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IDENTIFYING MULTIPLE CHANGES FOR A FUNCTIONAL DATA
SEQUENCE WITH APPLICATION TO FREEWAY TRAFFIC

SEGMENTATION
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Academia Sinica∗, National Cheng Chi University† and University of Michigan‡

Motivated by the study of road segmentation partitioned by shifts in traf-
fic conditions along a freeway, we introduce a two-stage procedure, Dynamic
Segmentation and Backward Elimination (DSBE), for identifying multiple
changes in the mean functions for a sequence of functional data. The Dy-
namic Segmentation procedure searches for all possible changepoints using
the derived global optimality criterion coupled with the local strategy of at-
most-one-changepoint by dividing the entire sequence into individual subse-
quences that are recursively adjusted until convergence. Then, the Backward
Elimination procedure verifies these changepoints by iteratively testing the
unlikely changes to ensure their significance until no more changepoints can
be removed. By combining the local strategy with the global optimal change-
point criterion, the DSBE algorithm is conceptually simple and easy to im-
plement and performs better than the binary segmentation-based approach at
detecting small multiple changes. The consistency property of the change-
point estimators and the convergence of the algorithm are proved. We apply
DSBE to detect changes in traffic streams through real freeway traffic data.
The practical performance of DSBE is also investigated through intensive
simulation studies for various scenarios.

1. Introduction. This study is motivated by the application of detecting mul-
tiple changes in a long sequence of traffic streams concerning traffic speeds. Ho-
mogeneous traffic conditions within a freeway segment are essential for determin-
ing the level-of-service, a widely used performance measure to assess the freeway
operations [Transportation Research Board (2010)], and are useful to traffic sen-
sor deployment [Hu and Wang (2008)]. It is a common practice to monitor traffic
streams through a series of dual loop vehicle detectors located along freeways.
The continuously recorded traffic data records allow us to develop a systematic
approach to identifying the locations of changes in traffic streams. We regard the
daily traffic speed trajectory collected at each detector as a realization sampled
from a stochastic process and place it in the context of functional data. Thus, the
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traffic-speed trajectories collected by a series of vehicle detectors along a freeway
form a long sequence of functional data that are likely to contain multiple change-
points rather than just a single one. As such, we formulate the segmentation prob-
lem as a multiple changepoint analysis for a sequence of functional observations.

Changepoint analysis has broad applications in various disciplines, such as bi-
ology, climatology, economics and engineering. It is an active research area and
has been discussed extensively in the univariate and multivariate data settings.
While studies with a single changepoint had a long history, problems with multiple
changepoints are much more challenging and have received more attention in the
last decade. Niu, Hao and Zhang (2016) provided an excellent selective overview
on both classical and new multiple changepoint detection strategies, including ex-
haustive search, stepwise selection, penalization, screening and ranking, and multi-
scale estimators, such as Killick, Fearnhead and Eckley (2012), Fryzlewicz (2014),
Harchaoui and Lévy-Leduc (2010), Niu and Zhang (2012), Frick, Munk and Siel-
ing (2014), to name a few.

Despite the rapidly growing field of functional data, changepoint analysis for
functional data has been studied only in recent years. Functional data analysis
(FDA) studies theory and analysis of data sampling from infinite-dimensional ran-
dom objects in the forms of functions, curves or images, or other general objects.
We refer to Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth and
Kokoszka (2012), Zhang (2014), Hsing and Eubank (2015) for general overview
and monographs of FDA and a recent review article Wang, Chiou and Müller
(2016), among others.

In the literature, most changepoint analyses for functional data use the as-
sumption of at most one changepoint (AMOC). Berkes et al. (2009) proposed a
CUSUM-type test for changepoint detection in a sequence of independent func-
tional data, and the asymptotic theory for the changepoint estimator was studied
by Aue et al. (2009). Subsequently, the CUSUM-type test was extended further to
accommodate functional data under a weakly dependent structure [Hörmann and
Kokoszka (2010)]. Additionally, Aston and Kirch (2012) modified the test statis-
tics to be suitable for epidemic changes in which the mean function changes at
some time point and then returns to the original one. Very recently, Gromenko,
Kokoszka and Reimherr (2017) developed a statistical tool for inferring a change
in the pattern of a spatio-temporal process, and the testing statistic reduced to that
of Berkes et al. (2009) when there is only a single site.

While these pioneering works mainly assume a single changepoint in a sequence
of functional data, this assumption may not be suitable for a long series of data.
To relax the assumption in a real-data example, Berkes et al. (2009) extended the
method to detecting multiple changes by combining the test of detecting a single
change with the binary segmentation algorithm. Although it serves as a remedy for
the AMOC assumption, the binary segmentation algorithm requires a condition re-
garding the minimum segment length and may omit small changes when both large
and small segments exist simultaneously [Olshen et al. (2004), Fryzlewicz (2014)];
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this inconsistency is due to the violation of the AMOC assumption. A reasonable
strategy of detecting multiple changes is to perform a single changepoint detection
within a small subsequence that satisfies the AMOC assumption; this is referred
as the local strategy. Recently, methods adopting the local strategy for multiple
changepoint detection have been developed [Niu and Zhang (2012), Fryzlewicz
(2014)] but these were designed for scalar rather than functional data.

In addition to hypothesis testing, the detection of multiple changepoints in uni-
variate and multivariate settings is often regarded as a global optimization problem,
in which changepoints are characterized as an optimal set, assuming the number of
changepoints is known [Pan and Chen (2006)]. For situations in which the number
of changepoints is unknown, Yao (1988) and Braun, Braun and Müller (2000) have
proposed using the Schwarz criterion to estimate the total number of changepoints;
a general criterion can be found in Ciuperca (2011). Although the consistency for
these optimization estimators has been established theoretically, the computational
burden remains. To reduce the computational complexity, Braun, Braun and Müller
(2000) employed dynamic programming and Killick, Fearnhead and Eckley (2012)
proposed an algorithm with linear computational cost but under a more restrictive
assumption, which may be impractical [Fryzlewicz (2014)].

In this study, we introduce a new two-stage procedure, the Dynamic Segmen-
tation and Backward Elimination (DSBE), for identifying multiple changes in the
mean functions for a sequence of functional data. In the first stage, the Dynamic
Segmentation (DS) searches for all possible changepoints in each individual sub-
sequences satisfying the AMOC assumption, and these subsequences are recur-
sively adjusted to achieve the objective of global optimality. In the second stage,
the Backward Elimination (BE) procedure aims to ensure statistical significance
of these changepoints, which iteratively performs hypothesis testing starting from
the most unlikely changepoints until no more changepoint candidates can be re-
moved. The concept of DSBE is straightforward and easy to understand. The de-
rived global optimality criterion in DS characterizes the changepoints, and there-
fore can be quite effective for any general changepoint detection problem for a
functional data sequence.

To the best of our knowledge, there is no method specifically designed for iden-
tifying multiple changes in a sequence of functional data. The most relevant ap-
proaches could be extensions from a single changepoint detection for functional
data using CUSUM-based hypothesis testing coupled with algorithms such as the
binary segmentation (BS) algorithm and could be further generalized to methods
such as wild binary segmentation and circular binary segmentation.

Unlike the BS-based approaches, DSBE accommodates the existence of multi-
ple changepoints and does not impose the AMOC restriction in its global objective
function. Most importantly, DSBE achieves its global optimality by incorporating
the local strategy of AMOC, which is easy to implement even for a functional data
sequence in comparison with those using other global optimization methods for
multiple changepoint analysis designed for one-dimensional data.



MULTIPLE CHANGEPOINTS FOR A FUNCTIONAL DATA SEQUENCE 1433

Besides, since the BS algorithm is a forward selection procedure, the number of
tests required for changepoint detection is unknown, and the overall type I error is
hard to control. In contrast, the proposed DSBE uses a backward testing algorithm
and can handle the multiple testing problems.

The remainder of this article is organized as follows. Section 2 introduces a
multiple changepoint model for a functional data sequence and develops a global
optimality criterion for detecting multiple changes. Section 3 presents the DSBE
algorithm and its theoretical properties. Section 4 illustrates the DSBE method
with an application to freeway traffic segmentation. Section 5 investigates the fi-
nite sample performance of DSBE by using a simulation study. Discussions and
concluding remarks are provided Section 6. Proofs of Lemma 1, Theorems 1 and 2
are given in the Appendix. Additional simulation results are deferred to Supple-
mentary Material (Chiou, Chen and Hsing (2019)).

2. Multiple changepoint model and optimal segmentation estimator.

2.1. Multiple changepoint model. Let {Xi}Ni=1 be a sequence of continuous
random functions in L2(T ), a Hilbert space of square integrable functions on a
closed interval T satisfying E

∫
T |Xi(t)|2 dt < ∞, with the inner product 〈f,g〉 =∫

T f (t)g(t) dt for any f and g in L2(T ) and the induced norm ‖f ‖2 = 〈f,f 〉. The
functional data Xi are observed at locations within some bounded interval which,
without loss of generality, will be taken as (0,1]. Assume that Xi is observed at
location i/N .

We assume that there are M changes, M < N , in the mean functions at the
positions {θ∗

m}Mm=1, 0 < θ∗
1 < · · · < θ∗

M < 1, where both M and {θ∗
m}Mm=1 are fixed

and unknown, and do not depend on N . The boundary points are denoted by 0 = θ∗
0

and 1 = θ∗
M+1. Furthermore, let μm be the mean function of the Xi’s, with the

associated position lying in the segment (θ∗
m−1, θ

∗
m], for m = 1, . . . , (M + 1), and

assume that μm �= μm+1 for model identifiability.
Under these assumptions, the functional multiple changepoint model for Xi(t),

t ∈ T , is

(1) Xi(t) = Yi(t) +
M+1∑
m=1

μm(t) · 1(θ∗
m−1,θ

∗
m](i/N),

where 1(θ∗
m−1,θ

∗
m](θ) = 1 if θ∗

m−1 < θ ≤ θ∗
m and 0 otherwise, and {Yi}Ni=1 is a se-

quence of identically distributed random functions in L2(T ) with mean zero and
covariance function c(s, t) = cov(Yi(s), Yi(t)). The integral operator with the ker-
nel c(s, t) is

Cf =
∫
T

c(s, ·)f (s) ds, f ∈ L2(T ),

which is a bounded linear transformation from L2(T ) into itself. Since c(s, t) is
continuous, C is a Hilbert–Schmidt operator. In general, the Hilbert–Schmidt norm
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of a Hilbert–Schmidt operator K is defined as ‖K‖HS = (
∑∞

�,d=1〈Ke�, ed〉2)1/2

with an arbitrary choice of complete orthonormal basis functions {e�} of L2(T ).
See Hsing and Eubank (2015) for details of these notions.

Moreover, {Yi} may be dependent because the elements of the functional data
sequence can be spatially or temporally correlated. We assume that {Yi} is a L4 −
m-approximable functional data sequence [Hörmann and Kokoszka (2010)]. This
assumption is required mainly to achieve estimation consistency as follows. Let

(2) X̄(θ∗
m−1,θ

∗
m](t) = 1

Nk(θ
∗)


Nθ∗
m�∑

i=
Nθ∗
m−1�+1

Xi(t),

where Nk(θ
∗) = 
Nθ∗

m� − 
Nθ∗
m−1�, the number of subjects or functional obser-

vations with the associated positions falling into (θ∗
m−1, θ

∗
m]. Further, let

μ̂i

(
t | θ∗) =

M+1∑
m=1

X̄(θ∗
m−1,θ

∗
m](t) · 1(θ∗

m−1,θ
∗
m](i/N).

