors will not be sparse. As θ increases, the density associated with large val-
ues of πr decays sharply, while density associated with small values changes less
drastically, leading to a steeper density curve. As a reasonable default, fix ω = 0.5
and set θ = m2, where m is the number of taxa under consideration, which gives
P(Mr = 0) = 0.5 a priori for each covariate, as desired.
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3.2. Capturing residual dependence. As we show in Section 5, properly ac-
counting for residual dependence is necessary for valid statistical inference. To
model the residual dependence in (3.1), we assume that ej (s) can be decomposed
into a structural component, ξj (s), and an independent component (or nugget),
εj (s), such that ej (s) = ξj (s) + εj (s). The structural component contributes vari-

ance ρ ∈ [0,1], leaving the nugget distributed εj (s)
iid∼ N(0,1 − ρ) to satisfy the

identifiability constraint that Var[ej (s)] = 1. We use a basis expansion model for
ξj (s) and write ξj (s) = �(s)αj , where �(s) = [ψ1(s), . . . ,ψL(s)] are orthogonal
spatial basis functions common to all taxa and αj = (αj1, . . . , αjL)′ are their as-
sociated loadings, for L finite or infinity. The model for the process now becomes
ej (s) = �(s)αj + εj (s).

We use a Dirichlet process prior (Ferguson (1973)) for the distribution of the

loadings, which can be written as αj
iid∼ f (α), where f is the infinite mixture

(3.5) f (α) =
∞∑

k=1

pk1{α = μk}.

The mixture means have priors μk
iid∼ N(μ0, ρIL), where μ0 ∼ N(0, τ−1

μ0
IL), ρ ∼

U(0,1) and τμ0 ∼ Gamma(aμ0, bμ0). The mixture probabilities, pk , are modeled
using the stick-breaking representation (Sethuraman (1994)) wherein p1 = V1,

pk = Vk

∏
u<k(1 − Vu) for k > 1, and Vu

iid∼ Beta(1,D). This ensures that pk > 0
for all k and

∑∞
k=1 pk = 1 almost surely. Rather than fix the Dirichlet process preci-

sion parameter, we assign it an uninformative positive prior, D ∼ Gamma(ad, bd).
With this infinite mixture model, our prior for the distribution of the spatial random
effects, ξj (s), has large support in the class of spatial processes (Gelfand, Kottas
and MacEachern (2005)). In practice, the infinite mixture model in (3.5) is trun-
cated at K terms for computational purposes. That is, we assume gk ∈ {1, . . . ,K}
for K ≤ m by setting VK = 1, giving f (α) = ∑K

k=1 pk1{α = μk}.
The Dirichlet process prior can be viewed as a clustering model for the spatial

loadings over the OTUs. If we let gj ∈ {1,2, . . . } denote the cluster label for OTU
j , then the mixture probability, pk , can be interpreted as P(gj = k), the probability
that OTU j will be assigned to cluster k. Then, given that OTU j has been assigned
to cluster k, its associated spatial loading vector is the group mean for that cluster,
that is, αj | gj = k is μk . In the microbiome setting, it is reasonable to believe
that taxa exhibit different spatial patterns, as in Figure 1, and that groups of taxa
will behave similarly. For example, one may expect that organisms with similar
functions or that require the same nutrients might be found in close proximity to
one another. This leads to a natural expectation of clustering in the spatial effects
over the OTUs.
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In combination with the assumptions from the previous section, the model for
the latent process becomes

Zj(s) = βj0 + X(s)βj + �(s)αj + εj (s)

= βj0 +
p∑

r=1

Xr(s)γjrδjr +
L∑

l=1

ψl(s)αjl + εj (s),

where βj captures the covariates’ effect on the probability that OTU j will be
present at location s, �(s)αj captures residual spatial trends and εj (s) are in-
dependent errors. The adoption of this flexible, nonstationary covariance model
provides key advantages over a parametric alternative. First, the model can ac-
commodate a wide range of covariance models, which promotes a model that is
robust to covariance misspecification. Second, the principal components based ap-
proach reduces the dimensionality of the problem, allowing for fast computation
even when a parametric model, be it stationary or nonstationary, may be computa-
tionally infeasible.

