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ESTIMATING POPULATION AVERAGE CAUSAL EFFECTS IN THE
PRESENCE OF NON-OVERLAP: THE EFFECT OF NATURAL GAS
COMPRESSOR STATION EXPOSURE ON CANCER MORTALITY1
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Most causal inference studies rely on the assumption of overlap to es-
timate population or sample average causal effects. When data suffer from
non-overlap, estimation of these estimands requires reliance on model spec-
ifications due to poor data support. All existing methods to address non-
overlap, such as trimming or down-weighting data in regions of poor data
support, change the estimand so that inference cannot be made on the sam-
ple or the underlying population. In environmental health research settings
where study results are often intended to influence policy, population-level
inference may be critical and changes in the estimand can diminish the im-
pact of the study results, because estimates may not be representative of
effects in the population of interest to policymakers. Researchers may be
willing to make additional, minimal modeling assumptions in order to pre-
serve the ability to estimate population average causal effects. We seek to
make two contributions on this topic. First, we propose a flexible, data-driven
definition of propensity score overlap and non-overlap regions. Second, we
develop a novel Bayesian framework to estimate population average causal
effects with minor model dependence and appropriately large uncertainties
in the presence of non-overlap and causal effect heterogeneity. In this ap-
proach the tasks of estimating causal effects in the overlap and non-overlap
regions are delegated to two distinct models suited to the degree of data sup-
port in each region. Tree ensembles are used to nonparametrically estimate
individual causal effects in the overlap region, where the data can speak for
themselves. In the non-overlap region where insufficient data support means
reliance on model specification is necessary, individual causal effects are es-
timated by extrapolating trends from the overlap region via a spline model.
The promising performance of our method is demonstrated in simulations.
Finally, we utilize our method to perform a novel investigation of the causal
effect of natural gas compressor station exposure on cancer outcomes. Code
and data to implement the method and reproduce all simulations and analyses
is available on Github (https://github.com/rachelnethery/overlap).

Received May 2018; revised November 2018.
1Support for this work was provided by NIH Grants 5T32ES007142-35, R01ES028033,

P01CA134294, R01GM111339, R35CA197449, R01ES026217, P50MD010428, and
R01MD012769. The authors also received support from EPA Grants 83615601 and 83587201-0,
Health Effects Institute Grant 4953-RFA14-3/16-4, and the Dipartimenti Eccellenti 2018-2022
Italian ministerial funds.

Key words and phrases. Overlap, propensity score, Bayesian additive regression trees, splines,
natural gas, cancer mortality.

1242

http://www.imstat.org/aoas/
https://doi.org/10.1214/18-AOAS1231
http://www.imstat.org
https://github.com/rachelnethery/overlap


CAUSAL EFFECT ESTIMATION WITH NON-OVERLAP 1243

1. Introduction.

1.1. Natural gas compressor stations and cancer mortality. During the last
several decades, the United States (US) has witnessed a sharp increase in the in-
cidence of thyroid cancer which now accounts for 1–1.5% of all newly diagnosed
cancer cases (Pellegriti et al. (2013)). Increased exposure of the population to ra-
diation and carcinogenic environmental pollutants is blamed, in part, for this in-
crease.

During the last several decades, US natural gas (NG) production has also in-
creased rapidly. NG production systems have recently received attention as a po-
tential source of human exposure to carcinogens and endocrine-disrupting chemi-
cals (Kassotis et al. (2016)). Recent epidemiological studies have found links be-
tween NG production and leukemia and between NG production and thyroid can-
cer (Finkel (2016), McKenzie et al. (2017)). The relationship between NG systems
and thyroid cancer could be of particular interest due to their coincident rise.

While most previous studies have focused on the health effects of exposure to
NG production sites (e.g., drilling wells) (Finkel (2016), McKenzie et al. (2017)),
we turn our attention instead to the potential health effects of NG distribution sys-
tems. Specifically, we aim to provide the first data-driven epidemiological study
of the causal effects of NG compressor station exposure on thyroid cancer and
leukemia mortality rates.

NG compressor stations are pumping stations located at 40–70 mile intervals
along NG pipelines. They keep pressure in the pipelines so that NG flows in the
desired direction (Messersmith, Brockett and Loveland (2015)). The operations at
compressor stations have raised health concerns for residents of nearby communi-
ties (Southwest Pennsylvania Environmental and Project (2015)). In this paper we
exclude from consideration the health impacts of accidents at compressor stations
and focus on the potentially harmful exposures to nearby communities resulting
from the normal operations of compressor stations. Fugitive emissions, or unin-
tended leaking of chemicals from the compressor station equipment, are known to
occur but are not well characterized. NG compressor stations also routinely con-
duct “blowdowns,” in which pipelines and equipment are vented to reduce pressure
(Kloczko (2015)) and any chemicals present in the pipeline are reportedly released
into the air in a 30–60 meter plume of gas (Southwest Pennsylvania Environmental
and Project (2015)). Little is known about the specific types of chemicals emit-
ted.

While airborne emissions from compressor stations are regulated by the EPA
under the Clean Air Act (Messersmith, Brockett and Loveland (2015)), air quality
studies in Pennsylvania and Texas have discovered harmful chemicals in excess of
standards near NG compressor stations (Pennsylvania Department of Environmen-
tal Protection (2010), Wolf Eagle Environmental (2009)). These chemicals include
methane, ethane, propane and numerous benzene compounds. Benzene is a known
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carcinogen (Golding and Watson (1999), Maltoni et al. (1989)), and many of these
compounds are known or suspected endocrine disruptors (US EPA (2018)).

Motivated by these findings we present an investigation of the causal effects of
compressor stations on county-level thyroid cancer and leukemia mortality rates.
From a sample of 978 counties from the mid-western region of the US, we obtained
their NG compressor stations exposure status, their thyroid cancer and leukemia
mortality rates and many suspected confounders of this relationship. While we
would like to apply a classic nonparametric causal inference analysis rooted in the
potential outcomes approach (Rubin (1974)), the data exhibit non-overlap, that is,
in some areas of the confounder space there is little or no variability in the exposure
status of the units. Due to this non-overlap, any attempt to adjust for confounding
when estimating the population average causal effect must rely upon model-based
extrapolation, because we have insufficient data to infer about missing potential
outcomes in those regions of the confounder space. Thus, nonparametric causal
inference methods may yield unreliable results.

In this paper we seek to make two methodological contributions to the causal
inference literature. First, we introduce a flexible, data-driven definition of sam-
ple propensity score overlap and non-overlap regions. Second, we propose a novel
approach to estimating population average causal effects in the presence of non-
overlap. Using this approach, the sample is split into a region of overlap (RO)
and a region of non-overlap (RN) and distinct models, appropriate for the amount
of data support in each region, are developed and applied to estimate the causal
effects in the two regions separately. We have found that the proposed approach
leads to improved estimation of the population average causal effects compared to
existing methods. Moreover, we apply this method to estimate the population av-
erage causal effect of compressor station exposure on thyroid cancer and leukemia
mortality.

