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Formalin-fixed paraffin-embedded (FFPE) samples have great potential
for biomarker discovery, retrospective studies and diagnosis or prognosis of
diseases. Their application, however, is hindered by the unsatisfactory perfor-
mance of traditional gene expression profiling techniques on damaged RNAs.
NanoString nCounter platform is well suited for profiling of FFPE samples
and measures gene expression with high sensitivity which may greatly facil-
itate realization of scientific and clinical values of FFPE samples. However,
methodological development for normalization, a critical step when analyz-
ing this type of data, is far behind. Existing methods designed for the platform
use information from different types of internal controls separately and rely
on an overly-simplified assumption that expression of housekeeping genes is
constant across samples for global scaling. Thus, these methods are not opti-
mized for the nCounter system, not mentioning that they were not developed
for FFPE samples. We construct an integrated system of random-coefficient
hierarchical regression models to capture main patterns and characteristics
observed from NanoString data of FFPE samples and develop a Bayesian ap-
proach to estimate parameters and normalize gene expression across samples.
Our method, labeled RCRnorm, incorporates information from all aspects
of the experimental design and simultaneously removes biases from various
sources. It eliminates the unrealistic assumption on housekeeping genes and
offers great interpretability. Furthermore, it is applicable to freshly frozen or
like samples that can be generally viewed as a reduced case of FFPE samples.
Simulation and applications showed the superior performance of RCRnorm.

1. Introduction. Formalin-fixed paraffin-embedded (FFPE) tissue samples
are usually collected for diagnostic purposes in clinical routines (Lüder Ripoli
et al. (2016)). Unlike freshly frozen (FF) tissue samples that must be frozen in-
stantly after collection and then stored in freezers, FFPE samples can be stored
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at room temperature and kept for a long time. Due to ease of handling and in-
expensive storage (Perlmutter et al. (2004)), numerous FFPE tissue samples have
been deposited into tissue banks and pathology laboratories around the world and
are readily available (Reis et al. (2011), Lüder Ripoli et al. (2016)). Such samples
are often accompanied by well documented patient information, disease status and
long-term clinical follow up information. Furthermore, there exist vast archives of
specimens from which only FFPE, but no FF, samples can be obtained (e.g., spec-
imens of a deceased patient). Thus, the ubiquity of FFPE samples has made them
a highly valuable resource in biomedical studies. In particular FFPE samples have
great potential for biomarker discovery which can be critical for disease diagnosis,
prognosis and treatment plan selection (Ludwig and Weinstein (2005), Rosenfeld
et al. (2008), Xie et al. (2011)).

Despite the advantages of FFPE samples, the formalin fixation process breaks
RNA into small pieces with an average size of ≈200 nt, and irreversible methy-
lene crosslinks between RNAs and proteins may form that affect enzyme based
downstream reactions (Masuda et al. (1999)). The low quality of RNA from FFPE
samples hinders reproducibility and sensitivity of assays for quantitatively mea-
suring gene expression levels via microarray experiments or real time polymerase
chain reaction (qPCR) which involves enzyme-mediated reverse transcription from
mRNA to cDNA (von Ahlfen et al. (2007)). Thus, in order to exploit the vast col-
lection of FFPE samples, robust assays are needed to enable and improve expres-
sion profiling in these samples.

In recent years several methods/platforms have been developed for gene ex-
pression profiling in FFPE samples either at the genome-wide scale or for a subset
of genes. April et al. (2009) developed a whole genome cDNA-mediated anneal-
ing, extension, selection and ligation (WG-DASL) assay to perform gene expres-
sion profiling in FFPE samples. Iddawela et al. (2016) reported that WG-DASL
assays could reliably probe gene expression levels in breast cancer FFPE sam-
ples. Abdueva et al. (2010) showed that Affymetrix microarrays could be used to
probe gene expression signatures and to perform differential expression analysis
with FFPE samples, obtaining results comparable to those from unfixed tissues.
Thompson et al. (2014) developed the HTG EdgeSeq chemistry platform that uses
RNA extraction-free nuclease protection assay (qNPA), followed by the quantifi-
cation of RNA molecules by next generation sequencing techniques, such as RNA-
seq, to profile microRNA and RNA in FFPE samples.

Unlike whole genome expression profiling discussed above, Paluch et al. (2017)
developed targeted RNA-seq that can selectively examine the abundance of im-
mune related genes on archival FFPE samples. Typically, platforms for measur-
ing expression levels of only a subset of genes are called medium-throughput
platforms. Compared to the high-throughput (genome-wide) platforms, these plat-
forms often have better technical reproducibility in clinical settings. For medium-
throughput platforms, there are usually probes designed for internal controls, such
as negative controls, positive controls and housekeeping genes besides the probes



RCRNORM: NORMALIZING NANOSTRING NCOUNTER DATA FROM FFPE 1619

for detecting genes of interest. Negative controls target no known sequence and
should ideally have zero count; positive controls added to the reaction system have
known amounts of RNA targets, and housekeeping genes maintain basic cell func-
tions with expression levels that minimally fluctuate across different individuals
compared with other genes (Waggott et al. (2012)). These internal controls can
provide information useful in adjusting for unwanted biological and technical ef-
fects that can mask the signal of interest.

Among the medium-throughput platforms the highly-multiplexed NanoString
nCounter is the most popular (Geiss et al. (2008)); it can effectively detect up to
800 genes in a single tube in one run which bridges the gap between genome-wide
expression profiling by microarray or RNA-seq and targeted profiling by qPCR
(Kulkarni (2011)). More importantly, the nCounter platform is a Clinical Lab-
oratory Improvement Amendments (CLIA) certifiable assay (Friedman (1997)),
meaning it can be translated into clinical settings.

Due to its importance in medium-throughput profiling, several analysis meth-
ods, including NanoStringNorm, NAPPA and NanoStringDiff, have been devel-
oped for the NanoString nCounter platform to normalize and extract gene expres-
sion levels from different samples. These algorithms are mainly focused on remov-
ing noise from each of the following three sources with the use of one specific type
of internal controls: (1) lane-by-lane noise, resulting from variation in experimen-
tal conditions (such as humidity, temperature, etc.) between reaction systems, is es-
timated and removed by using information from positive controls; (2) background
noise, introduced by nonspecific binding of the probes, is estimated and removed
using negative controls; and (3) variation in sample loading amounts or difference
in RNA degradation levels is evaluated using housekeeping genes (Waggott et al.
(2012), Wang et al. (2016)).

Specifically, NanoStringNorm is an R package that implements a normalization
protocol recommended by the manufacturer’s guideline (Waggott et al. (2012)).
First, lane-by-lane variation is removed by scaling the samples with a factor that
makes summary statistics of positive control counts (e.g., mean, median or ge-
ometric mean) equal across samples. Then, background correction is performed
by subtracting the read count with a statistic representing the background noise,
like the mean or maximum count of negative controls. Finally, the loading varia-
tion is adjusted by a factor calculated from housekeeping genes in the same way
as in the first step. It is clear, here, that NanoStringNorm performs normaliza-
tion in an ad hoc way without any rigorous statistical model involved. To the best
of our knowledge, NAPPA is perhaps the algorithm most commonly used by re-
searchers to normalize NanoString data. This algorithm adjusts the background
noise with a truncated Poisson distribution and corrects the loading variation by
fitting a sigmoidal curve while normalizing the lane-by-lane variation similarly
as in NanoStringNorm. NanoStringDiff is originally designed for identifying dif-
ferentially expressed genes based on the NanoString nCounter platform but can
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be easily adapted for the purpose of normalization (Wang et al. (2016)). Nano-
StringDiff fits a generalized linear model to the data, from which three factors are
extracted from positive controls, negative controls and housekeeping genes to ad-
just for lane-by-lane variation, background noise and variation in the amount of
input sample respectively.

