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Emission control technologies installed on power plants are a key feature
of many air pollution regulations in the US. While such regulations are predi-
cated on the presumed relationships between emissions, ambient air pollution
and human health, many of these relationships have never been empirically
verified. The goal of this paper is to develop new statistical methods to quan-
tify these relationships. We frame this problem as one of mediation analysis
to evaluate the extent to which the effect of a particular control technology
on ambient pollution is mediated through causal effects on power plant emis-
sions. Since power plants emit various compounds that contribute to ambient
pollution, we develop new methods for multiple intermediate variables that
are measured contemporaneously, may interact with one another, and may
exhibit joint mediating effects. Specifically, we propose new methods lever-
aging two related frameworks for causal inference in the presence of mediat-
ing variables: principal stratification and causal mediation analysis. We define
principal effects based on multiple mediators, and also introduce a new de-
composition of the total effect of an intervention on ambient pollution into the
natural direct effect and natural indirect effects for all combinations of media-
tors. Both approaches are anchored to the same observed-data models, which
we specify with Bayesian nonparametric techniques. We provide assumptions
for estimating principal causal effects, then augment these with an additional
assumption required for causal mediation analysis. The two analyses, inter-
preted in tandem, provide the first empirical investigation of the presumed
causal pathways that motivate important air quality regulatory policies.

1. Introduction. Motivated by evidence of the association between ambi-
ent air pollution and human health outcomes, the US Environmental Protection
Agency (EPA) oversees a vast program for air quality management designed to
limit population exposure to harmful air pollution (Dominici, Greenstone and Sun-
stein (2014), Pope III, Ezzati and Dockery (2009)). Fine particulate matter of di-
ameter 2.5 micrometers or less (PM2.5) is of particular importance with regulations
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to limit exposure to PM2.5 estimated to account for over half of the benefits and
a substantial portion of the costs of all monetized federal regulations (Office of
Management and Budget (2013)). A large contributor to ambient PM2.5 in the
US is the power generating sector, in particular coal-fired power plants. These
plants emit PM2.5 directly into the atmosphere but are also major sources of sulfur
dioxide (SO2) and nitrogen oxides (NOx) that, once emitted into the atmosphere,
contribute to secondary formation of PM2.5 through chemical reaction, coagula-
tion and other mechanisms. The amount of PM2.5 formation initiated by emissions
of SO2 and NOx depends largely on atmospheric conditions such as temperature
(Hodan and Barnard (2004)). Power plants are also major sources of CO2 emis-
sions.

A variety of regulatory programs under the purview of the Clean Air Act (e.g.,
the acid rain program) are designed to reduce emissions from power plants with
one goal of reducing population exposure to ambient PM2.5. One key strategy
for achieving this reduction is the installation of SO2 control technologies such
as flue-gas desulfurization scrubbers (henceforth, “scrubbers”) on power plant
smokestacks to reduce SO2 emissions and, in turn, PM2.5. Estimates of the an-
nualized human health benefits of regulatory polices such as the acid rain program
rely heavily on presumed relationships between such control strategies, emissions,
ambient PM2.5 and human health. While the underlying physical and chemical
understanding of the link between power plant emissions and PM2.5 is well estab-
lished, there remains considerable uncertainty about the effectiveness of specific
strategies for reducing harmful pollution amid the realities of actual regulatory
implementation. Accordingly, the EPA and other stakeholders have increasingly
emphasized the need to provide evidence of which specific air pollution control
strategies are most effective or efficient for reducing population exposures to PM2.5
(HEI Accountability Working Group (2003), U. S. EPA (2013)).

The goal of this paper is to propose a statistical method to examine the causal
effect of scrubbers installed at coal-fired power plants on the ambient concentra-
tion of ambient PM2.5 using observed data on power plant emissions and ambient
pollution. Physical and chemical understanding of these processes provide strong
support for the expectation that scrubbers reduce ambient PM2.5“through” reduc-
ing emissions of SO2, but this relationship has never been empirically verified
using observed data in the context of regulations that may simultaneously impact
a variety of factors. A key statistical challenge to verifying this relationship de-
rives from the fact that SO2 emissions are highly correlated with emissions of
NOx and CO2, and NOx is known to play an important role in the formation of
ambient PM2.5, possibly through interactions with SO2. Thus, the question will
be formally framed as one of mediation analysis. To what extent is the causal ef-
fect of a scrubber (the “treatment”) on ambient PM2.5 (the “outcome”) mediated
through reduced emissions of SO2, NOx and CO2 (the “mediators”)? Recovering
a statistical answer to this question amid the problem of multiple highly correlated
and possibly interacting mediators that are measured contemporaneously requires
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new methods development and would also serve to bolster the promise of statisti-
cal methods in studies of air pollution that have historically relied on physical and
chemical knowledge and not on statistical analysis.

To answer this question, we develop new methods that draw from two frame-
works for estimating causal effects in the presence of mediating variables: (1) prin-
cipal stratification (Frangakis and Rubin (2002)) and (2) causal mediation analysis
(Robins and Greenland (1992)). The methodological contributions of this paper
come in three areas. First, we develop new methods to accommodate multivariate
mediating variables that are measured contemporaneously (not sequentially), are
correlated and may interact with each to impact the outcome (see Figure 1 for a
an illustrative directed acyclic graph). This is essential for evaluating scrubbers
because power plants simultaneously emit multiple pollutants that may interact
through atmospheric processes to impact ambient PM2.5. Existing methods in the
literature for both principal stratification and mediation analysis have primarily fo-
cused on settings with a single mediator (e.g., Baron and Kenny (1986), Daniels
et al. (2012), Frangakis and Rubin (2002), Joffe and Greene (2009), VanderWeele
(2009)). Existing extensions to cases with multiple mediating variables cannot ac-
commodate the setting of power plant emissions where mediators may simultane-
ously and jointly impact the outcome (Daniel et al. (2015), Imai and Yamamoto
(2013), VanderWeele and Vansteelandt (2014), Wang, Nelson and Albert (2013)).
Our second methodological contribution is the use of Bayesian nonparametric ap-
proaches to model the observed distribution of emissions and pollution outcomes,
making use of a multivariate Gaussian copula model to link flexibly modeled
marginal distributions of observed outcomes to a joint distribution of potential out-
comes. Similar strategies with a single mediator have received recent attention in
the principal stratification literature (Bartolucci and Grilli (2011), Conlon, Taylor
and Elliott (2017), Ma, Roy and Marcus (2011), Schwartz, Li and Mealli (2011))
and are emerging for causal mediation analysis (Daniels et al. (2012), Kim et al.
(2017)). These approaches are important for confronting continuous mediators and
infinitely many principal strata and are deployed here in a novel way to address
the problem of multiple mediators while flexibly modeling the observed-data dis-
tributions of both mediators and outcomes. Finally, we provide a unification of
principal stratification and causal mediation analysis. While the mathematical re-
lationships between these two approaches are well understood (Mattei and Mealli
(2011), Mealli and Rubin (2003), VanderWeele (2011)), there has not been, to our
knowledge, a comprehensive deployment of both perspectives in a complementary
fashion to illuminate the scientific underpinnings of a specific problem. Baccini,
Mattei and Mealli (2015) made important progress in this direction using different
observed-data models to estimate principal effects and mediation effects in a prob-
lem with a single mediator. In contrast the approach developed here uses the exact
same observed-data models to ground both perspectives, proposes a common set
of basic assumptions for estimating both principal effects and mediating effects,
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modularizes an additional assumption required to augment a principal stratifica-
tion analysis in order to obtain estimates of natural direct and indirect effects and
considers settings with multiple mediating variables. Ultimately, we provide a new
dimension of quantitative, statistical evidence for supporting air policy regulatory
decisions.

2. Scrubber installation and linked data sources. Title IV of the Clean Air
Act established the acid rain program (ARP) which required major emissions re-
ductions of SO2 (and other emissions) by 10 million tons relative to 1980 levels.
This reduction was achieved mostly through cutting emissions from power plants,
or more formally, electricity-generating units (EGUs). Impacts of the ARP have
been evaluated extensively, and the program is generally lauded as a success due
to marked national decreases in SO2 and NOx coming at relatively low cost. Esti-
mates of the annualized human health benefits of the entire ARP range from $50
billion to $100 billion (Chestnut and Mills (2005)) but rely heavily on presumed
relationships between power plant emissions, ambient PM2.5 and human health.

While power plants under the ARP had latitude to elect a variety of strategies to
reduce emissions, one key strategy is the installation of a scrubber to reduce SO2
emissions. The precise extent to which installation of a scrubber reduces ambient
PM2.5 through reducing SO2 emissions remains unknown and has never been es-
timated empirically amid the realities of actual regulatory implementation where
pollution controls may impact a variety of factors that are also related to the for-
mation of PM2.5. Knowledge of these relationships is complicated by the fact that
power plants emit more than just SO2, and emissions of a variety of pollutants
likely interact in the surrounding atmosphere to form ambient PM2.5.