Under the L4 − m-approximable assumption, it holds that given the true change-
points θ∗ the empirical estimator Ĉθ∗ with the kernel

ĉ
(
s, t | θ∗) = 1

N

N∑
i=1

{
Xi(s) − μ̂i

(
s | θ∗)}{

Xi(t) − μ̂i

(
t | θ∗)}

,

converges in probability to the operator C with the kernel c(s, t) in the Hilbert–
Schmidt norm as N → ∞. Nevertheless, other dependency assumption can be

considered as long as that ‖Ĉθ∗ − C‖2
HS = op(1) can be satisfied.

In the functional multiple changepoint model (1), the number of changepoints
M along with their positions {θ∗

m}Mm=1 and the segment mean functions {μm}M+1
m=1

are the unknown parameters to be estimated. Before presenting the method of es-
timating the changepoints, we first characterize the changepoints in a functional
data sequence through a certain optimality property, which can be used to derive a
criterion for detecting multiple changepoints.

2.2. Optimal segmentation estimator. For any K > 0, consider the � = {θ =
(θ1, . . . , θK) | 0 < θ1 < · · · < θK < 1} ⊂ (0,1]K . An arbitrary θ ∈ � forms a K-
segmentation on (0,1] with (K + 1) nonoverlapping segments. Let θ0 = 0 and
θK+1 = 1 for notational convenience. Let θ∗ = {θ∗

m;m = 1, . . . ,M} be the set of
true changepoints, which forms the M-segmentation. In the following, we show
that among all possible θ the true θ∗ possesses an optimality property.

Because {Yi(t)} in (1) are not observable and θ∗ is unknown, the covariance
function c(s, t) = EYi(s)Yi(t) is estimated through {Xi(t)} by the empirical esti-
mator conditional on θ ,

(3) ĉ(s, t |θ) = 1

N

N∑
i=1

Ŷi(s|θ)Ŷi(t |θ),
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where

(4) Ŷi(t |θ) = Xi(t) −
K+1∑
k=1

X̄(θk−1,θk](t) · 1(θk−1,θk](i/N)

for i = 1, . . . ,N and X̄(θk−1,θk](t) is defined as in (2). Similarly to the definition of
C, we define the integral operator with the kernel ĉ(s, t |θ) as Ĉθ , using the subscript
to indicate its dependence on θ . The conditional estimator ĉ(s, t |θ) may not be
consistent with c(s, t). The discrepancy between C and Ĉθ for an arbitrary K-
segmentation θ depends on the relationship between θ and θ∗, which is explicitly
explained as follows.

LEMMA 1. Consider an arbitrary K-segmentation θ of (0,1] such that

min
k∈{1,...,K+1}{θk − θk−1} > ε,

for some ε > 0. Under model (1) and its assumptions, we have

(5) Ĉθ
P→ C +B(θ),

where B(θ) is the integral operator with the kernel

Bθ (s, t) = ∑
1≤r<m≤K+1

αr,m(θ)(μr − μm)(s)(μr − μm)(t),

and αr,m(θ) ≥ 0 are constants depending on θ as well as θ∗. Moreover, αr,m(θ) =
0 for all r and m if and only if θ contains θ∗ as a subset; that is, if θ∗ ⊂ θ .

The condition that the minimal distance of the adjacent changepoints in θ is
bounded away from zero is to assure that Nk(θ) and N are of the same order
of magnitude as N → ∞. The proof of Lemma 1 and the specific expression of
αr,m(θ) are provided in Appendix A. Lemma 1 indicates that the difference be-
tween Ĉθ and C hinges on αr,m(θ), the size of which relies on the difference be-
tween θ and θ∗ as shown in the proof. Most importantly, when θ∗ is a subset of θ ,
Ĉθ is a consistent estimator of C, and vice versa.

It is easy to see that the kernel Bθ (s, t) in Lemma 1 is nonnegative definite,
which implies that Ĉθ − C is asymptotically nonnegative definite. Consequently,
for any p = 1,2, . . . ,

(6)
p∑

�=1

〈Ĉθe�, e�〉 p→
p∑

�=1

〈{
C +B(θ)

}
e�, e�

〉 ≥ p∑
�=1

〈Ce�, e�〉

and the equality holds if either αr,m(θ) = 0 or 〈μr − μm, e�〉 = 0 for all 1 ≤ r <

m ≤ K + 1 and 1 ≤ � ≤ p. When using minθ∈�

∑p
�=1〈Ĉθe�, e�〉 as the optimal-

ity criterion for θ , we require the following condition on (μr − μm)(t) for the
identifiability of θ∗.
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DEFINITION. Under model (1), θ∗ is said to be detectable with respect to V

if (μm+1 − μm) /∈ V ⊥ for m = 1, . . . ,M for a subspace V = span{e1, . . . , ep} in
L2(T ).

Under the assumptions of Lemma 1 and assuming that θ∗ is detectable with
respect to V , we conclude that the equality in (6) holds if and only if θ∗ ⊂ θ ; that
is, αr,m(θ) = 0. Therefore, the true changepoints θ∗ can be characterized as an
optimal segmentation that minimizes

∑p
�=1〈Ĉθe�, e�〉 with respect to θ .

A data-driven approach to choosing a subspace V uses the eigenspace of the
covariance operator corresponding to the empirical estimator k̂(s, t) = (1/N) ×∑N

i=1{(Xi − X̄)(s)(Xi − X̄)(t)}, where X̄(t) = (1/N)
∑N

i=1 Xi(t). Specifically,
we consider the spectral decomposition k̂(s, t) = ∑∞

�=1 λ̂�φ̂�(s)φ̂�(t), where the
eigenvalues {λ̂�} are in nonascending order and the set of eigenfunctions {φ̂�}
forms an orthonormal basis in L2(T ). Here, k̂(s, t) is the empirical estimator
of the covariance kernel function k(s, t) = ∑∞

�=1 λ�φ�(s)φ�(t), leading to a sub-
space V = span{φ̂1, . . . , φ̂p}, where the dimension p can be determined by the
proportion of variance explained by the criterion, such that, given some 0 < δ < 1,
p(δ) = min{p : ∑p

�=1 λ̂�/
∑∞

�=1 λ̂� > δ}. For instance, δ can be set as 95%.
Choosing V by the data-driven approach using the eigenspace of the covariance

operator allows us to efficiently identify the space that maximizes the total vari-
ance of the processes with the minimal number of components. Nevertheless, other
basis functions such as B-splines and Fourier basis can also be used as the basis
functions. Because the estimate of the covariance kernel function c(s, t) depends
on the unknown changepoints, it is natural to use its empirical counterpart k̂(s, t).
More importantly, it has been shown that working with k̂(s, t) is as effective as
c(s, t) in the sense that whenever a changepoint θ∗

m is detectable with respect to
the eigenspace of c(s, t), it is also detectable with respect to the eigenspace of
k̂(s, t) (Section 4 in Aston and Kirch (2012)). Furthermore, in this study using the
eigenspace of the covariance operator in the dynamic segmentation (DS) stage is
in line with the tests for the equality of two covariance operators (Fremdt et al.
(2013)) that is used in the backward elimination (BS) procedure, which also moti-
vates the use of the eigenspace of the covariance operator in the DS procedure.

Let TN(θ) = ∑p
�=1〈Ĉθ φ̂�, φ̂�〉 be the trace of Ĉθ restricted to the span of {φ̂�;� =

1, . . . , p}. By (3), TN(θ) can be expressed as

(7) TN(θ) = 1

N

N∑
i=1

{
ξ̂

c

i (θ)
}�{

ξ̂
c

i (θ)
}
,

where ξ̂
c

i (θ) = (ξ̂ c
i,1(θ), . . . , ξ̂ c

i,p(θ))� and ξ̂ c
i,�(θ) = 〈Ŷi(·|θ), φ̂�〉. We define the

optimal segmentation estimator θ̃N = {θ̃N,k}Kk=1 to be the changepoint estima-
tor that minimizes TN(θ) over all K-segmentation θ , K ≥ M ; that is, θ̃N =
argminθ∈� TN(θ). We present the consistency of θ̃N in the following theorem.
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THEOREM 1. Suppose that the assumptions of model (1) hold, and θ∗ is de-
tectable with respect to V = span{φ1, . . . , φp}. Assume min1≤l≤p{λl − λl+1} ≥ η0
for some η0 > 0. If M ≤ K < ∞, then for each element θ∗

m in θ∗, 1 ≤ m ≤ M ,

there exists a corresponding θ̃N,k for some 1 ≤ k ≤ K , such that θ̃N,k
p→ θ∗

m.

The proof of Theorem 1 is provided in Appendix B. The detectable assumption
on θ∗ ensures the identifiability of the estimator θ̃N,k when using TN(θ) in (7)
as the criterion for detecting multiple changepoints in a functional data sequence.
The assumption of minimum spacing of the adjacent eigenvalues is to ensure the
consistency of the estimated eigenfunctions {φ̂�(t)}p�=1. In the estimation of the
functional changepoint model (1), the variation not only comes from the stochastic
component {Yi} but also the shifts of the estimated mean functions. In practice, the
dimension of V increases with the value of δ in order for the stochastic expansion
to explain a certain proportion of variance for the sequence {Xi(t)}. Therefore, the
detectable assumption for changepoints is more likely to be satisfied for higher
value of δ. In this study, we set δ as 0.95 with the aim of detecting all the changes.

3. Dynamic segmentation and backward elimination. We propose a two-
stage algorithm, Dynamical Segmentation (DS) and Backward Elimination (BE).
The DS stage efficiently searches for an optimal K-segmentation with a prespec-
ified K , K ≥ M and, in the BE stage, falsely selected changepoint candidates are
eliminated through hypothesis testing.

3.1. Dynamic segmentation. The basic idea behind DS is to divide the whole
sequence of functional observations into subsequences according to their associ-
ated positions that cover all possible changepoints and satisfy the AMOC assump-
tion. The boundary points of each subinterval are recursively adjusted to minimize
the criterion TN(θ) in (7).

Given a subinterval (θl, θr ] of (0,1] and any θ in (θl, θr ], the sample averages
X̄(θl,θ ](t) and X̄(θ,θr ] are defined analogously as in (2). Similar to the definition of
TN(θ) in (7) for the entire interval (0,1], we define S(θl,θr ](θ) for each subinterval
(θl, θr ] as

(8) S(θl,θr ](θ) = 1


Nθr� − 
Nθl�

Nθr�∑

i=
Nθl�+1

{
ξ̂

c

i,(θl .θr ](θ)
}�{

ξ̂
c

i,(θl .θr ](θ)
}
,

where ξ̂
c

i,(θl ,θr ](θ) = (ξ̂ c
i1,(θl ,θr ](θ), . . . , ξ̂ c

ip,(θl,θr ](θ))� with the element

ξ̂ c
i�,(θl,θr ](θ) = 〈

Xi − {
X̄(θl,θ ] · 1(θl ,θ ](i/N) + X̄(θ,θr ] · 1(θ,θr ](i/N)

}
, φ̂�

〉
.

The estimate of a single changepoint within (θl, θr ] is obtained by minimizing (8),

θ̃N = argmin
θ∈(θl ,θr ]

S(θl,θr ](θ).
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The minimizer θ̃N can be found by implementing a grid search in the elements of
the sequence {Xi(t); i = (
Nθl� + 1), . . . , 
Nθr�} under the AMOC assumption.