1.2. Causal inference notation and assumptions. We first introduce notation
that will be used throughout this article. For subject i (i = 1, . . .N), Y obs

i will de-
note the observed outcome (here, it will be assumed to be a continuous random
variable; in Section 2.4 we introduce analogous notation for the binary outcomes
setting), Ei will denote a binary treatment or exposure and Xi will denote a vec-
tor of observed confounders. Under the stable unit treatment value assumption
(Rubin (1980)) potential outcomes Yi(1) and Yi(0), corresponding to the outcome
that would be observed under scenarios Ei = 1 and Ei = 0 respectively, exist
for each unit. Only one of these potential outcomes can be observed such that
Y obs

i = EiYi(1)+ (1 −Ei)Yi(0). We denote each unit’s missing potential outcome
as Y mis

i , that is, Y mis
i = (1 −Ei)Yi(1)+EiYi(0). An individual causal effect refers

to the difference in potential outcomes for a unit, that is, �i = Yi(1) − Yi(0). The
sample average causal effect is �S = 1

N

∑N
i=1 �i , the population conditional aver-

age causal effect is �P |x = E[Y(1) − Y(0)|x] and the population average causal
effect is �P = EX[E[Y(1) − Y(0)|X]].
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The identifiability of population level causal effects in observational studies
relies upon the assumptions of (1) unconfoundedness and (2) positivity. Uncon-
foundedness implies that all confounders of the relationship between exposure
and outcome are observed, that is, Ei ⊥⊥ (Yi(1), Yi(0))|Xi . We assume throughout
that unconfoundedness holds. We also assume positivity, stated mathematically as
0 < P(Ei = 1|Xi ) < 1. This means that each unit in the population has positive
probability of obtaining either exposure status.

We relax the assumption of overlap, closely related to positivity, which is re-
quired to nonparametrically estimate sample and population average causal effects.
The term overlap refers to the overlap of the confounder distributions across the
exposure groups. Non-overlap occurs when every unit in the population is eligible
to receive either exposure, but, by chance, few or no units from one exposure group
are observed in some confounder strata (Westreich and Cole (2010)). Non-overlap
can be a population level feature or a finite sample issue only. Here, we address
problems arising from finite sample non-overlap, that is, scenarios in which the
population exhibits complete overlap but, in some areas of the confounder space,
data are sparse for one or both exposure groups leading to representative samples
with non-overlap.

In the presence of non-overlap, sample and population average causal ef-
fect estimates generally suffer from bias and increased variance unless they are
able to rely on the additional assumption of correct model specification (King
and Zeng (2005), Petersen et al. (2012)). The overlap assumption can be evalu-
ated by comparing the empirical distribution of the estimated propensity score,
ξ̂i = P̂ (Ei = 1 | X), between the exposure groups (Austin (2011), Rosenbaum and
Rubin (1983)), assuming the propensity score is well estimated. The further as-
sumption that non-overlap is a finite sample feature only is generally untestable but
can sometimes be evaluated using subject-matter expertise. While the assumption
of unconfoundedness becomes more plausible as the number of covariates grows,
the likelihood of non-overlap increases (Cole and Hernán (2008), D’Amour et al.
(2017)); thus, non-overlap is an increasing problem in our era of high dimensional
data.

1.3. Existing methods for estimating causal effects in the presence of non-
overlap. Methods for reducing the bias and variance of causal effect estimates
in the presence of propensity score non-overlap are abundant in the causal infer-
ence literature (Cole and Hernán (2008), Crump et al. (2009), Li, Morgan and
Zaslavsky (2018), Petersen et al. (2012)); however, to our knowledge, all of the
existing methods modify the estimand and its interpretation so that neither sample
nor population average causal effect estimates can be obtained. In many medical
and health research settings, such as evaluation of treatments, the aim of the re-
search is to help clinicians choose between various forms of treatment for patients
who are likely to adhere to any of the available treatments. In these contexts conve-
nience samples are common and modified estimands may be equally informative
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as or more informative than sample or population level estimands. However, in
environmental health applications like the one considered here, study samples are
often carefully selected to reflect a population of interest to policymakers. Then,
the primary aim is to estimate the burden of disease attributable to certain contam-
inants for the whole sample or underlying population in order to ultimately inform
regulatory policies. Another example is recent studies of the health effects of air
pollution exposure in the Medicare population (Di et al. (2017a), Di et al. (2017b)).

The most commonly recommended approach for handling propensity score
non-overlap is “trimming” or discarding observations in regions of poor data sup-
port (Crump et al. (2009), Ho et al. (2007), Petersen et al. (2012)). However, trim-
ming allows only for the estimation of the average causal effect in the trimmed
sample, and it changes the asymptotic properties of estimators in ways that are
often overlooked (Yang and Ding (2018)). Recent developments in the context of
weighting approaches to causal inference, such as the overlap weights of Li, Mor-
gan and Zaslavsky (2018), Li and Thomas (2018), may provide more interpretable
estimands than trimming.

In contrast to the existing literature, which emphasizes the removal or down-
weighting of data in regions of poor support, we propose a method that (1) mini-
mizes model dependence where possible and (2) performs model-based extrapola-
tion in a principled manner where necessary yielding estimates of the population
level estimand with small bias and appropriately large uncertainty. This method
will be most valuable in environmental health and other applications where pre-
serving population-level inference in spite of non-overlap is critical.

Our Bayesian modeling approach estimates individual causal effects (�i ) in the
RO and the RN separately. In the first stage of this procedure, a nonparametric
Bayesian Additive Regression Tree (BART) (Chipman, George and McCulloch
(2010)) is fit to the data in the RO to estimate causal effects �i for each observa-
tion in the RO where data support is abundant. In the second stage a spline (SPL)
is fitted to the estimated �i in the RO to capture trends in the causal effect sur-
face. The SPL is used to extrapolate those trends to estimate �i for observations
in the RN where insufficient data support requires reliance on model specifica-
tions/extrapolation. The data in the RN are excluded from all model fitting, so that
the models are not influenced by data-sparse regions; however, after model fitting
to data in the RO, the observed potential outcomes in the RN are employed as co-
variate values to aid in prediction of causal effects in the RN, so that we maximally
leverage the information in the RN. Because of the flexibility of both BART and
SPL, our method captures nonlinearities and causal effect heterogeneity.

In Section 2 we provide a data-driven definition of the RO and RN, and we
introduce our method, called BART + SPL. Simulations in Section 3 demonstrate
how BART + SPL can yield improved population average causal effect estimates
relative to existing methods and provide guidance in specifying tuning parameters.
In Section 4 BART + SPL is applied to estimate the effect of NG compressor
station exposure on thyroid cancer and leukemia mortality rates. We conclude with
a summary of our findings in Section 5.
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2. Methods.

2.1. Definition of overlap and non-overlap regions. King and Zeng (2005)
proposed the use of the convex hull of the data to define RO and RN; however,
this criteria is very conservative. Crump et al. (2009) offer a definition of the RO
with the goal of identifying a region of the data that will produce a minimum vari-
ance average causal effect estimate. Their definition may be optimal in the context
of trimming in conjunction with nonparametric causal estimators, but it is not a
general definition of the region where strong data support is observed. BART itself
has also been proposed as a method for identifying the RN (Hill and Su (2013)).

We intend to provide a more general characterization of the RO and RN here.
We use the estimated propensity scores, ξ̂i , to define the RO, O , and the RN, O⊥,
in the sample. Throughout this section we assume that the propensity score model
has been correctly specified (or that the true propensity score is known, in which
case ξi can be substituted for ξ̂i in the following); however, we demonstrate and
discuss the performance of our method under propensity score model misspecifi-
cation using simulations in Section 3. Let ξ̂(j) denote the j th order statistic of the
ξ̂i and P = [ξ̂(1), ξ̂(N)] be the subspace of (0,1) over which the ξ̂i are observed.

Our definition allows every point in P to be assigned to either O or O⊥. The
user must prespecify two parameters, denoted a and b, which are used to identify
O . O⊥ is then defined as the complement of O relative to P . Consider any point
o ∈ P . The idea behind our definition of overlap is that, if more than b units from
each exposure group have estimated propensity scores lying within some open
interval of size a covering o, then o is included in the region of overlap. Thus,
a is an interval length, that is, a portion of the range of the estimated propensity
score, and b is a portion of the sample size representing the number of estimated
propensity scores from each exposure group that must lie sufficiently close, that is,
within an interval of length a to any given point in order for the point to be added
to the RO. Framing this definition in a way that can be operationalized, it says that
there is sufficient data support (overlap) at a point o if, for each exposure group
separately, we can form a set that includes (1) o and (2) more than b estimated
propensity scores and lies entirely within an interval of size less than a, that is, has
range less than a.