To provide refined evidence of the extent to which scrubbers reduce emis-
sions and cause improvements to ambient air quality, we assembled a national
database of ambient air quality measures, weather conditions and information
on power plants. Specifically, we assembled data on 258 coal-fired power plants
from the EPA Air Markets Program Data and the Energy Information Admin-
istration, with information on plant characteristics, emissions control technolo-
gies installed (if any) and emissions of SO2, NOx and CO2 during 2005, five
years after promulgation of an important phase of regulations under the ARP.
For each power plant we augment the data set with annual average ambient
PM2.5 concentrations in 2005 and baseline meteorologic conditions in 2004 mea-
sured at all monitoring stations in the EPA Air Quality System that are located
within 150 km. The 150 km range was chosen not only to acknowledge that at-
mospheric processes carry power plant emissions across distances at least this
great, but also to minimize the number of monitoring stations considered within
range of more than one power plant. We regard any power plant as “treated”
with scrubbers in 2005 if at least 10% of the plant’s total heat input was at-
tributed to a portion of the plant equipped with a scrubber as of January 2005.
Note that this proportion was nearly 0% or nearly 100% for the vast majority of
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TABLE 1
Summary statistics for covariates and outcomes available for the analysis of SO2 scrubbers

Have scrubbers Have no scrubber
(n = 59) (n = 190)

Median IQR Median IQR

Monitor Data
Average Ambient PM2.5 2005 (μg/m3) 12.4 (7.8, 14.8) 13.7 (11.8, 15.2)
Average Temperature 2004 (◦C) 11.5 (10.1, 15.0) 12.8 (10.4, 16.1)
Average Barometric Pressure 2004 (mmHg) 737.8 (686.7, 752.4) 746.1 (739.1, 755.6)

Power Plant Level Data
Total SO2 Emission 2005 (tons) 644.3 (257.3, 1819.9) 1267.1 (504.9, 2707.6)
Total NOx Emission 2005 (tons) 852.1 (394.2, 1531.3) 442.5 (193.7, 878.2)
Total CO2 Emission 2005 (×1000 tons) 505.3 (232.5, 960.7) 283.6 (117.7, 559.0)

Unit Level Data
Average Heat Input 2004 (×1000 MMBtu) 4653.3 (2266.4, 9363.9) 2783.4 (1147.6, 5448.1)
Total Operating Time 2004 (hours × # units) 7944.0 (7565.8, 8154.9) 7583.9 (7171.0, 7985.9)
Sulfur Content in Coal 2004 (lb/MMBtu) 1.0 (0.5, 2.2) 0.7 (0.3, 1.1)
Num. of NOx Controls 2004 (# units) 1.0 (1.0, 1.5) 1.0 (0.9, 1.3)
Pct. operating Capacity 2004 20.2 (10.0, 28.8) 16.4 (9.3, 24.6)

(MMBtu/MMBtu × 100)
Heat Rate 2004 (MMBtu/MWh) 268.5 (175.5, 436.9) 254.3 (152.6, 396.8)

plants, indicating robustness to this 10% cutoff. Other power plant characteris-
tics are listed in Table 1. The data files and programs to assemble the analysis
data set are available at https://dataverse.harvard.edu/dataverse/mmediators and
https://github.com/lit777/MultipleMediators respectively.

3. Causal mediation analysis and principal stratification.

3.1. Mediation analysis with a single mediator. To fix ideas, consider the sin-
gle mediator case. Let Zi ∈ {0,1} indicate the presence of the intervention of inter-
est here, whether power plant i had installed scrubbers in January 2005 (Zi = 1),
and let Z = (Z1, . . . ,Zn) be the vector of intervention indicators for power plants
i = 1, . . . , n. Using potential-outcomes notation (Rubin (1974)), let Mi(Z) de-
note the potential emissions that the ith power plant would be generated under
the vector of scrubber assignments Z, and let Yi(Z;M) denote the potential am-
bient PM2.5 outcome that could, in principle, be defined for any scrubber assign-
ment vector Z and any vector of intermediate emissions values M . Throughout
the paper we adopt the stable unit treatment value assumption (SUTVA) which
implies: (1) there is no “interference” in the sense that potential intermediate and
outcome values from power plant i do not depend on scrubber treatments and emis-
sions intermediates of other power plants (i.e, Mi(Z) = Mi(Zi) and Yi(Z;M) =

https://dataverse.harvard.edu/dataverse/mmediators
https://github.com/lit777/MultipleMediators
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Yi(Zi;Mi)), and (2) there are “no multiple versions” of scrubber treatments such
that whenever Zi = Z′

i , Mi(Zi) = Mi(Z
′
i ) and Yi(Zi;Mi(Zi)) = Yi(Z

′
i;Mi(Z

′
i)).

For reasons that will become clear later, we augment the standard SUTVA to
also assume “no multiple versions” of emissions intermediates which states, if
Mi = M ′

i , then Yi(Zi;Mi) = Yi(Zi;M ′
i ) (Forastiere et al. (2016)). We revisit pos-

sible violations of SUTVA in Section 8, but note here that the linkage of power
plants to monitors within 150 km provides some justification for this assumption.

The natural direct effect (Pearl (2001)) is defined by NDE = E[Yi(1;Mi(0)) −
Yi(0;Mi(0))], representing the effect of the intervention obtained when setting
the mediator to its ‘natural’ value Mi(0), that is, its realization in the absence of
the intervention. The natural indirect effect is defined as NIE = E[Yi(1;Mi(1)) −
Yi(1;Mi(0))], representing the effect of holding the intervention status fixed at
Z = 1 but changing the value of the mediator from M(0) to M(1). The total causal
effect of the intervention on the outcome can then be defined as TE = NDE +
NIE = E[Yi(1;Mi(1)) − Yi(0;Mi(0))]. Similar controlled effects could also be
defined to represent causal effects at specific values of M (Pearl (2001), Robins
and Greenland (1992)).

Implicit in the definition of these effects is the conceptualization of hypothetical
interventions that could independently manipulate values of both Z and M to, for
example, “block” the effect on the mediator. Thus, it is important to note that po-
tential outcomes of the form Yi(Zi;Mi(Z

′
i )) are purely hypothetical for Zi �= Z′

i

and can never be observed for any observational unit. Such unobservable potential
outcomes have been referred to as a priori counterfactuals (Robins and Greenland
(1992), Rubin (2004)). We revisit conceptualization of a priori counterfactuals in
the context of the power plant study in Section 4.1, but note here the distinction be-
tween a priori counterfactuals and potential outcomes of the form Yi(Zi;Mi(Zi))

that are observable and actually observed for some units.

3.2. Principal stratification. A distinct but related framework for defining
causal effects in the presence of intermediate variables is principal stratification
(Frangakis and Rubin (2002)). Continuing with the single-mediator case, principal
stratification considers only a single intervention and relies on definition of two
causal effects: the effect of Zi on Mi , defined as Mi(1) − Mi(0), and the effect of
Zi on Yi , defined as Yi(1;Mi(1))−Yi(0;Mi(0)). The objective is to estimate prin-
cipal effects which are average causal effects of Zi on Yi within principal strata of
the population defined by (Mi(0),Mi(1)).

With principal stratification, dissociative effects are defined to quantify the
extent to which the intervention causally affects outcomes when the inter-
vention does not causally affect the mediator, for example, E[Yi(1;Mi(1)) −
Yi(0;Mi(0))|Mi(1) = Mi(0)]. Dissociative effects are similar to direct effects in
a mediation analysis in that they represent causal effects of an intervention on the
outcome among the subpopulation where there is no causal effect on the mediator,
but they refer only to the specific subpopulation with M(1) = M(0). VanderWeele
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(2008) and Mealli and Mattei (2012) show that dissociative effects represent a
quantity that is only one contributor to the NDE, with the amount of contribution
tied to the size of the subpopulation with M(1) = M(0).

Associative effects are defined to quantify the causal effect of the intervention
on the outcome among those for which the intervention does causally affect the
mediator, for example, E[Yi(1;Mi(1)) − Yi(0;Mi(0))|Mi(1) < Mi(0)]. An asso-
ciative effect that is large in magnitude relative to the dissociative effect indicates
that the causal effect of the intervention on the outcome is greater among those
for which the mediator is causally affected, compared to those for which the me-
diator is not affected. This could be interpreted as suggestive of a causal pathway
whereby the intervention impacts the outcome through changing the mediator, but
note that associate effects are generally a combination of the NDE and NIE for a
defined subpopulation.

Dissociative effects that are similar in magnitude to associative effects indicate
that the intervention effect on the outcome is similar among observations that do
and do not exhibit causal effects on the mediator which could be interpreted as
suggestive of other causal pathways through which Zi affects Yi .

