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LEARNING ALGORITHMS TO EVALUATE FORENSIC
GLASS EVIDENCE

BY SOYOUNG PARK AND ALICIA CARRIQUIRY1

Iowa State University

Glass fragments are often compared in the course of a forensic evalu-
ation using their chemical composition determined with technologies such
as LA-ICP-MS. At present forensic scientists advocate the use of two com-
parison criteria based on univariate intervals around all mean elemental con-
centrations for fragments originating from a known piece of broken glass.
The main drawback of this approach is that it does not consider the depen-
dencies between concentrations. Further, when the elemental concentrations
are more variable within panes, it becomes harder to reject the null hypoth-
esis of no difference between fragments. In the legal context higher variance
would tend to incriminate the defendant because the intervals would tend to
be wider. We demonstrate that a score-based approach to assess the probative
value of evidence in glass comparisons outperforms the two standard inter-
val methods and other methods proposed in the literature, at least in terms
of minimizing classification error in the glass fragment sources we analyzed.
We use machine learning algorithms to construct a similarity score between
pairs of glass fragments. The learning algorithms exploit the dependencies
among elemental concentrations and result in an empirical class probabil-
ity; so, we can report the degree of similarity between two fragments. Our
group is in the process of assembling the first glass composition database
with enough information within and between glass samples to permit com-
puting well-conditioned estimates of high-dimensional covariance matrices.
These data will be available to anyone who wishes to carry out research in
this area.

1. Introduction. In the United States’ criminal justice system, jurors are typi-
cally tasked with deciding between the prosecutor’s and the defense’s propositions
using summaries of the evidence presented by forensic scientists or other experts.
In this paper, we focus on glass evidence that may arise when a glass object is
broken during the commission of a crime. Small fragments from the broken object
can transfer to clothing, hair or shoes of the perpetrator of the crime, or onto a
victim in the crime scene. The question of interest then becomes whether the glass
found on a suspect may have come from the broken glass object at the crime scene.
From the juror’s point of view, two important questions are whether the fragments
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on the suspect and at the crime scene are indistinguishable (in some sense) and,
if so, whether the observed degree of similarity is typical only when fragments
have a common source. Fragments found at the crime scene are called control or
known (K), and glass fragments recovered from the suspect are the questioned
samples (Q). In the forensics literature, this is known as the specific source ques-
tion: did the fragment on the suspect originate from the glass object broken in the
commission of the crime? A related, but not identical question, is the same source
question: could two fragments, one recovered from a victim and another from a
suspect, have the same, but unknown source? Whether attempting to answer one
or the other question, the statistic used to quantify the differences between frag-
ments is the same. However, the approach for evaluating the probative value of
the evidence is different depending on the question (e.g., Ommen and Saunders
(2018)), and we revisit this issue later in the paper.

Glass objects broken during the commission of a crime include containers (bot-
tles, jars, vials), architectural glass (windows, doors), car windshields and many
more. In this paper, we focus on architectural float glass used in windows and
doors. Glass is made by melting together sand, soda ash, dolomite, limestone and
sodium sulfate at temperatures in excess of 1,500 C. Manufacturers also add cullet
(recycled broken glass) to the mixture. In the 1950s Sir Alastair Pilkington in-
vented the process to produce float glass; this process is used to this day. After raw
materials are mixed in a batch plant, they are fed into a furnace where the batch
is melted and mixed. The molten mixture is then extruded in the form of a wide
ribbon onto a bath of molten tin that provides a flat, smooth surface for the glass.
As the glass travels on the molten tin, it cools down gradually and, depending on
settings, acquires the desired thickness. Once the glass has cooled down to about
1,000 C, it enters an annealing chamber, where controlled cooling is faster. The
last steps in the manufacturing process consist in cutting the glass ribbon to specs,
and the panes are then packaged for transportation. Figure 1 shows a schematic of
the float glass manufacturing process.

A glass ribbon can have a thickness between 0.4 and 25 mm, and the length
it travels between furnace and the end of the line is approximately 0.5 km, about
the length of five American football fields. There are 370 float glass manufacturers
worldwide who jointly produce almost a million tons of float glass per year.

Forensic scientists describe physical, optical and chemical properties of glass.
Except in cases where the fragment on the suspect is large, it is often difficult
to compare glass on the basis of physical properties. The refractive index (RI)
of glass describes how light propagates through that glass fragment. In the past
the RI varied between glass samples and was used as a discriminating feature
(Curran (2003), Garvin and Koons (2011)), but improvements in the manufac-
turing processes have resulted in less variability in RI across glass samples (Koons
and Buscaglia (2002)).

Today, it is widely agreed that the concentration of minor and trace elements
in glass provides a more precise means to compare glass fragments. There are
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FIG. 1. Production line to manufacture float glass (Tangram-Technology (2004)).

several technologies that can be used to measure the concentration of elements in
glass. For our analyses we used inductively coupled mass spectrometry with a laser
add-on (LA-ICP-MS; e.g., Houk (1990), Curran et al. (1997a), Aeschliman et al.
(2003), Trejos et al. (2013a), Weis et al. (2011), Dorn et al. (2015)). Briefly, ICP-
MS works as follows: an inductively coupled plasma source ionizes the elements
in the glass sample. The positively charged ions are then separated and routed
to a mass spectrometer (MS) that can identify each ion by its atomic mass-to-
charge ratio. Once the ions have been separated, they are detected (or counted) by
a suitable detector that can estimate the concentration of each particular element
in the sample given the number of the corresponding ions detected. The estimated
concentrations are given in multiples of parts per million (ppm). Laser ablation
consists in irradiating the surface of the glass sample with a high-pulse laser. When
the laser beam hits the glass sample, it produces a plume (aerosol) of atoms that are
then presented to the plasma for ionization. In forensic applications the number of
elements used for characterizing a glass sample is typically 18 (Weis et al. (2011)).

The main objective of this work is to develop and evaluate a data-driven score
that quantifies the similarity between two glass fragments using the concentra-
tions of elements in the glass as discriminating features. To construct the score, we
rely on supervised machine learning algorithms including random forests (RFs,
Kam (1995), Breiman (2001)) and Bayesian Additive Regression Trees (BART,
Chipman, George and McCulloch (2010)). The score itself, or a score-based like-
lihood ratio (SLR; Davis et al. (2012)), can then be used by the trier of fact (juror)
to determine the probative value of the glass evidence presented in a specific case.

A second objective of this work is to outline a strategy for forensic glass ex-
aminers to compare glass fragments in real casework. Most forensic examiners
in accredited laboratories follow the standards published by the American Soci-
ety for Testing and Materials (ASTM). Glass examiners in particular rely on two
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standards, ASTM-E2330-12 (2012) and ASTM-E2927-16 (2016). These standards
provide guidance for sample preparation, analysis and interpretation. Both of these
standards describe an approach to compare glass fragments using their elemental
concentrations and to determine whether the fragments are chemically indistin-
guishable. We show later in this paper that the statistical methods presented in the
ASTM standards for comparison of the elemental composition of glass do not per-
form well in terms of sensitivity and specificity when implemented on data other
than the data that were used to develop those methods. In Section 2 we review
those statistical approaches plus others that have been proposed in the literature
and discuss their limitations. Most of the methods that have been proposed rely on
a standard hypothesis testing set-up, where the null hypothesis is that there are no
differences between mean concentrations in the fragments. By starting from a null
hypothesis of no differences between the composition of the reference and ques-
tion fragments, the methods appear to place the burden of proof on the defendant
in the sense that the dissimilarity between the fragments has to be large enough to
reject the null hypothesis in favor of the alternative.