Although the three methods are designed or can be used to normalize Nano-
String nCounter data, no meticulous research has been conducted to study the
characteristics of this type of data obtained from FFPE samples, and no simula-
tion has been carried out to evaluate their performance in normalizing such FFPE
data. Furthermore, information provided by different types of internal controls is
intermingled. For example, although positive controls are designed to measure
noise from varying experimental conditions, read counts from negative controls
can also provide useful information about this type of noise. Current normaliza-
tion methods ignore this fact and cannot make the best use of data. In addition
all current algorithms use housekeeping genes by assuming that their expression
levels are constant over different samples (i.e., zero variance), which may not be
the case, since biologists generally define housekeeping genes as those that do
not vary much across different tissues (Eisenberg and Levanon (2013)). Thus, ad-
vanced statistical modeling of FFPE data based on an integrated understanding of
the nCounter system without restrictive model assumptions is needed to boost its
application in clinical and academic research. While our focus is on FFPE samples,
the resulting method can be still applied to FF or like samples. This is because FF
samples may be viewed as a reduced case of FFPE samples (i.e., zero or very low
degradation levels in FF compared to much higher and more diverse degradation
levels in FFPE).

We begin the paper by exploring key features of the NanoString nCounter data
from FFPE samples. We then construct an integrated system of random-coefficient
hierarchical regression models for modeling log-transformed read counts from the
different types of probes in the nCounter system. Our computational strategy is
based on a Bayesian approach. The proposed method is labeled by RCRnorm,
where “RCR” stands for random-coefficient hierarchical regression and “norm”
stands for normalization. We present a formal simulation study conducted to eval-
uate the performance of RCRnorm in comparison to several existing normaliza-
tion methods as well as to examine its robustness to deviations from key model
assumptions. Real data applications are provided as well to illustrate the proposed
Bayesian approach. Finally, the paper is concluded with a brief summary and some
in-depth discussions.

2. Motivating example.

2.1. Data description. The data that motivate our research are from a pub-
lished study by Xie et al. (2017) which aims to validate a 12-gene signature for pre-
dicting adjuvant chemotherapy (ACT) response in lung cancer. A gene signature
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is a subset of genes, selected from all human genes (more than 20,000), that can
be used for diagnosis or prognosis of diseases such as cancer (Ziober et al. (2006),
Chen et al. (2007)). Typically, a gene signature is identified via variable/model se-
lection techniques with each gene’s expression measurement corresponding to a
variable.

The 12-gene signature was developed from FF samples to predict who, among
lung cancer patients, would benefit from ACT so that patients that are unlikely
to benefit from ACT can avoid adverse effects of unnecessary treatment (Tang
et al. (2013)). As mentioned before, FFPE samples are widespread. FF samples,
however, are not readily available for clinical applications, due to reasons includ-
ing: (i) easy contamination by pathogenic germs, (ii) rapid deterioration in room
temperature, and (iii) much higher storage cost for frozen specimens than room
temperature specimens (Stefan, Michael and Werner (2010)). Thus, it is important
to validate the performance of the signature on FFPE samples so that a clinical
applicable assay can be developed based on the nCounter platform.

The dataset contains gene expression levels measured by the nCounter platform
on paired FF and FFPE samples from 30 patients. The goal of the study is to verify
that each gene’s expression levels of the 30 patients from FFPE samples are well
correlated with those from paired FF samples so that the statistical model based on
the 12-gene signature derived from FF samples can be applied to FFPE samples as
well. Although this signature only contains 12 genes, 87 total genes were measured
in the dataset.

Table S1 in Supplementary Material (Jia et al. (2019)) shows the data structure
derived by combining raw data files for different patient samples, where each row
represents a probe, and each column, except for the first two, represents a sam-
ple. The first column labeled “CodeClass” indicates the probe type—negative con-
trols, positive controls, housekeeping or regular genes. The second column con-
tains unique probe names. Generally, there are six positive controls (i.e., P = 6) in
the code set, but the number of negative controls N and the number of housekeep-
ing genes H can vary. The name of each negative or positive control contains a pair
of parentheses within which there is a number indicating the concentration amount
of RNA added to the system that is targeted by that control. For the six positive
controls the RNA amount is 0.125, 0.5, 2, 8, 32 and 128 fM respectively, while,
for all negative controls, it is zero since there is no known RNA transcript that can
be targeted by the probes. All the other columns in Table S1 contain (transformed)
read counts from individual samples. As will be detailed in Section 3, each (trans-
formed) count is denoted by Y with a superscript representing the code-class affil-
iation, the first subscript denoting the patient ID and the second subscript denoting
the probe ID in that code class.

In the study, the (paired) data involve two tables in the form of Table S1, one for
FF samples and the other for FFPE samples from the same set of patients. There
are eight negative controls, seven housekeeping genes and 87 regular genes besides
six positive controls in the data.
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Data generated by the nCounter system have to be normalized to account for
sample preparation variation, sample content variation and background noise, etc.,
before they can be used to quantify gene expression and conduct any downstream
statistical analysis. Here, the availability of data from FFPE samples would al-
low us to explore major characteristics of such data and examine key assump-
tions/hypotheses about the mean structure of the data when developing a new nor-
malization method that aims to improve existing ones. Meanwhile, the availability
of data from paired FF samples would enable us to quantitatively assess and com-
pare the performance of any normalization methods developed for the nCounter
system. Due to the lack of ground truth, it is generally difficult to compare the
performance of different normalization methods on real data. Nevertheless, the
data from paired FF samples, after normalization to remove technical effects, can
be used to provide a surrogate of the truth. This is because FF tissues are known
to maintain RNA very well (much lower degradation of RNA and no methylene
crosslink between RNA and proteins) and thus are considered as a gold standard
for most molecular assays (Solassol et al. (2011)).

2.2. Exploratory analysis. To ensure that data resulting from an nCounter
gene expression experiment is of adequate quality to be used in subsequent anal-
ysis, we apply quality control procedures according to the NanoString guidelines
(2017). Among the 30 patients’ FFPE samples with 87 regular genes, two patients
and four genes were removed for their compromised data quality because they
have mean read counts lower than the maximum count of negative controls. An in-
teresting fact is that the two samples discarded are the oldest among the 30 FFPE
samples and were collected before the year of 2000, supporting the notion that
storage time is a key factor that influences RNA quality of FFPE samples (von
Ahlfen et al. (2007)).

Figure S1 in Supplementary Material (Jia et al. (2019)) explores the mean-
variance relationship for the NanoString data of FFPE samples using positive con-
trol probes. Among commonly used strategies (e.g., Poisson and negative binomial
distributions, certain transformations), there seems to be no perfect solution to
model or remove such a relationship, as detailed in Section S1.1 of Supplementary
Material. In this paper we apply the log transformation to the raw counts, based
on the following considerations. First of all, the log transformation is suggested
by the NanoString manufacturer which designs positive control probes in a way
that their concentrations range linearly in the log scale from 128 fM to 0.125 fM.
The manufacturer further requires that R2, calculated from the regression between
the known log concentrations and observed log counts of these positive controls,
be higher than 0.95. Second, the coefficients of variation calculated from positive
controls range from 17.1% to 26.1% for raw counts, but they are greatly reduced
to the range 2.3%–6.6%. Although no transformation can completely remove the
mean-variance relationship, the log transformation does help stabilize the variance
(relative to the mean level). Last, but not least, the log transformation was applied
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because the mathematical theory of count distributions is less tractable than that of
the normal distribution, as mentioned in Law et al. (2014). In the context of a com-
plex system of (hierarchical) models, as will be detailed in Section 3, we prefer
modeling transformed data under a linear regression framework over raw counts
under a generalized linear model (GLM) framework in order to achieve analytical
tractability of conditional posterior distributions that greatly facilitates Bayesian
computation. To avoid −∞ arising from zero counts, we add one to the observed
counts before applying the logarithm.