The details of the full proposed model and its implementation, as well as a
discussion of its properties, are contained in the Supplementary Material (Singh
et al. (2019)). We also show in the supplement that the covariance structure induced
by our model is nonstationary in general, and that the strength of the Dirichlet
process clustering controls the dependence between OTUs.

4. Estimating the spatial basis functions. The model detailed in Section 3.2
requires the construction of a set of spatial basis functions, �(s), that are orthog-
onal and capable of reflecting nonstationarity. While there are several approaches
available to estimate spatial basis functions from binary data (e.g., Lee, Huang
and Hu (2010)), we follow ideas from functional principal component analysis
for binary-valued functional data and estimate the basis functions as the eigen-
functions of an estimated covariance function of the spatial latent process (Hall,
Müller and Yao (2008), Serban, Staicu and Carroll (2013)).

Let S = {s1, . . . , sn} be the set of spatial locations at which the binary Yj (s)
are observed. Our goal is to construct an estimator of the covariance of the latent
process, Zj(s). To do so, we follow the Taylor approximation technique of Hall,
Müller and Yao (2008). Let σ(s, s′) be the covariance between Z(s) and Z(s′),
which for s �= s′ is estimated as

(4.1) σ̂
(
s, s′) = ϑ̂(s, s′)

φ{ν̂(s)}φ{ν̂(s′)} ,
where φ(·) is the standard normal density function. This is akin to equation
(10) in Hall, Müller and Yao (2008), where the numerator, ϑ(s, s′), represents
Cov[Y(s),Y(s′)], and the denominator acts as a scaling factor, with ν(·) denoting
the mean of the latent process. As we detail below, we use the residuals from pro-
bit regressions to estimate Cov[Y(s),Y(s′)], which ensures that the eigenvectors of
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this estimated covariance will explain mostly variation that cannot be explained by
the covariates. This allows us to alleviate complications from spatial confounding.

However, the component estimators differ from Hall, Müller and Yao (2008) be-
cause we cannot assume that the latent processes share a smooth mean process. In
our setting, the mean process may differ across taxa or may be nonsmooth due to
its dependence on nonsmooth covariates. We first obtain η̂j (s), the predicted prob-
ability that Yj (s) = 1 from separate probit regressions of Yj onto X for each taxon.
Then we smooth m−1 ∑m

j=1 η̂j (·) over 2-D space using a bivariate kernel smoother

to obtain an “average” mean process η̄(·), and let ν̂(·) = �−1{η̄(·)}, where �−1(·)
is the standard normal quantile function. In order to obtain the estimated covari-
ance of Y(s) and Y(s′), we calculate m−1 ∑m

j=1[Yj (s)Yj (s′) − η̂j (s)η̂j (s′)] and
smooth these estimates using a four-dimensional kernel smoother. The resulting
smoothed estimates are collected as ϑ̂(s, s′). As is typical in nonparametric statis-
tics, the optimal bandwidths are chosen using generalized cross-validation (Craven
and Wahba (1978), Hastie, Tibshirani and Friedman (2009)).

Applying this procedure to the variances will result in biased estimates (Hall,
Müller and Yao (2008)). To remove this bias, we consider a modified estimator,
σ̂ (s, s), and use the intercept of the weighted linear model

σ̂
(
s, s′) = β0 + w

(
s, s′) d

(
s, s′)β + ε,

for s �= s′ and with weights w(s, s′) = exp[−d(s,s′)
d10

]I(d(s, s′) ≤ d10), where d10 is
the distance between s and its 10th closest neighbor for some distance measure d .
In our application, we use the great-circle distance in miles.