Even though we focus on the classification performance of the various ap-
proaches for comparison of glass fragments, the overall goal is to develop a sum-
mary of the evidence to help jurors in their deliberations. A forensic scientist who
follows the ASTM guidelines might report that two fragments of glass are chemi-
cally indistinguishable but this would be an incomplete summary of the evidence.
To decide whether the suspect could have been at the crime scene, jurors would
also need to know how rarely one would observe fragments with indistinguishable
compositions if they originated from different sources. The data-driven score we
propose is an ideal (from the jurors’ perspective) summary with two elements—
the similarity score and the range of values that the score can take on under the
two different propositions. Suppose that the evidence is such that the forensic sci-
entist concludes that it is five times more likely to observe a particular score if the
fragment on the suspect originated from the crime scene window than if it had a
different origin. The final decision is still the juror’s who must determine whether
5 to 1 is high enough odds to place the suspect at the crime scene.

This paper focuses on forensic glass comparisons, but we note that the approach
we discuss and that relies on the development of a similarity score is applicable
in many other forensic problems. Song (2015) and Hare, Hofmann and Carriquiry
(2017) proposed similar approaches to compare cartridge case and bullet striations,
respectively. Trejos, Flores and Almirall (2010) used a multivariate score to com-
pare the elemental composition of paper and ink and quantify similarity across and
within samples. They focused on assessing the properties of the score in terms of
classification accuracy but stopped short of discussing the question of weight of
evidence. A comprehensive discussion of the analysis and interpretation of foren-
sic glass evidence is presented in Curran, Champod and Buckleton (2000).

The rest of this paper is organized as follows. In Section 2 we review some of
the statistical methods that have been proposed to compare the elemental compo-
sition of glass. Section 3 includes a more detailed discussion of the two prevailing
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interval-based approaches–the standard 4−σ (Koons and Buscaglia (2002), Trejos
et al. (2013b)) and the modified 4 − σ criteria (Weis et al. (2011)) to compare two
glass fragments. The section also includes a brief description of two parametric
approaches included in the comparison (Hotelling’s T 2 with a shrinkage estimator
of the covariance matrix, Campbell and Curran (2009), and Parker’s optimal H

statistic, Parker and Holford (1968)) and the machine learning algorithms that we
implemented in this paper. Section 4 describes the datasets that were used to carry
out statistical analyses in this work. We present a brief exploratory analysis of the
datasets in Section 5. Results are shown in Section 6 and Section 7. We illustrate
the impact of the discriminating power of the classifier on the SLR in Section 8.
Finally, we finish with a discussion and recommendations for practitioners in Sec-
tion 9.

2. A brief history of the statistical analysis of glass. When a glass object is
broken during the commission of a crime, glass fragments can transfer to the per-
petrator or to others in contact with the crime scene. Forensic glass examiners are
often tasked with answering the specific or the common source questions described
in Section 1. The small size of questioned fragments on a suspect or on a victim
almost always prevents comparison of the samples using physical characteristics
such as color or thickness, so, in the past several years forensic examiners have re-
lied on technologies such as LA-ICP-MS to accurately measure the concentration
of a large number of elements in glass. Depending on the instrument used to obtain
the measurements, the number of elements that can be detected can be as high as
40 (ASTM-E2330-12 (2012)) or as low as eight (Zadora (2009a)). In most appli-
cations no more than about 18 elements are used in forensic comparisons (e.g.,
Weis et al. (2011)).

Whether the question is one of specific or of common source, the forensic ex-
aminer must quantify the difference between two fragments and decide whether
fragments are similar enough that the possibility of common source cannot be ex-
cluded. To aid in this decision, we propose a classification method that has high
sensitivity meaning that it correctly detects fragments that have a common source
(whether specific or not) and high specificity or a high rate of correctly identify-
ing pairs of fragments that have a different source. In Courts in Daubert jurisdic-
tions, other relevant performance criteria to evaluate the classifier might include
the positive predictive value (PPV) and the negative predictive value (NPV) of the
classifier. The PPV in the glass context is the proportion of same source pairs of
fragments among those classified as such by the algorithm. Similarly, the NPV is
the proportion of different source fragments among pairs of fragments classified
as having a different origin by the algorithm.

Hickman (1987) and Koons, Fiedler and Rawalt (1988) were among the first to
use ICP-MS to discriminate between glass fragments from sheet glass and from
glass containers using simple clustering methods, so, ours is not a new problem.
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Among forensic practitioners comparison criteria based on range overlap or
other interval-based approaches are the tools of choice. In 1991, Koons, Peters
and Rebbert (1991) proposed a comparison criterion called range overlap, where
examiners first obtain elemental concentrations from several known fragments and
compute the range of values, element-wise. The same elemental concentrations
are then obtained in the Q fragment(s). Suppose that there are p trace elements
measured; if all p concentrations in the Q fragment fall within the correspond-
ing range obtained from the K samples, then the two fragments are declared to be
chemically indistinguishable. If one or more of the p elemental concentrations in Q
fall outside of the corresponding range, K and Q are determined to have a different
source. A variation of this approach consists in computing the standard deviation
of the measurements for each element in the K samples and then construct a s − σ

interval around the mean, for some s. As before, the elemental concentrations in Q
would then be declared to be chemically indistinguishable from K if all p values
fall within the corresponding s − σ interval.

Comparison criteria based on univariate intervals or ranges have obvious draw-
backs. First, when measurement uncertainty or the variability of the elemental
concentrations increases, the width of the intervals increases as well which has
the unintuitive effect of making it harder to reject the hypothesis of same source.
Second, the fact that intervals are constructed elementwise, ignores the presence
of correlations (sometimes very high) among elemental concentrations, and con-
sequently the approach is inefficient. Finally, this interval based approach does not
consider the probability of a coincidental match defined as the chance that two
fragments are indistinguishable even if they have a different source. Nonetheless,
the recently revised standard for the analysis and interpretation of elemental con-
centrations obtained by LA-ICP-MS (ASTM-E2927-16 (2016)) recommends that
p univariate s −σ intervals (slightly modified as described in Section 3) be used as
a comparison criterion (Trejos et al. (2013a, 2013b), Dorn et al. (2015)), for s = 4.
Weis et al. (2011) proposed a modified s − σ criterion and again suggested that
s = 4. In the remainder we fix the value of s at 4, as recommended by Trejos et al.
(2013a) and by Weis et al. (2011).

In parallel to these developments, statisticians over the years have proposed
approaches that account for the multivariate nature of the measurements. Parker
(1966) introduced the concept of an index C to assess the similarity between two
items, when the measured attributes are uncorrelated normal variates with known
standard deviations. Curran et al. (1997b) and Campbell and Curran (2009) pro-
posed the use of the Hotelling T 2 statistic with a shrinkage estimator of the co-
variance matrix to compare two multivariate mean vectors. By using a shrinkage
estimator of the covariance matrix, the Hotelling T 2 test is still valid when the
number of features p exceeds the number of observations used for estimation. To
avoid the need to rely on strong distributional assumptions, Campbell and Curran
(2009) proposes a permutation test to derive the null distribution of the statistic.
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Lindley (1977) was the first to move beyond the binary same source/different
source framework and to propose the use of likelihood ratios to compute the odds
of observing a match between two fragments under the competing hypothesis of
same and different source. If Hs and Hd denote the competing propositions of
same and different source, respectively, and fs(y|θs) and fd(y|θd) are the corre-
sponding multivariate densities of the vector of measurements y where fs and fd

are the probability model for y under the same source and different source hy-
potheses, then the likelihood ratio is computed as

(2.1) LR = fs(y|θs)

fd(y|θd)
.