The empirical distributions of the log10 transformed gene read counts of FFPE
vs FF samples are showed in Figures 1(a) and (b) respectively, in which each (den-
sity) curve, plotted using log read counts of housekeeping and regular genes, cor-
responds to a patient sample. It is obvious that the locations of the distributions of
FFPE samples vary more dramatically than those of FF samples. This indicates the
existence of heterogeneity in RNA degradation and fragmentation levels among
the 28 FFPE tissue samples, contributing to individual sample effects in transcript
abundance. This should be modeled, whenever possible, to enable comparison of
gene expression levels between patients after removal of such technical artifacts.
Figure 1(c) plots log read counts of six positive control probes vs. patient index for
FFPE samples. We find that the zig-zag patterns for the six probes are extremely
similar, strongly indicating the existence of the lane effects.

Given a sample i, one would expect that the log read count (say Yij ) of any probe
j has a monotonically increasing relationship with the corresponding RNA amount
(say Rij ). Using positive controls whose RNA amounts are known and fixed for
all i (i.e., Rij ≡ Rj and Rj ’s are known), we show two violin plots based on FFPE
samples in Figure 1(d), one for the 28 patient-wise Pearson correlation coefficients
between Xij ≡ logRij and Yij and the other for those between Rij and Yij . As
we anticipate according to the manufacturer’s guidelines, the coefficients using
log RNA amounts are very close to 1, while those using original RNA amounts
are much lower. Thus, a linear relationship between Xij and Yij may capture the
underlying pattern well, that is, for each sample i,

(1) E(Yij |Xij = x, ai, bi) = ai + bix,

where ai and bi are sample-specific regression coefficients.
Figures 1(e) and (f) show the empirical densities of ai ’s and bi ’s, all estimated

using FFPE data from positive controls. Apparently, the simplifying assumption
ai ≡ a or bi ≡ b is not appropriate here. Comparing (e) with (f), we can see that
the two distributions are different in both location and spread. The Shapiro–Wilk
test (Shapiro and Wilk (1965)) suggests no gross departure from normality at the
significance level 0.05 for either distribution. Thus, it is plausible to assume that
ai ’s and bi ’s are random and follow two separate normal distributions.

For every housekeeping or regular gene, the RNA amount Rij reflects gene j ’s
expression abundance in sample i, whose value is unknown. But for negative con-
trols, Rij ≡ 0 so that Xij = −∞ which is ill defined. To solve this issue, we add
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FIG. 1. Exploratory analysis of lung cancer data from Xie et al. (2017). Panels (a) and (b) show
empirical densities of log read counts based on housekeeping and regular genes for the 28 FFPE and
FF samples respectively. For FFPE samples panel (c) plots log read counts of six positive controls
(with different known RNA concentration amounts) vs. patient index; (d) shows two violin plots using
data from positive controls, one for patient-wise Pearson correlation coefficients between log RNA
amount and log read count, and the other for those between RNA amount and log read count; (e) and
(f) show empirical densities of patient-wise intercepts and slopes respectively, estimated using data
from positive controls and (g) and (h) show boxplots of residuals for the eight negative controls and
six positive controls respectively, from fitting the linear trend (1) per patient, where each boxplot
contains residuals from 28 patients for a control probe.
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a small positive number δ so that Xij = log δ instead, and (1) holds for negative
controls as well. Note that δ can be interpreted as the mean nonspecific binding
level due to background noise. Further, for the housekeeping and regular genes,
the additive effect of δ on the RNA amount Rij can be ignored for mathematical
convenience since δ is very small. As will be shown in Section 6, the estimate δ̂

is 0.013 and 0.018 in our two real data sets respectively. Both δ and Rij ’s are es-
timable. The intuition is that with the information from positive controls, we can
pin down (ai, bi) for each sample so that with observed counts from negative con-
trols, we can estimate δ and, with observed counts from housekeeping or regular
genes, we can estimate Rij ’s.

We use 1
I×N

∑
i=1

∑
j∈J−(Yij − âi)/b̂i to obtain a rough estimate of log δ for

FFPE samples, where J − denotes the index set of negative controls, âi and b̂i are
estimated using data from positive controls as before and N is the total number of
negative controls. We then compute the residuals, that is, deviations from the linear
pattern (1), for each positive and negative control, and their boxplots are shown in
Figure 1(g) and (h). Two interesting observations can be made here which will
be useful for the model construction in Section 3. First, negative controls tend to
have much larger deviations than positive controls, and their distributions tend to
have much larger variability (hence wider spreads). Second, for each individual
probe, the residuals are not randomly distributed around zero. All the boxplots for
positive controls are entirely above or below zero, and most boxplots for negative
controls have 75% residuals or more above or below zero, indicating residuals are
clustered by probes. This can be referred to as probe effects that have been well
documented in microarray literature (Li and Wong (2001), Irizarry et al. (2003)).

3. Proposed data model based on RCR. Let i index (FFPE) patient sam-
ples, p index positive controls, n index negative controls, h index housekeeping
genes and r index regular genes, for i = 1, . . . , I , p = 1, . . . ,P , n = 1, . . . ,N ,
h = 1, . . . ,H and r = 1, . . . ,R, where I is the number of patients, P , N , H and R

are the (prespecified) number of positive controls, negative controls, housekeeping
genes and regular genes respectively, in the NanoString nCounter platform.

Motivated by the analysis in Section 2, we set up a system of (hierarchical)
linear regression models with random coefficients for the four different types of
probes in which the general linear relationship between the observed log read count
and log RNA amount (either known or unknown) is assumed regardless of the
probe type and except for the observed log read counts; all the random components
of the system are assumed to be independent. We begin with the model for the
positive control class, given below:

(2) Y+
ip = ai + biX

+
p + d+

p + e+
ip,

where Y+
ip is the logarithm of read count plus 1 of the pth positive control from the

ith sample, X+
p represents the logarithm of the known RNA input amount (unit:
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f M) in the reaction system and the superscript “+” indicates the membership of
the positive control class. The ai and bi are the sample-specific random intercept
and slope which may reflect the lane-by-lane variation. According to Figure 1(e)–
(f), we may assume that ai ’s and bi’s be independent and identically distributed

normal variables respectively, ai
i.i.d.∼ N(μa,σ

2
a ) and bi

i.i.d.∼ N(μb,σ
2
b ). Further,

d+
p represents the probe-specific systematic deviation from the linear pattern (1)

(see Figure 1(g)), and we assume d+
p ∼ N(0, σ 2

d ). Finally, e+
ip ∼ N(0, σ 2

e ) is the
random error term which reflects the remaining variability of the log-observed
count after taking into account the linear trend and the probe-specific deviation.