We now introduce notation that will be used in the definition. Let Ne denote
the number of units in exposure group e and ξ̂ e

(i) denote the ith propensity score
order statistic in exposure group e. Using this notation, we propose the following
definition for the region of overlap:

O = {
o ∈ P : for e = 0,1, range

({
o, ξ̂ e

(i), . . . , ξ̂
e
(i+b)

})
< a

for some i = 1, . . . ,Ne − b
}
.

This formalizes the notion introduced above of finding a set of o and more than
b propensity scores, {o, ξ̂ e

(i), . . . , ξ̂
e
(i+b)}, with range less than a for each exposure

group.
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In comparison with previous definitions, our overlap definition provides a flex-
ible, transparent and data-driven approach to identifying regions of poor data sup-
port with relatively easy-to-understand tuning parameters that give users the abil-
ity to decide what constitutes “sufficient” data support in the context of their own
methods and application. Another contribution of this overlap definition to the
wider literature is that it allows for regions of non-overlap in the interior of the
propensity score distribution. In Figure 1 in Section 3 of the Supplementary Mate-
rial (Nethery, Mealli and Dominici (2019)), we provide an illustration of the types
of non-overlap that can be captured by this definition.

We define the RO and RN for BART + SPL using this definition. However, we
note that BART + SPL is designed to handle exclusively non-overlap in the tails
of the propensity score distribution. In Section 3.3 we provide guidance on how to
specify a and b when applying BART + SPL.

2.2. BART for causal inference. BART (Chipman, George and McCulloch
(2010)) is a Bayesian tree ensemble method that has been shown to have strong
predictive performance in a variety of contexts (Bonato et al. (2011), Kindo, Wang
and Peña (2016), Liu et al. (2015), Sparapani et al. (2016)). It is highly regarded
for its consistently strong performance under the “default” model specifications
reducing its dependence on subjective tuning and time consuming cross validation
procedures. Letting j index the J trees in the ensemble (j = 1, . . . , J ), a BART is
a sum of trees model of the form

(1) Y =
J∑

j=1

g(X;Tj ,Mj ) + ε,

where g is a function that sorts each unit into one of a set of mj terminal nodes,
associated with mean parameters Mj = {μ1, . . . ,μmj

} and based on a set of de-
cision rules, Tj . ε is a random error term that is typically assumed to be N(0, σ 2)

when the outcome is continuous. BART has also been extended to the binary out-
come setting through the addition of the probit link function.

BART was introduced as a tool for causal inference by Hill (2011), who sug-
gested using it to predict missing potential outcomes. Hahn et al. (2018) addition-
ally recommend including the estimated propensity score as a covariate. Despite
the accuracy of BART’s potential outcome prediction in regions with strong data
support, its predictions sometimes contain greater bias than those of parametric
and classic causal inference methods in the presence of non-overlap (Hill (2011),
Hill and Su (2013)). Because BART relies on binary cuts of the observed predic-
tors, it is unable to capture trends in the data and therefore extrapolates poorly.

2.3. BART + SPL. In this section we describe BART + SPL, our proposed
Bayesian approach for estimating causal effects in the presence of propensity score
non-overlap. The first stage of the procedure, which we call the imputation phase,
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utilizes a BART to impute the missing potential outcomes and estimate individual
causal effects in the RO. In the second stage, which we call the smoothing stage,
a spline is fit to the BART-estimated individual causal effects in the RO and is
invoked to extrapolate the causal effect trends to the individuals in the RN lever-
aging the information from the observed potential outcomes for observations in
the RN. Our approach for continuous outcomes is described in Sections 2.3.1 and
2.3.2 in the context of a single iteration of a Bayesian MCMC sampler for the sake
of clarity, and in Section 2.3.3 we explain how the draws from the sampler can
be invoked to estimate causal effects and uncertainties. This model can be imple-
mented using the MCMC procedure described in Section 1 of the Supplementary
Material (Nethery, Mealli and Dominici (2019)). Section 2.4 provides an extension
to binary outcomes.

2.3.1. Imputation stage. In the first stage of BART + SPL, we adopt the com-
mon practice of treating the unobserved potential outcome for each individual as
missing data, and we construct a BART model to impute these missing values for
individuals in the RO. We introduce the subscripts q and r to index data from sub-
jects in the RO and RN respectively, for example, Y obs

q is the observed outcome
of individual q in the RO, and Y mis

r is the missing potential outcome of individual
r in the RN (q = 1, . . . ,Q; r = 1, . . . ,R). Subscript O and subscript O⊥ refer
to vectors/matrices of the values of all individuals in O and O⊥ respectively, for
example, Ymis

O = [Y mis
1 , . . . , Y mis

Q ]′ and Ymis
O⊥ = [Y mis

1 , . . . , Y mis
R ]′.

In this stage all of our modeling efforts are focused on the data in the RO. Y mis
q

is first imputed using a BART model of the form

Y obs
q =

J∑
j=1

g(Eq, ξ̂q,Xq;Tj ,Mj ) + εq,

where εq ∼ N(0, σ 2
B). To do so, the Bayesian backfitting algorithm of Chipman,

George and McCulloch (2010) is utilized to collect a sample from the posterior
distribution of θ = {σ 2

B,Tj ,Mj ; j = 1, . . . , J }, p(θ |Yobs
O ). An imputed value of

Ymis
O , denoted Ỹmis

O , is obtained by sampling from its posterior predictive distri-
bution (ppd), p(Ymis

O |Yobs
O ) = ∫

p(Ymis
O |Yobs

O , θ)p(θ |Yobs
O )dθ . Yobs

O and Ỹmis
O are

used to form a sample of the individual causal effects in O , �̃O .

2.3.2. Smoothing stage. In the second stage a smoothing model is fit to the
BART-estimated individual causal effects in the RO, and the model is employed to
estimate the individual causal effects in the RN by extrapolating the trends iden-
tified in the RO. With this approach we impose the assumption that any trends in
the individual causal effects (as a function of the propensity score and/or the co-
variates) identified in the RO can be extended into the RN. By modeling the causal
effect surface in this stage rather than the separate potential outcome surfaces, we
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take advantage of the potentially increased smoothness of the causal effects that
may occur in practice. Through tuning we ensure that the variance in the RN is
inflated to reflect the high uncertainty in the region.

Assume for now that the RN includes only exposed individuals so that Er = 1
for all r . Define Y ∗

q (1) = Y obs
q if Eq = 1 and Y ∗

q (1) = Ỹ mis
q otherwise (remember

Ỹ mis
q denotes the BART-imputed missing potential outcome for q). Thus, Y ∗

q (1) is
the observed or imputed potential outcome corresponding to E = 1 for each unit in
the RO. Let rcs(z) denote a restricted cubic spline basis for z. Employing the im-
puted values obtained in the previous stage, we construct the following smoothing
stage model:

�̃q = W ′β + εq, W =
⎡
⎢⎣ rcs(ξ̂q)

rcs
(
Y ∗

q (1)
)

Xq

⎤
⎥⎦ ,

where εq ∼ N(0, σ 2
S + I (ξ̂q ∈ O⊥)τq). σ 2

S is the residual variance for all units in
the RO and τq is an added variance component only applied to units in the RN. The
purpose of τq is to inflate the variance of units with an estimated propensity score
in the RN to adequately reflect the higher uncertainty in regions of little data sup-
port. In this model τq is clearly unidentifiable, as the model is fit using exclusively
data in the RO, and it will only come into play when invoking the ppd to predict in
the RN. Here, we choose to treat it as a tuning parameter, and below we describe
our recommended tuning parameter specification. We recommend restricted cubic
splines in the smoothing model, because they generally demonstrated superior per-
formance when applied to simulated data. We also recommend excluding a small
portion of the data at the tails of the RO (i.e., tails of the propensity score in the RO)
from spline model fitting, either through the use of boundary knots or by omitting
these data from the model, because BART’s predictions in the tails of variables can
be unstable and can negatively affect the SPL’s performance.

