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A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL
CLUSTERING USING RNA-SEQUENCING DATA

BY Yrivi Liu!, JosHUA L. WARREN? AND HONGYU ZHAO!
Yale University

Understanding the heterogeneity of cells is an important biological ques-
tion. The development of single-cell RNA-sequencing (scRNA-seq) tech-
nology provides high resolution data for such inquiry. A key challenge in
scRNA-seq analysis is the high variability of measured RNA expression
levels and frequent dropouts (missing values) due to limited input RNA
compared to bulk RNA-seq measurement. Existing clustering methods do
not perform well for these noisy and zero-inflated scRNA-seq data. In this
manuscript we propose a Bayesian hierarchical model, called BasClu, to ap-
propriately characterize important features of scRNA-seq data in order to
more accurately cluster cells. We demonstrate the effectiveness of our method
with extensive simulation studies and applications to three real scRNA-seq
datasets.

1. Introduction. Identifying cell subtypes with distinct transcriptomic signa-
tures is important for understanding the functionalities of complex tissues, such as
brain [Tasic et al. (2016)], and provides useful information for disease diagnostics
and treatment [Patel et al. (2014)]. Single-cell RNA-sequencing (scRNA-seq) tech-
nology, which shows unprecedented spatial resolution, provides great promise to
delineate cell heterogeneity. However, unlike bulk RNA-seq measurement, which
usually involves millions of cells, scRNA-seq has much less input RNA, mak-
ing it more difficult to measure transcript levels [Stegle, Teichmann and Marioni
(2015)]. The technical noise level observed in scRNA-seq data is usually much
higher than that observed in bulk RNA-seq data [Brennecke et al. (2013)]. In ad-
dition a direct result of low starting material is that a transcript is more likely to
be missed in reverse transcription or not detected in sequencing. This leads to fre-
quent dropout events (i.e., false quantification of a gene as absent, can be treated as
a “missing value” in a statistical sense) in sScRNA-seq data [Vallejos et al. (2017)].
These unique features of sScRNA-seq data impact the effectiveness of clustering ap-
proaches developed for bulk RNA-seq data and necessitate the development of new
statistical and computational methods [Stegle, Teichmann and Marioni (2015)].
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Several methods have been developed recently for scRNA-seq data clustering,
such as Single-cell Interpretation via Multikernel Learning (SIMLR) [Wang et al.
(2017)] and SNN-Cliq [Xu and Su (2015)]. These methods typically focus on
learning “secondary” similarity metrics for cells that might be more robust to
experimental noises than conventional Euclidean distance- or correlation-based
similarities. However, much less attention has been paid to properly modeling
dropout events, a common phenomenon in scRNA-seq data, with the majority
of existing methods treating genes with zero counts as truly “unexpressed.” We
note that a method proposed for dimension reduction, Zero Inflated Factor Analy-
sis (ZIFA) [Pierson and Yau (2015)], and a recently developed clustering method,
Clustering through Imputation and Dimension Reduction (CIDR) [Lin, Troup and
Ho (2017)], do model dropout events by defining the probability of missingness
as a function of the true expression level. However, empirical data suggest that
dropout rates are not only associated with the true gene expression values, but also
are affected by other important factors in sequencing such as library size (Fig-
ure 1(a)).

To overcome these limitations, we propose a novel hierarchical clustering
method under a Bayesian setting, BasClu (Bayesian scRNA-seq Clustering). Un-
like existing methods that cluster cells based on gene expression values directly,
BasClu infers and utilizes a dichotomized gene expression status to cluster cells.
Due to the high level of experimental noise, binary states (expressed or not) for
genes could provide more reliable signals for a cell’s identity compared to expres-
sion values. In addition BasClu explicitly models the missing probability for each
gene to account for dropout events. Along with the true gene expression level, Bas-
Clu also incorporates sequencing features, such as gene length and library size, into
the dropout modeling framework. Finally, we employ a Gaussian mixture model
to connect the binary (hidden) state of each gene and observed expression lev-
els.

The remainder of our manuscript is organized as follows. In Section 2 we de-
scribe the details of our statistical model and method of conducting inference. In
Section 3 we evaluate the performance of our method through simulation. Three
real scRNA-seq datasets are analyzed in Section 4. We conclude the paper with a
brief discussion in Section 5.

2. Methods.

2.1. Statistical model. Let x;; be the natural log of the observed read counts
(without normalization) of gene j in cell i, where i = 1,2,...,N and j =
1,2,...,G. If the count for a gene is 0, we define x;; as missing (N.A.). Since
single-cell RNA-seq data are very noisy, we dichotomize the expression values
into two states, expressed or not expressed. Denote z;; as the binary indicator rep-
resenting whether gene j is expressed in cell i, where z;; = 1 if it is expressed and
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0 otherwise. We assume that
Zij|-7T[j ~ Bernoulli(n,-j),

where 7;; is the probability that gene j is expressed in cell i.

Cell clustering is induced through use of a Dirichlet Process (DP) prior distri-
bution [Ferguson (1973)] assigned to the vector of cell-specific expression proba-
bilities (71, 72, ..., mig)!, that is,

(i1, T2, - - > TiG) | ~ DP(ay, Go).

We model Gy, the base distribution of the DP, as a product of G independent
Beta(ay;, B ) distributions, allowing for semiconjugacy during model fitting.

We then connect y; i the true (unobserved) expression level of gene j in cell i
(natural log scale), with z;; via a Gaussian mixture model. Specifically, we assume
that y; i follows a Gaussian distribution conditional on z;; such that

Yijlzij =0~N(g}, 05;)
and
Yijlzij = 1~N(g; +8;,0(;), wheres; > 0.