For the negative control class the model is given by

(3) Y−
in = ai + bic + d−

n + e−
in,

where Y−
in is the logarithm of read count plus 1 of the nth negative control from

the ith sample, c ≡ log δ is an unknown constant, the superscript “−” indicates
the membership of the negative control class and the other terms are defined sim-
ilarly, as in (2). As shown in Figure 1(g), the distributions of deviations (from the
main linear pattern) for positive controls are very different from those for negative
controls. From the centers (i.e., middle horizontal bars) of the boxplots, we can
see d−

n ’s vary more than d+
p ’s and, from the widths of the boxplots, we can see

e−
in’s vary much more than e+

ip’s. Thus, we have to assume d−
n ∼ N(0, σ 2

d−) and

e−
in ∼ N(0, σ 2

e−), where the data suggest that σ 2
d− > σ 2

d and σ 2
e− > σ 2

e .
For the housekeeping gene class the model is given by

(4) Y ∗
ih = ai + biX

∗
ih + d∗

h + e∗
ih,

where X∗
ih is the unknown log RNA amount of the hth housekeeping gene from

sample i, the superscript “∗” indicates the membership of the housekeeping gene
class and the other terms are defined similarly, as before. Unlike positive or nega-
tive controls, X∗

ih in (4) is random by nature rather than being constant, which can
be decomposed into a random term κ∗

ih and a fixed term φi , that is, X∗
ih = φi + κ∗

ih.
Here, φi is a constant that reflects the individual effect of sample i in tran-
script abundance (e.g., patient-to-patient variation, variation in RNA degradation
and fragmentation levels of FFPE tissues, variation in the amount of input sam-
ple material, etc.), satisfying

∑I
i=1 φi = 0, and κ∗

ih ∼ N(λ∗
h, σ

2
κ∗) reflects the re-

maining expression abundance after adjusting for the sample effect. Note that
E(X̄∗·h) = λ∗

h, where X̄∗·h = ∑I
i=1 X∗

ih/I and λ∗
h is the gene-specific mean of the

log RNA amount. Besides, individual sample effects, φi ’s, and gene effects, λ∗
h’s,

are both modeled as fixed effects instead of random effects. This is because, for a
specific sample, we are interested in recovering κ∗

ih from X∗
ih, rather than inferring

the marginal distributions of φi ’s and λ∗
h’s.

For the regular gene class the RNA amounts in different samples are unknown,
too. So, the model is set to be the same as that for the housekeeping gene class but
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with a difference probe index r and no superscript (for notational brevity),

(5) Yir = ai + biXir + dr + eir ,

where Xir = φi + κir is the unknown log RNA amount of the r th regular gene
from sample i, and the definitions of κir , dr and eir are self-evident. Correspond-
ingly, we assume κir ∼ N(λr, σ

2
κ ). Note that two separate variances, σ 2

κ∗ and σ 2
κ ,

are needed for the housekeeping and regular genes respectively. This is because
expression levels of housekeeping genes are believed to be more stable across
samples, so one would expect σ 2

κ∗ < σ 2
κ .

In the reaction system of the nCounter platform, negative controls have no
known target, and all detected binding signals should be from nonspecific binding
while positive controls, housekeeping and regular genes all have known targets,
and so their working mechanisms may be similar. Thus, we assume d+

p , d∗
h, dr ∼

N(0, σ 2
d ) and e+

ip, e∗
ih, eir ∼ N(0, σ 2

e ). We comment that for the housekeeping and
regular genes, (4) and (5) are both hierarchical. The bottom layer involves a linear
regression model with random coefficients, and the second layer (for the unknown
log RNA amount) involves a two-way ANOVA model, where one factor represents
the sample-specific effect φi and the other factor represents the gene-specific effect
that is related to λ∗

h or λr . In addition for all the four classes, since gene-specific
deviations from the main linear trend (1) are allowed through d+

p , d−
n , d∗

h and dr ,
the log read counts of the same probe from different samples (e.g., Yir and Yi′r )
are correlated; meanwhile, the log read counts of the different probes from the
same sample (e.g., Yir and Yir ′) are correlated too, as they share the same random
intercept ai and slope bi .

4. Bayesian approach.

4.1. Full probability model. Based on the system of equations (2)–(5), the
parameters of our data model include μa , σ 2

a , μb, σ 2
b , σ 2

d , σ 2
e , σ 2

d−, σ 2
e−, {φi}I−1

i=1 ,
{λ∗

h}Hh=1, σ 2
κ∗, {λr}Rr=1, σ 2

κ and c, among which μa , μb, c, φi’s, λr ’s and λ∗
h’s are

location parameters, and all others are variance parameters.
We assume all these parameters are a priori independent. Let Y denote all

the observed log read count data; let � denote the collection of all latent ran-
dom variables involved, including {ai}Ii=1, {bi}Ii=1, {d+

p }Pp=1, {d−
n }Nn=1, {d∗

h}Hh=1,

{dr}Rr=1, {{κ∗
ih}Hh=1}Ii=1 and {{κir}Rr=1}Ii=1, and all model parameters. We also use

N(x|μ,σ 2) to denote a normal distribution with mean μ and variance σ 2 and π(·)
to denote a general prior distribution. Then, the full probability model is given by

p(Y ,�) ∝
I∏

i=1

{
P∏

p=1

N
(
Y+

ip |ai + biX
+
p + d+

p , σ 2
e

)

·
N∏

n=1

N
(
Y−

in|ai + bic + d−
n , σ 2

e−
)
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·
H∏

h=1

N
(
Y ∗

ih|ai + bi

(
φi + κ∗

ih

) + d∗
h, σ 2

e

)

·
R∏

r=1

N
(
Yir |ai + bi(φi + κir) + dr, σ

2
e

)

·
H∏

h=1

N
(
κ∗
ih|λ∗

h, σ
2
κ∗

) ·
R∏

r=1

N
(
κir |λr, σ

2
κ

)

· N(
ai |μa,σ

2
a

) · N(
bi |μb,σ

2
b

)}

·
P∏

p=1

N
(
d+
p |0, σ 2

d

) ·
N∏

n=1

N
(
d−
n |0, σ 2

d−
)

·
H∏

h=1

N
(
d∗
h |0, σ 2

d

) ·
R∏

r=1

N
(
dr |0, σ 2

d

)

· π(μa) · π(μb) · π(c) ·
I∏

i=1

π(φi) ·
H∏

h=1

π
(
λ∗

h

) ·
R∏

r=1

π(λr)

· π(
σ 2

a

) · π(
σ 2

b

) · π(
σ 2

d

) · π(
σ 2

e

) · π(
σ 2

d−
) · π(

σ 2
e−

) · π(
σ 2

κ∗
) · π(

σ 2
κ

)
,

where the first eight lines represent the joint likelihood of the observed data and
latent random variables, the last two lines represent prior distributions of the lo-
cation parameters and the last line represents prior distributions of the variance
parameters.

4.2. Prior specification. For each variance parameter involved, we specify an
inverse gamma prior distribution IG(u, v), where u and v are small positive num-
bers to make the prior very vague and diffuse (e.g., u = v = 0.01). The purpose of
doing so is to let the data speak for itself when sampling the variances from the
joint posterior distribution.

For μa and μb (mean of random intercepts ai ’s and mean of random slopes
bi ’s), we consider normal priors, μa ∼ N(μ̂a,m × se(μ̂a)) and μb ∼ N(μ̂b,m ×
se(μ̂b)). Here, m is a prespecified constant (e.g., 3, 5) to make the prior much
more diffuse than what data suggest; μ̂a and μ̂b are crude estimates of μa and μb,
and se(μ̂a) and se(μ̂b) are their standard errors. We simply set μ̂a = ∑I

i=1 âi/I

and μ̂b = ∑I
i=1 b̂i/I , where âi and b̂i are the (least square) estimated intercept

and slope from fitting Y+
ip vs. X+

p for each patient i. The standard errors can be
estimated using jackknife resampling that removes two patient samples at a time
(Efron and Stein (1981)).
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For any other location parameter (say θ ), we use a noninformative uniform dis-
tribution, θ ∼ Uniform(Lθ ,Uθ), which should provide a sufficiently wide cover-
age for all plausible values of θ suggested by data. For the added small value
δ associated with negative controls, we consider the range (10−6,10−1) so that
c ∼ Uniform(−6,−1) is specified a priori. For the gene-specific mean of the log
RNA amount λr , the lower and upper bounds can be specified by mean(X̂r ) ±
m × sd(X̂r ), where X̂r = (X̂1r , . . . , X̂Ir ), and X̂ir is a crude estimate of the log
RNA amount of regular gene r from sample i, for example, X̂ir = (Yir − âi)/b̂i .
The bounds for λ∗

h can be specified similarly using X̂∗
ih = (Y ∗

ih − âi )/b̂i for each
housekeeping gene. Note that an alternative method to specify a conservative prior
range for any of λr ’s and λ∗

h’s is to use the maximum and minimum statistics,
especially when we anticipate that the posterior distribution can be skewed. For
example, the lower and upper bounds of λr can be specified by min{X̂r}−	r and
by max{X̂r} + 	r where 	r is a prespecified constant that leaves some extra safe
room for either bound (e.g., setting 	r = sd(X̂r )).