High values of the LR support the same source hypothesis. Curran et al. (1997a)
revisited the likelihood ratio framework and illustrated its use in a small dataset.
Aitken and Lucy (2004) compared interval-based methods to likelihood-ratio
based methods using a dataset consisting of one fragment from each of 62 win-
dows, with five replicate measurements obtained on each fragment. They carried
out a three-dimensional analysis by considering ratios of elemental concentrations
and focusing on those which they believed to be most discriminating. In a simu-
lation study they found that a likelihood ratio with a kernel density estimator of
the variability across sources outperformed the other methods at least in terms of
minimizing the false match and the false nonmatch rates. Scheer (2006) compared
the performance of the likelihood ratio when different methods are used to approx-
imate the density of the measurements under both hypotheses and when varying
the number of elements used in the comparison. It is fair to say that none of these
methods has been adopted for use in actual casework.

Except for the work by Zadora (2009a, 2009b), there have been no other at-
tempts to use machine learning algorithms to either classify glass fragments into
various categories or to compare the elemental composition and the refractive in-
dex of glass fragments. Zadora addressed the question of classification of glass
fragments into a small number (five or six) of different categories–containers,
bulbs, windows, car windows and headlamps. Working with a dataset from Poland
that included one glass sample from each of 23 windows, 25 bulbs, 32 car win-
dows, 57 containers and 16 headlamps, he found that a Support Vector Machine
(SVM) and a naive Bayesian classifier (NBC) did reasonably well when comparing
fragments that had different composition and refractive index but resulted in non-
negligible false same class and false different class decisions when fragments had
similar characteristics (e.g., when classifying fragments of float glass from archi-
tectural and automobile windows). Zadora (2009b) had limited samples of glass
of different types on which to train the algorithms. Furthermore, measurements
were obtained from only four fragments per sample of glass, and each fragment
was replicated three times. Measurements were obtained using scanning electron
microscopy (SEM-EDX) which limited the number of elements with detectable
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concentrations to just eight. In this light we propose the first, to our knowledge,
use of a score-based rule to address the question of source.

Research to develop statistical methods to compare elemental composition of
glass that minimize classification error and that are robust in the sense of perform-
ing well across a variety of datasets has been limited because of the dearth of ade-
quate data. We describe the data that are available to researchers in Section 4 but
note here that there are no datasets in the United States with more than just a few
fragments (three or four) from each pane of glass. As a consequence there are no
datasets that permit estimating consistently a p × p covariance matrix when p ex-
ceeds two or three. As mentioned above measurements obtained via LA-ICP-MS
include values for about 18 elements, so to estimate the within-sample covariance
matrix we would need no fewer than 20 fragments on at least on a subsample of the
glass panes. A dataset collected by the Bundeskriminalamt (BKA, German Fed-
eral Criminal Police) includes one glass pane from which 34 different fragments
were measured. To help alleviate this problem, we are constructing a dataset with
elemental composition of glass fragments using LA-ICP-MS. The dataset includes
measurements of 18 elements on each of 24 fragments per pane (five replicates per
fragment) on as many panes as our budget allows. We describe the protocol for the
collection of these data in Section 4. In this work, and as described in Section 4,
we use two sources of data.

We note that there have been no large, well-designed studies that explore
whether the elemental composition of float glass is stable over time, even within
a single manufacturer. Koons and Buscaglia (2002) mentions that it is possible
to detect differences in the elemental composition of glass within a manufacturer
between production runs. The likelihood-based approach proposed by Aitken and
Lucy (2004) was criticized because of its reliance on a reference population from
which the covariance matrices of elemental compositions across and within glass
panes are obtained. We have observed a time trend in the concentration of some
elements (see Figure 3) suggesting that some drift in the chemical composition of
float glass can be expected. The fact that it is likely that the background popula-
tion of float glass has a variable elemental composition is one of the motivations
for the development of comparison approaches that only rely on glass fragments
collected from the crime scene and from the defendant or the victim. With regard
to the learning approach, we propose in this paper that it reinforces the notion that
algorithms may need to be periodically retrained using updated databases.

3. Methods to compare the elemental concentrations in glass fragments.

3.1. Interval-based match criteria. Suppose that the concentration of p ele-
ments is measured on J fragments from a sample of glass. Each measurement is
replicated L times.

Let yijl be the concentration of the ith element in the lth measurement of the j th
fragment; i = 1, . . . , p, j = 1, . . . , J , l = 1, . . . ,L. The ith mean concentration in
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the j th fragment is denoted by ȳij, and the standard deviation of concentrations
is denoted by SDij which reflects the measurement error variability. The relative
standard deviation (RSD) is the name given by forensic scientists to the coefficient
of variation calculated as the ratio SDij /ȳij .

As mentioned in Section 2, forensic scientists have proposed and evaluated sev-
eral interval-based comparison criteria. We focus on the two criteria that have been
recommended–the standard 4 −σ criterion and the modified 4 −σ criterion (Weis
et al. (2011), ASTM-E2330-12 (2012), Trejos et al. (2013a), Dorn et al. (2015),
ASTM-E2927-16 (2016)). Both of these criteria are implemented by carrying out
p element-wise comparisons.

Standard 4 − σ interval criterion. The method described in Sections 10 of
ASTM-E2927-16 (2016) and ASTM-E2330-12 (2012) consists of the following.
Suppose that we have two glass samples, Q and K , for K the known or refer-
ence sample. Using K and for J,L ≥ 3, compute the p concentration means ȳKi

and the p standard deviations, SDKi , i = 1, . . . , p, over the L × J measurements.
Neither standard explains precisely whether the SDKi is computed using obser-
vations or fragment means; here, we interpret SDKi as the standard deviation of
the observations. ASTM-E2927-16 (2016) recommends that a minimum of nine
measurements of elemental concentrations be obtained from the K sample (three
fragments, three replicate measurements from each) and “as many measurements
as are practical” be obtained from the Q sample. ASTM-E2330-12 (2012) men-
tions “a minimum of three measurements” (see Section 10.1.1) from the K sample
but does not specify the number of fragments. A minimum SD (MSDKi) is fixed
to be 3% of the mean for the ith element in the K sample. Note that regardless
of the number of fragments obtained from K , the standard deviation used to con-
struct the intervals cannot fall below 3% of the corresponding mean concentration.
Further, intervals are constructed using the SD of the measurements and not of the
mean of measurements, so increasing the number of fragments from K does not
necessarily result in narrower intervals. The ith comparison interval for sample K

is then computed as

(3.1) ȳKi ± 4 × max(SDKi,MSDKi).

For J = 3 fragments from K , the 0.975 tail quantile of a t distribution with two
degrees of freedom is 4.3. Therefore, the interval in equation (3.1) is reminiscent of
the standard two-tailed t interval with type I error fixed at 0.05 that would be used
to test the null hypothesis of equal means against the alternative of different means.
Next, elemental concentrations in sample Q are compared to the p intervals com-
puted as in equation (3.1), element by element. If all elemental concentrations in
sample Q are contained in the corresponding intervals, then the two samples are
said to be chemically indistinguishable. This decision is equivalent to failing to re-
ject the univariate null hypothesis of equal mean concentrations for all p elements.
If one or more elemental concentration in sample Q is outside the corresponding
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interval obtained from the J ×L measurements, then the two samples are declared
to be distinguishable. To quote from ASTM-E2330-12 (2012),

If the samples are indistinguishable in all of these observed and measured properties,
the possibility that they originated from the same source of glass cannot be eliminated.