Given that the subintervals (θl, θr ] are unknown and are estimated recursively,
let the index (r) in θ (r) = {θ(r)

1 , . . . , θ
(r)
K } denote the r th iteration of DS and let

I(r)
j (h) = (θ

(r+1)
j−1 + h, θ

(r)
j+1 − h] for some h > 0 be the subinterval excluding the

parts near the boundaries of (θ
(r+1)
j−1 , θ

(r)
j+1]. The proposed procedure is summarized

as follows.
Algorithm DS:

(D1) Choose a positive integer K and obtain the initial equally-spaced K-
segmentation θ (0) = {d,2d, . . . ,Kd} with d = 1/(K + 1).

(D2) Set θ
(r)
0 = 0 and θ

(r)
K+1 = 1 for all r ≥ 0.

(D3) Given θ (r−1) = {θ(r−1)
1 , . . . , θ

(r−1)
K } ∈ � at the beginning of the r th itera-

tion, update θ
(r−1)
j sequentially for j = 1, . . . ,K by

θ
(r)
j = inf

[
argmin

θ∈I(r−1)
j (h)

{
S

(θ
(r)
j−1,θ

(r−1)
j+1 ](θ)

}]
.

(D4) Iterate the previous updating step until θ (r) satisfies the convergence cri-
terion max1≤j≤K |θ(r+1)

j − θ
(r)
j | < 1/N .

(D5) Obtain the K-segmentation after convergence θ̂N = {θ̂N,1, . . . , θ̂N,K}.
In (D3), the introduction of h in I(r)

j (h) is necessary in practice. It serves as the

possible minimum segment length of θ̂N in the recursive updating procedure. The-
oretically, h = h(N) tends to 0 as N → ∞. Moreover, because {TN(θ (r))} forms a
positive nonincreasing sequence in r , the convergence of DS is ensured. However,
to ensure the consistency of θ̂N , an additional assumption on the minimal distance
between two adjacent changepoints in relation to the algorithm is required. Let
� = min0≤m≤M |θ∗

m+1 − θ∗
m|.

THEOREM 2. The DS algorithm converges; that is, the K-segmentation θ̂N in
(D5) always exists such that limr→∞ θ (r) = θ̂N . Furthermore, under the assump-
tions of Theorem 1, if d ≤ �, there exists a positive value h = h(N) → 0 such
that

lim
N→∞P

(⋂
m

{∣∣θ∗
m − θ̂N,k

∣∣ < h for some k = 1, . . . ,K
}) = 1.

The proof of Theorem 2 is provided in Appendix C. The theorem requires that
the distance of the initial equally-spaced K-segmentation d be smaller than the
minimal adjacent distance between the true changepoints �; thus, the AMOC as-
sumption is satisfied. Because � is unknown in practice, we make d small by
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choosing a large K . Theorems 1 and 2 ensure that the dynamic segmentation pro-
cedure is able to detect all M true changepoints; however, the remaining (K − M)

changepoint candidates are falsely selected. Therefore, we require a procedure to
identify the M true changepoints among the K changepoint candidates.

3.2. Backward elimination. To remove the (K − M) falsely selected change-
points from θ̂N , we propose the BE procedure to ensure that the respective changes
are statistically significant. We start by selecting the most unlikely changepoint
candidate in the set of θ̂N and then perform hypothesis testing to possibly remove
the nonstatistically significant changepoint candidate. This process is implemented
iteratively until no more candidates can be removed. Because the hypothesis test-
ing procedures are performed at most K times, we control the overall level of type
I errors through the Bonferroni method.

Let θ̂−k = θ̂N \ {θ̂N,k} denote the subset of θ̂N excluding the element θ̂N,k . If
θ̂N,k is a falsely selected changepoint candidate, then by Thereom 1 we expect
that the values of TN(θ̂−k) and TN(θ̂N) are relatively close. Thus, the θ̂N,k corre-
sponding to the minimum value of {|TN(θ̂N) − TN(θ̂−l)| : 1 ≤ l ≤ K} is the most
unlikely changepoint candidate. Moreover, by Lemma 1 only the deletion of a true
changepoint can cause a change in the corresponding covariance operators. Thus,
we test the difference between the covariance operators before and after deleting
the changepoint candidate.

Consider the case of deleting θ̂N,k within the subinterval (θ̂N,k−1, θ̂N,k+1]. Let
Ĉk,b be the integral operator with the empirical estimator ĉk,b(s, t) before deleting
θ̂N,k as its kernel, which is given by

ĉk,b(s, t) = 1

Nk(θ̂N) + Nk+1(θ̂N)


Nθ̂N,k+1�∑
i=
Nθ̂N,k−1�+1

{
Ŷi(s|θ̂N)Ŷi(t |θ̂N)

}
,

where Ŷi(t |θ̂N) is defined as in (4) and Nk(θ̂N) = (
Nθ̂N,k�−
Nθ̂N,k−1�); Ĉk,a is
defined analogously by replacing θ̂N in Ŷi(t |θ̂N) with θ̂−k . Moreover, we denote
Ck,b = limN→∞ Ĉk,b and Ck,a = limN→∞ Ĉk,a . The null hypothesis

H0k : Ck,b = Ck,a

is to test if θ̂N,k can be rejected as a true changepoint. By Lemma 1, Ck,b = Ck,a =
C if θ̂N,k is not a changepoint, and Ck,a = Ck,b + B if θ̂N,k = θ∗

m for some 1 ≤
m ≤ M , where the kernel of B is α(1 − α)(μm+1 − μm)(s)(μm+1 − μm)(t) with
α = Nk(θ̂N)/{Nk(θ̂N) + Nk+1(θ̂N)}.

Intrinsically, the hypothesis H0 is a two sample test problem for functional data.
Benko, Härdle and Kneip (2009) proposed a bootstrap procedure for testing the
equality of spectra such as the eigenvalues and eigenfunctions of covariance opera-
tors. Panaretos, Kraus and Maddocks (2010) developed a test based on the Hilbert–
Schmidt norm of the difference between covariance operators under the Gaussian
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assumption, and Fremdt et al. (2013) extended the method to the non-Gaussian
case.

To test H0, we adopt the method proposed by Fremdt et al. (2013) which uses
the weighted Hilbert–Schmidt norm of (Ĉk,b − Ĉk,a) as the test statistic. Let A

be a p × p symmetric matrix with entries A(�, d) = 〈(Ĉk,b − Ĉk,a)φ̂�, φ̂d〉 and
ζ = vech(A), where vech(A) is the half-vectorization of A. If H0 holds, then

(Nk/2)ζ�L̂−1ζ
d→ χ2

p(p+1)/2. Here, L̂ is an estimate of the asymptotic covari-

ance matrix for (Nk/2)1/2ζ , which consists of the elements of ξ̂
c

i,b and ξ̂
c

i,a , where

ξ̂
c

i,b = (ξ̂ c
i1,b, . . . , ξ̂

c
ip,b)

� with ξ̂ c
i�,b = 〈Ŷi(·|θ̂N), φ̂�〉; ξ̂

c

i,a is defined analogously.

Let θ [k] denote the changepoint candidates at the kth BE iteration. Set θ [0] =
θ̂N . We use square brackets in the superscript rather than parentheses to distinguish
the iteration indices of the DS and BE stages. The procedure is as follows.

Algorithm BE:

(B1) Selecting the most unlikely changepoint candidate. Given θ [k−1] at the
beginning of the kth iteration, obtain

θ
[k]
del = argmin

θ∈θ [k−1]

∣∣TN

(
θ [k−1] \ {θ}) − TN

(
θ [k−1])∣∣,

and then update θ [k] = θ [k−1] \ {θ [k]
del}.

(B2) Testing the most unlikely changepoint candidate. Consider the null hy-
pothesis H0k . If H0k is rejected, then the BE procedure stops and θ [k−1] = θ̂

∗
N is

the estimate of θ∗. Otherwise, the procedure continues to the (k + 1)th iteration.

If the procedure stops at the k∗th iteration, we conclude that there are M̂ = (K −
k∗ + 1) changepoints with positions θ [k∗−1]. If none of the K tests are significant,
then the DSBE procedure concludes the algorithm there is no changepoint in the
sequence.

4. Application to freeway traffic segmentation. We apply the DSBE al-
gorithm to freeway traffic data to identify locations of changes in mean vehicle
speeds. The speeds were recorded in 2014 by dual loop vehicle detectors in a 5-
minute interval at a sequence of locations along Freeway No. 5 in Taiwan. Let
the random function Xi(t) be the vehicle speed (km/hr) recorded by the ith detec-
tor at time t on a particular day of the week, such as Sunday or Saturday. Thus,
{Xi(t)}Ni=1 forms a sequence of random functions. The dataset includes a total of
N = 85 vehicle detectors (VDs). We consider the profiles of daily vehicle speed
as realizations of the random functions. For each date j , we take {Xij (t)}Ni=1 as
realizations sampled from the random function {Xi(t)}Ni=1. In practice, some of
the data records may be missing due to various reasons such as occasional road
maintenance or package loss during transmission, and such missing values occur
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TABLE 1
Estimated number of changepoints M̂ along with their locations

Saturday Sunday

K M̂ VD ID M̂ VD ID

6 5 [13 19 50 65 76] 5 [13 27 50 65 76]
7 7 [11 18 28 48 54 65 76] 7 [11 16 27 48 54 65 76]
8 8 [9 13 19 28 48 54 65 76] 7 [9 13 27 50 54 65 76]
9 8 [9 13 19 28 48 54 65 76] 7 [9 13 27 50 54 65 76]
10 8 [9 13 19 28 48 54 65 76] 7 [9 13 27 50 54 65 76]
11 8 [9 13 19 28 48 54 65 76] 7 [9 13 27 50 54 65 76]

at different dates and locations. To utilize all the recorded data, we consider the se-
quence of functional data, {X11(t), . . . ,X1r1(t), . . . ,XN1(t), . . . ,XNrN (t)}, where
{Xij (t), j = 1, . . . , ri} are replicates of Xi(t).

Here, {Xij (t), j = 1, . . . , ri; i = 1 . . . ,N} follow model (1), and the changes in
mean functions can occur only at locations where the index i changes. For an arbi-
trary θ , when there are replications at the same locations, we modify X̄(θk−1,θk](t)
in (2) and ĉ(s, t |θ) in (3) as follows: X̄(θk−1,θk](t) = ∑
Nθk�

i=
Nθk−1�+1
∑ri

j=1 Xij (t)/∑
Nθk�
i=
Nθk−1�+1 ri , for k = 1, . . . ,K , and ĉ(s, t |θ) = ∑N

i=1
∑ri

j=1 Ŷij (s|θ)Ŷij (t |θ)/∑N
i=1 ri , where Ŷij (t |θ) = Xij (t) − ∑K

k=1 X̄(θk−1,θk](t) · 1(θk−1,θk](i/N) for i =
1, . . . ,N .

To apply the DSBE algorithm, we set different values of K for the initial K-
segmentation and a small value for the parameter h = 3/84. The results on the de-
tected changepoints are displayed in Table 1, and their locations are illustrated in
Figure 1. Table 1 shows that the DSBE algorithm is quite stable when using differ-
ent initial values of K . As K increases, the segments of the initial K-segmentation
are more likely to satisfy the AMOC assumption and more of the changepoints
can be detected. For K ≥ 8, the number and locations of the detected changepoints
are the same for Saturdays and Sundays, indicating the capability of DS to collect
candidates containing subset with the true changepoints and the testing power of
BE. The changepoint locations detected using K = 6 are also detected when we let
K ≥ 8. For K = 7, the locations of the detected changepoints are slightly different
from those detected for K ≥ 8, but the differences are still within the acceptable
margins given by h = 3/84, as supported in Theorem 2.