Let �̂ be the initial estimate of the spatial covariance matrix with elements
σ̂ (s, s′). By construction, �̂ is symmetric. However, to ensure that it is positive
semidefinite, we consider its low rank approximation. Let φ̃1(s), . . . , φ̃L(s) be the
leading L eigenvectors of �̂, scaled by the square root of their associated eigen-
values, such that they account for a specified percentage of explained variance. In
our application, we use 90%. To preserve the variance structure described in Sec-
tion 3.2 (i.e., Var[ξj (s)] = ρ), we need to ensure that

∑L
l=1 φ̃2

l (s) = 1. If L < n,
this will require scaling the eigenvectors to obtain

ψl(s) =
[

1∑L
l=1 φ̃2

l (s)

] 1
2
φ̃l(s).

Let � = [ψ1, . . . ,ψL], where ψ l = {ψl(s1), . . . ,ψl(sn)}′ for l = 1, . . . ,L. After
this scaling process, � is no longer orthogonal on R

L, and thus we rotate by its
right singular vectors to obtain the proposed basis functions.

Now, � is scaled appropriately to preserve the variance structure we require,
rotated to preserve orthogonality between basis functions, and reflects the nonsta-
tionarity we expect in the data. The estimated basis functions are available only at
the locations in S , and extrapolation would be required to make spatial predictions
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beyond the n sample locations. However, our objective is not spatial prediction, but
rather to account for the complex dependence structure at the sampling locations
to give a valid global test of covariate effects.

Because of the reliance on generalized cross-validation to select the bandwidth
parameter, the four-dimensional smoothing step to obtain the ϑ̂(s, s′) estimates can
be prohibitively expensive. Two approaches to alleviating this burden are either to
use a different method to select the bandwidth or to make the cross-validation
less computationally intensive. As an example, a reasonable approach that avoids
cross-validation might be to construct a variogram, identify the distance at which
the correlation decays, and use that distance to set a bandwidth. Alternatively, if the
data contains sampling locations that are close to one another, one could downsam-
ple the locations while approximately preserving the spatial coverage of the data.
Then, generalized cross-validation can be done quickly on this smaller, representa-
tive set of locations to obtain an estimated optimal bandwidth. This latter approach
is utilized in our data application in Section 6.

5. Simulation study. In this study, we consider generating data while vary-
ing the type of spatial dependence in the latent process, the existence of cross-
dependence between OTUs in the latent process, the magnitude of covariate effect
size, and the degree of prevalence in covariate effects, and evaluate how these fac-
tors influence the true and false positive rates of the global test in (3.3).

5.1. Methods. We generate data on a 15×15 grid on the unit square for a total
of n = 225 spatial locations. For each of m = 50 OTUs, we draw the latent process
as Zj ∼ Nn(Xβj ,0.95�z + 0.05In). The structure of �z varies based on the type
of spatial dependence:

(Ind) Independence: �z = In,
(Exp) Stationary dependence: �z is populated by the exponential covari-

ance function with spatial range set such that the correlation between the two clos-
est sites is 0.75 and

(Nonstat) Nonstationary dependence: where �z(s, s′) = cos(2πs1) ×
cos(2πs′

1) + sin(2πs2) sin(2πs ′
2) for s = (s1, s2).

This specification of a nonstationary covariance function is chosen to mimic the
pockets of positive and negative correlation that may reflect the dependence on
habitats expected in the microbiome setting. Plots of this covariance function
evaluated at four points throughout the spatial domain are provided in the Sup-
plementary Material (Singh et al. (2019)). When the setting calls for multivari-
ate dependence in the latent process, we assume a separable covariance function
and define Cov[Zj(s),Zj ′(s′)] = c(j, j ′)�z(s, s′), where c(j, j ′) = 0.8|j−j ′| is the
cross-dependence function. In reality, we do not expect a meaningful ordering of
the OTUs, but this covariance is used to generate data with a reasonable range of
cross-correlations. The p = 20 covariates are drawn from a mean-zero Gaussian



TEST TO IDENTIFY FACTORS THAT SHAPE A MICROBIOME 2351

process with separable covariance function Cov[Xr(s),Xr ′(s′)] = c(r, r ′)�x(s, s′)
where c(r, r ′) is as above, and �x is the exponential covariance with spatial range
set such that the correlation between the two closest sites is 0.5.