Finally, for the sample effect φi , the lower and upper bounds can be specified by
φ̂i ± m × se(φ̂i). Here, the rough estimate φ̂i and its standard error can be easily
obtained using regular genes by running a standard two-way ANOVA model on
X̂ ≡ (X̂r )

R
r=1 with the constraint that the sum of sample-specific effects and the

sum of gene-specific effects are zero. Alternatively, they can be estimated nonpara-

metrically: φ̂i = ¯̂
Xi·− ¯̂

X··, where ¯̂
Xi· = 1

R

∑R
r=1 X̂ir and ¯̂

X·· = 1
IR

∑I
i=1

∑R
r=1 X̂ir ;

and se(φ̂i) can be roughly estimated using jackknife resampling that removes two
housekeeping genes at a time.

4.3. Posterior computation and Bayesian inference. We use Markov Chain
Monte Carlo (MCMC) to draw random samples from the joint posterior distribu-
tion p(�|Y ) which is proportional to p(Y ,�). Standard diagnostic techniques
(Gelman et al. (2014)) are used to detect the convergence. One advantage of the
proposed method is that the posterior conditionals, as detailed in Section S2 of
Supplemental Material (Jia et al. (2019)), are all known distributions for each of
which direct sampling can be done. This property allows us to design an efficient
Gibbs sampler in which all the involved quantities are drawn sequentially and gen-
erated readily without using any built-in sampling algorithm (such as Metropo-
lis–Hastings and Acceptance/Rejection algorithms) that can greatly slow down the
computation.

For the purpose of gene expression normalization, we are mainly interested in
estimating κir ’s for regular genes. For i = 1, . . . , I and r = 1, . . . ,R, let κ

(t)
ir be the

posterior draw of κir in the t th iteration of MCMC after the burn-in period, where
t = 1, . . . , T , and T is the total number of iterations. Then, we can estimate κir by
κ̃ir = ∑T

t=1 κ
(t)
ir /T . Similarly, we can obtain a Bayesian estimate of κ∗

ih for each
housekeeping gene.
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5. Simulation.

5.1. Settings. We conducted five simulation studies, labeled I–V, to examine
the performance of the proposed method, called RCRnorm, and to compare it
with the three existing methods that have been proposed to normalize NanoString
nCounter data, NAPPA, NanoStringDiff, and NanoStringNorm, as mentioned in
the Introduction. In addition we included RUV as another competitor, although it
is not designed for analyzing NanoString nCounter data. The method, proposed
by Risso et al. (2014), normalizes high throughput sequencing data by controlling
the factors of unwanted variation (e.g., library preparation) estimated from a set of
control genes/samples. RUVseq is its related R package, and is publicly available.

In the first study five settings, labeled I-1 to I-5, were simulated based on the
data model proposed in Section 3. In I-1 data were generated using parameter
values estimated from the FFPE samples in the lung cancer study described in
Section 2. Settings I-2–I-5 were modified from I-1 to mimic different real world
scenarios:

I-2: The probed genes have larger variability in their expression levels. To sim-
ulate this situation, σκ and σκ∗ were increased to three times that of the basic
setting in I-1. These two parameters control the signal strength, where a larger
value indicates more genes with strong signals, so it is easier to recover underlying
expression levels.

I-3: The samples have larger lane-by-lane variation. This scenario mimics a
poor control of experimental conditions across different samples or lanes. To do
so, we increased σa and σb to three times that of the basic setting in I-1.

I-4: The probe library is poorly designed so that probes have larger variability
in their affinity to different gene targets. In this scenario we increased σd and σd−
to three times that of the basic setting in I-1.

I-5: Effects of random errors (unexplained variability) were examined in this
scenario by increasing σe and σe− to three times that of the basic setting in I-1.

RCRnorm, as well as the other methods in literature, assumes a common sample
effect φi for all genes in a given sample i to account for between-sample variations
resulted from loading or RNA degradation of different samples. However, RNA
degradation rates are different among genes as they are determined by a myriad of
factors. The gene-wise RNA degradation from either internal pathways or environ-
mental conditions is technically difficult to measure and cannot be separated from
true gene expression levels with current data using any of the methods. To reflect
this uncertainty, we added white noise ωir and ω∗

ih, generated from N(0,0.42),
to φi for regular or housekeeping genes in the basic setting of our second simu-
lation study, namely II-1. Furthermore, considering that the normality assumption
for probe-specific effects and random errors may not always hold, we simulated
another five settings by modifying setting II-1, labeled II-2 to II-6, using a stan-
dard Student’s t distribution with three degrees of freedom (t3), which represents a
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thick-tailed distribution, and a Gamma distribution with shape 2 and rate 1 which
represents a right-skewed distribution. In setting II-2 t3 was used to generate the
probe effects {d+

p }Pp=1, {d−
n }Nn=1, {d∗

h}Hh=1 and {dr}Rr=1, and, in II-3, t3 was used to

generate the random errors {e+
ip}Pp=1, {e−

in}Nn=1, {e∗
ih}Hh=1 and {eir}Rr=1. In II-4 and

II-5, Ga(2,1) was used to generate probe effects and random errors respectively.
In II-6 t3 was used to generate the probe effects and Ga(2,1) to generate random
errors. Data generated from t3 were then rescaled to have the same variance as in
setting II-1, and data generated from Ga(2,1) were shifted and rescaled to have
mean 0 and variance equal to that in II-1. Barring the aforementioned changes,
everything in study II remains the same as in I-1.

Study III evaluates the performance of RCRnorm in situations when samples
are collected from different groups (or experimental conditions), and a subset of
genes are differentially expressed (DE) between the groups. This can be done by
randomly assigning each sample into one of the groups and then sampling κir from
N(λr +	,σ 2

κ ) for the samples from the treatment group and from N(λr −	,σ 2
κ )

for those from the control group. If gene r is DE, we set 	 = 0.2; otherwise,
	 = 0. Here, we assume two groups of equal size and set the proportion of DE
genes to be 5%, 10% and 20% in settings III-1–III-3 respectively. Everything else
remains the same as in I-1.

In study IV we generated raw counts for probe j of sample i from a negative
binomial (NB) distribution NB(ξij ,ψj ) with mean ξij and variance ξij + ξ2

ij /ψj ,
where ξij > 0, ψj > 0 and j ∈ {p,n,h, r}. With this mean-dispersion parameter-
ization a small value of ψj indicates large overdispersion of the observed count
data while a large value of ψj indicates that NB is approaching Poisson. We set
ψj ≡ 2, 20 and 200 across all the probes in settings IV-1–IV-3 respectively. To
generate the means, we employed a GLM log10 ξij = ai + biXij + dj , with ai ’s,
bi ’s and dj ’s set to the same values as in I-1.

Lastly, we simulated data in the spirit of the NanoStringDiff model described in
Wang et al. (2016) which is considerably different from the proposed model. To
mimic the overdispersion observed in the real data, we replaced the Poisson kernel
in the NanoStringDiff model with a NB kernel. For the regular genes we followed
the notation used in Wang et al. (2016) and sampled Yir ∼ NB(cidiλir + θir ,ψ),
where ci is the positive control size factor, di is the housekeeping size factor of
the ith sample, λir is the unobserved expression rate and θir is the nonspecific
background noise of the r th regular gene from the ith sample. Read counts of
negative controls, positive controls and housekeeping genes were generated in a
similar manner but incorporated the characteristics of each control type. In settings
V-1–V-3 we simulated the raw counts by setting the dispersion parameter ψ = 2,
20 and 200 respectively. All other parameter values were estimated from the lung
cancer dataset we used.