Figure 1 indicates that the detected changepoint locations on Saturdays and Sun-
days are very close, although an additional changepoint is detected on Saturdays.
This reveals that every changepoint corresponds to either a freeway-interchange
entrance or a location inside a tunnel. The first and last changes correspond to the
entrances to Yilan and Siding interchanges. After the entrance to the Yilan inter-
change, the vehicle flow rate increases and the vehicle speed drops. The vehicle
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FIG. 1. Freeway segments on northbound lanes of Freeway No. 5 in Taiwan for Saturdays (top)
and Sundays (bottom), corresponding to the changepoints indicated by vehicle detector IDs and the
locations: SST, PST and SDT are three tunnels, and IC-O and IC-I stand for the exit and entry of the
interchange. For TCIC, PLIC and SDIC, the exit and entry are denoted together by IC-O/I because
they are very close.

speed continues to drop as vehicles approach the interchange before entering the
Shueh–Shan Tunnel (SST), which is the longest tunnel in Taiwan at approximately
13 km in length. Drivers in a tunnel of this length may slow down unconsciously.
Although a broadcasting system in the tunnel reminds drivers not to lower their
speed, it still decreases gradually until the exit of the tunnel (detector No. 48 on
Saturdays and No. 50 on Sundays). Finally, the other obvious rise in vehicle speed
corresponds to detector No. 65, near the exit of the Peng–Shan Tunnel (PST).

Figures 2 and 3 display the sample mean speed profiles for Saturdays and Sun-
days, respectively, at each detector superimposed on the segment mean function of
vehicle speed. The mean speed trajectories between the adjacent segments differ
obviously in the magnitude as well as the pattern of daily traffic speed profiles.
Figure 4 illustrates the segment mean functions for Saturdays and Sundays, which
demonstrates the multiple changes in the mean functions of the freeway segments.

As illustrated in Figure 4 along with the the changepoint locations in Figure 1,
it is interesting to see the changes detected at VD 28 and VD 54 for Saturdays,
corresponding to changes from Segments 4 to 5 and from 6 to 7, and also the
changes detected at VD 27 and VD 54 for Sundays, corresponding to changes
from Segments 3 to 4 and from 5 to 6, respectively. Both VD 27 and VD 28 are
located in the long SST, where the road curvatures in the tunnel naturally cause
drivers to slow down the speed gradually. Thus the speed in Segment 5 is generally
slower than that in Segment 4 on Saturdays, and similarly for the reduction of
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FIG. 2. The mean functions at each VD along with the corresponding segment mean functions of
speed (km/hr) for Saturday.

speed from Segment 3 to Segment 4 on Sundays. On the other hand, the speed
changes detected at VD 54 from Segment 6 to Segment 7 on Saturdays and from
Segment 5 to Segment 6 on Sundays are likely due to the interference of traffic

FIG. 3. The mean functions at each VD along with the corresponding segment mean functions of
speed (km/hr) for Sunday.
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FIG. 4. The segment mean functions of speed (km/hr) for Saturdays (top panels) and Sundays
(bottom panels).

flow at Pinling Interchange. Segment 6 on Saturdays and Segment 5 on Sundays
contain the interchange, where the in and out traffic flow rates reduce the traffic
speed, while the following segments merely cover PST without the interference of
traffic flow due to the entrance and the exit of the freeway interchange.

5. Simulation study. In this section, we investigate the finite sample per-
formance of the DSBE algorithm for detecting multiple changepoints. The sim-
ulated data are generated analogously to the real traffic data in Section 4 such that
{Xi(t),0 ≤ t ≤ 1}Ni=1 is a sequence of random functions following model (1) with
ri replications of Xi(t). We set ri = 20 for all i in the simulation and apply the
DSBE algorithm to the sequence of functional data.

5.1. Simulation settings. We consider different numbers of changepoints
(M = 0,1,2,3,4) and different scales of changes between the mean functions.
The segment mean functions {μm(t)}M+1

m=1 are chosen from the following functions:
ψ1(t) = 5t2 − exp(1−20t); ψ2(t) = 0.5−100(t −0.1)(t −0.3)(t −0.5)(t −0.9);
ψ3(t) = ψ2(t)+0.8 sin(1+10πt); and ψ4(t) = 1+3t2 −5t3 +0.6 sin(1+10πt);
ψ5(t) = 1 + 3t2 − 5t3. The difference between two functions is measured using
the L2 norm; the change from ψ1 to ψ2 is the largest, that from ψ3 to ψ4 is rather
moderate, and those from ψ2 to ψ3 and ψ4 to ψ5 are relatively small. On the ba-
sis of these functions, we design four mean change scenarios with the number of
changes M ranging from 1 to 4:

• M = 1 (ψ3,ψ4): moderate change;
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TABLE 2
Summary of simulation settings

Scenario Segment mean Changepoint positions

Null μ1 = ψ1 N/A

A1 μ1 = ψ3, μ2 = ψ4 [0.15]
B1 [0.50]
C1 [0.80]

A2 μ1 = ψ2, μ2 = ψ4, μ3 = ψ5 [0.15, 0.40]
B2 [0.30, 0.70]
C2 [0.60, 0.75]

A3 μ1 = ψ1, μ2 = ψ2, μ3 = ψ3, μ4 = ψ4 [0.10, 0.25, 0.40]
B3 [0.20, 0.70, 0.80]
C3 [0.20, 0.50, 0.75]

A4 μ1 = ψ1, μ2 = ψ2, μ3 = ψ3, μ4 = ψ4, μ5 = ψ5 [0.15, 0.25, 0.40, 0.50]
B4 [0.15, 0.60, 0.75, 0.80]
C4 [0.15, 0.25, 0.75, 0.80]

• M = 2 (ψ2,ψ4,ψ5): moderate and small changes;
• M = 3 (ψ1,ψ2,ψ3,ψ4): large, small and moderate changes;
• M = 4 (ψ1,ψ2,ψ3,ψ4,ψ5): large, small, moderate and small changes.

In addition, we establish three different scenarios for the positions of change-
points in each simulation design. Table 2 summarizes the simulation designs with
a total of 13 scenarios, and Figure 5 illustrates the segment mean functions along
with the locations of the changepoints in each simulation design.

Realizations of the random function Yi(t) are generated by the basis expansion
Yi(t) = ∑L

�=0
√

λ�τi,�φ�(t), i = 1, . . . ,N , where (λ�,φ�(·)) are fixed eigenvalue–
eigenfunction pairs, and {τi,� : i = 1, . . . ,N}, � = 0, . . . ,L, are random coeffi-
cients. The sequence {Yi(t)} depends on the sequence of the random coefficients.
For each �, {τi,� : i = 1, . . . ,N} is generated by the AR(1) model such that τi,� =
ρτi−1,� + εi,�, where εi,� is the standard normal random variate. The autocorrela-
tion parameter ρ is set as 0, 0.2, and 0.5 for the independent, low dependence and
moderate dependence cases, respectively. We set L = 150 and λ� = 0.7×2−�, and
set {φ�(t);� = 1, . . . ,L} to be the Fourier basis

√
2 sin(2πkt − π) for � = 2k − 1

and
√

2 cos(2πkt − π) for � = 2k, k = 1, . . . ,L/2, and φ0(t) = 1 a constant such
that

∫
T φ2

0(t) dt = 1.

5.2. Simulation results. For each scenario, we generate 500 simulation repli-
cates of functional data sequence with lengths N = 100 and 200. We choose K = 9
for the initial segmentation. We set h = 3/99 for N = 100 and 5/199 for N = 200.
The rationale and a practical guideline of choosing h are deferred until Section 5.3.
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FIG. 5. Illustration of the simulation designs with the mean functions for M = 1 (top left), M = 2
(top right), M = 3 (bottom left) and M = 4 (bottom right), along with the changepoint locations
(indicated by ×).

For the BE step, we set the overall level of significance at 0.05. To examine the per-
formance, we consider the estimates falling at the exact and neighboring positions
of the true changepoints.

Table 3 presents the frequencies of correctly estimated multiple changepoints
including the total number and the exact and neighboring positions (in parenthe-
ses) in the neighborhood of a true changepoint θ∗

m such that |θ̂N,k − θ∗
m| < 0.02.

The correct detection rates decrease as the strength of autocorrelation increases,
especially when more than one changepoint is present. However, as the sample
size increases, the accuracy rate increases. When the sequence length is N = 200,
for cases of zero and low dependence (ρ = 0 and 0.2), the correct rate is higher
than 85% in all scenarios for the neighboring positions. Even under moderate de-
pendence, the neighboring correctness is over 80%, except for scenario B3 and
C4, in which the neighboring correctness is still over 70%. The designed segment
lengths in scenario B3 are quite unbalanced (0.20 vs. 0.50 and 0.50 vs. 0.10),
which makes it difficult to detect the changepoints. In scenario A4, the change
between the mean functions μ4 and μ5 is rather small, and the corresponding seg-
ment lengths 0.10 and 0.50 are quite unbalanced. Moreover, both scenarios B4 and
C4 contain a relatively short segment of length 0.05, which makes the changepoint
detection difficult. Therefore, it is not surprising to see the detection accuracies
of these difficult scenarios (B3, A4, B4 and C4) are lower than other scenarios.
However, even for the difficult scenarios as designed, the DSBE procedure still
performs accurately as the sample size increases from N = 100 to N = 200.
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TABLE 3
Frequencies of the correctly estimated changepoints using the DSBE procedure with 500 simulation

replicates

N = 100 N = 200

θ ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

none 500 500 484 500 500 498

A1 491 (491) 487 (487) 461 (461) 500 (500) 500 (500) 494 (496)
B1 500 (500) 498 (498) 456 (461) 499 (500) 500 (500) 494 (496)
C1 500 (500) 495 (495) 438 (444) 500 (500) 497 (499) 483 (485)

A2 488 (491) 458 (467) 326 (342) 497 (498) 494 (496) 400 (420)
B2 494 (498) 481 (486) 360 (376) 498 (500) 493 (500) 444 (468)
C2 473 (477) 476 (482) 349 (363) 498 (499) 495 (497) 454 (466)

A3 479 (490) 477 (492) 436 (445) 493 (499) 492 (499) 477 (485)
B3 321 (336) 324 (342) 223 (255) 465 (497) 437 (488) 272 (352)
C3 498 (500) 492 (494) 407 (415) 498 (500) 496 (500) 456 (473)

A4 339 (354) 352 (358) 240 (256) 478 (499) 460 (481) 375 (417)
B4 224 (225) 249 (252) 203 (208) 427 (428) 439 (443) 390 (404)
C4 213 (218) 225 (237) 175 (193) 412 (425) 413 (435) 348 (387)

5.3. Guideline of choosing h in DS algorithm. Recall the interval I(r)
j (h) =

(θ
(r+1)
j−1 + h, θ

(r)
j+1 − h] in (D3) of Algorithm DS. Introducing the parameter h is to

prevent the iterative procedure from selecting the updated changepoint ultimately
close to the boundaries of I(r)

j (h), the current changepoints θ
(r+1)
j−1 and θ

(r)
j+1, at the

current iteration. Given the equally spaced K-segmentation as the initial setting,
we require 1/(N − 1) ≤ h < 1/(K + 1) for K � N . It is because I(0)

1 (h) = ∅

if h ≥ 1/(K + 1), and h serves as the possible minimum segment for DSBE. In
practice, we suggest the choice of h = b/(N − 1) with b restricted to b0/2 ≤ b ≤
b0, where b0 = max{b ∈N | 2b/(N − 1) < 1/(K + 1)} for a given value of K .