We collect a posterior sample of the spline parameters, ψ = {β, σ 2
S }. Recall the

motivation for the smoothing stage is to use the trends from the RO to predict the
individual causal effects in the RN. Thus, the sampled ψ and the covariate values
for individuals in the RN are summoned to obtain a sample from the ppd of �O⊥ ,
p(�O⊥|�O) = ∫

p(�O⊥|�O,ψ)p(ψ |�O)dψ . The sample is denoted �̃O⊥ .
Note that including Y ∗

q (1) as a predictor permits the model to capture the re-
lationship between the causal effects and Y(1), the potential outcome observed
for all units in the RN. This allows the observed potential outcomes in the RN
to aid in the extrapolation, so that this information is not wasted. In the case that
both exposed and unexposed units fall in the RN, we define Y ∗

q (0) analogously to
Y ∗

q (1) and construct a second model, identical to the one above, except replacing
rcs(Y ∗

q (1)) with rcs(Y ∗
q (0)). The ppd from the first model is then used to predict

individual causal effects for exposed units in the RN, and the ppd from the second
model is used for unexposed units.
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Our recommended specification of τq is motivated by the aim to have (1) the
variance of individual causal effects increase monotonically as the observation’s
distance from the RO (i.e., region of strong data support) increases and (2) the
increase in variance be in proportion to the scale of the data. Thus, the suggested
tuning parameter specification is τq = (10dq)tO , where tO = range(�̃O) and dq is
the distance from the observation’s propensity score to the nearest propensity score
in the RO. The effect of this tuning parameter is that, for every .1 unit further we
go into the RN, the variance of the individual causal effects increases by the range
of the causal effects in the RO. While this may produce conservative uncertainties
in situations where the trends in the RN are easily predicted from the trends in the
RO, we have found in simulations that this choice of tuning parameter consistently
provides both reasonably-sized credible intervals and acceptable coverage.

2.3.3. Estimation and uncertainty quantification. We can iterate the two
stages described above M times to obtain {�(1)

O , . . . ,�
(M)
O } from the imputation

stage and {�(1)

O⊥, . . . ,�
(M)

O⊥ } from the smoothing stage (note that we have traded
the tilde notation from above for the (m) notation to differentiate the samples
from the M iterations). By iterating between the two stages we are able to account
for the uncertainty in the estimation of �O from the first stage and pass it on to
the second stage, where �O is used as the outcome. Thus, the uncertainty in the
estimate of �O⊥ reflects the uncertainty both from stage one and stage two.

For units in the RO and the RN, individual causal effects are estimated as �̂q =
1
M

∑M
m=1 �

(m)
q and �̂r = 1

M

∑M
m=1 �

(m)
r respectively, that is, the posterior mean

over the M samples. Credible intervals for the individual causal effects can be
obtained by extracting the appropriate percentiles from these M samples. Samples
of �S are produced by �

(m)
S = 1

N
(
∑Q

q=1 �
(m)
q + ∑R

r=1 �
(m)
r ) for m = 1, . . . ,M ,

and �̂S = 1
M

∑M
m=1 �

(m)
S . As above, percentiles of the M samples provide credible

interval for �S .
In order to estimate �P , an additional integration over the predictors is required.

Wang et al. (2015) discuss the necessity of such an integration step when estimat-
ing population average causal effects with models that permit nonlinearity and/or
heterogeneity, and they propose the application of the Bayesian bootstrap to exe-
cute it. We adopt the same approach here. For each sample of the individual causal
effects, {�(m)

O ,�
(m)

O⊥}, the Bayesian bootstrap is performed on it B times (where
B is a large constant) and the average of each bootstrap sample taken to obtain B

draws from the posterior distribution of the population average causal effect. We
randomly select one of these samples and call it �

(m)
P , so that in the end we have

collected {�(1)
P , . . . ,�

(M)
P }. The population average causal effect is estimated as

�̂P = 1
M

∑M
m=1 �

(m)
P and the credible interval formed using percentiles.
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2.4. BART+SPL with binary outcomes. By invoking BART probit (Chipman,
George and McCulloch (2010)) in the imputation stage and utilizing a sim-
ple arcsine transformation in the smoothing stage, we can straightforwardly ex-
tend BART + SPL to the binary outcomes setting. While most of our nota-
tion will remain the same for binary outcomes, we note a few changes. Indi-
vidual causal effects are traditionally defined as the difference in each individ-
ual’s potential outcomes, as above; however, in the binary outcomes setting, es-
timating those differences, which can only take on values −1, 0 and 1, may
be challenging and may sacrifice information. Because, in our approach, we are
treating the potential outcomes as random variables, it is reasonable and desir-
able to instead define the individual causal effects as differences in some fea-
tures of the distributions of the potential outcomes, although doing so requires
a slight abuse of traditional terminology/notation. For binary outcomes we de-
fine the individual causal effects as �i = P(Yi(1) = 1) − P(Yi(0) = 1) and the
estimands as �S = 1

N

∑N
i=1 �i , �P |x = P(Y (1) = 1|x) − P(Y (0) = 1|x) and

�P = EX[P(Y (1) = 1|X) − P(Y (0) = 1|X)]. Here, we fit a BART probit to esti-
mate individual causal effects in O , fit a spline model to the arcsine transform of
these estimates (which are bounded between −1 and 1) and use the spline to es-
timate individual causal effects for units in O⊥. While we provide below explicit
forms for the imputation and smoothing models in the binary setting, we refer the
reader back to the previous section for the full sampling procedure details which
follow analogously to the continuous outcomes setting.

In the imputation stage the BART probit model fit to the RO data has the fol-
lowing form:

P
(
Y obs

q = 1
) = 	

(
J∑

j=1

g(Eq, ξ̂q,Xq;Tj ,Mj )

)
,

where 	() is the standard normal cumulative distribution function. With this model
posterior samples P̃ (Y obs

q = 1) and P̃ (Y mis
q = 1) can be drawn and used to form a

posterior sample of the individual causal effect, �̃q .
For the smoothing stage, as above, assume without loss of generality that all

the units in O⊥ all have Er = 1. Define Y ∗
q (1) = Y obs

q if Eq = 1 and Y ∗
q (1) =

I (P̃ (Y mis
q = 1) > 0.5) otherwise. Then the smoothing model is

arcsine(�̃q) = W ′β + εq, W =
⎡
⎢⎣rcs(ξ̂q)

Y ∗
q (1)

Xq

⎤
⎥⎦ ,

where εq ∼ N(0, σ 2
S ). Note that, unlike in the continuous case, no tuning parameter

is included in the variance, as simulations indicated it was not needed to obtain
reasonable coverage in the binary setting. Individual causal effects on the arcsine
scale for units in O⊥ can be obtained from the posterior predictive distribution
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and back-transformed to the desired scale. As described in the previous section, a
second analogous smoothing model can be fit if O⊥ contains units from both the
exposed and unexposed groups. Average causal effect estimation and uncertainty
quantification proceed identically to the continuous case.