A primary distinction between principal stratification and causal mediation
analysis is that principal effects only pertain to population subgroups comprised
of observations with particular values of (Mi(0),Mi(1)), whereas natural direct
and indirect effects are defined for the whole population (as discussed in detail
in Mealli and Mattei (2012)). Importantly, note that the a priori counterfactuals
of the form Yi(Zi;Mi(Z

′
i)) for Zi �= Z′

i do not appear in the definition of prin-
cipal effects which rely only on the definition of observable potential outcomes
Yi(Zi;Mi(Zi)). Thus, there is no conception in principal stratification of a hypo-
thetical intervention acting on Mi independently from Zi , and there is no defini-
tion of a causal effect of Zi on Yi that is mediated through Mi . From a modeling
perspective principal effects can be estimated when an outcome model is speci-
fied conditional on both potential mediators (intermediate outcomes), Mi(0) and
Mi(1), while causal mediation analysis has tended to rely on an outcome model
that depends on the observed mediator. The differences in modeling strategies that
are typically employed in principal stratification and causal mediation analysis
complicate comparisons as results of such analyses have typically been driven in
part by different modeling assumptions. In Section 5 we will propose a new set
of assumptions to build a common observed-data model for principal stratification
and causal mediation analysis.

3.3. Existing considerations for multiple mediators. Extensions of the causal
mediation ideas outlined in Section 3.1 to settings of multiple mediating variables
are emerging. For contemporaneously observed mediators straightforward exten-
sions of the Baron and Kenny (1986) regression-based structural equation model
approach (MacKinnon (2008)) have been proposed. For each of K contemporane-
ous mediators (M1,M2, . . . ,MK), a series of regression models is used to estimate
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FIG. 1. Directed Acyclic Graphs: (a) contemporaneous mediators with interactions (our case), and
(b) sequentially ordered mediators.

mediator-specific NIEs in a manner that implies additivity of indirect effects,

(3.1) JNIE =
K∑

k=1

NIEk and TE = NDE + JNIE,

where JNIE is used to denote the joint natural indirect effect due to changes in all K

mediators, and NIEk = E[Yi(1;Mk,i(1)) − Yi(1;Mk,i(0))] represents the natural
indirect effect of the kth mediator. These approaches assume that each Mk,i medi-
ates the treatment effect independently of the other mediators without interactions
among mediators (i.e., the mediators are causally independent or parallel). Fig-
ure 1(a) without dashed lines illustrates this case. Wang, Nelson and Albert (2013)
propose an alternative modeling approach under the setting of causally indepen-
dent mediators. If the mediators interact with each other in terms of their impact
on the outcome, then additivity of indirect effects as in the above cannot hold, and
estimation of multivariate mediated effects can then be further complicated by cor-
relations among the mediators. Dependence among mediators has been considered
when Mk are observed sequentially (i.e., sequential mediators; Figure 1(b)), as in
Imai and Yamamoto (2013). Albert and Nelson (2011) and Daniel et al. (2015)
propose approaches for either sequentially dependent mediators or mediators that
do not affect nor interact with each other. These approaches offer a decomposition
of the JNIE in the case of sequential dependence and assume additivity of natural
indirect effects otherwise. VanderWeele and Vansteelandt (2014) discuss an ap-
proach to decompose the JNIE further when the mediators simultaneously affect
each other; however, their approach does not evaluate the impact of each individ-
ual mediator (see Section 4.3). Taguri, Featherstone and Cheng (2018) propose an
approach for contemporaneous, nonordered mediators but rely on an assumption
that the mediators are conditionally independent given observed covariates, which
does not fully represent the possibility of contemporaneous interactions among the
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mediators, as may be the case with multiple emissions (in particular SO2 and NOx )
and the formation of ambient PM2.5. Section 6 examines the possibility of contem-
poraneous interactions among (possibly correlated) mediators in the context of the
scrubber study.

In summary, existing methods for multiple mediators rely on either assumed
causal independence of (parallel) mediators and additivity of indirect effects, se-
quential dependence of mediators or on restrictive assumptions of conditional in-
dependence among mediators. VanderWeele and Vansteelandt (2014) point out
that, if there are interactions between the effects of (nonsequential) multiple me-
diators on the outcome, the joint indirect effect may not be the sum of all three
indirect effects. They note that, in principle, an analysis could proceed with an
outcome model, including interactions MjMk for all {j, k} combinations com-
bined with models for (E(Mj ,Mk)). However, this approach would lead to issues
of model compatibility between the models for Mj and Mk and that for the prod-
uct MjMk . The lack of satisfactory methods for more general settings of multiple
contemporaneously measured mediators motivates the methods developed herein,
where we offer a new decomposition of the joint natural indirect effect into indi-
vidual indirect effects that may not affect the outcome additively.

4. New methods for causal mediation analysis and principal stratification
with multiple contemporaneous mediators.

4.1. Notation for multiple mediating variables. Suppressing the i subscript
indexing power plants, let {Mk(z); k = 1, . . . ,K} denote the potential emissions of
K pollutants that would occur if a power plant were to have scrubber status Z = z,
for z = 0,1. While much of our development is general for any K , we focus on
the case K = 3 so that Mk(z), k = 1,2,3 denotes the potential emissions of SO2,
NOx and CO2 respectively. The causal effect of the scrubber on emission k can
then be defined as a comparison between Mk(1) and Mk(0). Let M(z1, z2, z3) ≡
{M1(z1),M2(z2),M3(z3)} denote potential emissions under a set of three scrubber
statuses {z1, z2, z3}.

We similarly define potential PM2.5 outcomes but extend the notation to define
potential concentrations under different values of scrubber status, Z, and different
possible values of emissions, M(z1, z2, z3). Thus, in full generality each power
plant has a set of 2K+1 = 16 potential outcomes for PM2.5, Y(z;M(z1, z2, z3))

which denote potential values of PM2.5 that would be observed under interven-
tion Z = z with pollutant emissions set at values under interventions z1, z2, z3.
Definition of all 16 potential PM2.5 concentrations is required for definition of
natural direct and indirect effects and entails a priori counterfactuals. For exam-
ple, Y(1;M(0,0,1)) would represent the potential ambient PM2.5 concentration
near a plant under the hypothetical scenario where the plant installs a scrubber
(z = 1), but where emissions of SO2 and NOx are set to what they would be with-
out the scrubber (z1 = z2 = 0), and emissions of CO2 are set to what they would
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be with the scrubber (z3 = 1). This may be conceptualized as a setting where a
power plant installs a scrubber but offsets the cost of the technology by burning
coal with a higher sulfur content and discontinuing use of a different NOx control,
thus “blocking” the intervention and maintaining SO2 and NOx emissions at levels
that would have occurred without the SO2 technology. Principal stratification will
only rely on potential outcomes with z = z1 = z2 = z3 that are observable from the
data, such as M(1,1,1) and Y(1;M(1,1,1)) observed for any power plant that in-
stalls a scrubber. Finally, let X denote a vector of baseline covariates measured at
the power plant or the surrounding area.

4.2. Observable outcomes: Principal causal effects for multiple mediators.
Extending principal stratification to settings where the intermediate variable is
multivariate is conceptually straightforward. Principal stratification defines a prin-
cipal stratum for every combination of the joint vector (M(0,0,0),M(1,1,1)),
and principal causal effects are defined as comparisons between Y(0;M(0,0,0))

and Y(1;M(1,1,1)) within principal strata.
For any subset K ⊆ {1,2,3}, let |M(1,1,1) − M(0,0,0)|K denote the element-

wise absolute differences between emissions of the subset of pollutants in K, for
example, |M(1,1,1)−M(0,0,0)|K={1,3} = {|M1(1)−M1(0)|, |M3(1)−M3(0)|}.
Definitions of quantities such as average associative and dissociative effects can
proceed following Zigler, Dominici and Wang (2012) by defining

EDEK

= E
[
Y

(
1;M(1,1,1)

) − Y
(
0;M(0,0,0)

)|∣∣(M(1,1,1) − M(0,0,0)
)∣∣
K < CD

K
]
,

EAEK

= E
[
Y

(
1;M(1,1,1)

) − Y
(
0;M(0,0,0)

)|∣∣(M(1,1,1) − M(0,0,0)
)∣∣
K > CA

K
]
,

where CA
K denotes a vector of thresholds beyond which a change in each emission

in K is considered meaningful, CD
K is a vector of thresholds below which changes

in these emissions are considered not meaningful and > and < represent element-
wise comparisons. Note that the dissociate effect is now defined on principal strata
where potential changes (or differences) in the intermediate variables are less than
some vector of thresholds |(M(1,1,1) − M(0,0,0))|K < CD

K instead of principal
stratum with strict equality |(M(1,1,1)− M(0,0,0))|K = {0,0,0}K to accommo-
date continuous intermediate values. For example, K = {1,3} would be used to
define the associative (dissociative) effect in the subpopulation exhibiting an ef-
fect on SO2 and CO2 in excess of CA

K (below CD
K ) without regard to the effect on

NOx . For the data analysis in Section 7, we divide the EAE defined above into two
parts. EAE+

K will denote the average associative effects among power plants where
all emissions in K are causally increased in excess of CA

K , while EAE−
K will de-

note the average associative effect in power plants where all emissions in K were
causally reduced in excess of CA

K . Note that these summary quantities only con-
sider a subset of principal strata that may be of interest. For example, analogous
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average principal effects could be calculated among strata where some emissions
are decreased and others are increased. We avoid burdensome notation for such
summaries but will revisit estimates in additional principal strata in the context of
the data analysis in Section 7.