We investigate the practical performance of selecting h using the guideline sug-
gested above. Under the simulation setting with N = 200 and K = 9, we obtain
b0 = 9 so that b can be chosen as an integer ranging from 5 to 9. When N = 100
and K = 9, we obtain b0 = 4 and b can be chosen ranging from 2 to 4. For com-
parisons, we present the the results with b = 1,3,5,7,9, indicated in DSBE(b),
for N = 200 and b = 1,2,3,4 for N = 100. The simulation results in Table 4 for
N = 200 and Table 5 for N = 100 indicate that DSBE using the suggested criterion
to select h works very well. For smaller values of b such as 1 and 3 for N = 200
and 1 for N = 100, DSBE performs only slightly less well compared with those
using the suggested values. Therefore, DSBE is not sensitive to the value of b

within the range selected by the guideline, even for smaller values of b.
In our simulation studies, the settings h = 3/99 ≈ 0.03 for N = 100 and K = 9

and h = 5/199 ≈ 0.025 for N = 200 and K = 9 indeed meet the above guideline.
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TABLE 4
Frequencies of the correctly estimated changepoints for exact and neighboring (in the parentheses)

position (N = 200)

Method θ ρ = 0 ρ = 0.2 ρ = 0.5 θ ρ = 0 ρ = 0.2 ρ = 0.5

DSBE (1) A1 500 (500) 497 (500) 492 (496) A2 481 (497) 475 (488) 377 (402)
DSBE (3) 500 (500) 499 (500) 493 (496) 497 (499) 487 (490) 381 (403)
DSBE (5) 500 (500) 500 (500) 494 (496) 497 (498) 494 (496) 400 (420)
DSBE (7) 500 (500) 500 (500) 496 (497) 499 (499) 494 (495) 420 (438)
DSBE (9) 500 (500) 500 (500) 495 (496) 500 (500) 498 (499) 440 (456)

DSBE (1) B1 498 (500) 500 (500) 492 (495) B2 494 (500) 490 (499) 439 (465)
DSBE (3) 499 (500) 500 (500) 491 (495) 497 (500) 491 (499) 446 (469)
DSBE (5) 499 (500) 500 (500) 494 (496) 498 (500) 493 (500) 444 (468)
DSBE (7) 499 (500) 500 (500) 495 (497) 498 (500) 497 (500) 451 (473)
DSBE (9) 499 (500) 500 (500) 496 (497) 499 (500) 498 (500) 459 (477)

DSBE (1) C1 495 (500) 495 (499) 476 (480) C2 495 (499) 489 (495) 446 (462)
DSBE (3) 500 (500) 498 (499) 481 (482) 497 (499) 493 (497) 449 (462)
DSBE (5) 500 (500) 497 (499) 483 (485) 498 (499) 495 (497) 454 (466)
DSBE (7) 500 (500) 499 (500) 485 (487) 497 (498) 495 (497) 460 (470)
DSBE (9) 500 (500) 499 (500) 488 (489) 499 (499) 497 (497) 465 (471)

DSBE (1) A3 490 (499) 489 (498) 464 (479) A4 471 (492) 452 (476) 355 (389)
DSBE (3) 493 (499) 492 (498) 471 (479) 477 (498) 461 (483) 369 (407)
DSBE (5) 493 (499) 492 (499) 477 (485) 478 (499) 460 (481) 375 (417)
DSBE (7) 493 (499) 491 (499) 478 (487) 479 (499) 465 (485) 388 (426)
DSBE (9) 492 (499) 492 (499) 479 (488) 479 (499) 467 (486) 393 (430)

DSBE (1) B3 456 (491) 437 (483) 268 (336) B4 425 (425) 438 (442) 378 (398)
DSBE (3) 459 (495) 439 (491) 271 (345) 425 (427) 436 (442) 386 (402)
DSBE (5) 465 (497) 437 (488) 272 (352) 427 (428) 439 (443) 390 (404)
DSBE (7) 468 (497) 442 (490) 271 (350) 427 (428) 438 (442) 393 (409)
DSBE (9) 470 (497) 448 (493) 286 (368) 427 (428) 439 (443) 399 (406)

DSBE (1) C3 497 (500) 496 (500) 458 (473) C4 403 (415) 405 (427) 333 (370)
DSBE (3) 498 (500) 497 (500) 456 (473) 406 (422) 410 (433) 339 (377)
DSBE (5) 498 (500) 496 (500) 456 (473) 412 (425) 413 (435) 348 (387)
DSBE (7) 497 (499) 496 (500) 462 (473) 413 (425) 414 (436) 353 (392)
DSBE (9) 498 (500) 497 (500) 464 (475) 414 (420) 417 (431) 362 (380)

In our data application, we demonstrate the results along with several values of K

ranging from 6 to 11, the selection of h = 3/84 also meets the guideline for all
these values of K .

5.4. Comparisons. As mentioned in Section 1, the CUSUM-type test (CUST)
for single changepoint detection in a sequence of functional data can also be ap-
plied to multiple changepoint detection through the binary segmentation algorithm
(BSCUST). We compare the performance of BSCUST with the DSBE procedure. Let
ξ̂ i = (ξ̂i,1, . . . , ξ̂i,p)� with ξ̂i,� = 〈Xi, φ̂�〉 � = 1, . . . , p, where the dimension p and
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TABLE 5
Frequencies of the correctly estimated changepoints for exact and neighboring (in the parentheses)

position (N = 100)

Method θ ρ = 0 ρ = 0.2 ρ = 0.5 θ ρ = 0 ρ = 0.2 ρ = 0.5

DSBE (1) A1 490 (490) 487 (487) 456 (456) A2 459 (464) 433 (442) 302 (315)
DSBE (2) 491 (491) 487 (487) 457 (457) 477 (481) 447 (456) 306 (322)
DSBE (3) 491 (491) 487 (487) 461 (461) 488 (491) 458 (467) 326 (342)
DSBE (4) 491 (491) 487 (487) 466 (466) 491 (494) 473 (477) 362 (372)

DSBE (1) B1 499 (500) 497 (497) 453 (458) B2 494 (495) 469 (477) 351 (367)
DSBE (2) 500 (500) 498 (498) 456 (461) 494 (498) 477 (483) 356 (372)
DSBE (3) 500 (500) 498 (498) 456 (461) 494 (498) 481 (486) 360 (376)
DSBE (4) 500 (500) 498 (498) 457 (460) 497 (499) 481 (487) 370 (386)

DSBE (1) C1 495 (496) 487 (487) 426 (427) C2 469 (476) 470 (478) 341 (360)
DSBE (2) 500 (500) 492 (492) 431 (433) 473 (477) 469 (480) 347 (363)
DSBE (3) 500 (500) 495 (495) 438 (444) 473 (477) 476 (482) 349 (363)
DSBE (4) 500 (500) 494 (495) 442 (447) 475 (477) 475 (482) 367 (381)

DSBE (1) A3 477 (485) 474 (484) 425 (436) A4 326 (341) 335 (343) 221 (235)
DSBE (2) 481 (490) 478 (489) 429 (439) 330 (347) 345 (353) 232 (246)
DSBE (3) 479 (490) 477 (492) 436 (445) 339 (354) 352 (358) 240 (256)
DSBE (4) 480 (490) 478 (493) 443 (452) 339 (354) 362 (370) 254 (276)

DSBE (1) B3 316 (330) 317 (336) 224 (249) B4 223 (226) 252 (254) 204 (208)
DSBE (2) 321 (335) 327 (348) 226 (257) 225 (225) 249 (252) 204 (209)
DSBE (3) 321 (336) 324 (342) 223 (255) 224 (225) 249 (252) 203 (208)
DSBE (4) 326 (338) 319 (339) 233 (265) 225 (225) 250 (254) 202 (207)

DSBE (1) C3 496 (500) 491 (492) 404 (409) C4 202 (208) 218 (231) 164 (182)
DSBE (2) 498 (500) 491 (492) 403 (413) 209 (214) 222 (235) 171 (187)
DSBE (3) 498 (500) 492 (494) 407 (415) 213 (218) 225 (237) 175 (193)
DSBE (4) 498 (500) 493 (494) 409 (419) 217 (219) 228 (240) 173 (187)

k̂(s, t) = ∑∞
�=1 λ̂�φ̂�(s)φ̂�(t) are defined as in Section 2.2. The BSCUST procedure

is described as follows.
Algorithm BSCUST:

1. Begin with the initial segment (s, e] = (0,1] and set the iteration index
k = 1.

2. At the kth iteration, given a segment (s, e] find the changepoint candidate
θ̂k = ĥ/N by

ĥ = argmax

Ns�<h≤
Ne�

TCUS(h),

where

TCUS(h) = U(h)��̂
−1

U(h)


Ne� − 
Ns�
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with

U(h) =
h∑

i=
Nsr�+1

{
ξ̂ i −

∑
Ner�
i=
Nsr�+1 ξ̂ i


Ner� − 
Nsr�
}

and the sample long-run covariance �̂ (Berkes et al. (2009); Hörmann and
Kokoszka (2010); Aston and Kirch (2012)) for {ξ̂ i}.

3. Test the null hypothesis H0: θ̂k is NOT a changepoint. If H0 cannot be
rejected, stop; there is no additional changepoint in the interval (s, e]. Otherwise,
reject H0; conclude that θ̂k is a changepoint and iterate Steps 2–3 for the updated
subintervals (s, e] = (s, θ̂k] and (s, e] = (θ̂k, e], and set k = k + 1.

When the sequence {Xi(t)}Ni=1 consists of independent random functions, �̂ can
be reduced to the diagonal matrix given by diag(λ̂1, . . . , λ̂p). The calculation of �̂
involves a bandwidth q and its optimal choice remains an unresolved problem.
Thus, we use several values of q in BSCUST for comparison.

Besides the standard binary segmentation BSCUST for a sequence of functional
data, we also compare DSBE with a variant extended from the binary segmenta-
tion, the circular binary segmentation (CBS) (Olshen et al., 2004) coupled with
an epidemic change model (CBSEC). The basic idea of CBS differs from the
conventional binary segmentation. Given an interval (s, e], the conventional bi-
nary segmentation searches for a changepoint θ̂ such that the mean functions of
the subintervals (s, θ̂ ] and (θ̂ , e] differentiate most. In contrast, CBS detects an
epidemic change in (s, e] by searching a subinterval (θ̂k, θ̂k′ ] ⊂ (s, e] such that
the mean function of the subinterval differs most from that of the complement
(s, e] \ (θ̂k, θ̂k′ ]. In particular, when θ̂k = s or θ̂k′ = e, CBS reduces to the con-
ventional binary segmentation. Here, CBSEC applies the searching scheme of CBS
coupled with the test statistic proposed by Aston and Kirch (2012) for detecting
epidemic changes in a sequence of functional data, which can be viewed as a gen-
eralization of BSCUST . The CBSEC procedure is described as follows.