We can represent this comparison criterion in the form of a score, computed as
the absolute value of the difference between the two elemental concentrations in
samples K and Q. Let SASTM,i denote the score for sample K and Q computed for
the ith element. Then

SASTM,i =
∣∣∣∣ ȳKi − ȳQi

max(0.03 × ȳKi,SDKi)

∣∣∣∣,
SASTM = max(SASTM,i ), i = 1, . . . , p,

(3.2)

where ȳKi , ȳQi are the mean concentration of the ith element in the sample K and
Q, respectively, and SDKi is the standard deviation of the ith element measure-
ments on the sample K. As stated in ASTM-E2927-16 (2016), ASTM-E2330-12
(2012), if any of the p SASTM,i larger than 4, then two fragments are declared to
be distinguishable.

Modified 4 − σ criterion with fixed relative SD (FRSD). Weis et al. (2011)
proposed an interval-based criterion called modified s − σ criterion. They found
that s = 4 leads to the best compromise between sensitivity and specificity. Weis
et al. (2011) obtained 90 measurements (mean of three replicates each) from the
German glass standard DGG 1 (Deutsche Glastechnische Gesellschaft, Germany),
and from these, computed a fixed relative standard deviation (FRSD), (expressed
as percent of the mean) for each of 18 elements. When a value was below 3%,
the FRSD was set to 3%. The values of the FRSD are shown in Weis et al.
(2011), Table 7. As in the ASTM standards, analyzing additional fragments from
K contributes to more reliable estimation of the mean, but not to shorter compar-
ison intervals, since their width is fixed by the FRSD. Using these FRSD, Weis
et al. (2011) propose constructing intervals for each element as shown in equation
(3.3):

(3.3)
(

ȳKi

(1 + 4 × FRSDi )
, ȳKi × (1 + 4 × FRSDi )

)
, i = 1, . . . , p,

where ȳKi is the mean concentration of the ith element in sample K . As before,
if the mean concentrations of all 18 elements in Q fall within the corresponding
interval, then the two samples are declared to be chemically indistinguishable. If
one or more mean concentrations in Q is not contained in its interval, then the two
samples are declared to be nonmatches.
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The modified 4 − σ criterion in equation (3.3) can also be transformed into a
score as in equation (3.4):

SBKA,i =
∣∣∣∣exp(| log ȳKi − log ȳQi |) − 1

FRSDi

∣∣∣∣,
SBKA = max(SBKA,i), i = 1, . . . , p.

(3.4)

3.2. Parametric approaches. Campbell and Curran (2009) suggested that a
better alternative to the range overlap or the 4 − σ methods was to use a Hotelling
T 2 test for the comparison of two or more multivariate mean vectors. To overcome
the challenges imposed by the limited information available for estimation of well-
conditioned p-dimensional covariance matrices, they recommended a shrinkage
estimator of the covariance matrix. The form of the Hotelling T 2 statistic is the
usual, but the sample covariance, S, is replaced by a shrunken estimate, �̂s . The
statistic is

(3.5) T 2 =
(

MK × MQ

MK + MQ

)
(ȳK − ȳQ)�̂−1

s (ȳK − ȳQ),

where MK and MQ are the number of observations in samples K,Q and (ȳK − ȳQ)

is the difference in mean vectors in samples K , Q.
When the number of measurements MK is smaller than the number of elements

p, the shrinkage estimator of the covariance matrix is more efficient, always pos-
itive definite and does not rely on assumptions about the underlying distribution
of the measurements. Following Schäfer and Strimmer (2005), Campbell and Cur-
ran (2009) estimated the covariance matrix by shrinking (James-Stein shrinkage
estimator) the sample covariance matrix S toward a target structured matrix F , so
that

�̂s = δ̂∗F + (
1 − δ̂∗)

S,

where δ̂∗ is an optimized shrinkage constant and the target F is the p-dimensional
matrix with identical pairwise correlations (Ledoit and Wolf (2003)). We use T 2

as a test statistic (score) to quantify the similarity of float glass fragments.
Parker (1966, 1967) proposed an index, C, to quantify the similarity between

two items when the features are uncorrelated and have known standard devia-
tions. Parker (1967), Parker and Holford (1968) discussed the effects of correlation
among attributes on the discrimination question and suggested a test statistic H

for which they derived a sampling distribution. They showed that H is the optimal
test in the sense of Birnbaum (1954) when attributes are correlated normal vari-
ates with unknown standard deviations. Because elemental concentrations in glass
fragments tend to exhibit dependencies, we used the optimum test statistic H as
the additional test statistic (score) to assess the similarity of float glass fragments.
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3.3. Supervised learning approaches. In practice, forensic scientists do not
have much information with which to compare glass from a crime scene and glass
recovered from the suspect. This poses a challenge. If the comparison is based
exclusively on the data at hand (as is proposed in ASTM-E2927-16 (2016)), the
standard deviation SD of the p elements in the K sample will be poorly estimated,
unless a very large number J of fragments from K is included in the comparison.
On the other hand, if the comparison relies on estimates of standard deviation such
as the FRSD in Weis et al. (2011), then the forensic practitioner needs to justify
that those values are plausible when comparing fragments obtained in the specific
case under investigation.

We propose a different approach. Suppose that we have a large number of frag-
ments from samples of float glass from a wide variety of manufacturers in the
United States (and perhaps other countries as well) for which we know ground
truth. That is, we know which fragments in the dataset came from which pane of
glass. Just 2000 glass fragments allows for almost 2,000,000 different pairwise
comparisons, some of which will be between known mated (KM) and some be-
tween known nonmated fragments (KNM). We propose to quantify the similarity
between the two fragments in each pairwise comparison via a data-driven score. If
the distributions of values of the score among KM and among KNM pairs do not
overlap or have minimum overlap, then the score can be used to classify a pair of
fragments as mated or as nonmated. Figure 2 illustrates the idea.

In practice, a forensic examiner would compute the score for the pairwise com-
parisons in the case on which she is working. Suppose that, following ASTM-
E2927-16 (2016), the examiner obtains L = 3 replicate measurements on J = 3
fragments from K . As, in current practice, the practitioner would obtain an aver-
age elemental concentration to represent K and would then calculate the similarity

FIG. 2. Hypothetical distributions of a score among mated and nonmated pairs of fragments.
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between the “average” K fragment and the Q fragment(s). Alternatively, the prac-
titioner might compute three similarity scores, one between each fragment from
K and the Q fragment(s), and use the smallest (most favorable to the suspect) to
address the question of source. We discuss these alternatives later in this paper. If
the sample of fragments used to construct the distributions in Figure 2 is drawn
from a relevant population of glass fragment sources, then the examiner can eval-
uate the probative value of the evidence by comparing her score(s) to the reference
distributions of scores. Under the hypothetical distributions shown above, a score
below 6 or 7 suggests that the fragments are distinguishable, while a score of 12 or
above would suggest that the two fragments have very likely originated from the
same source of broken glass. Scores between 9 and 11 in this hypothetical example
are equally likely under both distributions and therefore do not support any of the
two decisions. Clearly, given one or more databases of glass fragments as the one
we described above, it would also be possible to proceed as in Aitken and Lucy
(2004) or as in Campbell and Curran (2009) and implement a parametric approach
to compare compositional means. In this case, it would be necessary to rely on
additional assumptions.

In the forensic context, learning algorithms present several advantages: (1) They
account for the multivariate nature of elemental compositions. We know that ele-
mental concentrations tend to be highly correlated (see Figure 4) and, potentially,
also associated in nonlinear ways. (2) Learning algorithms provide a ranking of
the variables that are most discriminating. (3) Most algorithms compute an em-
pirical class probability (score) or the empirical membership probability that the
pair of fragments have the same source or a different source. We can use the esti-
mated empirical probability of common source as the score. High scores are then
suggestive of a common source for the fragments, whereas low scores would be as-
sociated with pairs of fragments known to originate from different pieces of broken
glass. The rate of correctly determining whether two fragments have a common or
a different source depends on the threshold we select for the score. ROC curves
can help select a threshold that minimizes the false match and the false nonmatch
decisions. (4) Once the algorithm has been trained it can be used to compute the
similarity between a single pair of fragments or to compare multiple fragments
from two panes of glass.