3. Simulations. In this section we conduct simulation studies to evaluate the
performance of BART + SPL relative to existing methods in the presence of non-
overlap and to provide guidance on how to specify parameters a and b in the
non-overlap definition to obtain optimal performance. In Section 3.1 we simu-
late data with a small number of confounders and varying degrees of non-overlap,
and we compare BART + SPL’s population average causal effect estimation per-
formance to that of a standard BART and of an existing spline-based method for
causal inference. In Section 3.2 we generate data with non-overlap and high dimen-
sional covariates and compare the performance of BART + SPL and the spline-
based method. Finally, data with varying amounts of non-overlap are generated
and BART + SPL is implemented with various specifications of a and b to provide
insight on the optimal choices in Section 3.3. R code (R Core Team (2016)) to
implement BART + SPL and to reproduce all simulations is available on Github
at https://github.com/rachelnethery/overlap.

3.1. Performance of BART + SPL relative to existing methods. We purposely
simulate data under a challenging situation of: a) propensity score non-overlap;
b) nonlinearity of the potential outcomes in the propensity score; and c) heteroge-
neous causal effects. We wish to evaluate the relative performance of our method
when utilizing a true propensity score and when utilizing a misspecified propen-
sity score estimate. We first discuss the simulation structure when utilizing the
true propensity score. We let N = 500 and assign half of the subjects to E = 1. We
generate two confounders that are highly associated with the exposure (E), one bi-
nary (X1 : X1|E = 1 ∼ Bernoulli(0.5),X1|E = 0 ∼ Bernoulli(0.4)) and one con-
tinuous (X2 : X2|E = 1 ∼ N(2 + c,

√
1.25 + 0.1c),X2|E = 0 ∼ N(1,1)). Given

these specifications, the true propensity scores can easily be calculated using Bayes
Rule. The potential outcomes are constructed as Yi(1) = −3(1 + exp(−(10(X2i −
1)))−1 + 0.25X1i − X1iX2i and Yi(0) = −1.5X2i . We label the simulations with
the true propensity score as 3.1A.

For the simulations with a misspecified propensity score estimate, we again let
N = 500 and assign half of the subjects to E = 1. We generate a binary confounder
(X1 : X1|E = 1 ∼ Bernoulli(0.5),X1|E = 0 ∼ Bernoulli(0.4)) and a continuous
confounder (X2 : X2|E = 1 ∼ N(2 + c,4),X2|E = 0 ∼ N(1,1)). The potential
outcomes are Yi(1) = 3(1+ exp(−(10(X2i − 1)))−1 + 0.25X1i − 0.1X1iX2i + 0.5
and Yi(0) = 0.2X2i + 0.1X2

2i + 1. As is common in the literature, we use a simple
logistic regression model of the form logit(P (Ei = 1)) = β0 + β1X1i + β2X2i to
estimate the propensity scores. This model is clearly misspecified, because, for ex-

https://github.com/rachelnethery/overlap
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ample, the true relationship between E and X2 is not linear. In practice when the
form of the propensity score model is unknown, we encourage the use of flexible
models for estimation (Westreich, Lessler and Funk (2010)), such as BART, neural
networks or support vector machines in order to reduce the chance of propensity
score model misspecification. The use of BART for propensity score estimation is
demonstrated in the application to real data in Section 4. Various flexible propen-
sity score estimation methods could be tested and the method that achieves the best
covariate balance selected. We label the simulations with the misspecified propen-
sity score as 3.1B.

We have selected these simulation structures so that, for a single value of c,
the type and degree of propensity score non-overlap in 3.1A and 3.1B should be
similar. Both 3.1A and 3.1B produce data sets with lack of overlap in the right
tail of the propensity score distribution (i.e., individuals from the unexposed group
are unobserved or very sparse) and with varying degrees of non-overlap controlled
by c. Our simulations are designed to produce non-overlap in the right tail of the
propensity score distribution and our motivation is to demonstrate how our method
performs in the presence of different features in this RN. Thus, simulated datasets
are utilized in the results below only if any intervals of non-overlap outside the
right tail contain 10 observations or fewer (cumulatively), and, in these datasets,
the intervals of non-overlap outside the right tail are ignored (i.e., treated as part
of the RO). In this way we ensure that the results solely reflect how the tested
methods respond to the features of the intended RN.

We consider three separate simulated scenarios, that is, three different specifi-
cations of c, within 3.1A and 3.1B. We let c = 0 (simulations 3.1A-i and 3.1B-i),
c = 0.35 (simulations 3.1A-ii and 3.1B-ii) and c = 0.7 (simulations 3.1A-iii and
3.1B-iii). Example datasets from each are illustrated in Figure 2 in Section 3 of the
Supplementary Material (Nethery, Mealli and Dominici (2019)). With c = 0, the
RN is quite small, and the trend in the individual causal effects in the RN is mildly
nonlinear. With c = 0.35, the RN is somewhat larger, and the trends exhibited by
the individual causal effects in the RN are moderately nonlinear. With c = 0.7, a
substantial portion of the sample lies in the RN, and the causal effects in the RN
are highly nonlinear. We use our definition of overlap with a = 0.1 and b = 7 to
define the RO and RN for each simulated dataset.

We implement BART + SPL on 1000 simulated datasets under each condi-
tion. Gutman and Rubin (2015) recommended a spline-based multiple imputa-
tion approach for estimating average causal effects. We compare the performance
of BART + SPL versus Gutman and Rubin’s method with and without trim-
ming (T-GR and U-GR respectively) and also BART with and without trimming
(T-BART and U-BART respectively). Detailed results of the untrimmed analyses
appear in Table 1 and the distributions of the average causal effect estimates from
the trimmed and untrimmed analyses can be compared in Figure 3 in Section 3 of
the Supplementary Material (Nethery, Mealli and Dominici (2019)).
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TABLE 1
Absolute (Abs) bias, 95% credible interval coverage and mean square error (MSE) in estimation of

the population average causal effects in simulations from Section 3.1

Simulation setting Method Abs Bias (%) Coverage MSE

3.1A-i U-GR 0.12 (46.46) 0.33 1.25
U-BART 0.03 (10.72) 0.99 0.07
BART + SPL 0.01 (5.63) 1.00 0.05

3.1A-ii U-GR 0.17 (97.31) 0.23 1.69
U-BART 0.05 (31.95) 0.89 0.12
BART + SPL 0.02 (12.58) 1.00 0.09

3.1A-iii U-GR 0.23 (724.78) 0.19 2.34
U-BART 0.08 (427.55) 0.71 0.22
BART + SPL 0.03 (100.80) 1.00 0.14

3.1B-i U-GR 0.26 (50.42) 0.00 0.64
U-BART 0.13 (25.47) 0.12 0.33
BART + SPL 0.11 (21.64) 0.62 0.27

3.1B-ii U-GR 0.32 (66.58) 0.00 0.73
U-BART 0.18 (36.73) 0.04 0.48
BART + SPL 0.15 (30.95) 0.55 0.36

3.1B-iii U-GR 0.41 (94.79) 0.00 0.89
U-BART 0.24 (55.00) 0.01 0.68
BART + SPL 0.21 (48.03) 0.35 0.49

The simulation results demonstrate the dominant performance of BART + SPL
compared to U-BART and U-GR under a wide range of challenging conditions.
However, in extreme scenarios with unpredictable trends and large portions of
the sample in the RN, even the performance of BART + SPL may deteriorate,
as demonstrated by simulation 3.1A-iii, where BART + SPL gives high percent
bias, and in simulation 3.1B-iii, where BART + SPL gives high percent bias and
poor coverage. Nonetheless, BART + SPL’s performance still exceeds that of its
competitors. For both BART and GR the trimmed estimates, which are no longer
estimators of the population level causal effects, are further from the true popula-
tion average causal effects than the untrimmed estimates.