Algorithm CBSEC:

1. Begin with the initial segment (s, e] = (0,1] and set the iteration index
k = 1.

2. At the kth iteration, given a segment (s, e] find the epidemic changepoint
candidates (θ̂k, θ̂k′) = (ĥ/N, ĥ′/N) by(

ĥ, ĥ′) = argmax

Ns�<h<h′≤
Ne�

TEC
(
h,h′),

where

TEC
(
h,h′) = {U(h′) − U(h)}��̂

−1{U(h′) − U(h)}

Ne� − 
Ns� ,

where U(h) and �̂ are as defined in BSCUST.
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TABLE 6
Frequencies of correctly estimated total numbers and averages (in parentheses) of estimated total

numbers of changepoints (N = 200)

θ = none

Method ρ = 0 ρ = 0.2 ρ = 0.5

DSBE 500 (0.00) 500 (0.00) 498 (0.00)
BSCUST (0) 476 (0.05) 364 (0.45) 67 (7.08)
BSCUST (1) 478 (0.05) 423 (0.18) 237 (1.26)
BSCUST (3) 486 (0.03) 468 (0.07) 398 (0.25)
BSCUST (5) 488 (0.02) 484 (0.03) 443 (0.12)
BSCUST (7) 492 (0.02) 488 (0.02) 471 (0.06)
CBSEC (0) 476 (0.10) 294 (1.52) 10 (9.42)
CBSEC (1) 485 (0.05) 417 (0.39) 124 (3.76)
CBSEC (3) 490 (0.03) 463 (0.14) 356 (0.68)
CBSEC (5) 495 (0.02) 480 (0.07) 437 (0.24)
CBSEC (7) 498 (0.01) 491 (0.04) 466 (0.13)

3. Test the null hypothesis H0: (θ̂k, θ̂k′) is NOT a pair of epidemic change-
points. If H0 cannot be rejected, stop; there is no additional changepoint in the in-
terval (s, e]. Otherwise, reject H0; conclude that both θ̂k and θ̂k′ are changepoints
and iterate Steps 2–3 for the updated subintervals (s, e] = (s, θ̂k], (s, e] = (θ̂k, θ̂k′ ]
and (s, e] = (θ̂k′, e], and set k = k + 1.

The results are shown in Tables 6–8, where the values of q are indicated in
BSCUST (q) and CBSEC (q). We present the results with q = 0,1,3,5,7 and N =
200. Additional simulation results with the sample size N = 100 are available in
Supplemental Material (Chiou, Chen and Hsing (2019)).

The performance of BSCUST and CBSEC is influenced by the choice of the band-
width while we have shown DSBE is stable with respect to the choice of K ; how-
ever, no optimal choice of q can be consistently identified in the simulation. Sec-
ond, the correct rates using BSCUST and CBSEC also decrease as the strength of
autocorrelation increases, especially for CBSEC. Since CBSEC searches subinterval
rather than splitting the interval, the finite sample performance is influenced more
severely by the length of segments than BSCUST. When the changepoint locations
are evenly distributed, such as in scenarios B2 and C3, BSCUST and CBSEC perform
equally well, even comparable with DSBE. However, the correct detection rate of
BSCUST and CBSEC drops when the segment lengths are uneven. By contrast, the
performance of DSBE is rather stable in these scenarios, with correct detection
rates over 80% in most cases (except for scenarios B3 and C4 under moderate
dependence). In particular, when there is dependence (ρ = 0.2 or 0.5) DSBE out-
performs BSCUST and CBSEC as the number of changepoints increases to M = 4
regardless of which bandwidth is used. Overall, we conclude that under zero to



1452 J.-M. CHIOU, Y.-T. CHEN AND T. HSING

TABLE 7
Frequencies of the correctly estimated changepoints for exact and neighboring (in the parentheses)

position (N = 200)

Method θ ρ = 0 ρ = 0.2 ρ = 0.5 θ ρ = 0 ρ = 0.2 ρ = 0.5

DSBE A1 500 (500) 500 (500) 494 (496) A2 497 (498) 494 (496) 400 (420)
BSCUST (0) 432 (445) 281 (295) 25 (27) 420 (420) 198 (198) 6 (6)
BSCUST (1) 453 (466) 383 (406) 177 (194) 459 (459) 376 (376) 113 (113)
BSCUST (3) 450 (474) 423 (446) 337 (365) 487 (487) 453 (453) 372 (372)
BSCUST (5) 423 (459) 410 (441) 336 (368) 308 (315) 339 (342) 363 (366)
BSCUST (7) 366 (414) 355 (383) 265 (295) 0 (0) 0 (0) 2 (2)
CBSEC (0) 451 (465) 253 (268) 10 (11) 455 (455) 205 (205) 0 (0)
CBSEC (1) 463 (476) 384 (409) 111 (121) 477 (477) 412 (412) 86 (86)
CBSEC (3) 442 (471) 420 (445) 276 (300) 353 (354) 401 (401) 374 (374)
CBSEC (5) 282 (316) 261 (288) 199 (218) 16 (20) 38 (41) 91 (97)
CBSEC (7) 20 (26) 29 (34) 25 (27) 0 (0) 0 (0) 0 (0)

DSBE B1 499 (500) 500 (500) 494 (496) B2 498 (500) 493 (500) 444 (468)
BSCUST (0) 434 (434) 275 (275) 33 (33) 409 (409) 209 (209) 9 (9)
BSCUST (1) 452 (452) 375 (375) 177 (177) 446 (446) 335 (335) 98 (98)
BSCUST (3) 474 (474) 455 (455) 348 (348) 484 (484) 461 (461) 352 (352)
BSCUST (5) 488 (488) 480 (480) 443 (443) 499 (499) 492 (492) 481 (482)
BSCUST (7) 498 (498) 491 (491) 480 (480) 489 (499) 495 (500) 490 (492)
CBSEC (0) 457 (457) 243 (243) 3 (3) 437 (437) 162 (162) 0 (0)
CBSEC (1) 469 (469) 368 (368) 84 (84) 473 (473) 366 (366) 46 (46)
CBSEC (3) 488 (488) 463 (463) 330 (330) 496 (496) 482 (482) 383 (383)
CBSEC (5) 495 (495) 488 (488) 444 (444) 499 (499) 500 (500) 494 (494)
CBSEC (7) 499 (499) 496 (496) 487 (487) 497 (500) 500 (500) 500 (500)

DSBE C1 500 (500) 497 (499) 483 (485) C2 498 (499) 495 (497) 454 (466)
BSCUST (0) 436 (440) 288 (289) 28 (28) 417 (417) 208 (208) 6 (6)
BSCUST (1) 452 (457) 389 (393) 170 (174) 450 (450) 366 (366) 112 (112)
BSCUST (3) 473 (480) 462 (471) 373 (386) 488 (488) 473 (475) 405 (406)
BSCUST (5) 476 (485) 459 (473) 426 (443) 397 (418) 419 (435) 391 (396)
BSCUST (7) 456 (471) 450 (470) 418 (439) 27 (28) 22 (27) 16 (18)
CBSEC (0) 437 (441) 233 (235) 7 (8) 441 (441) 185 (185) 0 (0)
CBSEC (1) 459 (464) 381 (385) 92 (95) 481 (481) 388 (388) 65 (65)
CBSEC (3) 477 (484) 456 (466) 340 (353) 427 (432) 438 (439) 376 (377)
CBSEC (5) 467 (483) 441 (462) 380 (399) 62 (66) 89 (100) 133 (138)
CBSEC (7) 246 (263) 268 (284) 245 (260) 1 (1) 3 (4) 3 (5)

low dependence, all these three methods are comparable with each other when
there is at most one changepoint, and DSBE outperforms BSCUST and CBSEC in the
detection of multiple changepoints.

6. Discussions and concluding remarks. In the application of freeway traf-
fic segmentation, our interest is to identify the locations with significant changes in
the aggregated traffic speed from the viewpoint of macroscopic traffic flow. A com-
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TABLE 8
Frequencies of the correctly estimated changepoints for exact and neighboring (in the parentheses)

position (N = 200)

Method θ ρ = 0 ρ = 0.2 ρ = 0.5 θ ρ = 0 ρ = 0.2 ρ = 0.5

DSBE A3 493 (499) 492 (499) 477 (485) A4 478 (499) 460 (481) 375 (417)
BSCUST (0) 401 (407) 215 (216) 9 (9) 350 (366) 162 (171) 3 (3)
BSCUST (1) 449 (453) 376 (377) 165 (165) 415 (430) 316 (329) 124 (133)
BSCUST (3) 466 (473) 457 (465) 412 (414) 453 (473) 422 (444) 368 (384)
BSCUST (5) 4 (5) 6 (6) 3 (3) 314 (337) 288 (311) 95 (109)
BSCUST (7) 0 (0) 0 (0) 0 (0) 0 (0) 5 (5) 1 (1)
CBSEC (0) 448 (453) 293 (295) 8 (8) 428 (449) 260 (276) 8 (9)
CBSEC (1) 467 (475) 416 (420) 152 (152) 445 (462) 385 (403) 151 (153)
CBSEC (3) 478 (488) 458 (470) 405 (408) 240 (294) 259 (302) 156 (170)
CBSEC (5) 437 (467) 439 (462) 432 (442) 2 (4) 6 (7) 1 (1)
CBSEC (7) 161 (207) 175 (214) 235 (255) 0 (0) 0 (0) 0 (0)

DSBE B3 465 (497) 437 (488) 272 (352) B4 427 (428) 439 (443) 390 (404)
BSCUST (0) 357 (371) 183 (196) 17 (17) 365 (381) 182 (190) 8 (8)
BSCUST (1) 394 (415) 309 (333) 96 (115) 407 (436) 341 (359) 94 (100)
BSCUST (3) 402 (450) 388 (437) 255 (314) 124 (144) 111 (126) 52 (64)
BSCUST (5) 355 (424) 346 (420) 270 (337) 1 (1) 0 (0) 0 (0)
BSCUST (7) 14 (30) 31 (42) 37 (48) 0 (0) 0 (0) 0 (0)
CBSEC (0) 359 (415) 152 (196) 4 (6) 442 (447) 219 (220) 4 (4)
CBSEC (1) 389 (448) 270 (339) 51 (81) 434 (443) 364 (370) 87 (90)
CBSEC (3) 335 (403) 300 (372) 179 (236) 4 (7) 8 (9) 5 (10)
CBSEC (5) 86 (114) 73 (100) 69 (108) 0 (0) 0 (0) 0 (0)
CBSEC (7) 18 (21) 18 (21) 16 (23) 0 (0) 0 (0) 0 (0)

DSBE C3 498 (500) 496 (500) 456 (473) C4 412 (425) 413 (435) 348 (387)
BSCUST (0) 380 (380) 199 (199) 12 (12) 370 (385) 176 (183) 5 (5)
BSCUST (1) 416 (416) 324 (327) 109 (109) 390 (424) 321 (347) 112 (120)
BSCUST (3) 464 (464) 430 (433) 357 (358) 266 (312) 263 (308) 152 (175)
BSCUST (5) 491 (493) 482 (486) 471 (474) 2 (2) 0 (2) 4 (5)
BSCUST (7) 493 (500) 490 (499) 489 (494) 0 (0) 0 (0) 0 (0)
CBSEC (0) 429 (429) 185 (185) 3 (3) 346 (395) 183 (213) 6 (7)
CBSEC (1) 459 (460) 358 (358) 67 (67) 288 (371) 243 (295) 71 (91)
CBSEC (3) 485 (493) 470 (474) 382 (383) 23 (28) 23 (35) 16 (20)
CBSEC (5) 461 (499) 473 (494) 426 (435) 0 (0) 0 (0) 0 (0)
CBSEC (7) 356 (425) 297 (339) 215 (226) 0 (0) 0 (0) 0 (0)

bination of various factors may induce such changes. For instance, it could be the
geometric designs of roads that affect driving behaviors, such as lane width, the
number of lanes, slope gradient, road curve radius, curvature change rate, sight
distance, etc., or it could also be the interferences or changes of traffic flow that
are present at the entrance or the exit ramp of an interchange.