Under each setting 50 datasets were independently simulated, each with 28 pa-
tient samples, six positive controls, eight negative controls, seven housekeeping
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genes and 83 regular genes which are exactly the same as in the real lung cancer
data. Since all the read counts in studies I–III were generated in the log10 scale,
they were exponentiated and rounded to the nearest integers so that the simulated
data can be analyzed by all the algorithms. For RCRnorm 8000 iterations were
simulated in each MCMC run, and the first 5000 were used for burn-in. The exist-
ing algorithms were applied using their default settings.

5.2. Results. To evaluate the performance on normalization under ground
truth, we computed gene-wise correlations for 83 regular genes between normal-
ized data and true expression levels within each simulated dataset and reported
their mean, standard deviation (SD), 25th, 50th and 75th percentiles as the sum-
mary statistics for every method. Then, under each setting, boxplots of these sum-
mary statistics based on 50 replicates were generated and used to compare the four
methods. Because RCRnorm works on the log10 scale, NAPPA on the log2 scale
and the other algorithms on the original scale, we used Spearman correlation for
comparison which ignores data values and relies solely on ranks.

Figure 2 shows boxplots of mean and SD, and Figure S2 in Supplementary Ma-
terial (Jia et al. (2019)) shows boxplots of the 25th, 50th and 75th percentiles of
gene-wise correlations for each of the five settings in Simulation I. In the basic
setting I-1 RCRnorm is the winner while RUVseq performs the worst. The poor
performance of RUVseq can be explained by the following reasons: (1) data from
a medium throughput platform, such as nCounter, could not be well characterized
by the model designed for high throughput sequencing data; (2) RUVSeq is prob-
lematic when there is only a small number of negative controls, as claimed by
its authors. All other existing algorithms performed somewhat similarly, among
which NanoStringDiff seems to fair a little worse than the other two methods, re-
flected by the generally smaller mean, percentiles, and larger SD of its correlations.
In Setting I-2 the increased signal strength improves the performance of the exist-
ing algorithms significantly, but it does not affect RCRnorm much since RCRnorm
already performs well in I-1. In settings I-3, I-4 and I-5, increased variability, re-
gardless of the source, worsens the performance of every algorithm. Compared
to I-1, the mean and percentiles decrease, but the SD increases in general. The
increase in probe-level variation (i.e., σd and σd−) in Setting I-4 has the largest
negative impact on the performance, followed by the increase in variability of ran-
dom noise (i.e., σe and σe−) in Setting I-5 and last by the increase in lane-by-lane
variation (i.e., σa and σb) in Setting I-3. Among all, NanoStringDiff seems to be
the most sensitive to such changes while RCRnorm is the least affected, maintain-
ing a strong performance in all settings. In addition to being well apart from the
other boxplots in all settings except for I-2, the boxplots for RCRnorm show the
smallest interquartile ranges, meaning that RCRnorm gives very consistent results
over different replicate datasets.

Figure 3, along with Figure S3 in Supplementary Material shows results for the
six settings in Simulation II. With the gene-wise degradation levels added to the
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FIG. 2. Simulation study I for mimicking various real-world scenarios: boxplots for mean and SD
of gene-wise correlations between normalized data and true expression levels based on 50 replicates
for each of the five settings I1–I5. Compared to the basic setting I-1 (parameter values estimated
from the FFPE samples in the lung cancer application), gene expression variability is increased in
I-2, lane-by-lane variation is increased in I-3, probe-level variation is increased in I-4 and variability
of random noise is increased in I-5. Note that NSnorm stands for NanoStringNorm and NSdiff for
NanoStringDiff.
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FIG. 3. Simulation study II for mimicking different RNA degradation levels among genes (II-1) plus
various distributional disturbances (II-2–II-6): boxplots for mean and SD of gene-wise correlations
between normalized data and true expression levels based on 50 replicates for each of the six settings
II-1–II-6. In II-1 gene-specific and sample-specific white noise N(0, σ 2

δ = 0.16) was added to each
common sample effect φi for all genes. In the other five settings distributional disturbances were
further included: in II-2 a thick-tail distribution t3 was used to simulate probe effects; in II-3 t3 was
used to simulate random errors; in II-4 a right-skewed distribution G2,1 was used to simulate probe
effects; in II-5 G2,1 was used to simulate random errors, and in II-6 t3 was used to generate probe
effects and G2,1 to generate random errors. Except for the changes above, everything remains the
same as in the basic setting I-1, including all parameter values (so t3 and G2,1 need to be rescaled
or shifted).
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model system, the performance of every algorithm in II-1 becomes (much) worse
than the performance in I-1, as indicated by the generally wider boxes for all the
summary statistics and the lower box centers for the mean and percentiles. By con-
trast the distributional disturbances seem to not affect the performance much. The
differences between II-1 and the other five II settings are not large when compared
to those between I-1 and II-1. Among these disturbances heavy-tailed random er-
rors in II-3 tend to make the methods perform worse than the other disturbances.
Overall, RCRnorm is quite robust to the moderate violations of the normality as-
sumption and outperforms the other methods.

Figure 4 and Figure S4 in Supplementary Material show that when the propor-
tion of DE genes is small, which is typical in practical situations, increasing the
DE proportion would not affect the performance much for any of the five methods.
Figures 5 and 6, along with Figures S5 and S6 in Supplementary Material show
results for count data generated from the NB GLM setup and the NanoStringDiff
model. Clearly, when the overdispersion of count data is large (i.e., small ψ), the

FIG. 4. Simulation study III for mimicking situations when there is a subset of regular genes that
are differentially expressed between different groups: boxplots for mean and SD of gene-wise correla-
tions between normalized data and true expression levels based on 50 replicates for each of the three
settings III-1–III-3 which correspond to different DE proportions 5%, 10% and 20% respectively.
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FIG. 5. Simulation study IV for generating the raw counts from negative binomial (NB) GLMs:
boxplots for mean and SD of gene-wise correlations between normalized data and true expression
levels based on 50 replicates for each of the three settings IV-1–IV-3 which correspond to different
dispersion parameters ψ = 2, 20 and 200 respectively. Note that, as ψ increases, NB approaches
Poisson.

performance becomes much worse, compared to that for larger ψ values; among
all, NanoStringDiff is the most sensitive as it relies on the Poisson assumption.
In general, RCRnorm maintains the best performance in these studies, though its
advantage over the other four methods weakens in Study V where the proposed
models in Section 3 no longer hold.

6. Real data applications.

6.1. Lung cancer data. We use the NanoString nCounter data from FFPE
samples described in Section 2 to illustrate the proposed RCRnorm first. We ran
our MCMC algorithm for 15,000 iterations in total. The convergence for all the
model parameters was detected after 7000 iterations, and we discarded the first
10,000 for burn-in. We then thinned the chain to reduce the autocorrelation among
posterior draws by saving every tenth draw only, so, in total, 500 posterior sam-
ples were kept. Figure 7 shows the posterior densities of global parameters includ-
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FIG. 6. Simulation study V for generating the raw counts from the NanoStringDiff model in Wang
et al. (2016) with the Poisson kernel replaced by the negative binomial (NB) kernel—boxplots for
mean and SD of gene-wise correlations between normalized data and true expression levels based
on 50 replicates for each of the three settings which correspond to different dispersion parameters
ψ = 2, 20 and 200 respectively. Note that as ψ increases, NB approaches Poisson.

ing μa , μb, c, σκ∗, σκ , σd , σd−, σe and σe−, and Table 1 presents a summary
for Bayesian estimates of these parameters including the posterior mean, median,
standard error (SE), and a 95% credible interval (CI) using the 2.5th and 97.5th
percentiles of (thinned) posterior samples. Here, the posterior mean is used to es-
timate each location parameter, but the posterior median is used to estimate each
variance parameter since the corresponding posterior density is skewed to the right.