In addition to true expression levels, it is known that measured gene expression
values in RNA-seq are influenced by other factors such as gene length and library
size. Here, we consider Reads Per Kilobase of transcript per Million mapped reads
(RPKM) [Mortazavi et al. (2008)], a widely used RNA-seq normalization method,
as the unit for measured transcript abundance and assume that the measured ex-
pression level (without dropout, natural log scale) is y;; = y; s+ lj + wu, where
s; is the log library size of cell i, [; is the length of gene j on the log scale, and
is a scaling constant in logarithm. Note, we adopt the idea of RPKM to link raw
count measurements y;; with the underlying gene expression level y! j here, how-
ever, this does not mean RPKM-normalized gene expression data are necessary in
the analysis. The resulting model for the measured expression levels can be written
as

Yijlzij g;-, 8j, (702]-, (712]- ~ N(g;- +8jzij+si+1j +p, O’Ozj(l —zij) + Ulszij)-
Moreover, if we define g; = g;- +1; + w, we can simplify the above formula as
Vijlzij» &js 0, 0()2j, 012j ~N(gj +8;zij +si, 002]-(1 — Zij) +012jZij)~
Finally, we address the issue of the dropout events by assuming

yij —~ w.p. 1 =®Wyij +y2),

x.. Jy =
ij1yij {N.A. w.p. P(y1yij + 12),

where ®(-) is the cumulative distribution function of the standard normal distribu-
tion. Previous methods that model dropout events, such as ZIFA [Pierson and Yau
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FIG. 1. Dropout rate per cell versus library size (a) and dropout rate per gene versus mean expres-
sion level (b), estimated in the Okaty data.

(2015)], assume that the dropout probability depends on the underlying true ex-
pression level y;.. A key difference in our method is that we model the dropout
probability as a function of the “amplified” gene expression measurement y;;,
based on our observation that dropout rate is highly correlated with library size
(Figure 1(a)).

2.2. Clustering inference. We adopt two approaches to infer the clustering
structures of single cells. The first one is based on a posterior similarity matrix
of cells, S, which is defined by the elements

,,/——Zs ™), i,i'=1,2,...,N,

where M is the total number of posterior samples (after removing burn-in and

thinning of the chains), c( ™ s cell i’s component label in the mth iteration and
6(-, -) is the kronecker delta function (6(x, y) = 1 if x = y and O otherwise). This
posterior similarity matrix is robust to the commonly observed “label switching”
problem associated with Bayesian mixture models of this form, and is commonly
used to estimate the clustering structure. We utilize the method of [Fritsch and
Ickstadt (2009)] to obtain the clusters. Specifically, this method selects a partition

¢* from the posterior samples ¢™, m = 1,2, ..., M such that
(M) (m) (m) (m)
= 8(c (c
c* argI?(%( Z Z ZS” /( )
(1) i<i’ i<i’

/ [Za(cf’”) ) +ZS,,}/2 > 8 o) )2 Si /()

i<i’ i<i’ i<i’ i<i’
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The objective function above is the adjusted Rand index [Hubert and Arabie
(1985)] (details in Section 2.5) between ¢ and E(c|x). Note that in this ap-
proach both the number of clusters and the clustering structures are automatically
selected. For convenience we denote this approach as BasCluS in subsequent text.

In the second approach we apply hierarchical clustering to posterior esti-
mates of the N x G binary expression status matrix z (with elements z;;,7 =
1,2,...,N,j=1,2,...,G). We consider this approach for comparison with
other methods that require a prespecified number of clusters. Since the cluster-
ing accuracy evaluation metrics (details in Section 2.5) could be affected by the
selected number of clusters, evaluating the performance of these methods with the
number of clusters fixed at the same value could provide a fairer comparison. We
denote our proposed approach as BasCluZ.

2.3. Prior specification. Because we are working in the Bayesian setting, we
specify prior distributions for the unknown model parameters. We choose weakly
informative conjugate prior distributions when possible in order to allow the data
to drive the inference rather than our prior beliefs while maintaining important
computational benefits during model fitting.

We specify the concentration parameter in the DP model, «;, using
Gamma(a;, b;) prior distribution (we adopt the (shape, rate) parameterization
for the Gamma distribution), and a; = 1 and B; ~ Gamma(a,, b)) in the base
d1str1but10n definition, Beta(a,,, Br). In the Gaussian mixture model we spec-

ify gj N(vg g 2), dj ey " Gamma(as, Bs), 00 Y 2 11d Inverse Gamma(wg, Bo)

i d
and 01 ; Inverse Gamma(a, B1). Furthermore, we set hyperparameters v, ~

N(mg,dgz), rg2 ~ Inverse Gamma(ag, bg), a5 = 2, g = a1 = 1, and Bs, By, and
B1 are given independent Gamma(ad bg) prior distributions. In the dropout
model we assume y; ~ N(vq, ‘El) and y; ~ N(vp, 12) In our data analysis we
setaqj=a, =a4=2,b=by,=bg =1, mg =0, d; =100, ag =1, by = 0.01,
vi =vy =0and rf:tzzz 100.

2.4. Posterior sampling. We analytically integrate out several nuisance pa-
rameters in order to reduce the dimension of our parameter space and therefore,
increase the computational efficiency of our Markov Chain Monte Carlo (MCMC)
sampling algorithm.