A drawback associated with supervised learning methods is that they depend
critically on the data used to train the algorithms and often suffer from overfitting.
Overfitting occurs when the classifier mistakenly includes noise in the training
data as part of the information contained in the features. In this light, it is impor-
tant to note that the similarity scores produced by these methods are strongly data
dependent. Two approaches to minimize overfitting include resampling or k-fold
validation. In addition, setting aside a portion of the data for testing purposes only
is also recommended. We implemented both of these measures in our analysis.
Also, except in simple cases, algorithms are “black boxes” in that the relationships
between the predictors and the response are not explicitly estimated. In the forensic
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context, the items that are used to estimate the distribution of scores among non-
mated pairs depends on whether the examiner is attempting to answer a specific
source or a common source question. This topic is the source of much discussion
in the forensic literature (e.g., Hepler et al. (2012), Morrison and Enzinger (2016),
Lund and Iyer (2017), Ommen and Saunders (2018)). Because the classification
rule obtained from a learning algorithm may change if more pairs of fragments
are included in the training dataset, it is important to clearly define the concept
of a relevant background population and to explore the variation in the chemical
composition of glass over time and over manufacturers.

There are several algorithms in the general class of supervised learning methods.
Here, we focus on two classifiers: random forests (Breiman (2001)) and Bayesian
Additive Regression Trees (BART; Chipman, George and McCulloch (2010)). We
compare their performance to that of the two interval based classifiers in ASTM-
E2330-12 (2012) and in Weis et al. (2011) and to the two parametric methods
proposed by Campbell and Curran (2009) and Parker and Holford (1968). The
comparison criterion is the classification error (false positives and false negatives)
that results when applying the algorithm to a set of pairs of fragments that were not
included in the dataset used to train the algorithms (in the case of RFs and BART).

The random forest and the BART methods produce estimated empirical class
probabilities for each sample comparison. The similarity score of the random forest
is computed as the average of the empirical class probabilities predicted by each
tree from a set of bootstrap samples. The empirical class probability of the BART
is the conditional probit (CDF of the standard normal distribution) evaluated at the
sum of tree predictions given a specific set of features. We use a threshold for the
score equal to 0.5. If the empirical class probability for “same source” exceeds 0.5,
then we say that the evidence supports the common source proposition. If not, we
conclude that the fragments originate from different pieces of broken glass. Scores
that are close to the threshold suggest more uncertainty about the decision than
scores that are close to 0 or to 1.

4. Data sources. We use three datasets to train, test and compare algorithms.
In all three datasets the concentrations (in ppm) of 18 elements were measured
using LA-ICP-MS. Following ASTM guidelines, we used the NIST 1831 standard
and two German standards FGS-2 and DGG 1 to calibrate the instruments and
monitor drift.

Datasets 1 and 2. The first two datasets used in this paper are described in
Weis et al. (2011). Dataset 1 includes one fragment from each of 62 different float
glass samples and obtained from different countries and manufacturers. Dataset 2
consists of multiple fragments from a single glass pane purchased in Virginia and
analyzed by the FBI. A total of 34 different fragments from the Virginia pane were
analyzed. In addition, one of the fragments (fragment 104G) was reanalyzed on
11 consecutive days. Therefore, there are 44 18-dimensional measurement vectors
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from the Virginia pane. In the remainder we use X to denote the Virginia pane. In
both datasets measurements on each fragment were replicated six times.

Dataset 3. These data were collected by Iowa State University, in collabo-
ration with University of Iowa, as part of an effort to construct a dataset to be
put in the public domain. At present the dataset includes 31 panes manufac-
tured by Company A and 17 panes manufactured by Company B. The Company
A panes are labeled AA,AB, . . . ,AAR, and the Company B panes are labeled
BA,BB, . . . ,BR. Because the panes from Company A were produced within three
weeks (January 3 to 24, 2017) and the panes from Company B were produced
within two weeks (December 5 to 16, 2016), we expect them to be more similar
to each other than to other panes produced by different manufacturers or by the
same manufacturer but at a different time. To understand variability within a rib-
bon of glass, two glass panes were collected on almost all days–one from the left
side and one from the right side of the ribbon. Twenty four fragments were ran-
domly sampled from each glass pane. Five replicate measurements were obtained
for 21 of the 24 fragments in each pane; for the remaining three fragments in each
pane, we obtained 20 replicate measurements. Dataset 3 contains almost 8000 18-
dimensional measurement vectors from over 1150 fragments. Resources includ-
ing the manuscript, glass measurements and R code to reproduce the analysis can
be found in https://github.com/CSAFE-ISU/AOAS-2018-glass-manuscript. We do
not post the German Datasets 1 and 2, because they do not belong to us. We also
include in the repository a detailed explanation of the analytical methods used to
obtain the elemental concentrations.

5. Exploratory data analysis. As a first step we log transformed the elemen-
tal concentrations for each element, so that their distributions were less skewed.
The 18 elements for which we obtained a concentration were Ca, Na, Mg, Al, K,
Fe, Li, Ti, Mn, Rb, Sr, Zr, Ba, La, Ce, Nd, Hf and Pb. Figure 3 shows the distri-
bution of log values of Na, Ti, Zr and Hf by manufacturer. In the figures, the 31
panes obtained from Company A and the 17 panes from Company B are shown in
order of production date. The last box corresponds to pane X from Dataset 2. For
Ti there is a large difference in concentration between samples from Company A
and from Company B. Pane X from Virginia differs from the samples from Com-
pany A and Company B with respect to almost all elements. Over the three weeks
of sampling, most elemental concentrations in Company A and Company B panes
stay approximately constant; the exceptions are Zr and Hf in panes from Company
A, where a decreasing trend in time is apparent. We drew the same boxplots using
the elemental concentrations of the 62 fragments from different sources in Dataset
1 (figure not shown). As expected, we observed larger variability in elemental con-
centrations among these fragments.

In contrast to the statement in Curran et al. (1997b), we find that elemental
concentrations tend to be highly correlated within pane. In Figure 4 we show the

https://github.com/CSAFE-ISU/AOAS-2018-glass-manuscript
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FIG. 3. Box plot of four elemental compositions in 49 panes from Company A and Company B by
date of production, and pane X.

correlations among 18 elements for panes AAR and X—just as illustration. The
shaded entries correspond to absolute correlations above 0.5. Note that at least for
these two panes, the estimated correlation matrices appear to be different.

FIG. 4. Correlations among elemental concentrations in panes AAR and X.
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FIG. 5. Histogram of four feature values among mated (black) and nonmated (gray) pairs in the
training set.

Figure 5 shows the distribution of differences for four of the elements (Zr, Ti,
Hf, Nd) when pairs of fragments are mated (KM, shown in black) or nonmated
(KNM, shown in gray). The distributions shown in black correspond to differences
in concentrations among KM pairs of fragments and, as expected, are concentrated
around 0 (black vertical line). Differences in concentrations among KNM pairs
shown in gray; however, they are more spread out and not centered at 0.