Of the covariates, p0 = 6 are influential (i.e., βjr is nonzero for some j ) and
the remainder are unimportant for all OTUs (i.e., βjr = 0 for all j ). In order to
examine the ability of the algorithm to detect covariate effects across prevalences
and magnitudes, the six influential covariates are randomized such that two of them
affect all OTUs, two affect a randomly selected 50% of OTUs, and the final two
affect a randomly selected 10% of OTUs. Then, within each prevalence-based pair
of nonnull covariates, the first is assigned a large magnitude of βjr = 0.5 for its
nonzero effects, and the second is assigned a small magnitude of βjr = −0.25 for
its nonzero effects.

Under each of the simulation settings we generate N = 100 replicate datasets
and fit the proposed spatial nonparametric model and several competing models:

(PERM) PERMANOVA (Anderson (2001), McArdle and Anderson (2001)),
a permutation-based hypothesis test as implemented in the R package vegan
2.4-3 using Bray–Curtis dissimilarity.

(NS) Nonspatial variable selection model, that is, ρ = 0.
(NSM) Nonspatial variable selection model with multivariate random effects,

where the model from Section 3.1 is adopted for variable selection but we adjust
the model for residual dependence, ej (si ) = eij , to model dependence across taxa.
In particular, we still assume that we can decompose eij and write eij = ξij + εij .
However, in this adaptation, the structural component, ξij , captures dependence
across taxa but not spatial locations. We write ξij = α′

i�j , where �j are the lo-
gistic principal components of the m × m sample covariance matrix. The loadings

are given the conjugate prior distribution, αi
iid∼ NL(0, ρIL), and we choose the

number of basis functions such that 90% of variance is explained.
(Mat) Parametric spatial model where ej = [ej (s1), . . . , ej (sn)]′ from (3.1)

is modeled using a Matérn covariance function. The smoothness has prior κ ∼
U(0,2) (Stein (1999), Banerjee (2005)), and the range has prior log(ζ ) ∼ N(0, σ 2

ζ )

where σ 2
ζ is set such that the 99th percentile of the prior distribution for the range is

the maximum observed distance. The computing details for this model are included
in the Supplementary Material (Singh et al. (2019)).

(SNP) Proposed nonparametric spatial model using the nonstationary basis
detailed in Section 4, with the maximum number of groups set to K = m.

For each of the Bayesian models (NS, NSM, Mat and SNP), we fit the model
using a special case of (3.4) where ω = 1 and θ = m, which simplifies the prior

to πr
iid∼ Beta(1,m). This commonly used prior on the inclusion probabilities will

make it more likely for πr to be close to 0 than in the mixture setting. Our focus is
on identifying covariates that are borderline cases, for example, factors that influ-
ence only a few taxa. The sharper cut of this simplified prior near the origin makes
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the sampler less likely to include these covariate spuriously. To determine sensitiv-
ity to this prior specification, we also ran the simulation using the mixture prior in
(3.4) with the recommended default values. The results are qualitatively the same,
with improved performance for Mat in identifying small magnitude covariates but
a reduced ability to identify low prevalence covariates. The model performance for
SNP is broadly unchanged. The remainder of the prior specifications are detailed
in the Supplementary Material (Singh et al. (2019)). The models are run for a total
of 40,000 iterations with a burn-in period of 10,000, and the posterior samples are
thinned by 2. We deem the r th covariate to be influential if the associated poste-
rior probability of the null is below 0.05, that is, P(Mr = 0 | Y) < 0.05, for the
Bayesian models, or if its p-value from PERMANOVA is below 0.05.

For each dataset, we evaluate the models using true positive rate (TPR) and
false positive rate (FPR), presented in Table 1. Let M∗

r be the indicator that the r th
covariate is truly influential. The true positive rate is the percent of truly influential
covariates correctly classified as influential by the model for a given threshold t ,

TPR(t) =
∑p

r=1 M∗
r 1{P(Mr = 0 | Y) < t}

p0
.