We also conducted a simulation study to evaluate the performance of BART +
SPL for binary outcomes. The data and results are described in Section 2 of the
Supplementary Material (Nethery, Mealli and Dominici (2019)). BART+SPL per-
formed similar to or better than the competing methods (U-GR and U-BART) in
each of our simulations with N = 500. However, even without non-overlap, BART
probit can fail to provide improvements over parametric methods when sample
sizes are small to moderate, and thus we recommend that BART + SPL for binary
outcomes only be applied to large datasets (i.e., N ≥ 500).
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3.2. BART + SPL with high dimensional covariates. One of the most widely-
recognized limitations of BART is its poor performance when the number of pre-
dictors, p, is large (Chipman, George and McCulloch (2010)). The decline in per-
formance is most significant when many irrelevant predictors (i.e., predictors un-
related to the outcome) are included. Thus, in this section we seek to examine
whether and how BART + SPL should be applied in settings where the number
of potential confounders is large. Although BART has been extended to permit
sparsity in the p > N setting (Linero (2018)), we do not consider the p > N case
here.

For these simulations we let N = 500 and assign half of the sample to E = 1.
We then generate 10 confounders, five binary and five continuous. The binary con-
founders have distribution X1|E = 1, . . . ,X5|E = 1 ∼ Bernoulli(0.45), X1|E =
0, . . . ,X5|E = 0 ∼ Bernoulli(0.4), and the continuous confounders have distribu-
tion X6|E = 1, . . . ,X10|E = 1 ∼ N(2,4), X6|E = 0, . . . ,X10|E = 0 ∼ N(1.3,1).
We consider the following three scenarios: only these 10 confounders are present
(simulation 3.2A); these 10 confounders as well as 25 randomly generated “po-
tential confounders” are present (simulation 3.2B); and these 10 confounders as
well as 50 randomly generated “potential confounders” are present (simulation
3.2C). Of course in real applications, we often do not know a priori which of
the potential confounders are true confounders; hence, we include them all in the
modeling. A propensity score is formed using predicted probabilities from the lo-
gistic regression logit(P (Ei = 1)) = β0 + Ziβ , where Zi is a vector of the true
and potential confounders. The potential outcomes are generated so that they ex-
hibit nonlinear trends in the estimated propensity score—Yi(0) = 0.5(X1i +X2i +
X3i +X4i +X5i )+ 15(1 + exp(−8X6i + 1))−1 +X7i +X8i +X9i +X10i − 5 and
Yi(1) = X1i + X2i + X3i + X4i + X5i − 0.5(X6i + X7i + X8i + X9i + X10i ).

The features of these data are illustrated in Figure 5 in Section 3 of the Sup-
plementary Material (Nethery, Mealli and Dominici (2019)). The simulations are
designed to have a large RN in the right tail of the estimated propensity score with
moderate nonlinearity in the causal effect in the RN. The RO and RN are defined
using tuning parameters a = 0.1 and b = 7.

We simulate 1000 datasets from each of the three scenarios described above.
We apply both BART + SPL and the untrimmed Gutman and Rubin spline method
(GR) to each dataset. Results are provided in Table 2.

These results reflect BART’s struggle in the presence of irrelevant predictors.
When only the 10 true confounders are included in the modeling, BART + SPL
outperforms GR and demonstrates similar performance as in Section 3.1. How-
ever, when irrelevant predictors are introduced, GR’s bias decreases while BART+
SPL’s remains constant or increases. With 50 irrelevant predictors GR’s bias is
substantially lower than BART + SPL’s (although, notably, its coverage and MSE
remain inferior). This suggests that BART + SPL is only likely to improve on ex-
isting methods in settings where the set of true confounders can be posited a priori
with some confidence.
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TABLE 2
Absolute (Abs) bias, 95% credible interval coverage and mean square error (MSE) in estimation of

the population average causal effects in simulations from Section 3.2

Simulation setting Method Abs Bias (%) Coverage MSE

3.2A GR 0.98 (5.64) 0.03 13.14
BART + SPL 0.56 (3.22) 0.99 8.97

3.2B GR 0.56 (3.24) 0.40 14.32
BART + SPL 0.56 (3.20) 0.97 8.49

3.2C GR 0.36 (2.10) 0.73 16.09
BART + SPL 0.64 (3.66) 0.96 9.69

3.3. Guidelines for defining the RN. The simulation results in this section are
intended to provide guidance on both the degree of non-overlap that threatens
BART’s performance and the degree of non-overlap that threatens BART + SPL’s
performance. They also suggest appropriate default specifications of tuning pa-
rameters a and b in the non-overlap definition. To impose strict control on the size
of the RO and RN, in these simulations we utilize a single confounder rather than
a propensity score. Based on the above simulations, we expect the performance of
BART + SPL to be comparable with varying numbers of confounders, as long as
few irrelevant covariates are included.

We let N = 500 and assign half of the sample to E = 1. We generate the con-
founder as X|E = 1 ∼ N(2.5,4), X|E = 0 ∼ N(v,w), where v and w control the
degree of non-overlap. Unlike in the previous simulations, in these we generate a
single, fixed instance of the confounder and simply add random noise to (a func-
tion of) it to create the potential outcomes for each simulation. We consider two
potential outcome scenarios, one of which produces data that are relatively simple
to model (with BART) while the other produces data that are challenging to model.
The former, which we label simulation 3.3A, is created by assigning Y(0) =
1.5 + X+(X2/2!)

20 + N(0,0.06) and Y(1) = 1
1+e−(X−1) + N(0,0.06) and the latter,

which we call simulation 3.3B, by Y(0) = 1.5 + X+(X2/2!)+(X3/3!)
20 + N(0,0.06)

and Y(1) = 1
1+e−(X−1) + N(0,0.06).

In both simulation 3.3A and 3.3B we achieve different degrees of non-overlap,
primarily non-overlap in the right tail of the confounder, by manipulating v and
w. In order from least to most non-overlap, we consider {v = 1.4,w = 1.96},
{v = 0.75,w = 1.44} and {v = 0,w = 1}. Moreover, in each scenario we test the
following three specifications of {a, b} in the overlap definition in order from most
to least conservative: {a = 0.05 ∗ (range(X)), b = 10}, {a = 0.1 ∗ (range(X)), b =
10}, and {a = 0.15 ∗ (range(X)), b = 3}. Each combination of {v,w} and {a, b}
leads to nine different settings for each of simulation 3.3A and 3.3B for a total of
18 simulation settings. The percent of the sample falling into the RN, denoted π
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TABLE 3
Absolute (Abs) bias, 95% credible interval coverage (Covg), and mean square error (MSE) in
estimation of the population average causal effects using BART + SPL and BART applied to

simulations 3.3A and 3.3B. BART + SPL-1 refers to BART + SPL with the RO defined as
a = 0.05 ∗ (range(X)), b = 10, BART + SPL-2 refers to BART + SPL with the RO defined as

a = 0.1 ∗ (range(X)), b = 10, and BART + SPL-3 refers to BART + SPL with the RO defined as
a = 0.15 ∗ (range(X)), b = 3

Simulation 3.3A Simulation 3.3B

v,w Method (π) Abs Bias (%) Covg MSE Abs Bias (%) Covg MSE

1.4, 1.96 BART + SPL-1 (17) 0.03 (2.51) 1.00 0.08 0.05 (4.49) 1.00 0.12
BART + SPL-2 (8) 0.03 (2.23) 1.00 0.07 0.04 (4.15) 1.00 0.11
BART + SPL-3 (2) 0.03 (2.43) 1.00 0.08 0.04 (3.97) 1.00 0.10
BART 0.03 (2.98) 0.81 0.09 0.05 (4.69) 0.57 0.12