6. Analyses and results. We carried out several separate analyses using dif-
ferent combinations of the datasets to train the supervised learning algorithms and
obtained comparable results in all cases. We report on one of them only. We found
that, at least in this particular application and with these particular datasets, learn-
ing models outperform both of the interval-based criteria that are currently in use,
as well as the two parametric approaches we considered. In the remainder of this
paper, we analyze Datasets 1, 2 and 3. Let yhij l denote the log of the concen-
tration of the ith element in the j th fragment of the hth pane, for the lth repli-
cate, for i = 1, . . . ,18, j = 1, . . . ,24, h = 1, . . . ,49 (except for pane X for which
j = 1, . . . ,34), and l = 1, . . . ,5 (except for pane X, where l = 1, . . . ,6, and for
three fragments in each pane for which we obtained 20 replicate measurements).
In Dataset 1, h = 1, . . . ,62 and j = 1. The average measurements over the five (or
six) replicates are denoted ȳhij for each element in each fragment and pane. The
vectors of features are the 18 differences in concentrations ȳhij − ȳh′ij ′ . When
h = h′, j �= j ′, the comparison is among mated pairs of fragments, and when
h �= h′, j �= j ′, the comparison involves nonmated pairs. These feature vectors
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are computed for all possible pairs of fragments. We center and scale the measure-
ments in the subsets of the data that we use to train the supervised learning algo-
rithms. The models are fitted using a 10-fold cross-validation, as explained below.
In each model the tuning parameters were optimized to improve model fitting. To
do so, we used the package caret for the construction of random forest model
and bartMachine (Kapelner and Bleich (2013)) for implementing BART in R,
version 3.3.3. In the tuning step, which was repeated three times, performance of
an algorithm with a specific set of parameters is assessed using the area under the
ROC curve (AUC), the sensitivity and specificity of the classifier. For the BART
model we used the default values in bartMachine (Kapelner and Bleich (2013),
Chipman, George and McCulloch (2010)) for the hyperparameters for the under-
lying Bayesian probability model with the number of trees (m) fixed at 100.

To implement the supervised machine learning methods, we divided our dataset
into two portions, one that we used for training and validating, and another one
that we used to estimate an honest out of bag (OOB) error rate. The training data
consisted of 19 panes produced by Company A, and nine panes produced by Com-
pany B, for a total of 7705 pairs of fragments known to come from the same pane
(KM). For creating the known nonmated pairs we included the 62 float glass sam-
ples from Dataset 1, in addition to fragments from 28 panes in Dataset 3. We had
a total of 260,573 pairs known to come from different panes (KNM). Several of
those panes were manufactured on consecutive days; so, we expected that it would
be difficult to correctly allocate fragments to panes when two panes from the same
manufacturer were produced one day apart. To carry out the 10-fold validation, the
training data were divided into 10 equally sized partitions; nine of the partitions
were used to build a random forest that was then tested on the 10th partition. The
final forest is obtained as an average over the 10 validation replicates. We do not
report the classification error obtained from the internal validation samples.

The internal classification error computed from the 10-fold validation sub-
samples is likely to underestimate the true classification error because the training
and validation subsamples inevitably include fragments from the same pane. In-
stead, we computed an honest OOB error rate as follows. We set aside a portion of
the measurements consisting of 12 Company A and eight Company B panes, plus
pane X, for the purpose of testing the performance of the machine learning algo-
rithms. Neither the fragments nor the panes in the test dataset were included in the
data set used for training and validating the RF and BART. Of a total of 111 panes
of glass in our combined dataset (see Table 1), 90 panes were used to train the RF
and the BART, and 21 panes were used to compare the classification performance
of the six algorithms we consider here.

Sampling pairs of fragments to train the RFs and BART for classification. The
subset of the data we use to train the algorithms is unbalanced, in that there are
almost 30 times more pairs of fragments from different panes than from the same
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TABLE 1
Panes included in the training/validation and in the testing data subsets

Training and validation set Test set

Pane Date Pane Date Pane Date Pane Date

AA 1/3 AAH 1/19 AB 1/3 BF 12/7
AC 1/4 AAI 1/20 AD 1/4 BH 12/9
AE 1/5 AAK 1/21 AF 1/5 BJ 12/9
AG 1/6 AAM 1/22 AH 1/6 BL 12/12
AI 1/7 AAQ 1/24 AJ 1/7 BO 12/15
AK 1/8 BA 12/5 AL 1/8 BR 12/16
AM 1/9 BC 12/7 AX 1/14 X NA
AO 1/10 BE 12/7 AAB 1/16
AV 1/13 BG 12/9 AAD 1/17
AW 1/14 BI 12/9 AAJ 1/20
AY 1/15 BK 12/12 AAL 1/21
AAA 1/16 BM 12/14 AAR 1/24
AAC 1/17 BN 12/15 BB 12/5
AAF 1/18 BP 12/16 BD 12/7

Data 1 : 62 panes

28 panes + 62 panes 21 panes

pane. As a consequence the information contributed by the KNM pairs can domi-
nate the learning process. Several approaches have been proposed in the literature
that address the question of imbalance for random forests and other classifiers.
Those approaches are based on the idea of differential weighting, which has the
effect of increasing the cost of misclassification in the minority class, or, on the
idea of sampling, to even out the number of observations in each of the classes.
Sampling can consist in downsampling the majority class, upsampling the mi-
nority class or a combination of both (e.g., Random Over-Sampling Examples,
ROSE (Lunardon, Menardi and Torelli (2014)); Synthetic Minority Oversampling
Technique, or SMOTE (Chawla et al. (2002))). We implemented five different ap-
proaches to address the imbalance in our sample; a comparison of the performance
of the different approaches is shown in Figure 6. Figure 6 shows the range of values
of AUC, sensitivity and specificity from the 30 resampling process (10-fold valida-
tion and tuning with three replicates). From the figure it seems that for the internal
validation set, SMOTE and downsampling outperform the other approaches.

Figure 7 confirms those results. In the figure we show the ROC curves for the RF
fitted to the imbalanced test data and for the five sampling or weighting schemes
we considered. The bottom panel of the figure zooms into the upper left-hand
corner of the ROC in the top panel and shows that downweighting the majority
class or using a combination of down and upweighting (SMOTE) results in the
classifiers with best performance in the sense of maximizing the AUC, sensitiv-
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FIG. 6. ROC (AUC), sensitivity and specificity of RF with optimized parameters in the training set
by sampling technique.

FIG. 7. ROC curves for random forests by weighting and sampling techniques.
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TABLE 2
TPR at fixed FPR at 5%, 10% and 15% for random forests by weighting and sampling techniques

Sampling TPR (5%-FPR) TPR (10%-FPR) TPR (15%-FPR)

SMOTE 0.863 0.963 0.984
Down 0.853 0.958 0.983
UP 0.868 0.958 0.974
Weighted 0.869 0.943 0.963
Original 0.868 0.940 0.959

ity and specificity. The estimated AUC for downsampling and SMOTE are 0.977
and 0.978, respectively, with approximate 95% confidence intervals for the true
AUC equal to (0.938,1.000) for downsampling and (0.941,1.000) for SMOTE
(DeLong, DeLong and Clarke-Pearson (1988)), suggesting that there are no sig-
nificant differences in AUC between the two approaches. Here, we used a con-
servative estimate of the variance of AUC where instead of the number of pairs
of fragments in the comparisons we used the number of independent panels of
glass in the denominator. The rest of the sampling methods resulted in estimates
of AUC that were significantly lower. Table 2 shows the TPR values when FPR
is fixed at 5%, 10% and 15%. The random forest trained with SMOTE or down-
sampling outperform the alternatives, confirming the findings discussed above. In
the remainder we strike a compromise between performance and computational
efficiency and use downsampling of the majority class to ameliorate the effect of
imbalance.