Let ¢; be the mixture component label of cell i in a particular MCMC iteration
(assume c; € {1,2,..., K}, where K is the total number of components in this
particular MCMC iteration), ¢ be the vector (cy, ca, ..., cn)! and 7 be the K x G
matrix with elements 774 representing the expression probability of gene j for cells
with component label k, k =1,2,...,K,j=1,2,...,G. The prior distribution
and likelihood with respect to the expression probabilities matrix & are

~ r 7T+ 7)) ~«
) p(Ele, ax, Br) = H]‘[F((“n)r(’;ﬂ) A (1 = P!
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and

3) p(zle, ) = H 1_[ 1_[ ~Z”(l—y'[k Y=z

k=li:cij=k j=1

respectively. The products of (2) and (3) define the full conditional posterior den-
sity of (&, z) given ¢ (up to a proportionality constant). Due to the conjugacy of
the Bernoulli and beta distributions, we can easily integrate out 77 and have

p(zle, aﬂvﬂﬂ’)
_ [(ar + Br)
1_[ l_[ F(an)r(ﬁn)
‘ F(Oén + ik 2T B + 1k — 2=k 2ij)

[on + Br + 1)

where ny, is the total number of cells with component label k.
In addition for the dropout elements (i.e., (i, j) : x;; = N.A.), we have

2 2

(yij — 8j —9zij — i) }
:exp{ 2710 (1—zi)+o%z )
2(001(1_sz)+01]sz) \/ Oj Y 1=y

and
pxij =N.Alyij, v1, ¥2) = ®(y1yij + v2).
Integrating out the unobserved y;;, we have
p(xij =N.A.|gj,8j,Zij,O’02j,O'12j,]/1,)/2)
_ cI>< Y1(gj +6;zij +si) + 1 )
\/1 + Vlz(%zj(l - Zij) +612jZij)

for the dropout elements.

We then adopt Gibbs sampling, when conjugacy is satisfied, and use a Metropo-
lis algorithm otherwise for the remaining parameters. The detailed sampling algo-
rithm is described in Section S1 [Liu, Warren and Zhao (2019)].

2.5. Competing methods. We compare our newly developed method with five
methods designed specifically for scRNA-seq data analysis, BackSPIN [Zeisel et
al. (2015)], CIDR [Lin, Troup and Ho (2017)], SIMLR [Wang et al. (2017)], SNN-
Cliq [Xu and Su (2015)] and ZIFA [Pierson and Yau (2015)].

BackSPIN is a bi-clustering algorithm. It starts by sorting both cells and genes
using the SPIN algorithm [Tsafrir et al. (2005)]. Then, on the cell dimension, it
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finds a splitting point that maximizes a within-group cell-cell correlation measure.
Genes are assigned to the cell group with the highest expression levels. This pro-
cess is repeated on the two halves iteratively until a given number of split cycles
is reached. Unlike BasCluS, BackSPIN requires a user-specified number of split
cycles to determine the parsimony of clustering structures (however, the number
of clusters cannot be directly specified by the user). In our analysis we adjust the
number of split cycles parameter so that the final number of clusters detected is
close to the true value.

CIDR fits a logistic regression model to estimate the relationship between the
dropout probability and the normalized gene expression level. For each gene and
cell the estimated dropout probability is used as a weight for dropout imputation in
the calculation of a cell-cell dissimilarity matrix. CIDR then performs a principal
coordinate analysis on the obtained dissimilarity matrix and groups cells using
hierarchical clustering on the first few principal coordinates. CIDR implements an
approach based on the Calinski—-Harabasz index [Califiski and Harabasz (1974)]
to determine the number of clusters. In our analysis we apply CIDR with both
the true number of clusters and its automatically selected number of clusters (we
denote the latter approach as “CIDRO0”).

SIMLR begins by training a cell-to-cell similarity matrix using multikernel
learning. The similarity matrix is then input into a stochastic neighbor embedding
method [Maaten and Hinton (2008)] to project the cells into a lower dimensional
space. Afterward, SIMLR applies k-means [Forgy (1965)] in the latent space to
cluster cells. SIMLR was shown to have superior performance over alternative
clustering methods based on other similarity measurements. SIMLR requires user-
specified number of clusters and number of reduced dimensions as input parame-
ters. In subsequent analyses we provide the true number of clusters to SIMLR. As
recommended by the authors, we set the number of reduced dimensions equal to
the number of clusters (default value in the associated R function).

SNN-Cliq first computes the Euclidean distance between cells and then con-
structs a cell-cell similarity matrix as a function of the shared nearest neighbors
(SNN). The clustering structure of cells is determined using a graph partition al-
gorithm on the cell-cell similarity matrix. Like BackSPIN, the number of clusters
cannot be directly specified in SNN-Cliq. Instead, it has two parameters that con-
trol the parsimony of the clustering results, one parameter for quasi-clique finding,
r, and one parameter for cluster merging, m. In our analysis we fix m with its de-
fault value of 0.5 and test SNN-Cliq with »r =0.1,0.2, ..., 0.9 (only results with
r=0.3,0.4, 0.5 are shown for simplicity).

Although ZIFA was originally designed for dimension reduction, we include it
because it models dropout events explicitly and the latent space representation of
cells was demonstrated to be informative for classification purpose. ZIFA utilizes
the framework of factor analysis to model true gene expressions. In addition it as-
sumes that the dropout probability has the form p;; = exp(—)»ylsz.), where y; ; is the
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true underlying expression level of gene j in cell i (without amplification). Simi-
lar to SIMLR, ZIFA also requires user-specified number of clusters and number of
reduced dimensions. We provide the true number of clusters to ZIFA. Due to the
lack of guidance on how to choose an appropriate number of reduced dimensions,
we test ZIFA with this value set to be 5, 10 and 20.

We also test the performance of setting the binary expression status z to be 1,
if the raw RNNA-seq measurement is nonzero and zero otherwise, as well as esti-
mating it with method like MAST [Finak et al. (2015)]. To have a fair comparison
with BasCluZ, we apply hierarchical clustering to these z matrices and provide the
true number of clusters to call cell types.

To evaluate the performance of each method, we compute the normalized mu-
tual information (NMI) [Vinh, Epps and Bailey (2010)] and adjusted Rand index
(ARI) [Hubert and Arabie (1985)] between cluster labels assigned by a method
and the ground truth. Given N samples and two clustering results U (P classes)
and V (Q classes), NMI between U and V is defined as

MI(U, V)
max{H (U), H(V)}’

NMI(U, V) =

where

U, mV| G NIUpN V|

MI(U, V) = Z Z

p= lq 1 |UP|X|Vq|,

Upl, Ul

HU)=-) —“log——,

) Z N log—
p=1
0

Vel 1Vl

HV)=-) —Llog——

V) ; N log—y

and | - | denotes the cardinality of a set. NMI takes on values between 0 and 1. With
P and Q fixed, the larger NMI is, the more concordant the two clustering results
are.