While traffic shockwaves [May (1990)] exist whenever traffic conditions
change, propagation speed induced by traffic shockwaves might also play a role
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in speed change. For instance, traffic congestions cause shockwaves from the up-
stream to the downstream roads may result in a delaying effect or propagation of
speeds. However, these considerations are complex and may involve other fac-
tors including those mentioned in the previous paragraph. Moreover, how these
delaying effects interact with the detection of changepoints is also unclear. For in-
stance, the plots in Figure 4 shows little evidence that the shift of mean speed due
to propogation of shockwaves plays a significant role on changepoint detection.
In general, measuring and modeling propagation speed under a variety of traffic
conditions is an important and challenging topic. In particular, the influence of
propagation speed on detection of changepoints requires further study and is be-
yond the scope of the present paper. A better understanding of these issues would
potentially enhance the efficacy of online travel time prediction using traffic speed
data along with the tools introduced in this paper.

Unlike most previous approaches on changepoint detection for functional data,
which assume the AMOC assumption holds, our approach accommodates the ex-
istence of multiple changepoints in a functional data sequence and designs an
optimality criterion accordingly. The proposed DSBE procedure adopts the local
AMOC strategy to achieve the optimal global criterion for multiple changepoint
detection, which is conceptually straightforward, easy to implement, and compu-
tationally feasible and leads to consistent estimators for multiple changepoint de-
tection. The numerical results show that the proposed DSBE procedure performs
well, and outperforms other binary segmentation-based approaches for multiple
changepoint detection in many scenarios.

While our objective is to deal with the multiple changepoint problem from the
viewpoint of global optimization and introduce the proposed optimality criterion,
we use the empirical estimator in estimation for ease of presentation, assuming that
the random functions can be observed completely. The DSBE approach certainly is
valid for sparsely collected functional data that could be contaminated with mea-
surement errors. Even though this study was motivated by the interest to study
freeway traffic segmentation, the DSBE algorithm can be broadly applied to ap-
plications with a functional data sequence. Besides the vehicle speed, other traffic
parameters can also be considered for freeway traffic segmentation, in which cases
the tools for multivariate functional data analysis [Chiou, Chen and Yang (2014),
Happ and Greven (2018)] can also be used with DSBE. We conclude that the pro-
posed DSBE algorithm is a simple and useful approach for the general problem of
multiple changepoint detection.

APPENDIX A: PROOF OF LEMMA 1

For an arbitrary K-segmentation θ ∈ �, let

Zi,θ (t) =
K+1∑
k=1

{
Yi(t) − Ȳk,θ (t)

} · 1(θk−1,θk](i/N)
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and

νi,θ (t) =
K+1∑
k=1

{
μi(t) − μ̄k,θ (t)

} · 1(θk−1,θk](i/N),

where

Ȳk,θ (t) = 1
Nk(θ)

∑N
i=1 Yi(t) · 1(θk−1,θk](i/N);

μi(t) = EXi(t) = ∑M+1
m=1 μm(t) · 1(θ∗

m−1,θ
∗
m](i/N);

μ̄k,θ (t) = 1
Nk(θ)

∑N
i=1 μi(t) · 1(θk−1,θk](i/N).

Given the K-segmentation θ , define the associated empirical segment mean
function to be μ̂i,θ (t) = ∑K+1

k=1 X̄(θk−1,θk](t) · 1(θk−1,θk](i/N), where X̄(θk−1,θk](t)
is as defined in (2). Then, the empirical covariance function estimator conditional
on θ in (3) can be expressed as

ĉ(s, t | θ) = 1

N

N∑
i=1

{
Xi(s) − μ̂i,θ (s)

}{
Xi(t) − μ̂i,θ (t)

}

= 1

N

N∑
i=1

{
Zi,θ (s) + νi,θ (s)

}{
Zi,θ (t) + νi,θ (t)

}

= 1

N

N∑
i=1

Zi,θ (s)Zi,θ (t) + 1

N

N∑
i=1

νi,θ (s)νi,θ (t)

+ 1

N

N∑
i=1

Zi,θ (s)νi,θ (t) + 1

N

N∑
i=1

νi,θ (s)Zi,θ (t)

=: A1(s, t) + A2(s, t) + A3(s, t) + A4(s, t).

For notational convenience, denote the kth segment of θ by Ik(θ) = (θk−1, θk].
The following observations are used in the proof:

(I) If i/N, j/N ∈ Im(θ∗) for some m, then μi(t) = μj(t) = μm(t).
(II) The μ̄k,θ (t) is a linear combination of {μm(t),m = 1, . . . ,M +1}. Specif-

ically, we can write μ̄k,θ (t) = ∑M+1
m=1 β̃km(θ)μm(t), where 0 ≤ β̃km(θ) ≤ 1 and∑M+1

m=1 β̃km(θ) = 1;
(III) When Ik(θ) does not contain any true changepoint; that is, θ∗

m /∈ Ik(θ)

for all m, it holds that Ik(θ) ⊆ Im0(θ
∗) for some 1 ≤ m0 ≤ M + 1. In this case,

μi(t) = μm0(t) for all i/N ∈ Ik(θ) according to (I) and, therefore, μ̄k,θ (t) =
μi(t) = μm0(t) for all i/N ∈ Ik(θ);

(IV) If i/N, j/N ∈ Il(θ ∪ θ∗) for some l, then νi,θ (t) = νj,θ (t).

The coefficients β̃km(θ) in (II) rely on the relative positions between θ and θ∗.
For example, if Ik(θ) contains no true changpoints θ∗

m as in (III), then β̃km(θ) = 0
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if m �= m0 and β̃km0(θ) = 1. If there exists exactly one changepoint θ∗
m0

in Ik(θ),

then μ̄k,θ (t) = 
Nθ∗
m0

�−
Nθk−1�
Nk(θ)

μm0(t) + 
Nθk�−
Nθ∗
m0

�
Nk(θ)

μm0+1(t). For other scenar-

ios, the value of β̃km(θ) can also be obtained through similar arguments.
Now,

A1(s, t) = 1

N

N∑
i=1

Zi,θ (s)Zi,θ (t)

=
K+1∑
k=1

Nk(θ)

N
· 1

Nk(θ)

∑
i/N∈Ik(θ)

Zi,θ (s)Zi,θ (t).

Under the assumptions that {Yi} is L4 −m-approximable and Nk(θ) and N are the
same order of magnitude as N → ∞, the fact that Nk(θ)/N → γk := θk − θk−1
and

∑
k γk = 1 implies

A1
P→

K+1∑
k=1

γkC = C,

where A1 is the integral operator with kernel A1(s, t) and C is the integral operator
with kernel c(s, t) = cov(Yi(s), Yi(t)).

To consider the convergence of A2(s, t), by (II) we have, for i/N ∈ Ik(θ),

νi,θ (t) = μi(t) − μ̄k,θ (t)

=
M+1∑
m=1

β̃km(θ)μi(t) −
M+1∑
m=1

β̃km(θ)μm(t)

=
M+1∑
m=1

β̃km(θ)
{
μi(t) − μm(t)

}
.

By further calculations, we have

1

Nk(θ)

∑
i/N∈Ik(θ)

νi,θ (s)νi,θ (t)

= ∑
r<m

β̃kr(θ)β̃km(θ)
{
μr(s) − μm(s)

}{
μr(t) − μm(t)

}
.

Therefore,

A2(s, t) = 1

N

N∑
i=1

νi,θ (s)νi,θ (t)

=
K+1∑
k=1

Nk(θ)

N
· 1

Nk(θ)

∑
i/N∈Ik(θ)

νi,θ (s)νi,θ (t)
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→
K+1∑
k=1

γk

∑
1≤r<m≤K+1

βkr(θ)βkm(θ)
{
μr(s) − μm(s)

}{
μr(t) − μm(t)

}
,

where βkm(θ) = limN→∞ β̃km(θ) is determined by the length of {Il(θ ∪ θ∗)}. Let

(9) αr,m(θ) =
K+1∑
k=1

γkβkr(θ)βkm(θ).

Then,

Bθ (s, t) = ∑
1≤r<m≤K+1

αr,m(s, t)
{
μr(s) − μm(s)

}{
μr(t) − μm(t)

}
is the kernel of B(θ). When θ contains θ∗ as a subset, by (III) we have νi,θ (t) ≡ 0
for all i and, hence, A2(s, t) = 0 and Bθ (s, t) = 0 for all s and t .

By (IV),

A3(s, t) = 1

N

N∑
i=1

Zi,θ (s)νi,θ (t)

=
K ′+1∑
l=1

νl(t)

N

∑
i/N∈Il (θ∪θ∗)

Zi,θ (s),

where K ′ is the number of elements in θ ∪ θ∗, νl(t) = νi,θ (t) for some i/N ∈
Il(θ ∪ θ∗). Since we assume Xi(t) is continuous in T , so are μm(t)’s. Moreover,
because T is a closed interval, we have supt∈T |μm(t)| < ∞ for each m. It then

follows that supt∈T |νl(t)| < ∞ for each l and νl(t)
N

∑
i/N∈Il (θ∪θ∗) Zi,θ (s)

p→ 0 be-
cause EYi(t) = 0 and thus EZi,θ (t) = 0. Since the number |θ ∪θ∗| ≤ M +K +1 <

∞, we have A3(s, t)
p→ 0. Similarly, we can prove A4(s, t)

p→ 0. Let Ai denote
the integral operator with the kernel Ai(s, t), i = 1, . . . ,4. Then, for an arbitrary θ ,∥∥Ĉθ − C −B(θ)

∥∥
HS ≤ ‖A1 − C‖HS + ∥∥A2 −B(θ)

∥∥
HS + ‖A3‖HS + ‖A4‖HS

P→ 0,

which completes the proof.

APPENDIX B: PROOF OF THEOREM 1

We denote the C + B(θ) in (5) as Cθ for notational convenience. We first use
Lemma 1 to argue that supθ∈� |TN(θ) − T (θ)| p→ 0, and then use the argmin
continuous mapping theorem to show the corresponding convergence outcome,

θ̃N,k
p→ θ∗

m.
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For a fixed �, it holds that∣∣〈Cθφ�,φ�〉 − 〈Ĉθ φ̂�, φ̂�〉
∣∣ ≤ ∣∣〈Cθφ�,φ�〉 − 〈Cθφ�, φ̂�〉

∣∣ + ∣∣〈Cθφ�, φ̂�〉 − 〈Cθ φ̂�, φ̂�〉
∣∣

+ ∣∣〈Cθ φ̂�, φ̂�〉 − 〈Ĉθ φ̂�, φ̂�〉
∣∣

= ∣∣〈Cθφ�, (φ� − φ̂�)
〉∣∣ + ∣∣〈Cθ (φ� − φ̂�), φ̂�

〉∣∣
+ ∣∣〈(Cθ − Ĉθ )φ̂�, φ̂�

〉∣∣
≤ 2‖Cθ‖HS · ‖φ� − φ̂�‖ + ‖Cθ − Ĉθ‖HS.

The above inequality implies, for all K-segmentation θ , that∣∣〈Ĉθ φ̂�, φ̂�〉 − 〈Cθφ�,φ�〉
∣∣ p→ 0

if ‖φ̂� − φ�‖ = op(1) and ‖Cθ − Ĉθ‖HS = op(1). The former holds if η0 > 0
by Lemma 4.3 in Bosq (2000) and the latter follows by Lemma 1. Let T (θ) =∑p

�=1〈Cθφ�,φ�〉. Taking the summation over � on the previous convergence result,
we have, for an arbitrary K-segmentation θ ,

(10)
∣∣TN(θ) − T (θ)

∣∣ p→ 0.