7. Comparisons among methods. We compare the performance of the two
learning algorithms we consider to the performance of the two prevailing interval-
based methods: the standard 4−σ criterion (ASTM-E2927-16 (2016), Trejos et al.
(2013b)), and the modified 4 − σ criterion (Weis et al. (2011)). We also include
two parametric tests in the comparison: the optimum test statistic H (Parker and
Holford (1968)), and the Hotelling T 2 statistic with a shrinkage covariance estima-
tor (Campbell and Curran (2009)) which can be implemented using the R package
Hotelling. As recommended by Parker and Holford (1968), the statistics H is
tested on the log transformed values. We use the same test dataset in the compari-
son, but note that for the two interval-based and the two parametric classifiers, we
do not need to train the algorithms.

The number of mated and nonmated pairs on the set-aside data that we use to
compare the classification performance of the different methods depends on the
number J of fragments from K obtained by the forensic scientist. If J = 1, there
are 5590 known mated pairs of fragments and 123,805 known nonmated pairs of
fragments in the 21 panes in the test dataset (see Table 1). ASTM-E2927-16 (2016)
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recommends that at least three fragments with at least three replicated measure-
ments be used to compute the mean and SD of each of the p elemental concen-
trations. Here, we followed those recommendations, and, in what follows, both
interval-based methods and both parametric methods were implemented using the
mean of 15 measurements (three fragments, five replicated measurements). For the
two learning algorithms we report two sets of results. The first set is obtained by
computing the similarity score between the mean of the 15 measurements from K

and the average of five replicated measurements from Q. The second set is ob-
tained by computing three similarity scores, one for each fragment mean from K

and the fragment mean from Q, and then using the smallest score for classification.
This approach is favorable to the defense, in that it results in lower probability of
declaring that two fragments are chemically indistinguishable. In the second case
we randomly select three fragments from K for each questioned fragment. For
the purposes of these comparisons, we constructed 30 comparisons for each ques-
tioned fragment Q, each including three fragments in K . This resulted in 15,300
pairs of fragments known to have originated from the same piece of broken glass
and 150,060 pairs of fragments known to have originated from different panes.

Table 3 shows the honest OOB classification errors when each of the methods
was used to classify the pairs of fragments in the test set. We used a threshold
equal to 0.5 in the RF and in BART, so that two fragments were declared to orig-
inate from the same pane of glass when the score exceeded 0.5. We only show
the results obtained when the majority class was downsampled; results obtained
using SMOTE were almost identical. We implemented the Hotelling T 2 approach
using the R package Hotelling Campbell and Curran (2009) with a shrinkage
covariance estimator and a randomization method to test the null hypothesis of
no difference between fragments at the 5% significance level. To compute the p-
value for Parker’s optimum test statistic, we used the table on page 244 in Parker
and Holford (1968). Since we have 18 features, we approximated the upper 5%

TABLE 3
Out-of-bag classification errors on test set. RF-Mean and RF-Min are labels for the RF classifier
based on the average of 15 measurements on the K sample or on the minimum of three similarity
scores obtained from three K fragments, respectively. The same is true for the BART-Mean and

BART-Min labels. FNR is False Negative Rate and FPR is False Positive Rate

Error RF-Mean RF-Min BART-Mean BART-Min

FNR 0.0235 0.1290 0.0220 0.1341
FPR 0.0964 0.0564 0.0954 0.0490

Error Standard 4 − σ Modified 4 − σ Hot-T 2-shrinkage Opt. test

FNR 0.0559 0.4482 0.7798 0.7657
FPR 0.1866 0.0628 0.0006 0.0042
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tail of the distribution of the statistic by simulation, as suggested by the author,
and found that the threshold, for the test statistic when the number of features is
18 and the degrees of freedom is also 18, was 30.03.

From the results in Table 3, we see that the two learning algorithms, when im-
plemented with downsampling with all 18 features, strike a good compromise be-
tween minimizing the false positive and the false negative rates (FPR and FNR, re-
spectively). The learning classifiers that compare the average fragment in K with a
fragment from Q exhibit FPR between 9.5% and 9.6% and FNR between 2.2% and
2.3% approximately. As expected, the classifier that is most favorable to the de-
fendant has smaller FPR of 4.9% and 5.6% and FNP about 13%. The Hotelling T 2

shows the smallest FPR among all methods, but at the expense of incorrectly mis-
classifying 78% of all pairs of fragments known to have a common source. Parker’s
optimum test statistic also exhibits a low (0.5%) false positive rate but a high false
negative rate. The standard interval approach proposed in ASTM-E2927-16 (2016)
is dominated by all of the learning algorithms, including the RF that relies on the
minimum of three scores. The poor performance of the two interval-based criteria
is most likely due to the fact that both approaches ignore the dependence structure
among elemental concentrations and rely on poorly estimated standard deviations.
We discuss this further in Section 9.

One useful attribute of BART over other classifiers is that it provides a measure
of the uncertainty associated with estimated empirical class probabilities. Figure 8
shows the estimated empirical class memberships and corresponding 95% credible
sets for pairs of known mates (left panel) and known nonmates (right panel) for 100
randomly selected pairs in each class. Notice that low (high) estimated empirical
probabilities of membership in the mated (nonmated) class have wide credible

FIG. 8. Class probability by BART down sampling and its credible interval on 100 random KM and
KNM in the test set.
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FIG. 9. ROC curve of eight classifiers on the same out-of-bag test set.

sets. This suggests that false positive and false negative classifications are subject
to more uncertainty than true positive or negative classifications.

As an additional diagnostic we inspect the ROC curves for the honest out-of-
bag test set for the eight classifiers in Table 3. To draw the curves, we considered
10,000 thresholds for each classifier. In the case of RF and BART, the 10,000
thresholds took on values between 0 and 1. For all other classifiers we considered
10,000 threshold values between the minimum and the maximum values of the
corresponding scores. For the four machine learning classifiers we use majority
voting rate as the score, as discussed earlier. The form of the scores that correspond
to the two interval-based criteria are given in equation (3.2) and equation (3.4). In
the case of the two parametric tests, the test statistics themselves constitute the
score. Figure 9 shows the ROC curves corresponding to the eight classifiers (top
panel), and a zoom-in to the upper left corner of the figure in the bottom panel.
Results are consistent with those shown in Table 3.

An alternative way to evaluate the different approaches is to estimate the thresh-
old value at which classification performance is optimized. Table 4 shows the esti-
mated AUC and equal error rate for all classifiers, as well as the lowest achievable
(for these particular data) false positive and false negative rates given an optimal
threshold. Note that in the case of the standard 4 − σ criterion, the optimal thresh-
old is 3.3, relatively close to the stated threshold equal to 4. For the random forest
and BART classifiers that use the mean measurement vector of the K fragments,
the optimal thresholds are close to 0.5 which is sometimes adopted as the default
threshold when scores take on values between 0 and 1. Results shown in Table 4
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TABLE 4
Area Under the ROC Curve (AUC) and equal error rate (EER) of existing classifiers

Model AUC EER Opt. threshold FPR FNR

RF-Mean 0.984 0.061 0.590 0.076 0.037
BART-Mean 0.982 0.062 0.537 0.090 0.026
BART-Min 0.978 0.075 0.228 0.095 0.047
RF-Min 0.975 0.080 0.330 0.101 0.049

Hotelling T 2 shrinkage 0.966 0.100 244.208 0.096 0.104
Standard-ASTM 0.954 0.122 3.300 0.142 0.0984
Optimum test statistic 0.926 0.162 125.956 0.136 0.184
Modified s − σ Criterion 0.899 0.204 12.961 0.298 0.096

suggest that–at least for the glass samples we analyzed–the RF and BART clas-
sifiers with the mean K measurement vector perform best in the sense of jointly
minimizing the false positive and false negative rates.