ARI between U and V is defined as

ARI(U, V)
LS (U xR, ()0
X (‘U; )+ (N2 =i (Y s () 6)
which is equal to
38D, 8™, ") =3 8 ey i 8e o)/ (2)
a8 )+ L8 el M2 = a8 e a8 )
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Note, substituting 8(ci(U), c,(U)) with 8(c§m), cl(m)) and 8(ci(v), cl(v)) with S;;,
which equals to E(8(c;, ¢;)) asymptotically, will give us the objective function
in equation (1) to determine the clustering structure using the posterior similarity
matrix S. ARI has a maximum value of 1 and takes values around O for two ran-
domly assigned clustering labels (it can occasionally become negative). Similarly
to NMI, with P and Q fixed, a larger ARI indicates better agreement between two
clustering results.

3. Simulation studies.

3.1. Simulation settings. We conduct simulation studies to evaluate the effec-
tiveness of our method in identifying cell subtypes as well as inferring underlying
gene expression patterns.

We simulate datasets with 300 cells and 200 genes. The cells are randomly
assigned to 10 classes with equal probability. For each class we sample an expres-
sion probability vector w; with 200 independent elements from Beta(0.9,0.9).
Given the class assignment and the expression probability, we simulate an expres-

sion status indicator vector for each cell with corresponding Bernoulli distribu-

. . iid . - did . . iid. -
tion. We then simulate g e NV, ‘L'gz), S e N(v;, ‘L’SZ), dj "X truncated N(vs,

~ ii.d. -~ o~ ii.d. -~ o~ .
‘L’52; >0), ‘702]‘ ~" truncated N(vg, ‘1,’()2; >0), alzj ~" truncated N(v1, rlz; >0),i =

1,2,...,300, j =1,2,...,200. Parameters v,, Tg, Vs, T, are set as —23, 3,
20 and 2, respectively. We choose these values based on analysis results of a
scRNA-seq dataset [Okaty et al. (2015)] (means are matched approximately while
standard deviations are set to be slightly larger than real data estimates) in or-
der to ensure that our simulation results are useful in practice. To simulate §;,
002]. and alzj, we fix 5, 7Tg, and 71 to be 2, vy and v] to be 6, and choose
two sets of Vs, 5 and 8, to have varying “noise levels” in the Gaussian mix-
ture model component of the model. Smaller §; will result in more overlap be-
tween the two Gaussian distributions, hence making expressed and unexpressed
states more difficult to separate. Given these parameters, we simulate expres-
sion value (without dropout) as y;; ~ N(g; + §;z;; + si, O’ngij + 012]-(1 — Zij))
independently for i = 1,2,...,300, j = 1,2,...,200. Finally, we sample bi-
nary variables m;; ~ Bernoulli(®(y1y;; + y2)) and simulate dropout events by
letting x;; = y;j, if m;; = 0 and x;; = N.A. otherwise. We choose eight sets
of (y1,y2): (—0.05,—-0.10), (—0.05, —0.50), (—0.10, —0.50), (—0.10, —1.00),
(—1.00, —2.00), (—1.00, —4.00), (—5.00, —5.00), (—5.00, —10.00), so that the
final dropout rates range from 0.15 to 0.50. A summary of the 16 simulation sce-
narios (two sets of vs times eight sets of (y, y»2)) are included in Table 1. We
simulate a total of 80 datasets for analysis, five for each of the 16 settings.

3.2. Simulation results. We apply BasClu, BackSPIN, CIDR, SIMLR, SNN-
Cliq, ZIFA and hierarchical clustering with binary expression status z (estimated
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TABLE 1
Summary of simulated datasets

Scenario 1 2 3 4 5 6 7 8

Vs 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Y1 —0.05 —0.05 —0.10 —-0.10 —1.00 —1.00 —5.00 -5.00
%) -0.10 —0.50 —0.50 —1.00 —2.00 —4.00 —5.00 —10.00

Dropoutrate  0.471 0.321 0.344 0.199 0.377 0.254 0.437 0.389
(0.005) (0.003) (0.007) (0.007) (0.036) (0.013) (0.068) (0.016)

Scenario 9 10 11 12 13 14 15 16

Vg 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
Y1 —0.05 —0.05 —0.10 —-0.10 —1.00 —1.00 —5.00 —5.00
%) —-0.10 —-0.50 —0.50 —1.00 —2.00 —4.00 —5.00 —10.00

Dropout rate  0.442 0.299 0.306 0.173 0.331 0.221 0.390 0.331
(0.004) (0.005) (0.005) (0.004) (0.010) (0.010) (0.010) (0.009)

Mean dropout rate across the five replicates in each scenario is reported with standard deviation in
the parenthesis.

with raw counts and MAST) to the simulated datasets and calculate NMI and ARI
between the inferred clustering results and the true class labels in each scenario
(Table 2, Table S1 and Table S2 [Liu, Warren and Zhao (2019)]).

For BasClu we run four independent chains using our MCMC algorithm, each
for 500,000 iterations. Initial values for the chains are randomly sampled from
overdispersed distributions (with respect to the true posteriors) based on the pos-
terior distribution estimates from preliminary runs of the model (e.g., we sample
initial values for z;; from Bernoulli(0.5), §; from Uniform(1, 50)). After discard-
ing the first 300,000 samples in each chain as burn-in, the remaining samples are
thinned such that we collect every tenth posterior sample. Convergence is assessed
using the Gelman—Rubin diagnostic [Gelman and Rubin (1992)]. Mean Gelman—
Rubin statistics across all parameters (for binary expression status z we check its
mean value across genes and cells) are reported in Table S2. Samples from all
chains are combined when making inference on the model parameters. We also
report the number of clusters estimated by the posterior similarity matrix-based
clustering approach of our method (BasCluS, Table S2). Comparing it with the
true number of clusters (10), we see that in most settings our method provides
accurate estimation.