In addition to estimating average dissociative and associative effects for differ-
ent K as defined above, interest may lie in entire surfaces of, for example, how the
causal effect on PM2.5 varies as a function of the causal effect on each emission
(“causal effect predictiveness” surface (Gilbert and Hudgens (2008))).

4.3. Observable and a priori counterfactual outcomes: Natural direct and
indirect effects for multiple mediators. Extending definitions of natural direct
and indirect effects to the multiple mediator setting is somewhat more com-
plicated. The natural direct effect is defined as NDE = E[Y(1;M(0, . . . ,0)) −
Y(0;M(0, . . . ,0))], representing the causal effect of Z on Y that is “direct” in
the sense that it is not attributable to changes in any of the K emissions. The
joint natural indirect effect of all K mediators, JNIE12···K , is derived by sub-
tracting the natural direct effect from the total effect, JNIE12···K = TE − NDE =
E[Y(1;M(1,1, . . . ,1)) − Y(1;M(0,0, . . . ,0))].

In addition to JNIE12···K , we introduce a decomposition into the natural indi-
rect effects attributable to changes in different combinations of the K mediators.
Maintaining focus on the case where K = 3, the JNIE123 can be decomposed into
emission-specific indirect effects and the joint indirect effects of all possible pairs
of emissions. See Figure 5 in the Appendix in the Supplementary Material (Kim
et al. (2019)) for a graphical representation.

We define the mediator-specific NIE for the kth emission as a comparison be-
tween the potential PM2.5 outcome under scrubbers and the analogous outcome
with the value of the kth emission fixed to the natural potential value that would
be observed without scrubbers. Specifically, for emissions of SO2, NOx and CO2
define

NIE1 = E
[
Y

(
1;M(1,1,1)

) − Y
(
1;M(0,1,1)

)]
,

NIE2 = E
[
Y

(
1;M(1,1,1)

) − Y
(
1;M(1,0,1)

)]
,(4.1)

NIE3 = E
[
Y

(
1;M(1,1,1)

) − Y
(
1;M(1,1,0)

)]
.

In a similar fashion we can define the joint natural indirect effect attributable to
subsets of mediators j and k for j �= k as differences between the observable po-
tential PM2.5 outcomes under scrubbers and the analogous a priori counterfactual
with values of pollutants j and k set to their natural values that would be observed
without scrubbers. For example, JNIE12 defines the joint natural indirect effects of
mediators 1 (SO2) and 2 (NOx ) as

JNIE12 = E
[
Y

(
1;M(1,1,1)

) − Y
(
1;M(0,0,1)

)]
.
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Values of JNIEjk for other pairs of mediators can be defined analogously, and
all such pairs correspond to the second row in Figure 5 in the Appendix in the
Supplementary Material (Kim et al. (2019)). Note that the joint natural indirect
effect of each pair of mediators is not equal to the sum of corresponding mediator-
specific NIEs unless there is no overlap between mediator-specific NIEs (addi-
tivity). For example, we can represent the relationship between JNIE12 and the
mediator-specific effects NIE1 and NIE2 as

(NIE1 + NIE2) − JNIE12

= E
[
Y

(
1;M(1,1,1)

) − Y
(
1;M(0,1,1)

)

− Y
(
1;M(1,0,1)

) + Y
(
1;M(0,0,1)

)]
.

Thus, if this quantity is not equal to 0, we argue that additivity of mediator-specific
NIEs does not hold. Note that the above decomposition of JNIE123 differs from
VanderWeele and Vansteelandt (2014), which considers the portion of the JNIE123
mediated through M1, then sequentially considers the additional contribution of
each mediator in the presence of the others. This presumed ordering of media-
tors precludes estimation of the effect through different pairs of mediators such as
JNIE23 or JNIE13, the availability of which is a benefit of our proposed decom-
position. Our decomposition also differs from Daniel et al. (2015) who only allow
interacting overlap between mediator-specific NIEs when one mediator causally
affects another.

Note that alternative definitions of NIE could use contrasts of the form, NIE∗
1 =

E[Y(0;M(1,1,1)) − Y(0;M(0,1,1))]. Such a strategy is also considered in
Daniel et al. (2015) but defining NIE∗

k in this way would rely entirely on a priori
counterfactuals, whereas a benefit of using the definitions in (4.1) is that each def-
inition uses the observable potential outcome Y(1;M(1,1,1)), comparing against
only one a priori counterfactual (e.g., Y(1;M(0,1,1))).

5. Flexible Bayesian models assumptions and estimation. Under the as-
sumptions developed in this section, Bayesian inference for the causal effects de-
fined in Section 4 follows from specifying models for the joint distribution of all
potential mediators (conditional on covariates) and the outcome model conditional
on all potential mediators and covariates and prior distributions for unknown pa-
rameters. Posterior distributions cannot be computed directly from observed data
because potential outcomes are never jointly observed in both the presence and
absence of a scrubber and a priori counterfactuals are never observed. Our esti-
mation strategy consists of three steps. First, we specify nonparametric models
for the observed data. The marginal distribution of each observed mediator (i.e.,
M(0,0,0) = {M1(0),M2(0),M3(0)} observed for power plants that did not install
scrubbers, and M(1,1,1),= {M1(1),M2(1),M3(1)} observed for those that did)
is specified separately and then linked into a coherent joint distribution using a
Gaussian copula model (Nelsen (1999)). The models for the potential outcomes
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Y(1;M(1,1,1)) and Y(0;M(0,0,0)) are specified conditional on covariates and
all potential mediators (M(1,1,1) and M(0,0,0)) that are never observed simul-
taneously. Thus, the conditional outcome models are estimated via the data aug-
mentation for unobserved potential mediators. Second, we introduce two assump-
tions for estimating the TE and the associative and dissociative effects. Third, we
employ an additional assumption to equate the distributions of a priori counter-
factuals to those of the observed potential outcomes under intervention Z = 1 to
allow estimation of the natural direct and indirect effects. We also provide optional
modeling assumptions to sharpen posterior inference for the power plant evalua-
tion. Throughout we estimate the distribution of the covariates, FX(x), using the
empirical distribution.

5.1. Models for the observed data. We specify Dirichlet process mixtures for
the marginal distribution of each mediator (Müller, Erkanli and West (1996)). For
each intervention z = 0,1, k = 1,2,3 and baseline covariates X = x, the condi-
tional distribution of the kth observed mediator is specified as

Mk,i |Zi = z,Xi = xi ∼ N
(
βz

k0,i + x

i βz

k1, τ
z
k,i

)
, Mk,i ≥ 0; i = 1, . . . , nz,

βz
k0,i , τ

z
k,i ∼ Fz

k ,

F z
k ∼ DP

(
λz

k,F
z
k

)
,

where {i = 1,2, . . . , nz} denotes the observations with Z = z, and k indicates the
kth mediator. We bound the mediator from below (0) using a truncated normal ker-
nel (within the interval [0,∞)). βz

k0,i and τ z
k,i denote the intercept and precision

parameters for the kth emission at the ith power plant that received intervention z.
Here, DP denotes the Dirichlet process with two parameters, a mass parameter (λz

k)
and a base measure (Fz

k ). To not overly complicate the model, we only ‘mixed’
over the intercept and precision parameters in the conditional distributions, βz

k0,i

and τ z
k,i . The base distribution Fz

k is taken to be the normal-Gamma distribution,
N(μz

k, S
z
k)G(az

k, b
z
k). Details including hyper prior specification are given in Sec-

tion A of the Appendix in the Supplementary Material (Kim et al. (2019)).
The marginal distributions of each mediator under each z = 0,1 are linked to

model the joint distribution of [M1,M2,M3|Z = z,X = x] with Gaussian copula
models of the form

FM(z,z,z)(mz,z,z) = �3
[
�−1

1

{
FM1(z)(m1)

}
,�−1

1

{
FM2(z)(m2)

}
,�−1

1

{
FM3(z)(m3)

}]
,

where mz,z,z are values of potential mediators under intervention Z = z, and �k

is the k-variate standard normal CDF. Note that we elect to model the marginal
distribution of each univariate random variable separately and then combine with
the Gaussian copula model rather than directly model the joint distributions of
[M1,M2,M3|Z = z,X = x]. Thus, we allow full flexibility using DP mixtures of
(truncated) normals for the marginal distributions (the fit of which can be checked
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empirically) and use the Gaussian copula to link them to construct the joint dis-
tribution of potential mediators. The Gaussian copula model implies some (cor-
relation) structure to the joint distribution of all observable potential outcomes
without implying any specific causal structure. Flexibility of this structure de-
rives from the fact that each marginal distribution is modeled as nonparamet-
ric with infinite dimensional parameter spaces. The strategy is designed to coa-
lesce with the modeling strategy in Section 5.2. Note that other potential alterna-
tives to link the fixed marginal distributions such as mixtures of marginals (e.g.,
H(x1, x2) = pF(x1) + (1 − p)G(x2) or H(x1, x2) = √

F(x1)G(x2)) do not spec-
ify the full joint distribution distribution of (x, y) (Nelsen (1999))), and our method
does not limit the number of the mediators in general. While the joint distribution
of all potential mediators (M(0,0,0) and M(1,1,1)) is also modeled via the same
Gaussian copula model, this entails modeling unobserved potential mediators and
will be discussed as a part of the assumptions in Section 5.2