TABLE 1
Summary of true positive rate (TPR), false positive rate (FPR) and average model fitting time in

minutes for PERMANOVA (PERM), the nonspatial (NS), nonspatial multivariate (NSM), parametric
Matérn (Mat) and proposed nonparametric (SNP) models

Dependence Between Taxa

Independence Autoregressive

Spatial Dependence Model TPR FPR Time TPR FPR Time

Independence PERM 0.61 0.05 0.61 0.48 0.06 0.60
NS 0.33 0.00 9.90 0.33 0.00 9.84
NSM 0.26 0.00 10.94 0.21 0.01 10.88
Mat 0.32 0.00 61.21 0.33 0.00 61.22
SNP 0.28 0.00 22.19 0.33 0.00 22.22

Exponential PERM 0.97 0.79 0.61 0.87 0.62 0.61
NS 0.78 0.37 9.98 0.73 0.34 9.97
NSM 0.54 0.18 10.88 0.41 0.12 10.81
Mat 0.45 0.02 67.16 0.45 0.03 67.02
SNP 0.56 0.06 23.02 0.54 0.06 22.50

Nonstationary PERM 0.85 0.53 0.61 0.81 0.49 0.60
NS 0.90 0.42 9.99 0.87 0.37 9.99
NSM 0.61 0.16 10.82 0.52 0.09 10.79
Mat 0.79 0.01 67.65 0.80 0.00 67.69
SNP 0.90 0.02 22.84 0.90 0.04 22.47
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TABLE 2
Inclusion rate for influential covariates for the parametric Matérn (Mat) and proposed

nonparametric (SNP) models in the case of nonstationary spatial dependence and independence
betweeen taxa, broken out by covariate magnitude (S = Small, L = Large) and prevalence (100%,

50%, 10%)

Covariate Prevalence and Magnitude

Model 100%L 100%S 50%L 50%S 10%L 10%S

Mat 1.00 1.00 1.00 0.79 0.82 0.12
SNP 1.00 1.00 1.00 0.99 0.97 0.43

The false positive rate is the percent of truly unimportant covariates that are incor-
rectly classified by the model as influential,

FPR(t) =
∑p

r=1(1 − M∗
r )1{P(Mr = 0 | Y) < t}

p − p0
.

Finally, in Table 2, we consider the inclusion rate for the influential covariates
for each model, broken out by magnitude of the covariate effect, small (S) or large
(L), and the prevalence of the covariate effect, 100%, 50%, or 10%. The inclusion
rate (IR) is defined as the proportion of the N simulation runs for which the method
correctly classified the covariate as influential,

IRr ′(t) = 1

N

N∑
s=1

1
{
P(Ms,r ′ = 0 | Y) < t

}
,

for each of the r ′ = 1, . . . , p0 influential covariates. As in the global results pre-
sented in Table 1, we use a fixed threshold of t = 0.05.

5.2. Results. As is evident in Table 1, in the case of no spatial dependence in
the data, PERM outperforms the Bayesian models. The Bayesian tests are overly
conservative and struggle to overcome the decreased signal to noise ratio in this
setting. The false positive rate for PERM is well controlled even in the face of
multivariate dependence, which is reasonable given that the permutation is done at
the sampling location level and thus the structure of any cross-dependence between
taxa is preserved.

However, in the presence of spatial dependence, PERMANOVA fails to preserve
the size of the hypothesis test and has false positive rates an order of magnitude
higher than expected. This is perhaps not unexpected as the pseudo-F test is built
on the assumption of exchangeability across sampling locations. Blind applica-
tion of these permutation-based methods in settings where spatial independence
across sampling locations is not a reasonable assumption will result in misleading
conclusions.
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When the data are spatially dependent, NS and PERM have high true positive
rates accompanied by high false positive rates, indicating that the models favor
including all covariates rather than discriminating between important and unim-
portant factors. The addition of correlation across taxa in NSM helps to ameliorate
some of this effect, but the false positive rates are still much higher in NSM than
in Mat or SNP. Thus, while modeling the dependence between taxa improves the
nonspatial model, it is clear that it is not sufficient. Under the exponential corre-
lation structure, Mat and SNP perform similarly, though Mat is too conservative
and thus sacrifices some power. Under the nonstationary correlation structure, SNP
provides a marked improvement in power while Mat is again overly conservative.