Since the number of clusters could affect the value of NMI and ARI, we provide
the true number of clusters in the z-based hierarchical clustering version of our
method (BasCluZ), SIMLR, CIDR, ZIFA and binary expression status defined by
whether the raw count is zero (denoted as “rawZ” in subsequent analysis) as well as
MAST (denoted as “MASTZ”) for a fair comparison (Table 2 and Table S1); for
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NMI of BasClu, CIDR, SIMLR and ZIFA in the simulation study

TABLE 2

1743

Scenario 1 2 3 4

BasCluZ 0.965 (0.025) 1.000 (0.000) 0.996 (0.004) 0.999 (0.003)
CIDR 0.182 (0.046) 0.288 (0.070) 0.361 (0.059) 0.543 (0.081)
SIMLR 0.271 (0.084) 0.552 (0.115) 0.758 (0.089) 0.888 (0.044)
ZIFA (5) 0.438 (0.085) 0.621 (0.050) 0.680 (0.022) 0.767 (0.037)
Scenario 5 6 7 8

BasCluZ 0.999 (0.003) 1.000 (0.000) 0.999 (0.003) 0.999 (0.003)
CIDR 0.670 (0.071) 0.652 (0.069) 0.647 (0.073) 0.654 (0.086)
SIMLR 0.970 (0.014) 0.952 (0.019) 0.959 (0.006) 0.966 (0.016)
ZIFA (5) 0.812 (0.045) 0.826 (0.046) 0.785 (0.052) 0.795 (0.066)
Scenario 9 10 11 12

BasCluZ 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
CIDR 0.289 (0.027) 0.508 (0.065) 0.797 (0.047) 0.909 (0.030)
SIMLR 0.772 (0.064) 0.956 (0.019) 0.987 (0.013) 0.985 (0.013)
ZIFA (5) 0.711 (0.064) 0.817 (0.037) 0.881 (0.041) 0.920 (0.037)
Scenario 13 14 15 16

BasCluZ 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
CIDR 0.952 (0.014) 0.958 (0.015) 0.951 (0.028) 0.949 (0.032)
SIMLR 0.995 (0.011) 1.000 (0.000) 0.984 (0.016) 0.995 (0.007)
ZIFA (5) 0.930 (0.021) 0.926 (0.023) 0.921 (0.046) 0.937 (0.024)

The number in each cell is the mean value across the five replicates, with standard deviation in the
parentheses. In the parentheses following “ZIFA,” the value k denotes the prespecified number of
latent factors (we list the result with kK = 5 here and the other cases in Table S2).

BackSPIN and SNN-Cliq the number of clusters could not be specified directly,
so we test these two methods by setting the tuning parameters that control the
parsimony of the clusterings to different values and report the NMI and ARI as
well as the number of clusters identified in each setting (Table S2). As previously
discussed, for SIMLR we set the number of reduced dimensions as the true number
of subtypes, and for ZIFA we explore a range of values (5, 10 and 20).

We can see from the NMI and ARI values that our method performs well in
all scenarios while the other methods perform much worse, especially in Scenar-
ios 1 to 9. In fact, we observe all methods tend to perform better in Scenarios
9 to 16 compared to Scenarios 1 to 8, where Vs is smaller. This is because in
our simulations larger Vs leads to greater differences between expressed and un-
expressed states for the genes (z), hence resulting in stronger signals to separate
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cells from different classes. In addition we also notice that in Scenarios 1 and 9,
the dropout rate is large (around 0.4 to 0.5); more importantly, y; in these two
cases is small (—0.05) which means that the dropout probability is only weakly
related to the expression measurements. This suggests that not only genes barely
expressed can drop out, but also genes with relatively large (‘“amplified”) expres-
sion values also have a fair chance of being missing, hence treating all dropouts
as truly unexpressed or neglecting certain factors in the dropout probability would
more severely impact the clustering accuracy. Compared to the other settings, such
cases present greater challenges to correctly extract the information from the zero-
counts. Indeed, in less challenging cases (Scenarios 10 to 16) we see that SIMLR,
CIDR and ZIFA can estimate the clustering patterns much better.

In addition to accurately estimating the clustering structures, our method can
also reveal information regarding the underlying gene expression patterns. In Fig-
ure S1 we compare the posterior means of g((gi, g2, ...,gc;)T), 8((81,62,...,
sco)T), a(f((a()zl,ogz,...,agG)T), 012((012],0122,...,012G)T)) and z estimated by
our method and their true values (results from one replicate of Scenario 1 are
illustrated as an example, but results from other settings are similar or bet-
ter). We can see that the estimates of g (Figure S1(a)), § (Figure S1(b)) and
z (Figures S1(e) and S1(f)) are close to the corresponding true values. In par-

ticular we evaluate the average of the absolute difference between the posterior
(m)
)

# Zz(')j)) (Table S2). In comparison we also

mean of z and the true value z°, ave; j(laven (z
(m)
ij
calculate ave;; (| P(z;j = 1) — z?j |) in the Gaussian mixture models fitted for each
gene individually using its true expression levels (without missing values, using
function “normalmixEM” in the R package “mixtools” [Benaglia et al. (2009)]).
For Senarios 1 to 8 with Vg = 5, this value is around 0.255 with standard deviation
0.008 across the five replicates, and for Scenarios 9 to 16, with vs = 8, it is around
0.102 with standard deviation 0.009. If there is no information shared across genes
and cells, we could expect error in our model to be greater than the latter one
due to the high dropout rates. However, we observe that in most cases they are
roughly the same level (sometimes error in our model is even smaller), suggesting
that leveraging clustering structure information assists in estimating the expression
status of individual genes and cells. We notice that overall posterior estimates of
a(f (Figure S1(c)) and 012 (Figure S1(d)) are also close to their true values except in
a few cases where the posterior means are much larger. A further investigation into
“genes” suggests that they either have large dropout rates or two highly overlapped
Gaussian distributions (due to small §;, large oozj or large alzj).