Several intriguing observations can be made from the above figure and table.
As we know, housekeeping genes are involved in the maintenance of basic cellular
function, so they are expected to be uniformly expressed with low variability in
all cells and experimental conditions. Our analysis using RCRnorm confirms that,
compared to other genes, expression levels of housekeeping genes indeed have
much less variation. Clearly, the Bayesian estimate of σκ∗ (0.136, the SD of ex-
pression levels for housekeeping genes) is much smaller than that of σκ (0.361,
the SD of expression levels for regular genes), and Figure 7(b) shows that their
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FIG. 7. Lung cancer data example: posterior densities of global parameters from applying
RCRnorm to FFPE samples, where panel (a) is for μa , (b) for μb , (c) for c, (d) for σκ and σκ∗,
(e) for σd and σd− and (f) for σe and σe− respectively.

posterior density curves are well separated with the correct order. Furthermore,
our exploratory analysis in Section 2.2 strongly indicates σd < σd− and σe < σe−.
That is, the SD of the probe-specific deviation (from the linear trend) for negative
controls is larger than that for the other types of probes, as is the SD of the random
errors. The Bayesian estimates in Table 1 confirm the underlying features again
(0.120 < 0.308 and 0.035 < 0.211), and the posterior densities in Figures 7(e) and
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TABLE 1
Lung cancer data example: posterior summary statistics of

global parameters from applying RCRnorm to FFPE
samples

Mean Median SD 95% CI

μa 2.462 2.462 0.014 (2.436,2.490)

μb 0.927 0.927 0.003 (0.922,0.932)

c −1.877 −1.872 0.125 (−2.126,−1.635)

σκ∗ 0.138 0.136 0.011 (0.121,0.163)

σκ 0.361 0.361 0.007 (0.349,0.375)

σd− 0.333 0.308 0.104 (0.198,0.595)

σd 0.129 0.120 0.045 (0.074,0.242)

σe− 0.211 0.211 0.011 (0.189,0.233)

σe 0.035 0.035 0.003 (0.031,0.041)

(f) support them as well. Note that the data model of RCRnorm does not impose
such order constraints at all, but the end results from RCRnorm capture these char-
acteristics accurately.

Next, we compare the performance of RCRnorm in normalizing FFPE data
with the existing algorithms. As FF samples generally have much better quality
than FFPE samples, we used normalized FF data as the gold standard, where each
method was applied to normalize both FFPE and FF data, and Pearson correlation
coefficients between normalized FFPE and FF data were computed to quantify its
performance. The summary statistics (mean, SD, 25%, 50% and 75% quantile) of
83 gene-wise correlations are presented in the left panel of Table 2 with the best
value bolded in each column. Compared to the original data, all algorithms except
for RUVseq (designed for high-throughput RNA-seq data) significantly improve
the gene-wise correlations, and RCRnorm has the best performance in terms of
higher mean and percentiles as well as smaller variability. Note that the three ex-
isting algorithms designed for the NanoString nCounter platform have somewhat
similar performance. However, RCRnorm can further offer a sizable gain over their
already improved performance.

Although gene-wise correlations are the focus of the original study (Xie et al.
(2017)) for validating the gene signature, we also report 28 patient-wise correla-
tions in the right panel of Table 2. Here, NanoStringDiff and NanoStringNorm are
unable to adjust patient-wise correlations. This is because they linearly transform a
patient’s data with scale factors calculated from internal controls and, thus, do not
change the patient-wise correlations. Among the other three methods RCRnorm
and NAPPA can achieve some improvement from normalization, though improve-
ment is not as large as seen in the gene-wise case. This is perhaps because the
patient-wise correlations of the original data are already high, leaving little room
for improvement. Again, RCRnorm seems to be better than NAPPA with higher
mean, percentiles and similar variability.
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TABLE 2
Lung cancer data example: summary statistics of gene-wise and patient-wise correlations between

normalized FFPE and FF samples using different algorithms

Gene-wise correlation Patient-wise correlation

Mean SD 25% 50% 75% Mean SD 25% 50% 75%

Original data 0.291 0.278 0.114 0.303 0.444 0.806 0.129 0.720 0.835 0.897
RCRnorm 0.550 0.197 0.427 0.590 0.694 0.851 0.102 0.792 0.876 0.926
NAPPA 0.488 0.194 0.370 0.522 0.646 0.844 0.102 0.793 0.863 0.919
NanoStringDiff 0.487 0.207 0.352 0.496 0.635 0.806 0.129 0.720 0.835 0.897
NanoStringNorm 0.489 0.199 0.341 0.474 0.630 0.806 0.129 0.720 0.835 0.897
RUVseq 0.300 0.276 0.103 0.308 0.465 0.806 0.118 0.721 0.819 0.904

For the unnormalized data the patient-wise correlations (mean: 0.806, SD:
0.129) are much higher than the gene-wise correlations (mean: 0.291, SD: 0.278).
While a few highly expressed genes, if any, could inflate their values, such higher
patient-wise correlations may still suggest the superb performance of NanoS-
tring nCounter on expression profiling with FFPE samples. On the other hand the
much lower gene-wise correlations highlight the importance of removing sample-
specific effects for downstream statistical analysis.

In this application the gene-wise correlations achieved by all the algorithms
are generally lower than what we have seen in our simulation. This can be ex-
plained by the following reasons. First, due to experimental and technical limita-
tions, gene-wise RNA degradation levels cannot be measured and removed by any
of the five algorithms. As shown in Figure 3, such variation could cause a large
drop in performance. Second, normalized FF expression levels were used to cal-
culate the Pearson correlation coefficients in the application while true expression
levels were used in the simulation.

6.2. Colorectal cancer data. Our second application involves a colorectal can-
cer study (Omolo et al. (2016)) that compared five different platforms to identify
which platform could faithfully translate the RAS pathway gene signature identi-
fied from FF samples into FFPE samples. RAS pathway activation is a risk factor
for the failure of EGFR combination therapy in colorectal cancer patients. Thus,
it is clinically important to identify a platform that can obtain reliable information
from FFPE samples. Among the five platforms compared, NanoString nCounter
was found to be the best platform to recover gene expression information from
FFPE samples.

We applied RCRnorm to the NanoString nCounter data from FFPE samples in
this study where, again, 15,000 iterations were used with the first 10,000 being
burn in. The dataset contains 54 samples, with six positive controls (with the same
input amounts as before), six negative controls, 11 housekeeping genes and 18
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TABLE 3
Colorectal cancer data example: two-sided p values from the t-test that compares the CVs between

housekeeping and regular genes

RCRnorm NAPPA NanoStringDiff NanoStringNorm RUVseq

p value 0.036 0.146 0.170 0.096 0.004

regular genes. Thus, unlike the lung cancer data, this dataset has more samples
than probes.

Figure S7 plots posterior densities, and Table S2 reports posterior summary
statistics of global parameters in Supplementary Material (Jia et al. (2019)). Com-
pared with Table 1 in the lung cancer study, the estimates of μa , μb and c are
all close, although they are completely from two independent and distinct stud-
ies. Again, the Bayesian estimates of σκ∗ and σκ (0.190 vs. 0.278) confirm that
expression levels of the housekeeping genes vary less than those of the regular
genes. Interestingly, σκ∗ in this study is larger than its counterpart in the lung
cancer study (estimate: 0.190 > 0.136; 95% CI: (0.176,0.215) completely above
(0.121,0.163)), even though more housekeeping genes were used here (11 vs.
7). This seems to suggest that increasing the number of housekeeping genes used
does not necessarily reduce their variability to the minimal level. Our results fur-
ther confirm that σd 
 σd− (0.069 vs. 0.257) and σe 
 σe− (0.042 vs. 0.273).
Recall that these characteristics were revealed by exploring the lung cancer data.
Nevertheless, they may generally hold for NanoString nCounter data of any kind.