In Table 2, we present the inclusion rates for Mat and SNP broken out by preva-
lence and magnitude. We focus on the setting with nonstationary spatial depen-
dence and independence between taxa, simply to keep the false positive rates rel-
atively evenly matched so as to make a fair comparison. We exclude PERM, NS
and NSM from this discussion because of their outsized false positive rates as dis-
cussed in the previous paragraph. Breaking out the model performance in this way
allows us to see the contrast between the Bayesian spatial models. In particular,
we can see that SNP outperforms the parametric model in identifying covariates
with low prevalence and/or small magnitudes, which is our primary focus. SNP
picks up the low prevalence, small magnitude covariate 43% of the time, whereas
the parametric model selects it in only 12% of the replications.

In addition, the spatial parametric model takes 3× longer to fit than the other
models on average, and this is a relatively small problem with only 225 locations
and 50 taxa. Mat requires several inversions of an n×n matrix during each MCMC
iteration, and it is clear that this becomes computationally infeasible for problems
much larger than this simulated setting. The proposed nonparametric model re-
duces the dimensionality of the problem for both large numbers of observations
and a large number of observed taxa without sacrificing its aptitude to discern in-
fluential covariates from unimportant ones.

6. Data analysis. In light of PERMANOVA’s demonstrated failure to pre-
serve the size of the hypothesis test in the face of spatial and multivariate de-
pendence, we revisit the analysis of Barberán et al. (2015) in which the authors
determined which, if any, of a set of environmental and household covariates af-
fect the indoor fungal community composition of homes. The covariates of inter-
est included mean annual precipitation (MAP), mean annual temperature (MAT),
net primary productivity (NPP), elevation, age of the home, number of bedrooms,
number of inhabitants, female-to-male ratio of the home’s inhabitants, smoking
status, number of dogs/cats/birds, whether or not the home has a basement and
number of days with the windows open. Using PERMANOVA, they find that the
effects of outdoor variables and geographic location are more pronounced than the
household covariates, but note that the presence of a basement in the home, the age
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of the home, and the presence of a dog also affect the composition of the indoor
fungal microbiome.

We follow the intuition of Barberán et al. (2015) and compile a similar list of
covariates. In addition to those listed above, we include an indicator that the land
is designated as forested, an indicator that the home is a rental unit, and the type
of home (single family detached, multi-family dwelling, mobile). We replace the
number of days with the windows open with the type of ventilation (central air-
conditioning, central heat, window air-conditioning). NPP was missing for 81 of
the sampling locations, and when considering only indoor fungal taxa, an addi-
tional 24 sampling locations had no present taxa. These locations have been re-
moved, leaving n = 1226 locations and p = 20 covariates in the analysis. Maps of
all of the included covariates are provided in the Supplementary Material (Singh
et al. (2019)).

Using both PERMANOVA and the proposed nonparametric method, we inves-
tigated each covariate’s ability to affect the composition of the taxa identified as
the indoor fungal microbiome. SNP was run for 90,000 total iterations, keeping
the final 62,000 posterior samples. Unlike in the simulation study, the maximum
number of groups is set to K = 500 < m. We utilized the downsampling strat-
egy discussed in Section 4 to build the spatial basis functions. We used an 80%
threshold for explained variance, resulting in a total of L = 137 basis functions.
The first few estimated basis functions are mapped in Figure 2. The first several

FIG. 2. Maps of the first four spatial basis functions estimated from the WLOH data.
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TABLE 3
Summary of variable selection results from PERMANOVA (PERM) and the proposed spatial

nonparametric method (SNP). p-values are reported from PERM, and the posterior probability of
the null hypothesis, the expected number of taxa for which the covariate is included, and the number

of taxa for which the coefficient value is positive or negative are reported for SNP