To show that the stochastic equicontinuity of TN(θ), for two arbitrary K-
segmentation θ and θ ′, let d(θ , θ ′) = supk |θk − θ ′

k| be the distance between θ
and θ ′. By definition, we write

ĉ(s, t |θ) = 1

N

N∑
i=1

Xi(s)Xi(t) − 1

N

K+1∑
k=1

Nk(θ)X̄(θk−1,θk](s)X̄(θk−1,θk](t),

where only the second term depends on θ . Let

Bk = max
{
sup
t∈T

∣∣X̄(θk−1,θk](t)
∣∣, sup

t∈T
∣∣X̄(θ ′

k−1,θ
′
k](t)

∣∣}.
Then, Bk = Op(1) because Xi(t) ∈ L2(T ) and is continuous in t . For N suffi-
ciently large, Nk(θ)/N = (
Nθk� − 
Nθk−1�)/N → θk − θk−1, and

∣∣ĉ(s, t |θ) − ĉ
(
s, t |θ ′)∣∣ ≤

K+1∑
k=1

2B2
k

|Nk(θ) − Nk(θ
′)|

N

≤ 4

{
K+1∑
k=1

B2
k

}
d
(
θ , θ ′),

when N � 0. By the definition of TN(θ), it follows that |TN(θ) − TN(θ ′)| ≤
Op(1) d(θ , θ ′) and, thus, TN(θ) is equicontinuous. Because T (θ) is continuous
the totally bounded domain �, by Corollary 2.2 in Newey (1991) or Theorem 3.1
in Pötscher and Prucha (1994), we conclude that

(11) sup
θ∈�

∣∣TN(θ) − T (θ)
∣∣ p→ 0.
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Because θ∗ is a minimizer of T (θ), for every ε > 0,

(12) inf
θ :‖θ−θ∗‖≥ε

T (θ) > T
(
θ∗)

.

Moreover, since θ̃N is the minimizer of TN(θ), the sequence of the estimators θ̃N

satisfies

(13) TN(θ̃N) ≤ TN

(
θ∗) + op(1).

Given that TN is a random function of θ and T is a fixed function of θ satisfying
the conditions (11) and (12) and for a sequence of the estimator θ̃N satisfying (13),
it follows, by the argmin continuous mapping theorem [van der Vaart and Wellner
(1996)] and Lemma 1, that there are M out of the K elements in θ̃N that converge
to the M elements in θ∗, respectively.

APPENDIX C: PROOF OF THEOREM 2

By restricting the entire interval to a subinterval (θl, θr ] and following the argu-
ment similarly to the proof in Theorem 1, we have the following lemma:

LEMMA 2. Under the assumption of Theorem 1, given a subinterval (θl, θr ] ⊂
(0,1], if there are L (L ≥ 1) changepoints {θ∗

m+1, θ
∗
m+2, . . . , θ

∗
m+L} in (θl, θr ], then

argmin
θ∈(θl,θr ]

{
S(θl,θr ](θ)

} p→ θ∗
m0

,

where θ∗
m0

= argmin1≤q≤L{∑p
�=1〈B(θl ,θr ](θ∗

m+q)φ�,φ�〉} and B(θl ,θr ](θ∗
m+q) is the

counterpart of B(θ) when restricting to (θl, θr ].

As an illustrative example, consider that θl < θ∗
1 < θ∗

2 < θr . Let α1 = (θ∗
1 −

θl)/(θr − θl), α2 = (θ∗
2 − θ∗

1 )/(θr − θl) and α3 = (θr − θ∗
2 )/(θr − θl). By direct

calculation it follows that
∑p

�=1〈B(θl ,θr ](θ∗
1 )φ�,φ�〉 = α2α3

α2+α3

∑p
�=1(〈μ2 −μ3, φ�〉)2

and
∑p

�=1〈B(θl ,θr ](θ∗
1 )φ�,φ�〉 = α1α2

α1+α2

∑p
�=1(〈μ1 − μ2, φ�〉)2. Therefore we have

argminθ∈(θl,θr ]{S(θl,θr ](θ)} p→ θ∗
1 if

α2α3

α2 + α3

p∑
�=1

(〈μ2 − μ3, φ�〉)2
<

α1α2

α1 + α2

p∑
�=1

(〈μ1 − μ2, φ�〉)2;

otherwise, argminθ∈(θl,θr ]{S(θl,θr ](θ)} p→ θ∗
2 . Similar arguments can be derived for

the cases of more than two changepoints.
In particular, we note that a changepoint near the endpoint θl or θr will never be

chosen through criterion S(θl,θr ](θ) in the presence of other changepoints within

(θl, θr ]. For instance, in the above example we have argminθ∈(θl ,θr ]{S(θl,θr ](θ)} p→
θ∗

1 if θr − θ∗
2 ≈ 0, which implies α3 ≈ 0.
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Using these preliminaries, we can prove Theorem 2. We first show the conver-
gence of DS; that is, for each fixed N , θ (r) converges as r → ∞. Then, we show
the consistency of the changepoint estimators obtained by DS.

CLAIM 1. For any fixed N , there exists a K-segmentation θ̂N such that
limr→∞ θ (r) = θ̂N .

We first show that {TN(θ (r))} forms a positive nonincreasing sequence in r

with the updating step (D3). Let θ (r,k) = {θ(r)
1 , . . . , θ

(r)
k , θ

(r−1)
k+1 , θ

(r−1)
K } be the seg-

mentation after k updating steps in the r th iteration. Here, θ (r,0) = θ (r−1) and
θ (r,K+1) = θ (r). By (7),

TN

(
θ (r,k)) − TN

(
θ (r,k+1)) = N

(r)
k

N

{
S

(θ
(r)
k ,θ

(r−1)
k+2 ]

(
θ

(r−1)
k+1

) − S
(θ

(r)
k ,θ

(r−1)
k+2 ]

(
θ

(r)
k+1

)}
,

where N
(r)
k = 
Nθ

(r−1)
k+2 � − 
Nθ

(r)
k �.

By definition of θ
(r)
k , θ

(r−1)
k+1 − θ

(r)
k > h, and thus θ

(r−1)
k+1 ∈ I(r−1)

k+1 . In addi-

tion, because θ
(r)
k+1 = inf[argmin

θ∈I(r−1)
k+1 (h)

{S
(θ

(r)
k ,θ

(r−1)
k+2 ](θ)}], we have TN(θ (r,k)) −

TN(θ (r,k+1)) ≥ 0 in probability. By applying this argument iteratively for each k,
we conclude that TN(θ (r−1))−TN(θ (r)) ≥ 0 in probability; thus, {TN(θ (r))} forms
a positive nonincreasing sequence in r . Therefore, the sequence {TN(θ (r))} con-
verges in r . As a consequence, with the infimum in the definition of θ (r) for its
uniqueness, the convergence of {θ (r)} follows directly from the convergence of
{TN(θ (r))}.

CLAIM 2. limN→∞ P(
⋂

m{|θ∗
m − θ

(r)
k | < h for some k = 1, . . . ,K}) = 1 for

any r ≥ 1.

To prove the claim, it suffices to show for any h, ε > 0,

P

(⋃
m

{
min

1≤k≤K

∣∣θ∗
m − θ

(r)
k

∣∣ ≥ h
})

< ε

for r = 1, given N > N0. By the discussion of Lemma 2, changepoints near the
endpoint cannot happen, and there is at most one changepoint within I(1)

j (h) for

each 1 ≤ j ≤ K . For a sufficiently small h, we have by Lemma 2, P(|θ∗
m − θ

(2)
j | ≥

h}) < ε if there exists a θ∗
m ∈ I(1)

j (h). The same argument also applies to the sub-

sequent iterations. For r = 1, we show P(
⋃

m{min1≤k≤K |θ∗
m − θ

(1)
k | ≥ h}) < ε

through mathematical induction.
Assume that P(min1≤k≤K |θ∗

m − θ
(1)
k | ≥ h) < ε for each θ∗

m ≤ θ
(1)
K0

. Because
d = 
N/(K + 1)� ≤ � = min0≤m≤M |θ∗

m+1 − θ∗
m|, the AMOC assumption holds

in (θ
(0)
K0+1, θ

(0)
K0+2]. We now discuss all the possible scenarios in the following.
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First, if there is no changepoint between θ
(1)
K0

and θ
(0)
K0+1, then one of the follow-

ing must hold:

(i) there is no changepoint between θ
(0)
K0+1 and θ

(0)
K0+2;

(ii) there exists exactly one changepoint θ∗
m0

such that θ
(0)
K0+2 − θ∗

m0
≤ h;

(iii) there exists exactly one changepoint θ∗
m0

such that θ
(0)
K0+2 − θ∗

m0
> h.

For cases (i) and (ii), there is no other changepoint in I(0)
K0+1(h) = (θ

(1)
K0

+
h, θ

(0)
K0+2 − h]; since θ

(1)
K0+1 is chosen from I(0)

K0+1(h), there are no more change-

points in (θ
(1)
K0

, θ
(1)
K0+1]. Therefore, the desired conclusion still holds for θ

(1)
K0+1. For

case (iii), θ∗
m0

is the only changepoint in I(0)
K0+1(h) and Lemma 2 directly applies.

Second, assume that there exists some changepoint between θ
(1)
K0

and θ
(0)
K0+1.

Because the assumption of AMOC holds in (θ
(0)
K0

, θ
(0)
K0+1], it also holds in

(θ
(1)
K0

, θ
(0)
K0+1]. By a similar argument above, for θ∗

m0−1 ∈ (θ
(1)
K0

, θ
(0)
K0+1], either

(iv) θ∗
m0−1 − θ

(1)
K0

≤ h, or

(v) θ
(0)
K0+1 − θ∗

m0−1 ≤ h.

In case (iv), θ∗
m0−1 is detected in the previous iteration, and in case (v) because

θ∗
m0−1 is too close to the right boundary θ

(0)
K0+1; thus, it cannot be chosen in the

previous iteration. These two cases are discussed according to whether there is a
changepoint in (θ

(0)
K0+1, θ

(0)
K0+2].

If there is no changepoint in (θ
(0)
K0+1, θ

(0)
K0+2], then for case (iv), there is no more

changepoint to be detected in I(0)
K0+1(h) and for case (v), θ∗

m0−1 is the only change-

point in I(0)
K0+1(h). Both cases are discussed as above. Conversely, if there is a

changepoint θ∗
m0

in (θ
(0)
K0+1, θ

(0)
K0+2], then for case (iv), θ∗

m0
is either being close

to θ
(0)
K0+2, which results no more changepoint presented in I(0)

K0+1(h). Or θ∗
m0

is

the only changepoint in I(0)
K0+1(h), which attains the desired conclusion by let-

ting h be sufficiently small and applying Lemma 2. For case (v), because d ≤ �,
it must hold that θ

(0)
K0+2 − θ∗

m0
≤ h, and thus θ∗

m0−1 is the only changepoint in

I(0)
K0+1(h), which reduces to the case just discussed. Therefore, in all possible cases,

P(min1≤k≤K |θ∗
m − θ

(r)
k | ≥ h) < ε for each θ∗

m ≤ θ
(1)
K0+1.

Finally, we check whether the assumption P(min1≤k≤K |θ∗
m −θ

(1)
k | ≥ h) < ε for

each θ∗
m ≤ θ

(1)
K0

holds for K0 = 1. Because d ≤ �, the AMOC assumption holds

in (θ
(1)
0 = 0, θ

(0)
2 ]. If there exists θ∗

1 in I(0)
1 (h), Lemma 2 applies and we have

P({|θ∗
1 − θ

(1)
1 | > δ) < ε. Otherwise, no changepoints exists in (0, θ

(1)
1 ] and the

same conclusion still holds. By mathematical induction, the claim is proved.
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SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/19-AOAS1242SUPP; .pdf). We
provide additional simulation results of Section 5.4 for DSBE, BSCUST and CBSEC

with the sample size N = 100 in comparison with those with N = 200.
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