0.75, 1.44 BART + SPL-1 (24) 0.05 (4.14) 1.00 0.09 0.07 (6.27) 1.00 0.14
BART + SPL-2 (14) 0.04 (3.44) 1.00 0.08 0.06 (5.72) 1.00 0.13
BART + SPL-3 (6) 0.05 (4.06) 1.00 0.09 0.06 (5.83) 1.00 0.12
BART 0.06 (5.50) 0.47 0.11 0.07 (6.71) 0.35 0.14

0, 1 BART + SPL-1 (34) 0.08 (6.65) 1.00 0.11 0.09 (8.27) 1.00 0.16
BART + SPL-2 (21) 0.05 (4.60) 1.00 0.09 0.06 (5.72) 1.00 0.12
BART + SPL-3 (11) 0.06 (4.71) 1.00 0.09 0.06 (5.12) 1.00 0.11
BART 0.07 (6.28) 0.59 0.11 0.06 (5.67) 0.74 0.12

in these simulations ranges from π = 2% to π = 34%. Of course the impact of
non-overlap on average causal effect estimates depends not only on the proportion
of the sample falling in the RN but also likely on the extremity of the observa-
tions in the RN relative to the RO. In our simulations, as π increases, the average
distance between observations in the RO and the RN also increases. An example
dataset from both simulation 3.3A and simulation 3.3B is presented in Figure 6 in
Section 3 of the Supplementary Material (Nethery, Mealli and Dominici (2019)).

We apply a standard BART (ignoring the non-overlap) and BART+SPL to 1000
simulated datasets under each of the 18 conditions. Table 3 contains the results for
simulations 3.3A and 3.3B. While BART + SPL nearly always performs better in
terms of each metric than BART, the most notable difference in the BART + SPL
and BART results is the difference in coverage probabilities, with BART + SPL
consistently obtaining conservative coverage and BART’s coverage deteriorating
as the degree of non-overlap increases. Even when only 2% of the data falls into
the RN, BART’s coverage is unreliable. Thus, BART could provide misleading
inference even with small amounts of non-overlap.

BART + SPL’s coverage is conservative, but reliable, in all the simulations
assessed; however, its bias tends to increase as the degree of non-overlap in-
creases. Thus, it appears that, if some bias in the point estimate can be tolerated,
BART + SPL can be expected to provide conservative inference in (nonpatho-
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logical) scenarios with over 25% of the data in the RO. However, based on the
observation that BART + SPL’s bias is greater than 5% in simulation 3.3B under
each overlap definition with {v = 0.75,w = 1.44} and {v = 0,w = 1}, a more con-
servative option might be to sacrifice the population-level estimand and performed
a trimmed or weighted analysis when more than 15% of the data falls in the RN.

Finally, these simulations suggest that BART + SPL is quite robust to the spec-
ification of a and b, as we see relatively small discrepancies in bias and coverage.
However, some of the results of 3.3B indicate that one should avoid defining the
RO too conservatively, as discarding too much information can lead to modest in-
creases in bias. The moderate choice of a = 0.1 ∗ range(X) and b = 10 provides
the best results in most of the simulations, and we, therefore, recommend this as
the default specification.

4. The effect of natural gas compressor stations on county-level thyroid
cancer and leukemia mortality. We collected 2014 thyroid cancer and leukemia
mortality rate estimates for each county in the US from the Global Health Data
Exchange. The data and methods used to develop these estimates have been de-
scribed previously (Mokdad et al. (2017)). We also obtained the locations of NG
compressor stations from publicly available data complied by Oak Ridge National
Laboratory (2017). While the data is not guaranteed to be complete, it is, to our
knowledge, the most comprehensive documentation of compressor station loca-
tions in existence with 1359 compressor station locations verified using imagery.
In order to test a causal hypothesis, we need to assume that exposure to compres-
sor station-related emissions preceded 2014 (the year for which cancer mortality
rates are observed) by at least the minimum latency period for thyroid cancer and
leukemia. The CDC reports the minimum latency period for thyroid cancer as 2.5
years and the minimum latency for leukemia as 0.4 years (World Trade Center
Health Program (2015)). Although the dataset does not contain dates of origin for
the compressor stations, it does contain peak operation dates. Eighty-four percent
of the compressor stations in the dataset have peak operating dates in or before
2012; thus, it seems reasonable to assume that most of the compressor stations in
the dataset operated at least 2.5 years prior to 2014.

Our county-level exposure variable is an indicator of whether a compressor
station is present in the county. We collected county-level demographic, socioe-
conomic and behavioral confounder data from the American Community Survey
2014 five-year estimates (US Census Bureau (2014)) and the 2014 County Health
Rankings and Roadmaps (Robert Wood Johnson Foundation (2014)). Data were
accessed using Social Explorer. The confounders used are rate of primary care
physicians, percent of less than 65-year-olds uninsured, percent diabetic, percent
current smokers, percent of people with limited access to healthy foods, percent
obese, food environment index, population density, percent male, percent less than
age 55, percent white, average household size, percent with bachelor’s degree or
higher, percent unemployed, median household income, Gini index of inequality,
percent owner-occupied housing units, median rent as proportion of income and
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average commute time to work. All the data used in this analysis are publicly
available, and the data and R code to reproduce the analysis are posted on Github
at https://github.com/rachelnethery/overlap.

We note that the sensitivity of this analysis to detect exposure effects will be
low, because any true health effects of exposure to compression station emissions
is likely more spatially concentrated than the county level. Although a higher spa-
tial resolution analysis would be preferable, obtaining important behavioral con-
founder data at a finer spatial resolution is challenging. In an effort to improve the
detectability of effects, we focus our analysis on roughly the mid-western region
of the US (counties with centroid longitudes between −110 and −90), where few
other sources of pollution exist compared to the coastal regions (Di et al. (2017b)).
A focus on this region is also reasonable because NG production has a longer
history in this region compared to other US production regions, likely leading to
greater exposure.

We begin with a dataset of 1309 counties and, after discarding counties with
any missing confounders, are left with N = 978 counties. Two hundred ninety-
one of these counties are exposed (i.e., contain at least one compressor station)
while 687 are unexposed. Table 2 in Section 3 of the Supplementary Material
(Nethery, Mealli and Dominici (2019)) shows the differences in the exposed and
unexposed populations. Notably, exposed counties have, on average, higher per-
cent uninsured, lower population density, lower percent white, lower education
and higher percent unemployment. We estimate a propensity score by applying
a BART probit with exposure status as the response and all the confounders as
predictors. The histogram in Figure 1 illustrates the non-overlap in the resulting

FIG. 1. Estimated propensity score histograms stratified by exposure status and overlaid. Bold
vertical lines represent the start of non-overlap intervals in both tails of the distribution.

https://github.com/rachelnethery/overlap
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propensity score with the solid vertical lines denoting the start of the intervals of
non-overlap that are detected in each tail of the propensity score using our overlap
definition and a = 0.1 ∗ range(ξ̂ ) and b = 10. With these specifications 12% of the
sample falls into the RN. BART + SPL is needed to obtain population level causal
effect estimates in this setting.

The following outcome variables are considered: (1) 2014 thyroid cancer mor-
tality rate; (2) the change in thyroid cancer mortality rate from 1980 to 2014;
(3) 2014 leukemia mortality rate; and (4) the change in leukemia mortality rate
from 1980 to 2014. The 2014 rates are log transformed prior to analysis. We ana-
lyze each outcome using both BART + SPL and trimmed BART. Counties in the
trimmed sample are more urban and densely populated, on average, than the popu-
lation represented by the full sample (trimmed sample average population density
is 108.40 per mi2 compared to 99.38 in the full sample).