To model the distributions of the potential outcomes for each z = 0,1 condi-
tional on all potential mediators and covariates, we use a locally weighted mixture
of normal regression models (Müller, Erkanli and West (1996)) that is induced by
specifying a DP mixture of normals for the joint distribution of the outcome, all
mediators and covariates. For each intervention z = 0,1, potential values of all
(counterfactual) mediators and baseline covariates X = x, the conditional distri-
bution of the observed outcome yi is specified as

f
(
yi |mi (0,0,0),mi(1,1,1),xi ,Zi = z

)

=
∞∑

l=1

ωz
l N

(
yi,mi(0,0,0),mi(1,1,1),xi |μz

l ,�
z
l

)
,

where ωz
l = γ z

l /(
∑∞

j=1 γ z
j N(mi (0,0,0),mi(1,1,1),xi |μz

j,\1,�
z
j,(\1,\1))) and

μz
j,\1 denote all elements of mean parameters μz

j except for Yi . Similarly,
�z

j,(\1,\1) denotes a submatrix of covariance matrix �z
j formed by deleting the

first row and the first column. The weight involves the parameter γ z
j , where

γ z
j = γ

′,z
j

∏
h<j (1 − γ

′,z
h ) and γ

′,z
j ∼ Beta(1, αz). This flexible conditional model

specification is a necessary feature in our case since we allow the outcome model
to capture nonlinear and/or interaction effects of the mediators. Note again that this
outcome model is conditional on all potential mediators {M(0,0,0),M(1,1,1)}
which cannot be observed at the same time. We use a similar approach to that
used in Schwartz, Li and Mealli (2011) to model the observed outcome distribu-
tion conditional on partly missing potential intermediate variables by constructing
complete intermediate data. Here, we impute unobserved potential mediators for
each unit with a data-augmentation approach based on the joint distribution of all
potential mediators specified above. Details about hyper prior specification and
posterior computation are given in the Appendix in the Supplementary Material
(Kim et al. (2019)).
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5.2. Assumptions for estimation of causal effects. To estimate causal effects
based on the model for the observed data specified in Section 5.1, we formulate
assumptions relating observed quantities to both observable outcomes and a priori
counterfactuals. Denote the conditional distribution [Y(z;M(z1, z2, z3))|M(0,0,

0) = m0,0,0,M(1,1,1) = m1,1,1,X = x] with fz,M(z1,z2,z3)(y|m0,0,0,m1,1,1,x)

where mz1,z2,z3 is a vector of hypothetical values of the mediators under the in-
terventions z1, z2, z3. The conditional distribution [M(z1, z2, z3)|X = x] is de-
noted by fM(z1,z2,z3)(mz1,z2,z3 |x). Other conditional distributions are defined anal-
ogously, and we henceforth omit conditioning on covariates X = x to simplify
notation.

5.2.1. Assumptions for principal causal effects. We begin with an ignorability
assumption stating that, conditional on covariates, “assignment” to scrubbers is
unrelated to the observable potential outcomes:

ASSUMPTION 1 (Ignorable treatment assignment).
{
Y

(
z;M(z, z, z)

)
,M(0,0,0),M(1,1,1)

} ⊥⊥ Z|X = x,

for z = 0,1. This assumption permits estimation of the distributions of potential
outcomes under intervention Z = z with observed data on ambient PM2.5 and
emissions under the same intervention.

We adopt a Gaussian copula model to link the distributions of (M1(z),

M2(z),M3(z)) for z = 0,1 into a single joint distribution of observable potential
outcomes.

ASSUMPTION 2. The joint distribution of all potential mediators conditional
on covariates follows a Gaussian copula model (Nelsen (1999)):

FM(0,0,0),M(1,1,1)(m0,0,0,m1,1,1)

= �6
[
�−1

1

{
FM1(0)(m1)

}
,�−1

1

{
FM2(0)(m2)

}
,�−1

1

{
FM3(0)(m3)

}
,

�−1
1

{
FM1(1)(m1)

}
,�−1

1

{
FM2(1)(m2)

}
,�−1

1

{
FM3(1)(m3)

}]
,

where �6 is the multivariate normal CDF with mean 0 and a correlation matrix R.

Assumption 2 implies a joint distribution of all observable potential mediators
in a manner consistent with the models for [M1,M2,M3|Z = z,X = x] described
in Section 5.1. However, this entire joint distribution of potential mediators under
both interventions is not fully identified from the data since potential mediators
under different interventions are never jointly observed. Specifically, entries of
the correlation matrix R corresponding to, for example, the correlation between
Mj(0) and Mk(1), are not identifiable in the sense that no amount of data can es-
timate unique values for these parameters. Nonetheless, proper prior distributions
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for these parameters can still permit inference from proper posterior distributions.
Such parameters are sometimes referred to as “partially identifiable” in the sense
that increasing amounts of data may lead the supports of posterior distributions to
converge to sets of values that are smaller than those specified in the prior distribu-
tion (Gustafson (2010), Mealli and Pacini (2013)). This can arise due to restrictions
on the joint distribution implied by the models for the marginal distributions (e.g.,
the positive-definiteness restriction on R may exclude some possible values for its
entries). We discuss two prior specifications for the partially identified parameters
in R, noting that further details of partial identifiability in the principal stratifica-
tion context appear in Schwartz, Li and Mealli (2011).

5.2.2. Assumptions for mediation effects. Toward estimation of natural direct
and indirect effects, we augment the assumptions of Section 5.2.1 with one relating
observable outcomes to a priori counterfactual outcomes.

ASSUMPTION 3. For intervention Z = 1, the conditional distribution of the
potential outcome given values of all potential mediators (and covariates) is the
same regardless of whether the mediator values were induced by Z = 1 or Z = 0.

This assumption implies that the a priori counterfactual Y(1;M(0,0,0)) and
the observable potential outcomes Y(1;M(1,1,1)) have the same conditional dis-
tribution,

f1,M(0,0,0)

(
y|M(0,0,0) = m,M(1,1,1),x

)

= f1,M(1,1,1)

(
y|M(0,0,0),M(1,1,1) = m,x

)
.

This assumption also applies to any two mediators in the absence of the inter-
vention. For instance, the a priori counterfactual of PM2.5, Y(1;M(0,1,0)) and
Y(1;M(1,1,1)), have the same conditional distribution regardless of whether cor-
responding emissions values arose under a scrubber (Z = 1) or absent a scrubber
(Z = 0),

f1,M(0,1,0)

(
y|M(0,1,0) = m,M(1,0,1),x

)

= f1,M(1,1,1)

(
y|M(0,0,0),M(1,1,1) = m,x

)
.

The key point is that the distribution of PM2.5 under a given (unobservable)
combination of mediators (m) only depends on the values of the mediators and not
the intervention that led to those mediators. Asserting this assumption in this case
relies in part on what is known about the underlying chemistry relating SO2, NOx ,
and CO2 emissions to PM2.5. Note that such an assumption may be more difficult
to justify in, say, a clinical study where assumptions about a priori counterfactuals
might pertain to choices of study participants.
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The above assumption can be cast as two homogeneity assumptions of the form
proposed in Forastiere, Mealli and VanderWeele (2016). For example, one impli-
cation of Assumption 3 is that the a priori counterfactual Y(1;M(0,0,0)) is ho-
mogeneous across all principal strata with M(0,0,0) = m, regardless of the value
of M(1,1,1). Viewing Assumption 3 in terms of the implied homogeneity across
principal strata aids interpretation and justification in the context of the power
plant example. Homogeneity across strata implies that the potential ambient air
quality value in the area surrounding a power plant is related to (possibly counter-
factual) emission levels only and not to the power plant characteristics that govern
effectiveness of scrubbers for reducing emissions (i.e., the power plant characteris-
tics that determine the exact principal stratum membership). This underscores the
importance of including covariates in X that capture characteristics of the moni-
toring locations (e.g., temperature and barometric pressure). Appendix D provides
details of the relationship between Assumption 3 and assumptions of homogeneity
across principal strata. While Assumption 3 implies homogeneity assumptions, the
converse is not true in the case of multiple mediators due to the connection of As-
sumption 3 to a priori counterfactuals defined to have mediator values induced by
different interventions (e.g., Y(1;M(0,1,0)). We discuss a sensitivity analysis to
this assumption in Appendix J in the Supplementary Material (Kim et al. (2019)).

5.2.3. Optional modeling assumptions to sharpen posterior inference. With
the above model specification the partial identifiability of the model parame-
ters in R warrants careful attention. Proper but noninformative prior distribu-
tions for these parameters could be specified marginally for these parameters as
Unif(−1,1), or equivalently, as conditionally uniform on intervals satisfying pos-
itive definiteness restrictions for the correlation matrix. In either case posterior
inference may exhibit large uncertainty.