In order to test the performance of our method with more diverse cluster sizes,
we also repeat similar analysis with the the probability for the 10 classes set as
(0.067, 0.067, 0.067, 0.067, 0.067, 0.133, 0.133, 0.133, 0.133, 0.133) (Table S3).
We can see that in these scenarios, our method also estimates the clustering struc-
ture accurately.

— Z?j|) which is equal to

(m ~
ave;j(avey, Iz,-j ) — z?jl) ~ ave;;(P(z
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TABLE 3
Summary of scRNA-seq datasets in real data analysis

Dataset Cell population No. subtypes
Okaty [Okaty et al. (2015)] 56 cells from mouse serotonin neuron system 6
Pollen [Pollen et al. (2014)] 65 cells from human developing cortex (with a 8

high coverage and a low coverage, so 130
samples in total)
Usoskin [Usoskin et al. (2015)] 622 cells from mouse primary sensory system 11

4. Application to real single-cell RNA-sequencing data. We apply our
method to three datasets where scRNA-seq technology is utilized to identify novel
cell subtypes. In addition they span a wide range of sample sizes as well as num-
bers of cell subtypes, hence representing a variety of scenarios we might come
across in many real scRNA-seq analyses. A brief summary of the three datasets is
shown in Table 3. In our analysis we treat the biologically validated cell subtypes
identified in the original studies as ground truths to evaluate the different clus-
tering methods. For BackSPIN, CIDR, MAST, SIMLR, SNN-Cliq and ZIFA we
input log(normalized expression + 1) (41 to avoid —oo when taking log; we use
TPM, the normalized expression data provided by the original scRNA-seq stud-
ies, here), as commonly done for methods that require “true” expression values,
while for our methods we input log(raw counts) since it incorporates an RPKM-
like normalization procedure. Similar to the simulation studies, we give the correct
number of clusters to CIDR, SIMLR, ZIFA and the z-based hierarchical cluster-
ings (BasCluZ, MASTZ and rawZ) for a fair comparison. We also report the results
of BackSPIN and SNN-Cliq with the parsimony-controlling parameters set to dif-
ferent values.

Since there are tens of thousands of genes in each dataset, we utilize the protocol
of [Lake et al. (2016)] to preselect a few hundred informative genes for clustering
purpose. Briefly, in the first step squared coefficient of variation (cv?) of each
gene is fitted against the inverse of mean expression value to obtain a curve with
cv? as a function of mean expression. Next, an expected cv> for each gene is
computed based on this estimated function. Finally, genes with cv? at least two
standard deviations beyond the expected level are considered over dispersed and
removed. In addition we add a dropout rate threshold to ensure that only genes with
an adequate number of observed measurements are included. Specifically, for the
Okaty and Pollen datasets we exclude genes selected from the previous step that
have dropout rates greater than 50%, and for the Usoskin dataset we exclude genes
with dropout rates greater than 30% as the 50% threshold results in too few genes
remaining for analysis. In total we select 199, 136 and 134 genes for the three
datasets, respectively. Genes selected for each of the three datasets are provided
in the Supplementary Material [Liu, Warren and Zhao (2019)]. Since BackSPIN,
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CIDR and ZIFA include a dimension reduction/gene selection module within their
frameworks, and SIMLR and SNN-Cliq work directly with a cell-cell expression
distance matrix, we also test their performance with all genes supplied (genes with
all zero measurements are excluded) to avoid potential performance decline due to
information loss in the gene selection procedure.

For BasClu, we run four MCMC chains (each for 1,000,000 iterations on the
Okaty dataset, 1,500,000 iterations on the Pollen dataset and 2,000,000 iterations
on the Usoskin dataset) with initial values sampled from over-dispersed distribu-
tions. The last 200,000 samples of each chain are retained and thinned (keeping
every tenth posterior sample). Convergence is assessed through visual inspection
of trace plots and with the Gelman—Rubin diagnostic. Mean Gelman—Rubin statis-
tics across all parameters (for binary expression status z we check its mean value
across genes and cells) are reported in Table S4. There were no obvious signs of
nonconvergence based on both of these tools.

4.1. Okaty dataset. We obtain the Okaty dataset [Okaty et al. (2015)], includ-
ing the raw scRNA-seq read counts, the normalized gene expression values and
the cell subtype labels from Supplementary Material accompanying the original
publication. Before carrying out the clustering analysis, we examine the dropout
patterns across cells and genes. In Figure 1(a) we plot the dropout rate computed
for each cell against its log library size, while in Figure 1(b) we plot the dropout
rate of each gene against its mean log expression level (normalized, zero expres-
sion excluded). The overall dropout rate is negatively correlated to both library size
(Spearman correlation —0.38, p-value 0.004) and gene expression level (Spear-
man correlation —0.88, p-value < 2.2 x 10_16). This observation motivates us to
model dropout probability as a function of the “amplified” expression level.