PERM SNP

Covariate p-value P(Mr = 0 | Y) E[Mr | Y] #Positive #Negative

MAT <0.001 0.00 439 41 163
NPP <0.001 0.00 391 15 105
MAP <0.001 0.00 339 27 57
Multifamily dwelling 0.038 0.00 91 12 0
Central A/C <0.001 0.00 78 2 0
Forested <0.001 0.00 29 0 0
Elevation <0.001 0.00 19 0 0
Window A/C <0.001 0.00 8 0 0
Older home 0.078 0.03 11 0 0
Central heat 0.015 0.03 8 0 0
Mobile home 0.289 0.28 2 0 0
Smoking status 0.756 0.33 1 0 0
Number of bedrooms 0.386 0.54 1 0 0
Basement <0.001 0.60 1 0 0
Number of dogs 0.152 0.61 1 0 0
Rental home 0.075 0.71 1 0 0
Percentage of females 0.735 0.78 0 0 0
Number of occupants 0.016 0.79 0 0 0
Number of birds 0.627 0.86 0 0 0
Number of cats 0.558 0.93 0 0 0

functions reflect the nonstationarity in the data, while later basis functions reflect
smooth spatial variation. Reported in Table 3 for each covariate are the p-value
from PERMANOVA, the posterior probability of the null hypothesis, the poste-
rior expected number of taxa for which the covariate is selected, and a count of the
number of taxa for which the associated coefficient value is positive or negative, as-
sessed as

∑763
j=1 1{P(βjr > 0 | Y) > 0.975} and

∑763
j=1 1{P(βjr < 0 | Y) > 0.975},

respectively, for the proposed model. Note that the final two columns will not nec-
essarily sum to the third, because the posterior distribution underlying them differ.
The middle column is determined by the posterior distribution of the Mr statistics,
while the final two columns are determined by the posterior distributions of the
βjr .

Comparing the p-values from PERMANOVA and the posterior probability of
the null hypothesis from SNP, we see that the two models largely agree, but we
can identify a few covariates that PERMANOVA includes at either the 0.05 or
0.10 significance level that would not be included in the SNP model. Given the
inflated Type I error rates of the PERMANOVA test under spatial dependence in
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the simulation study, it seems likely that these are false positives. The proposed
method is able to identify both covariates that are important to many taxa (e.g.,
MAT) and those that are important only to a few (e.g., whether or not a home
is older). In addition, we are able to precisely describe how covariates influence
particular taxa. For example, as one would expect, we note that most fungal taxa
prefer cooler climes, but that there are some taxa that seem to thrive in the warmer
temperatures. Generally, we corroborate the findings of Barberán et al. (2015) and
conclude that geographic and climatic factors are most influential to the indoor
fungal microbiome composition. The household covariates that appear as influen-
tial are whether or not the home is older, whether or not the home is a multifamily
dwelling, and whether or not the home has air-conditioning or central heating, all
of which play a role in increasing the interaction between the indoor environment
and the outdoors.

The 763 species are grouped into an estimated (posterior mean) 50 clusters. The
largest clusters, based off of a k-means clustering algorithm with 50 clusters and
using 1 − P(gj = gj ′) as the dissimilarity matrix, contain taxa that exhibit little
spatial clustering and tend to be present across the country. The smaller clusters
tend to group together taxa that exhibit more localized presence. For example,
in Figure 3, the left panel displays the presence for the 113 taxa assigned to the
largest cluster and the right panel displays the presence for the eight taxa assigned
to a smaller cluster.

In as much as our results add to those of previous analyses using data from the
WLOH project, it is worth commenting about the additional biological insights
our approach offers. Barberán et al. (2015) found that, compared to bacteria, the
composition of fungi in homes tended to be much more strongly driven by outdoor
environmental conditions. In our analysis, this conclusion is even more strongly
supported. The primary factors associated with differences in the composition of
indoor fungi among households were those associated with climate and its effects,
and nearly all (96.7%) significant associations of individual taxa with particular
covariates were associations with these environmental factors.