Average causal effect estimates and 95% credible intervals from each analy-
sis can be found in Table 4. The BART + SPL analysis is estimating population
average causal effects, and the trimmed BART is estimating trimmed sample aver-
age causal effects. Two of the analyses find statistically significant effects of NG
compressor stations—the trimmed BART analyses of the change in thyroid can-
cer mortality rates from 1980 to 2014 and of the change in leukemia mortality
rates from 1980 to 2014. We must interpret these as significant effects only in the
trimmed sample which is on average more urban than the population of interest.
The population-level estimates from BART + SPL have wider credible intervals
for two reasons. First, the additional marginalization over the confounders required
to obtain population-level estimates increases the variance. Second, to estimate at
the population level, we must account for the additional uncertainty induced by the

TABLE 4
Average causal effects of natural gas compressor station presence on 2014 county-level thyroid

cancer and leukemia mortality rates and the change in thyroid cancer and leukemia mortality rates
from 1980 to 2014

Outcome Method Effect 95% CI

2014 Thyroid Rates BART + SPL 0.001 −0.017, 0.020
BART 0.003 −0.007, 0.012

Change in Thyroid Rates 1980-2014 BART + SPL 0.992 −0.308, 2.237
BART 1.089 0.130, 2.038

2014 Leukemia Rates BART + SPL 0.006 −0.013, 0.025
BART 0.005 −0.004, 0.014

Change in Leukemia Rates 1980-2014 BART + SPL 0.913 −0.361, 2.206
BART 0.988 −0.014, 1.958
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non-overlap, which BART+SPL does by inflating variances in the RN. With these
wide credible intervals evidence of an effect must be very compelling in order to
achieve statistical significance. However, the effect estimate from each analysis is
positive, indicating a harmful effect of compressor stations, and the estimates are
similar in the trimmed and untrimmed analyses.

In Tables 3 and 4 in Section 3 of the Supplementary Material (Nethery, Mealli
and Dominici (2019)), we provide the results of two sensitivity analyses using al-
ternate specifications of a and b, one resulting in a larger RN and one in a smaller
RN. The BART + SPL results demonstrate little sensitivity to these choices with
inference remaining the same in each analysis. This robustness agrees with find-
ings in simulated data in Section 3.3. The trimmed BART, however, is sensitive to
the a and b choices. The significant leukemia effect is attenuated in one sensitivity
analysis, and both significant effects are attenuated in the other. This sensitivity
is not surprising, given that changes in the observations trimmed correspond to
changes in the estimand. Because the trimmed BART is sensitive to these choices,
we should interpret the results with caution.

The significant and near-significant findings presented here suggest that the
health effects of compressor station exposure is a topic that warrants further study
with higher quality data. In particular an analysis at higher spatial resolution is
needed to detect geographically concentrated effects that may be washed out at the
county level. Moreover, counties with compressor stations may also be more likely
to be located in NG production regions; thus, the effects of compressor station ex-
posure may not be distinguishable from the effects of NG drilling and production-
related exposures at the county level. Finally, an investigation of cancer diagnosis
rates may be more informative than our study of mortality rates. However, cancer
diagnosis rates are difficult to obtain across large geographic regions.

5. Discussion. In this paper we have introduced a general definition of
propensity score non-overlap and have proposed a Bayesian modeling approach
to estimate population average causal effects and corresponding uncertainties in
the presence of non-overlap. A novel feature of our approach is its separation of
the tasks of estimating causal effects in the region of overlap and the region of
non-overlap. A nonparametric BART model is used to estimate individual causal
effects in the region of overlap where there is strong data support. In the region of
non-overlap, where reliance on model specification is required to estimate causal
effects, individual causal effects are estimated by extrapolating trends from the re-
gion of overlap via a parametric spline model. BART + SPL can be applied to data
with either continuous or binary outcomes and is implemented in a fully Bayesian
manner, so that all sources of uncertainty are captured.

We demonstrated via simulations that BART + SPL outperforms both stand-
alone BART and stand-alone spline causal inference approaches in estimation
of population average causal effects under a wide range of conditions involving
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propensity score non-overlap. However, due to BART’s limitations in high dimen-
sional settings, BART + SPL may give more biased results than existing methods
when many irrelevant predictors are present.

While we have focused primarily on the use of our overlap definition with
BART+SPL, it can also be used to define the RO for trimming, and it may provide
a more transparent and reproducible approach than trimming by eye. However, as
demonstrated by the trimmed BART results in Section 4, our overlap definition is
unlikely to produce an interpretable trimmed estimand. Therefore, other strategies
that prioritize the interpretability of the resulting estimand may be preferable (Li,
Morgan and Zaslavsky (2018)).

We again note that BART+SPL is intended to handle finite sample non-overlap
only (estimating population average causal effects may be inappropriate when the
population exhibits non-overlap). When non-overlap is a finite sample feature, it
will disappear asymptotically. For this reason we have avoided discussions of dou-
ble robustness which is an asymptotic property. However, we have demonstrated
in simulations that, relative to the competing methods considered, BART + SPL
is most robust to both outcome and propensity score model misspecification in the
presence of non-overlap.

A key contribution of our work is the introduction of a tuning parameter used
to inflate the variance of causal effect estimates in regions of poor data support,
so that this variance adequately reflects the high estimation uncertainty in such
regions. In simulations the resulting credible intervals are much more reliable than
those of competing methods in the presence of non-overlap. However, in “simple”
scenarios where causal effect trends in the RN are easily predictable based on
trends in the RO, this tuning parameter can produce conservative uncertainties.

Although to our knowledge, the use of Gaussian Process Regression (GPR) for
causal inference has not previously been discussed in the literature, there are clear
connections between the features of BART + SPL and GPR; thus, a formal com-
parison is warranted. GPR is a traditionally Bayesian nonparametric regression
technique that naturally identifies regions of poor data support and inflates uncer-
tainties in those regions. While these features might make it an attractive and par-
simonious approach to causal inference with non-overlap, BART + SPL provides
the following advantages over GPR that may render it more appealing, particu-
larly to applied scientists: (1) less sensitivity to tuning choices; (2) more intuitive
tuning parameters; and (3) greater computational scalability. BART is highly re-
garded for its consistent performance under default tuning specifications, and, in
Section 3.3, BART + SPL also demonstrated little sensitivity to tuning choices.
The results of GPR are known to be sensitive to the choice of kernel and tuning
parameters. Similarly, GPR’s tuning parameters are often difficult to understand
as they are embedded in kernel functions within covariance matrices; therefore,
tuning typically requires guess-and-check work. BART + SPL involves tuning pa-
rameters with straightforward interpretations relating to the definition of adequate
data support. Finally, GPR requires manipulation of a N ×N covariance matrix in
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each MCMC iteration, making it time consuming or infeasible with large datasets,
while BART + SPL is much more scalable.

Our work introduces an exciting direction for methodological developments
in the context of causal inference with propensity score non-overlap. For in-
stance other machine learning methods (Cristianini and Shawe-Taylor (2000),
Schmidhuber (2015)) may also have properties that make them well suited to
handle non-overlap. Moreover, the limitations of BART in high dimensions pro-
vide an opportunity for improvement on our method. In the spirit of Bayesian
Adjustment for Confounding (Wang, Parmigiani and Dominici (2012)), propen-
sity score model and outcome model variable selection could be accomplished
simultaneously which may reduce the negative effect of irrelevant covariates on
BART + SPL. Finally, theoretical results remain to be developed. These could be
avenues for future work.

SUPPLEMENTARY MATERIAL

Sampling details, additional simulations, and supplementary tables and fig-
ures (DOI: 10.1214/18-AOAS1231SUPP; .pdf). Section 1 of the Supplementary
Materials contains a step-by-step description of the BART + SPL MCMC sam-
pling scheme. Section 2 describes the data and results from simulations to test the
performance of BART + SPL for binary outcomes. Section 3 provides the supple-
mentary tables and figures referenced in the text.
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