We summarize NMIs of the three methods in Table 4 and ARIs in Table S5
[Liu, Warren and Zhao (2019)]. Both metrics indicate that our method outperforms
SIMLR, CIDR, BackSPIN, SNN-Cliq and ZIFA by producing clustering structure
more consistent with the ground truth on this dataset. Surprisingly, hierarchical
clustering, using the binary expression status defined by whether a count is zero
or not, with selected genes only has larger NMI and ARI values than all the other
sophisticated clustering methods. We think this is likely due to the strong signals
of these genes. Zeros are more likely a result of the genes being truly unexpressed,
so that more complex modeling does not necessarily lead to better inference of
the expression pattern. However, this may not hold true in other cases (e.g., with
all genes as input here). Besides detecting clustering structure of cells, our method
also infers the underlying expression status of genes. From the heatmap of the pos-
terior mean of z (Figure S17, cells are reordered according to their true subtypes),
we see that some genes display differential expression patterns across subtypes.
For example, transcriptional regulator Sox1 shows much higher expression levels
in subtypes R1DR, RIMR and R2 (means of z 0.864, 0.807 and 0.816, respec-
tively) than in subtypes R3, RS and R6P (means of z 0.004, 0.003 and 0.001, re-
spectively), while Meis2 is more likely to express in subtypes R5 and R6P (means



TABLE 4

NMI on three scRNA-seq datasets

Dataset BasCluS* BasCluZ BackSPIN (2)* BackSPIN (2, al)* BackSPIN (3)* BackSPIN (3, al)*
Okaty 0.740 [10] 0.713 0.431 [4] 0.573 [4] 0.604 [8] 0.567 [8]
Pollen® 0.693 [19] 0.723 - - 0.590 [8] 0.795 [8]
Usoskin 0.689 [12] 0.696 - - 0.703 [7] 0.647 [8]
Dataset BackSPIN (4)* BackSPIN (4, all)* CIDRO* CIDRO (all)* CIDR CIDR (all)
Okaty - - 0.611 [8] 0.478 [6] 0.604 0.478

Pollen® - - 0.561 [6] 0.525 [6] 0.584 0.532
Usoskin 0.606 [13] 0.543 [16] 0.594 [4] 0.643 [4] 0.643 0.568

Dataset SIMLR SIMLR (all) SNN-Cliq (0.3)* SNN-Cliq (0.3, all)* SNN-Cliq (0.4)* SNN-Cliq (0.4, all)*
Okaty 0.700 0.661 0.613 [6] 0.287 [3] 0.656 [8] 0.287 [3]
Pollen® 0.682 0.846 0.354 [7] 0.065 [3] 0.566 [13] 0.526 [13]
Usoskin 0.641 0.588 0.499 [10] 0.068 [3] 0.675 [17] 0.336 [9]
Dataset SNN-Cliq (0.5)* SNN-Cliq (0.5, all)* ZIFA (5) ZIFA (5, all) ZIFA (10) ZIFA (10, all)
Okaty 0.668 [7] 0.475 [4] 0.657 0.266 0.363 0.121

Pollen® 0.549 [18] 0.497 [17] 0.704 0.660 0.469 0.489
Usoskin 0.437 [61] 0.428 [20] 0.630 0.434 0.552 0.373

Dataset ZIFA (20) ZIFA (20, all) rawZ rawZ (all) MASTZ MASTZ (all)
Okaty 0.197 0.144 0.737 0.506 0.501 0.141

Pollen® 0.436 0.494 0.570 0.365 0.354 0.246
Usoskin 0.450 0.089 0.527 0.244 0.702 0.337

In the parentheses following “ZIFA” and “SIMLR?”, the value denotes the prespecified number of latent factors; in the parentheses following “BackSPIN,”
the value denotes the number of split cycles; in the parentheses following “SNN-Cliq,” the value denotes the quasiclique finding parameter; “all” means all
genes are used. *Number of clusters detected by these methods are shown in the brackets following the NMIs. #In Pollen dataset three cells (six samples)
in transition states are removed in evaluation due to unclear subtype identity.
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of 7 0.999 and 0.770, respectively) than in subtypes RIDR, RIMR, R2 and R3
(means of z 0.000, 0.000, 0.001, and 0.007, respectively). Similar patterns were
also reported by the original study [Okaty et al. (2015)]. We highlight more ex-
amples in Figure S17. Here, we present some prominent cases using the posterior
mean of z; a more rigorous statistical testing approach for differential expression
gene identification could be developed in future work.

4.2. Pollen dataset. The Pollen dataset [Pollen et al. (2014)] has 65 cells, each
sequenced at a high coverage and also down-sampled to a low depth in subsequent
study to explore the effectiveness of low-coverage sequencing (so 130 samples in
total). We obtained it from R package scRNAseq [Risso and Cole (2016)] which
includes a subset with all neural cells from the original study [Pollen et al. (2014)].
Two hundred thirty-six more cells from pluripotent, skin and blood were also se-
quenced there. While cells from different sources are expected to have large tran-
scriptomic differences, cells within a closely related cell type are considered more
difficult to separate.

We list the NMI and ARI of each method in Table 4 and Table S5 [Liu, Warren
and Zhao (2019)], respectively. Our method outperforms the others in most cases.
With all genes as input, SIMLR and BackSPIN perform better than our method;
however, with only preselected genes, SIMLR and BackSPIN’s performance de-
clines substantially which might indicate some information loss in the gene selec-
tion step. Besides checking concordance with known subtypes, we also compare
the clustering labels of samples from the same cell. In all cases our method and
SIMLR assign such pairs into the same subgroup while BackSPIN, CIDR, SNN-
Cliq, ZIFA and hierarchical clustering with raw count and MAST defined z (rawZ,
MASTZ) occasionally separate them. With selected genes as input, BackSPIN,
CIDR, CIDRO and SNN-Cliq (r = 0.3) separate two pairs, and MASTZ separates
seven pairs; with both selected genes and all genes as input, ZIFA (k = 5) sep-
arates one pair, SNN-Cliq (»r = 0.4, 0.5) separates more than 10 pairs, and rawZ
separates 22 and four pairs. In addition we check the pattern of z posterior mean
estimates (Figure S18) and are able to find some potential signatures of different
subtypes. For example, gene Ddahl is expressed at high level in in vitro derived
neural progenitors and radial glia (mean of z 0.811 and 0.911, respectively) but
shows very weak signals in maturing neurons A, maturing neurons B, newborn
neurons and interneurons (mean of z 0.005, 0.005, 0.000 and 0.011, respectively);
while the pattern of Stmn?2 is the exactly opposite on these subtypes (mean of z
0.013, 0.082, 0.998, 0.999, 0.997 and 0.830, respectively), similar to what was
discovered previously [Pollen et al. (2014)].