We consider in detail an alternative prior specification similar to that in Zigler,
Dominici and Wang (2012) to sharpen posterior inference. Specifically, the corre-
lations between mediators under different interventions are specified as follows:

Cor
(
Mj(0),Mk(1)

) = Cor(Mj(0),Mk(0)) + Cor(Mj (1),Mk(1))

2
× ρ,

for j, k = 1,2,3,

with ρ a sensitivity parameter. This strategy implies that (a) the correlation be-
tween the same mediator (j = k) under opposite interventions is ρ, and (b) the
correlation between different mediators (j �= k) under opposite interventions is an
attenuated version of the correlation observed separately under each intervention.
Section B of the Appendix in the Supplementary Material (Kim et al. (2019)) pro-
vides a correlation matrix implied by this assumption in the case of two mediators.
We assume a single ρ and specify a uniform prior distribution, ρ ∼ Unif(0,1), but
a different parameter could be specified for each mediator.
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As an additional assumption to sharpen posterior inference, we assume that
the correlations between emissions (mediators) are all positive. Support for this
assumption comes from observed-data estimates of these conditional correlations
that are all positive.

In summary, Assumptions 1–2 are sufficient to estimate the principal causal ef-
fects, and pertain only to observable potential outcomes. Adding Assumption 3
relating observed quantities to a priori counterfactuals permits estimation of direct
and indirect effects for mediation analysis. The optional assumptions here in Sec-
tion 5.2.3 are designed to sharpen posterior inference in the power plant analysis.

5.2.4. Posterior inference. A Markov chain Monte Carlo (MCMC) algorithm
is used to sample from this posterior distribution and estimate causal effects using
the following steps: (1) sampling parameters from each marginal distribution for
potential mediators and conditional distribution for potential outcomes defined in
Section 5.1; (2) sampling parameters from the correlation matrix R of the Gaussian
copula; (3) sampling via data augmentation a priori counterfactual mediators from
the joint distribution; (4) computing causal effects based on all potential mediators
and outcomes including imputed a priori outcomes and mediators; (5) iterate Steps
1–4. The specifics of estimation (conditional on our specific model formulation)
are based on the existing literature on Bayesian estimation of causal effects (and
principal causal effects in particular), for example, in Daniels et al. (2012), Mattei
and Mealli (2011), Zigler, Dominici and Wang (2012).

The Appendix in the Supplementary Material (Kim et al. (2019)) contains de-
tails of the MCMC procedure (Section F), prior specification for all other model
hyper-parameters (Section A) and the procedure for computing the principal causal
effects and the mediation effects from the posterior distributions of model param-
eters (Section C).

6. Numerical study. We examine the performance of the proposed model un-
der combinations of the following two data generating scenarios: (1) correlations
among the mediators (Case 1: uncorrelated mediators vs. Case 2: correlated me-
diators), and (2) interaction terms between the mediators in the outcome model
(Case A: interaction term between M1 and M2 vs. Case B: interaction terms be-
tween M1 and M2 and between M2 and M3). Data sets of size n = 500 are sim-
ulated for each of the four cases (1/A, 1/B, 2/A, 2/B), each with three continuous
confounders. In all cases the three mediators are generated based on a multivariate
normal distribution. See the Appendix (Section G) in the Supplementary Material
(Kim et al. (2019)) for the exact data generating mechanism.

We compare our method for estimating mediation effects to a regression-based
model (MacKinnon (2008)):

M1 = α01 + α11Z + X
α1 + ε1,

M2 = α02 + α12Z + X
α2 + ε2,
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M3 = α03 + α13Z + X
α3 + ε3,

Y = β0 + β1Z + β2M1 + β3M2 + β4M3 + X
β + εY ,

where ε1, ε2, ε3 and εY are all independently distributed as N(0, σ ).
Table 2 summarizes the results based on 400 replications for each of the four

scenarios. It shows that our proposed model (BNP) performs well in terms of bias
and MSE for all cases. Note that the true effects change when the mediators are cor-
related in the presence of interaction term(s) in the outcome model. Thus, with any
interaction effects of the mediators, it is desirable to capture the correlation struc-
ture of the mediators, which our method does by flexibly modeling the joint distri-
bution of all potential mediators. Also, the flexible Bayesian nonparametric model
can capture both complex relationships/interactions among the mediators and non-
additive and nonlinear forms of mediators and/or confounders in the outcome
model. In each scenario interaction terms in the outcome model introduce non-

TABLE 2
Simulation results for point estimators of causal mediation and principal causal effects over 400
replications. The columns correspond to bias and MSE relative to the true values of the causal

effects for each scenario (Cases 1 and 2, and Cases A and B) under two different models;
Parametric: a regression based model for the causal mediation effects; BNP: Our Bayesian

nonparametric method

Case 1 Case 2

BNP Parametric BNP Parametric

Truth Bias MSE Bias MSE Truth Bias MSE Bias MSE

Case A TE 0.73 0.02 (0.09) −0.03 (0.08) 0.92 −0.04 (0.08) 0.20 (0.33)
JNIE 1.73 0.06 (0.11) 0.21 (0.07) 1.92 0.04 (0.08) 0.02 (0.47)
NDE −1 −0.04 (0.01) −0.25 (0.15) −1 −0.08 (0.01) −0.20 (0.08)
NIE1 −0.16 0.00 (0.00) −0.01 (0.01) 0.03 −0.05 (0.00) −0.38 (0.26)
NIE2 2.45 0.02 (0.10) −0.02 (0.08) 2.65 −0.05 (0.08) −0.39 (0.31)
NIE3 −0.32 0.00 (0.00) −0.01 (0.01) −0.32 0.01 (0.00) −0.01 (0.01)

JNIE12 2.05 0.05 (0.10) 0.22 (0.14) 2.23 0.03 (0.08) 0.21 (0.44)
JNIE13 −0.48 0.01 (0.01) −0.01 (0.01) −0.29 −0.04 (0.00) −0.38 (0.28)
JNIE23 2.13 0.02 (0.10) −0.02 (0.09) 2.33 −0.04 (0.08) −0.39 (0.33)

Case B TE 1.08 −0.02 (0.10) −0.01 (0.08) 1.33 −0.09 (0.08) −0.01 (0.08)
JNIE 2.08 −0.00 (0.10) 0.16 (0.12) 2.33 −0.00 (0.08) −0.08 (0.11)
NDE −1 −0.01 (0.00) −0.17 (0.04) −1 −0.09 (0.01) 0.08 (0.02)
NIE1 −0.16 −0.01 (0.00) −0.01 (0.01) 0.03 −0.05 (0.01) −0.20 (0.04)
NIE2 2.51 −0.02 (0.10) 0.02 (0.09) 2.78 −0.08 (0.09) −0.25 (0.15)
NIE3 −0.13 0.00 (0.00) 0.01 (0.01) −0.05 −0.02 (0.01) −0.08 (0.01)

JNIE12 2.11 0.01 (0.10) 0.25 (0.16) 2.37 0.00 (0.08) 0.01 (0.10)
JNIE13 −0.29 −0.00 (0.00) −0.01 (0.01) −0.02 −0.07 (0.01) −0.27 (0.08)
JNIE23 2.48 −0.04 (0.10) −0.08 (0.09) 2.75 −0.09 (0.09) −0.34 (0.21)
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additivity in the joint natural indirect effect (e.g., JNIE �= NIE1 + NIE2 + NIE3),
and the traditional regression model has larger biases (and larger MSEs) for medi-
ation effects.

7. Analysis of power plant scrubbers in the acid rain program. Here, we
estimate causal effects of having scrubbers installed in January 2005 (Z) on annual
average emissions of SO2, NOx and CO2 in 2005 (M1, M2, M3) and on the 2005
annual average ambient PM2.5 concentration within 150 km of a power plant (Y ).
Before reporting results note that basic checks of the fit of marginal nonparametric
models appear in Appendix I in the Supplementary Material (Kim et al. (2019)),
indicating fit that is clearly superior to simple parametric models.

A simple comparison of means indicates that the 150 km area around power
plants with scrubbers installed (Z = 1) had average ambient PM2.5 that was lower,
on average, than the areas surrounding power plants without scrubbers (12.4 vs.
13.7 μg/m3). Similarly, the power plants with scrubbers also emitted less SO2,
more NOx and more CO2 than the plants without scrubbers. Table 1 lists the co-
variates in X to adjust for confounding and presents summary statistics for scrub-
ber and nonscrubber power plants.

We present an analysis with the proposed method using the constrained prior
specification in Section 5.2.3. Analysis using uniform prior distributions on all el-
ements of the correlation matrix appears in the Appendix in the Supplementary
Material (Kim et al. (2019)). All reported estimates are listed as posterior means
(95% posterior intervals). The analysis estimates that having scrubbers installed
causes SO2 emissions to be −1.17 (−1.86, 1.55) ×1000 tons lower, on average,
than they would be without the scrubber. The analogous causal effects for NOx

and CO2 emissions were 0.04 (0.00, 0.07) ×1000 tons and 0.001 (−0.00, 0.004)
million tons respectively, indicating that scrubbers did not significantly affect these
emissions on average. The total effect (TE) of having scrubbers installed on ambi-
ent PM2.5 within 150 km is estimated to be −1.12 (−2.07, −0.29) μg/m3, suggest-
ing a reduction amounting to approximately 10% of the national annual regulatory
standard for PM2.5.