Net Primary Productivity (NPP) was a particularly important correlate of the
composition of indoor fungi. In the United States, NPP is highly correlated with

FIG. 3. Map of presence for taxa assigned to a large cluster of 113 taxa and a small cluster of 8
taxa. A darker point indicates that a higher number of taxa are present in a location.
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forest cover, such that areas with higher NPP are almost always forests. In this
light, it is perhaps not surprising that species more common in regions with high
NPP were species associated with forests and dead and down wood, including mul-
tiple taxa of the species Xylobolus annosus. Conversely, species that became less
common under high NPP tended to be from the genera Alternaria, Cladosporium,
Aspergillus and Phoma, many of which are associated with decaying plant mate-
rial. Fungi from decaying plant material, much of which is in leaf litter, might be
more likely to become airborne in open habitats such as grasslands. Many species
were also influenced by the direct effects of the mean annual temperature or pre-
cipitation in the region in which a house was located.

One of the few nonenvironmental covariates identified as influential was
whether or not the home is a multifamily dwelling. Multifamily dwellings tended
to favor fungi associated with human bodies or foods. These included three Can-
dida taxa, Cryptococcus oeirensis, Penicillium concetricum, and the brewer’s yeast
(Saccharomyces cerevisae). Also more common in these homes were Rhodotorula
mucilaginosa, which does well under stressful conditions, such as those associated
with bathrooms that are frequently cleaned. The way in which a house was heated
or cooled also influenced which species were present. In particular, as has been
noted in smaller scale studies (Hamada and Fujita (2002)), we confirm here that
houses with air conditioning tend to be more likely to have Cladosporium fungi,
which are known to grow in air conditioning units and then spread through houses.

Considering that the homes we studied differed greatly in their size, number of
occupants, age, design, and much more, the fact that these variables influence so
very little of fungal composition is striking. Houses, in general, favor some fungi
relative to others and yet just which species appears to depend nearly exclusively
on where the house is built.

7. Discussion. In this paper, we introduced a nonparametric Bayesian model
for identifying factors that influence microbiome composition, as well as a co-
variance estimator amenable to high-dimensional, binary data akin to that of Hall,
Müller and Yao (2008). The proposed model uses spike-and-slab variable selec-
tion to identify covariates that influence the occupancy probability of even a small
subset of the taxa. It also utilizes a set of orthogonal, data-driven spatial basis
functions and a Dirichlet process prior over their associated loadings to cluster
the OTUs into groups of taxa that exhibit similar spatial responses, allowing di-
mension reduction in both the number of spatial locations and the number of taxa
under consideration, greatly alleviating the computational burden compared to a
parametric spatial model.

We demonstrated via simulation that the proposed model outperforms naïve
nonspatial models, with and without considering dependence between taxa, and
PERMANOVA in identifying influential covariates, and showed that violating the
assumption of exchangeability of sampling locations underlying PERMANOVA
leads to Type I error rates that are not well controlled. We also showed that the
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proposed model is able to better identify low prevalence and/or small magnitude
covariate effects as compared to a parametric spatial competitor.

We applied our proposed model to the indoor fungal microbiome from the Wild
Life of Our Homes project as identified in Barberán et al. (2015). We were able to
broadly substantiate their conclusion that geography and climate are the most in-
fluential factors affecting indoor fungal communities, and we provided additional
detail in describing how factors affect particular taxa rather than simply classifying
factors as influential or unimportant.

This work primarily focused on the global hypothesis of whether or not a co-
variate influences microbiome composition as a whole. However, the model also
allows for local hypothesis tests of individual covariate values, which have not
been fully explored here, though they are reported in the last two columns of Ta-
ble 3. We discussed the application and potential of these local tests, but did not
rigorously test the true and false positive rates for covariate effects on individual
taxa. An additional area of focus for future work is to expedite and improve the
covariance estimation process to scale with large problems.

SUPPLEMENTARY MATERIAL

Supplement to “A nonparametric spatial test to identify factors that shape
a microbiome” (DOI: 10.1214/19-AOAS1262SUPP; .pdf). We summarize the
proposed model, as well as some of its properties, and provide computational de-
tails. In the remainder of the supplement, we present maps of the spatial covariates
used in the analysis of Section 6 of the main article.
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