4.3. Usoskin dataset. We downloaded the Usoskin dataset [Usoskin et al.
(2015)] from the Linnarsonn Lab webpage. Compared to the previous two datasets,
this one has a much larger sample size.
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As shown in Table 4 and Table S5 [Liu, Warren and Zhao (2019)], with a given
number of clusters, our method has larger NMI and ARI than all the others except
hierarchical clustering with the binary expression status estimated by MAST (with
selected genes only) which performs slightly better. The heatmap based on the
posterior mean of z presents a clear checker-board pattern (Figure S19). For ex-
ample, subtype TH is marked by genes such as Th (mean of z 0.843 versus 0.017
in other subtypes), and subtypes NP1, NP2 and NP3 show high expression lev-
els of genes such as Carhspl (mean of z 0.939, 0.830, 0.966, respectively, versus
0.098 in other subtypes). Besides these observations consistent with the original
publication [Usoskin et al. (2015)], we notice more heterogeneities in certain sub-
types. For example, the large group of TH cells might be further separated into two
subgroups and genes such as Apoe (means of z 0.828 and 0.146) show differential
expression patterns between the subgroups. More biological experiments might be
needed to validate these findings.

5. Discussion. In this paper we developed an innovative method, BasClu, for
scRNA-seq clustering. By modeling dropout events explicitly and dichotomizing
gene expression status, BasClu can better uncover expression patterns from noisy,
single-cell RNA-seq data. In addition by utilizing a DP framework to induce clus-
tering structure, BasClu avoids prespecifying the number of clusters which is very
desirable in practice. We note that in one version of BasClu, BasCluS, a posterior
similarity matrix is used to automatically determine the number of clusters and
assign cluster labels; in the other version, BasCluZ, users can decide how many
clusters to call after obtaining posterior estimates of gene expression status, instead
of choosing a number at the beginning of the analysis when little information is
available.

When applied to our simulated datasets with varying separabilities of expres-
sion states and dropout rates, BasClu performs well by accurately predicting the
number of clusters (BasCluS) and correctly partitioning the cells (both versions). It
outperforms five other methods designed for scRNA-seq data analysis, BackSPIN,
CIDR, SIMLR, SNN-Cliq and ZIFA, especially when genes have blurred bound-
aries between expressed and unexpressed states or the dropout rate is high. We also
observed that BasClu can uncover the underlying expression patterns precisely in
most cases.

Furthermore, we tested the effectiveness of BasClu on three real scRNA-seq
datasets which span a wide range of sample sizes and total number of cell types. In
most cases we saw that BasClu has improved performance over BackSPIN, CIDR,
SIMLR, SNN-Cliq and ZIFA by producing clustering results more consistent with
experimentally validated ones. Besides cell subtype detection, we also presented
a few examples to illustrate the idea of using gene expression status inferred by
BasClu to pinpoint marker genes for each cell subtype (more rigorous statistical
framework for differential expressed gene identification is yet to be developed).
In addition we noticed that when applied to these three datasets, BasCluS, unlike
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in simulation studies, tends to estimate a greater number of subtypes in each cell
population than previously detected. On the Usoskin dataset, for example, it could
be the case that there are more heterogeneities; while on the Pollen dataset we
observed that some small clusters identified by BasCluS are close to each other
in z space. Similar “redundant” cluster phenomena with DP models were also
reported by other studies [Xie and Xu (2017), Miller and Harrison (2014)]. Yet,
in real data analysis it is generally hard to define cluster boundaries objectively.
Therefore, we think it could be a useful practice to take desired parsimony level
into account, check the estimates of z and evaluate the necessity of combining
“similar” components when using clustering results obtained using BasCluS.

There are several other directions worth further exploration in future works.
First, our current model can only handle hundreds of genes with respect to compu-
tation, so that the vast majority of genes sequenced have to be excluded from the
clustering analysis. Although many of these genes are noninformative (we indeed
see performance improvement of BackSPIN, CIDR, SIMLR, SNN-Cliq and ZIFA
with preselected genes in most cases), due to the prevalence of dropout and high
noise level, it is not always easy to select the most informative ones, and useful
signals could be lost by removing too many genes. Therefore, a potential exten-
sion of our method could be incorporating a gene selection procedure (based on
inferred expression status) within the framework or, alternatively, including some
dimension reduction module, so that more genes could be considered in the first
stage. Second, our model adopts the idea of RPKM, which means besides the true
expression level, we consider gene length (absorbed into the background of each
gene in our model) and sequencing depth as the main factors affecting measured
counts and the dropout probability. In fact we also test a slightly modified version
by letting s;’s in our model be random variables instead of log library sizes; in
most cases this version has similar performance with our current model, and the s
learned is highly correlated to log library size. More sophisticated models could be
developed if experimental evidence provides additional insights about other factors
playing a role in the sequencing mechanism.

SUPPLEMENTARY MATERIAL

Supplementary materials for A hierarchical Bayesian model for single-cell
clustering using RNA-sequencing data” (DOI: 10.1214/19-A0AS1250SUPPA;
.pdf). Section S1: Sampling algorithm. Section S2: Additional simulation results.
Section S3: Additional scRNA-seq data analysis results. Section S4: Data and code
availability.

Supplementary data and code (DOI: 10.1214/19-A0OAS1250SUPPB; .zip).
Code used in this study and genes selected for each of the three datesets.


https://doi.org/10.1214/19-AOAS1250SUPPA
https://doi.org/10.1214/19-AOAS1250SUPPB
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