7.1. Principal causal effects. For the kth emission let σk denote the posterior
standard deviation of the estimated individual-level causal effect of a scrubber on
Mk with posterior mean estimates σ̂1 = 0.24, σ̂2 = 0.42, σ̂3 = 0.02. Let σ̂K denote
the vector of σ̂k for the emissions in K. To summarize dissociative effects, we set
CD
K = 0.25σ̂K to estimate EDEK among power plants where the scrubber effect

on emissions in K is within one-fourth of a standard deviation of the effect in
the population. Similarly, we summarize associative effects with CA

K = 0.25σ̂K to
estimate EAE−

K (EAE+
K) among power plants where the scrubber causally reduces

(increases) emissions in K more than one-fourth of a standard deviation of the
effect in the population.
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Before providing estimates of specific principal effects, we first examine 3-D
surface plots in Figure 2. For each emission separately (k ∈ {1,2,3}), Figure 2
depicts estimated scrubber effects on PM2.5 across varying effects on emissions
determined by values of (Mk(0),Mk(1)) simulated from the model. Note the pat-
tern for all emissions that the surfaces are sloped downward in the direction of
increasing Mk(0) and Mk(1) (sloped toward the viewer), indicating larger effects

FIG. 2. Average surface plots of the causal effect on PM2.5 for different values of (Mk(0),Mk(1)).
Values of (Mk(0),Mk(1)) are plotted on the x- and y-axes and determine the causal effect of a scrub-
ber on emission k. The corresponding value of the causal effect of a scrubber on PM2.5, Y (1)−Y (0),
is plotted on the z-axis. The cloud of points in the xy-plane are one MCMC draw of 249 pairs of
(Mk(0),Mk(1)). The lines on the xy-plane are at Mk(0) = Mk(1) (solid line) and +/ − 0.25σ̂k

(dashed lines).
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on PM2.5 among plants with larger emissions values under both scrubber statuses,
that is, larger plants.

In Figure 2(a) for SO2, the dots in the xy-plane lie almost entirely in the region
where M1(1) < M1(0), indicating as expected that scrubbers predominantly de-
crease SO2 emissions. Associative effects for SO2 are indicated by the downward
slope of the surface in the direction of decreasing M1(1) − M1(0) (toward the left
of the viewer), indicating that larger decreases (increases) in SO2 are associated
with larger decreases (increases) in PM2.5.

The analogous surfaces for NOx and CO2 appear in Figures 2(b) and 2(c) re-
spectively. In contrast to the surface for SO2, the dots in the xy-plane fall more
closely and symmetrically around the line Mk(1) = Mk(0), reflecting that scrub-
bers do not affect these emissions on average. The surface for NOx exhibits some
evidence of associative effects in the opposite direction of those for SO2; there is
some downward slope of the surface in the direction of increasing Mk(1) − Mk(0)

(toward the right of the viewer), indicating that larger increases (decreases) in these
emissions are associated with larger decreases (increases) in PM2.5.

Table 3 lists posterior mean and standard deviation of EDE, EAE− and EAE+
for all possible K. Estimates of EDE for all K indicate little to no reduction in
PM2.5 among plants where emissions were not affected in excess of CD

K , with the
exception of some pronounced estimates of EDE for K = {NOx} and K = {CO2}.
Estimates of EAE− and EAE+ tend to be less than zero. The most pronounced es-
timate of EAE−

K = −1.19 (0.46) for K = {SO2} suggests that PM2.5 was reduced
among power plants where SO2 emissions were substantially reduced which cor-
responds to the contour of the surface in Figure 2(a) and is consistent with the an-
ticipated causal pathway whereby scrubbers reduce PM2.5 through reducing SO2
emissions. In accordance with the opposite sloping surface in Figures 2(b), the es-
timate of EAE+

K is most pronounced for K = {NOx} and {NOx , CO2}, indicating
that ambient PM2.5 is decreased among plants with substantial increases in NOx

emissions.
Recall that the estimates in Table 3 represent average principal effects over only

a subset of principal strata, in particular those where changes in multiple emissions
are concordant (i.e., all decreasing, all increasing or none changing). Other strata
may be of interest. Figure 3 provides estimates of principal effects in a cross-
classification of strata defined by changes in CO2 and SO2, with changes defined
as increases, decreases or no change in reference to CD

K and CA
K . For example, the

third column of Figure 3 subdivides the stratum defined by causal increases in CO2
into three substrata: (1) those where CO2 increases and SO2 decreases (in excess of
CA
K); (2) does not substantially change (beyond CD

K ); or (3) increases (in excess of
CA
K). Principal causal effect estimates for these three substrata appear along with

their relative proportion among the stratum defined by CO2 increases, indicated
by the size of the plotting symbol. The light grey dot corresponds to EAE+

K for
K = {SO2, CO2} as reported in Table 3, but note that only 4% of the CO2-increase
stratum exhibits SO2 increases. The dark grey dot corresponds to the principal
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TABLE 3
Posterior means (standard deviations) for expected associative and dissociative effects of SO2

scrubbers

SO2 NOx CO2 SO2 & NOx SO2 & CO2 NOx & CO2 SO2 & NOx & CO2

EAE− Mean −1.19 −0.77 −1.14 −0.84 −1.18 −0.90 −0.94
SD (0.46) (0.59) (0.56) (0.59) (0.57) (0.67) (0.68)

EDE Mean −0.32 −0.69 −0.82 −0.09 −0.31 −0.48 −0.15
SD (0.57) (0.54) (0.49) (0.71) (0.68) (0.69) (0.86)

EAE+ Mean 0.60 −1.68 −1.08 0.38 1.28 −1.63 0.69
SD (2.52) (0.74) (0.75) (3.67) (3.78) (1.04) (4.68)
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FIG. 3. Posterior mean estimates of principal effects for strata defined by cross-classifying changes
in CO2 (x-axis) and changes in SO2 (colored circles). Size of circle symbolizes the proportion of each
CO2 stratum falling in the corresponding SO2 category, and number (number in parentheses) listed
is posterior mean proportion (and posterior standard deviation).

effect among the 21% of the CO2-increase stratum in substratum (2) where SO2

does not change, with a principal effect estimate of −0.13 (0.99). The remaining
proportion (75%) of the CO2-increase stratum belongs to substratum (3) where the
plants exhibiting decreases in SO2 and a corresponding principal effect estimate of
−1.21 (0.73). Thus, for K = {CO2}, the negative estimate of EAE+

K from Table 3 is
revealed to be generated in large part by strata where SO2 decreases and there is a
pronounced negative effect on PM2.5. Analogously, the second column of Figure 3
considering the stratum where CO2 emissions do not substantially change (used to
estimate EDE) reveals that 63% of this strata exhibited causal reduction in SO2 and
a causal reduction in PM2.5 of −0.87 (0.49), explaining in large part the negative
estimate of EDEK for K = {CO2} in Table 3. Analogous cross-classification of
strata by changes in NOx and SO2 appears very similar to Figure 3 and is not
presented.

The main conclusions from the principal stratification analysis are that:
(1) scrubbers reduce SO2 on average but not NOx or CO2; (2) there is some ev-
idence of a nonzero dissociative effect for SO2; (3) associative effects for SO2

are more pronounced than dissociative effects, with PM2.5 reduced more around
plants where scrubbers cause large reductions in SO2; (4) associative effects for
NOx and CO2 are more pronounced than dissociative effects, with PM2.5 reduced
more around plants where scrubbers cause larger increases in these emissions; but
that (5) strata defined by increases (or no change) in NOx and/or CO2 are com-
prised in large part by substrata where SO2 and PM2.5 were causally reduced. This
analysis points toward (but cannot confirm) the conclusion that scrubbers affect
PM2.5 among plants where emissions are not changed and that scrubber effects
on PM2.5 are mediated in part through effects on SO2 with less evidence of a
mediating role of NOx and CO2.
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7.2. Mediation effects. To estimate direct and indirect effects, we augment the
principal stratification analysis with Assumption 3 in Section 5.2.2 about a priori
counterfactuals. Figure 1 (top) in the Supplementary Material Appendix (Kim et
al. (2019)) depicts boxplots of the posterior distributions of TE, NDE, JNIE123,
JNIE12, JNIE23, JNIE13 and the individual NIEs. The estimated NDE, representing
the direct effect of a scrubber on ambient PM2.5 that is not mediated through any
emissions changes, is −0.53 (−1.51, 0.39) μg /m3, indicating no evidence of a
direct effect of scrubbers on PM2.5 that is not mediated through SO2, NOx or CO2.
The NIEs for NOx (NIE2) and CO2 (NIE3) are estimated to be very close to 0,
−0.02 (−0.26, 0.21) and −0.04 (−0.33, 0.23) respectively. The estimated NIE for
SO2 (NIE1) is −0.54 (−1.20, −0.01), indicating a significant indirect effect. The
joint natural indirect effects involving SO2 are all similar in magnitude to NIE1,
with estimates of JNIE12, JNIE13 and JNIE123 of −0.56 (−1.23, −0.01), −0.58
(−1.25, −0.02) and −0.59 (−1.27, −0.02) respectively. The estimated JNIE23 is
−0.03 (−0.31, 0.23).