In this study paired FF NanoString data are not available, and so performance
comparison among the five methods cannot be done using correlations between
normalized FFPE and FF data. According to the manual of NanoStringNorm
(Waggott et al. (2012)), housekeeping genes are typically selected to be genes with
high means and low standard deviations. Thus, the two-sample t-test was used to
compare the coefficients of variation (CV = SD/mean) between the housekeeping
and regular genes. A good normalization algorithm should have a clear separa-
tion of CVs between these two types of genes. To make the CVs from the five
algorithms comparable, we transformed the normalized data from the algorithms
into the same scale. In Table 3 RCRnorm and RUVseq have p-values smaller than
0.05 which confirms the existence of a significant difference between the two gene
types at a significance level of 0.05. None of the existing NanoString methods was
able to do so. Also, RUVseq performed poorly in simulation when the ground truth
is known and, in the lung cancer study, when paired FF data are available. Putting
these together, we conclude that RCRnorm has consistently strong performance in
normalizing NanoString data.

7. Discussion. Motivated by a lung cancer study in predicting adjuvant
chemotherapy (ACT) response, we have developed a novel (Bayesian) method,
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RCRnorm, to normalize NanoString nCounter data. Through simulation studies,
we have shown that RCRnorm compares very favorably with the existing meth-
ods, especially in situations with an elevated level of heterogeneity from various
sources. In the lung cancer application RCRnorm performs the best and greatly
improves gene-wise correlations between paired FF and FFPE samples. Thus,
it provides an important step toward applying gene signatures identified from
genome-wide expression profiling of FF samples into wide clinical use with FFPE
samples. In addition RCRnorm provides improved patient-wise correlations that
NanoStringDiff and NanoStringNorm cannot.

The competitive performance of RCRnorm can be largely explained by two
unique features it owns. First of all, RCRnorm relies on an integrated system of
hierarchical linear regression models with random coefficients, which effectively
captures mean and variance structures underlying the data shared among differ-
ent types of probes, to maximally remove systematic sample-specific biases in
gene expression profiling. Unlike RCRnorm, the previous methods use the differ-
ent types of internal controls in an isolated and somewhat heuristic manner. Thus,
they do not take full advantage of the rich information provided by the nCounter
system. Second, the existing methods adjust sample loading effects with infor-
mation extracted from housekeeping genes. This is based on the assumption that
expression levels of housekeeping genes are stable across samples, implying that
their biological variability in gene expression is zero. In practice their biological
variability, although smaller than other genes in general, is not zero. In fact some
housekeeping genes have been reported to have significant fluctuations (Gubern
et al. (2009)). Thus, this simplifying assumption may lead to compromised perfor-
mance of the existing methods on normalization. By contrast RCRnorm does not
need the assumption as two separate variance terms, σ 2

κ∗ and σ 2
κ , are used to model

the biological variability of housekeeping and regular genes respectively. Further,
by estimating and comparing σ 2

κ∗ and σ 2
κ , RCRnorm can provide an alternative

way to examine the validity of housekeeping genes used in an nCounter system
from an analytical perspective.

In addition RCRnorm offers much better interpretability than the other exist-
ing methods. It is based on a rigorous model system whose parameters can be
intuitively interpreted. With estimates obtained from the Bayesian approach, re-
searchers can gain a deep understanding about the dataset under study. Moreover,
in the integrated system, X represents the log RNA content whose value is at-
tached with a unit log fM; so, for housekeeping and regular genes, the quantity of
interest κ , which is an additive term that makes up X, should have the same unit.
Thus, the normalized expression produced by RCRnorm also has the unit log fM
so that its values are directly comparable to the input amounts of positive controls
in the system. This may help us concretely understand the level of expression for
a particular gene. It is also worth mentioning that RCRnorm does not depend on
the log transformation at all, and the response Y in equations (2)–(5) can be g-
transformed from raw read counts where g(·) can be any function such that Y can
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be approximately modeled by normal distributions. Therefore, for a real data set,
we can use exploratory analysis to decide which transformation works better and
then preprocess the data accordingly before applying RCRnorm.

RCRnorm employs a Bayesian framework to handle its computational needs,
so a noninformative prior setup, as detailed in Section 4.2, is adopted. In situations
where meaningful prior knowledge is available, prior distributions can be chosen
to incorporate such knowledge for improved results. We have developed an effi-
cient Gibbs sampler for posterior computation and inference, where all the steps
can be done by direct sampling from known distributions. Based on our numerical
experience, the algorithm is computationally stable and converges without manual
tuning in all our settings. In the lung cancer application it took ∼1000 seconds
to run 15,000 iterations using R on a 2.8 GHz Intel Core i7 processor. Note that,
based on the proposed model system, frequentist approaches to estimation such as
maximum likelihood and nonparametric methods may be used to facilitate compu-
tation. Nevertheless, RCRnorm offers the advantage of quantifying the estimation
uncertainty easily as it is Bayesian in nature. The existing algorithms, which are
all frequentist, cannot even provide confidence intervals for key parameters or nor-
malized expression.

RCRnorm is a method designed based on characteristics of nCounter data ob-
served from FFPE samples. When developing normalization methods, the focus
on FFPE samples itself is original as no previous research has even realized that
FFPE data are more complex than FF data. On the other hand this focus does not
limit the application of RCRnorm to FF or like samples, as the approach that starts
with a complex situation and then deduces a simpler case is valid. RCRnorm can
also be used with other platforms that use internal controls (with minor adaptions).
Furthermore, replicates from the same patient, when available, can be naturally
incorporated into the system to enable better estimation of model parameters and
normalized expression. This is because RCRnorm, again as a Bayesian method,
has the capability to pool information from various sources such as probes, pa-
tients or replicates. The other methods can only treat the replicates as independent
samples and then calculate the mean or median of normalized expression levels to
combine replicates.

Although current technologies cannot reliably quantify RNA degradation lev-
els in FFPE samples, clinical information for these samples such as age of FFPE
samples (not the patient age) and RIN (RNA integrity number; a measure used to
evaluate RNA quality) (von Ahlfen et al. (2007)), if available, can be integrated to
model the degradation levels to potentially improve the performance on normal-
ization.

As mentioned in Vallejos et al. (2017), there are two different approaches to
normalization. The first is to use generic methods that yield normalized expres-
sion measures that can be used as input in any downstream analysis; the second is
to consider bespoke methods that use prenormalized expression measures in con-
junction with a model that can account for both effects of interest and unwanted
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artifacts. Like most existing normalization methods, RCRnorm belongs to the first
approach. If there are two groups of samples (say treatment and control), the treat-
ment effect, if any, should be harbored in the κir terms (i.e., normalized expres-
sions). However, in such situations, a bespoke method should be more efficient
than a generic method because: (i) it can directly model the group label, and (ii) it
can integrate the normalization step into the differential expression (DE) analysis
so that a two-stage approach that often ignores the uncertainty from the first stage
is no longer needed. Thus, developing a bespoke method based on some modifi-
cations of RCRnorm for DE analysis of NanoString nCounter data would be an
interesting topic for future research.

SUPPLEMENTARY MATERIAL

Supplement to “RCRnorm: An integrated system of random-coefficient
hierarchical regression models for normalizing NanoString nCounter data”
(DOI: 10.1214/19-AOAS1249SUPP; .pdf). Supplement A: tables, figures and
Bayesian full conditionals. In the first section of this Supplementary Material, we
provide additional tables and figures mentioned in the paper, including additional
information about lung cancer data, additional simulation results, and results for
colorectal cancer data. In the second section of this Supplementary Material, we
provide the full posterior conditionals for the Gibbs sampler used to draw posterior
samples.
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