As discussed in Section 4.3, a benefit of the proposed approach is the ac-
commodation of overlap between NIEs and the opportunity to examine the ex-
tent of overlap. We evaluate the relationship between the joint effects JNIEjk

and the mediator-specific effects NIE1, NIE2, NIE3 through (NIE1 + NIE2) −
JNIE12 = −0.01(−0.18,0.16), (NIE1 +NIE3)− JNIE13 = 0.01(−0.22,0.23) and
(NIE2 + NIE3) − JNIE23 = 0.00(−0.19,0.15) which give no evidence of overlap
between NIEs. That is, the effect of a scrubber on ambient PM2.5 that is medi-
ated through emissions changes appears to be described by indirect effects that act
additively and do not exhibit any apparent synergy that would lead to overlapping
effects. The lack of overlapping indirect effects, combined with the fact that: (a) all
indirect effects involving SO2 (NIE1, JNIE12, JNIE13 and JNIE123) are similar in
magnitude, and (b) all indirect effects not involving SO2 (NIE2, NIE3, JNIE23)
are estimated to be zero, provides strong evidence that the effect of scrubbers on
PM2.5 is primarily driven by effects on SO2.

In the Appendix in the Supplementary Material (Kim et al. (2019)), we also con-
duct inference using flat priors on plausible values of the partially identifiable pa-
rameters, and the estimates for the effects are similar to those in the main analysis.

The conclusions of the causal mediation analysis are clear and mostly consistent
with those from the principal stratification analysis; scrubber effects on ambient
PM2.5 are almost entirely mediated through reductions in SO2 emissions. Com-
bining reductions in SO2 with reductions of NOx and CO2 does not significantly
change the mediated effect. In fact NOx and CO2 appear to play no role in the
causal effect of scrubbers on PM2.5.

7.3. Results from alternative analyses. We conduct two simpler analyses for
comparison. First, we implement separate single-mediator analyses using the
methods described above with K = 1. Results are largely consistent with the mul-
tiple mediator analysis, as suggested by the apparent absence of overlapping ef-
fects. For SO2 emissions the total indirect and direct effects are estimated to be
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−1.28 (−2.25, −0.62), −0.70 (−1.51, −0.04) and −0.58 (−1.35, 0.37) respec-
tively. For NOx emissions the total indirect and direct effects are estimated to be
−1.21 (−2.05, −0.40), −0.04 (−0.32, 0.28) and −1.17 (−1.99, −0.32) respec-
tively. With CO2 emissions the total indirect and direct effects are estimated to be
−1.22 (−1.98, −0.29), 0.03 (−0.26, 0.33) and −1.25 (−2.05, −0.30) respectively.
Note that significant estimated direct effects for NOx and CO2 suggest pathways
that are not through NOx and CO2 (i.e., the pathway through SO2).

For a second comparison we conduct a multiple mediator analysis using a tradi-
tional regression approach to mediation with the same model in Section 6. The me-
diation effects are estimated to be NIE1 = α11β2 = −0.39(95%C.I. −1.11,0.25),
NIE2 = α12β3 = −0.09(95%C.I. −0.44,0.22), NIE3 = α13β4 = 0.08(95%C.I.
−0.08,0.35), NDE = β1 = −0.18(95%C.I. −2.56,0.11). Thus, while these re-
sults are on average consistent with the results from the proposed methods, the
estimate of the NIE1 is not significant. Note that this analysis explicitly assumes
that the mediators do not interact with each other in the outcome model, imply-
ing an estimate of the joint indirect effect of all three mediators that is the sum
of all three indirect effect (i.e., JNIE123 = −0.40(95%C.I. −1.15,0.34)) which is
also not significant. The discrepancy between the results of the traditional regres-
sion approach and ours is due to our flexible modeling strategy using Bayesian
nonparametric methods (Dirichlet process mixtures) that, even in presence of ad-
ditivity, allows for nonlinearities and non-normal errors.

8. Discussion. We have developed flexible Bayesian methods for principal
stratification and causal mediation analysis in the presence of multiple mediat-
ing variables. To accommodate the setting of multiple pollutants that are emitted
contemporaneously and possibly interact with one another, we have developed
methods to accommodate multiple contemporaneous and nonindependent media-
tors. Bayesian nonparametric modeling approaches provided flexible models for
the observed data (marginal distribution for each mediator and conditional distri-
bution for the outcome under each intervention z = 0,1) and linked observed data
distributions to joint distributions of potential mediators using explicit and trans-
parent assumptions about both observable and a priori counterfactuals.

A key feature of our approach is the integration of principal stratification and
causal mediation analysis in a manner that relies on the same models for the ob-
served data. Deployment of these methods in the power plant analysis represents,
to our knowledge, the most comprehensive consideration of these two approaches
and the implications of the results in the context of a single analysis. We use As-
sumption 3 to relate a priori counterfactual outcomes to observed outcomes and
show that this assumption implies homogeneity across principal strata which aids
interpretation. This assumption also has close ties to that of sequential ignorabil-
ity (Imai, Keele and Yamamoto (2010)). Benefits of formulating Assumption 3 as
done here include facilitation of a sensitivity analysis to this assumption following
the general approach of Daniels et al. (2012) and the aided interpretation implied
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by the relationship to homogeneity assumptions. While a version of sequential
ignorability relevant to the setting of multiple contemporaneous mediators with
interactions and that can be used to identify each mediator-specific effect has not
been previously formulated, Appendix E in the Supplementary Material (Kim et
al. (2019)) explores the relationship between our Assumption 3 and sequential ig-
norability in the case of a single mediator. In this case implications of these two
assumptions are identical for the types of estimands considered here, although one
assumption does not generally imply the other.

The results of the principal stratification and causal mediation analyses should
be interpreted jointly and are, in this case study, largely consistent with one an-
other. Principal stratification indicated that scrubbers tended to decrease ambient
PM2.5 around plants where scrubbers substantially reduced SO2 emissions, a result
consistent with the estimated natural indirect effects from the mediation analysis.
Jointly interpreting results related to other emissions proved more subtle and high-
lighted the difficulty involved in interpreting principal effects as mediated effects,
in particular when there are multiple mediators. A finer examination of principal
strata defined by cross-classification of SO2 changes and changes in CO2 (or NOx )
revealed the dominating role of scrubber effects on SO2 that was corroborated by
the results of the mediation analysis. This cross-classification also reconciled the
lack of evidence for a natural direct effect with the apparent evidence of dissocia-
tive effects pertaining to NOx and CO2 that were revealed to be driven primarily
by changes in SO2. The evidence of nonzero dissociative effects for SO2 is likely
explained by the negative expected direct effect. The relative magnitudes of prin-
cipal effects and mediation effects are consistent with the well-known result that,
in general, associative effects are a mixture of direct and indirect effects. Overall,
these results are largely consistent with expectations: scrubbers appear to causally
reduce SO2 emissions but not those of NOx or CO2; scrubbers causally reduce am-
bient PM2.5 (within 150 km); the effect on PM2.5 is primarily mediated by causal
reductions in SO2 emissions and not NOx or CO2 emissions; and there appears to
be direct effect of scrubbers on PM2.5.

The results of this case study should be interpreted in light of several important
limitations. First is the relative simplicity with which we linked power plants to
monitors. Specifically, our strategy links power plants to all of the ambient mon-
itors within 150 km. Thus, our analysis is of the causal effects of scrubbers on
average PM2.5 measured within 150 km. This likely does not reflect the full effect
of emissions changes on ambient air quality which are expected to have implica-
tions at distances greater than 150 km. A related limitation is the assumption that
there is no interference between observations. If the effect of a scrubber on ambient
PM2.5 extends far enough beyond 150 km so that a scrubber at a given power plant
causally affects ambient PM2.5 surrounding other power plants, then this assump-
tion would be violated. More sophisticated strategies for causal inference in the
presence of interference and for linking ambient monitors to power plants based
on features such as atmospheric conditions and weather patterns are warranted.
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Nonetheless, analysis presented here represents an important approximation that
still yields valuable conclusions, especially with respect to quantifying causal path-
ways. Another important limitation of this analysis is that it assumes that the fac-
tors listed in Table 1 are sufficient to control for confounding which in this case
would consist of differences between power plants or other features related to am-
bient PM2.5 that are also associated with whether a power plant had scrubbers
installed in 2005. Our approach is not readily extended to categorical mediators.
We save this as potential future research. Despite these limitations we have devel-
oped new statistical methodology and leveraged an unprecedented linked data base
to provide the first empirical evaluation of the presumed causal relationships that
motivate a variety of regulations for improving ambient air quality and, ultimately,
human health.
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Supplement to “Bayesian methods for multiple mediators: Relating princi-
pal stratification and causal mediation in the analysis of power plant emission
controls” (DOI: 10.1214/19-AOAS1260SUPP; .pdf). Appendices A–J, tables and
figures are provided as supplementary materials.
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