8. The impact of the classifier on the score-based likelihood ratio statistic
(SLR). The use of a likelihood ratio framework to quantify the strength of the
evidence has been proposed by, for example, Lindley (1977), Aitken and Lucy
(2004), and Hepler et al. (2012). A likelihood ratio (equation (2.1)) represents the
odds of observing a match between two fragments under the competing hypothe-
sis of same or different source. A high value of the LR supports the same source
hypothesis, whereas low LR values close to 0 tend to support the hypothesis of
different source. Some authors however have urged caution, in that producing an
LR statistic in any specific situation typically relies on assumptions that can have
impact on the resulting statistic (Lund and Iyer (2017)). In this section, we illus-
trate that even when using the same set of data, the LR based on a classification
score can vary dramatically, depending on the properties of the score.

For illustration we compute the distribution of scores obtained from a random
forest with downsampling and the standard 4 − σ interval approach proposed by
Trejos et al. (2013b) using the 6710 pairs of mated fragments and 54,020 pairs of
nonmated fragments with panes used to train the algorithms—described in Sec-
tion 6. In both cases we used the mean of 15 measurements obtained from the K

sample. We used the training dataset to mimic the scenario where a forensic scien-
tist has a reference set of scores that she can use to determine the significance of
a similarity computed from a casework sample. We used a nonparametric density
estimator to estimate the densities fs , fd shown in Figure 10 and checked their
reasonableness using a goodness-of-fit test. Here, fs and fd denote the densities
of the scores of mated and nonmated pairs of fragments.

Figure 10 shows the two estimated densities for scores produced by a random
forest with downsampling and by the standard 4 − σ interval method (ASTM-
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FIG. 10. Density plot of scores computed by random forest and using the standard 4−σ approach.

E2927-16 (2016)). In both panels the dark gray density corresponds to scores ob-
tained for KM pairs, and the light gray density corresponds to the scores computed
from the KNM pairs. On the top panel the black vertical line represents the thresh-
old equal to 0.5, which we used to classify pairs into one of the two classes. In the
bottom panel, the tail of the gray distribution extended to values over 4,000; we
only show the estimated density for values of the score less than 100. In the bottom
panel, the vertical line is drawn at the value 4, the threshold implied in the Trejos
et al. (2013b) method. Both classifiers made the most mistakes when comparing
two fragments from different panes that were produced by the same manufacturer
on consecutive days.

The mated and nonmated score distributions obtained from the random forest
scores have a small overlap that is due to the long right tail of the distribution of
nonmated scores. About 4% of the mass of the nonmated score distribution is on
scores over 0.5. For the densities computed using the standard interval scores, the
overlap is higher, in particular for values of the score below 10. The estimated
distribution of nonmated score by standard interval is also very long tail with 1%
of them larger than 500 with maximum of 4879. It is also bimodal, and about 46%
of its mass is on scores below 25. These scores arose from the comparison between
fragments from different panes but produced by the same manufacturer and within
a day or two.

Suppose that a forensic examiner in the course of evaluating some crime scene
evidence, has to compare the pairs of fragments shown in the first two columns
of Table 5. Suppose further that the examiner computes the corresponding scores
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TABLE 5
The impact of two classifiers on the value of the SLR

Comparison Random forest Standard 4 − σ

Pane-Frag. Pane-Frag. Truth Score SLR Score SLR

AB-2 AB-24 SP 0.986 175.81 1.59 14.40
BB-1 BB-5 SP 0.946 32.33 3.20 2.36
AB-2 BB-2 DP 0.000 4.30 × 10−14 35.9 3.59 × 10−11

AB-2 AF-2 DP 0.160 9.14 × 10−3 5.23 0.471
BB-14 BD-2 DP 0.556 0.418 3.78 1.42

using the RF trained on the background data and the interval score described in
Trejos et al. (2013b) and in ASTM-E2927-16 (2016). Using the estimated densi-
ties from Figure 10, we computed the SLR for each of the five comparisons and
the two different scores. With the exception of the last pair of fragments, an ex-
aminer who uses the RF scores, will classify all pairs correctly and will obtain LR
values that are clearly in support of the same or of a different source decision. The
last pair of fragments was produced on consecutive days; fragments are similar
enough to result in a score just barely above the 0.5 threshold. The corresponding
SLR, however, would lead the examiner to correctly conclude that fragments come
from different panes. If instead she uses the interval-based score, she will also in-
correctly classify the last pair of fragments in the table and, in addition, will obtain
SLR values that are ambiguous for most of the comparisons. The conclusion is
that the range of values that the SLR can take on, and, therefore, the assessments
of the score-based weight of evidence, is strongly dependent on the discriminating
power of the scores on which classification decisions are based. Several authors
(e.g., Morrison and Enzinger (2016), Hepler et al. (2012)) have observed that LR
based on scores can exhibit unexpected behavior.

9. Discussion. In the United States’ criminal justice system, triers of fact or
jurors are typically expected to decide whether the evidence supports the prose-
cutor’s or the defense’s propositions. To do so, jurors rely on summaries of the
evidence presented by experts during trial. In this paper, we propose a learning ap-
proach to summarize the evidence and compare its performance to the performance
of other methods in the literature.

The community of forensic glass examiners has for years advocated the use of
interval-based match criteria to decide whether two glass fragments are chemically
indistinguishable. The two approaches that are currently considered to be state of
the art were developed using limited data. We do not know of any dataset with
elemental concentrations in glass that would permit obtaining well-conditioned
estimates of covariance matrices of 12 or more elemental concentrations. This is
a serious handicap given that dependencies among elemental concentrations are
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present, and estimated pairwise correlations tend to be large in absolute value. We
have begun collecting elemental concentration data using LA-ICP-MS in collabo-
ration with colleagues in the University of Iowa, and we plan on putting the data
in the public domain for the benefit of the general scientific community. Forensic
databases tend to be proprietary, unfortunately. For example we requested the data
that were analyzed by Dorn et al. (2015) but were denied access to them.

Our results suggest that supervised machine learning algorithms may provide a
better summary of the evidence than interval-based methods. The two algorithms
on which we focused here—random forests and BART–exhibited good classifica-
tion performance when tested on a dataset that was not used in the training or val-
idation of the algorithms. Furthermore, the learning algorithms do not rely on the
standard hypothesis testing framework which, as discussed in Section 1, appears
to violate the principle of “innocent until proven guilty.” To implement BART, a
probability model is implied; this is not true for RFs which are fully nonparametric
methods. Both algorithms make no assumptions about the structure of the relation-
ships among features. Two major challenges with supervised learning methods are
their reliance on the training dataset and their potential for overfitting; both of these
shortcomings affect the predictive ability of the algorithms. In the forensic context,
the data on which the algorithms are trained can have an enormous effect on the
answers to specific or common source questions of interest to forensic scientists.
In the case of the forensic analysis of glass, it might be necessary to assemble dif-
ferent training datasets for different types of glass, for example, from automobile
windows, from containers and bottles, from headlamps, etc., if it is found that these
types of glass differ significantly in terms of their chemical composition. This is
a matter that requires further research and much larger datasets. In this work, we
did not include RI as an additional classification feature because we did not mea-
sure it for Dataset 3 fragments. However, a more complete reference dataset might
include RI as well as other potentially discriminating features in glass.

One additional drawback of machine learning algorithms is that they tend to be-
have like black boxes. An attractive property of RFs, however, is that they permit
ranking the features in terms of their importance for classification purposes. There
are several reasons to carry out variable selection when growing a random forest:
(1) To decrease training time, (2) to avoid the curse of dimensionality and over-
fitting and (3) to simplify the model and improve interpretability. In addition, we
expect that in a highly multivariate data setting, not all features (elemental concen-
trations) will be equally discriminating. In the case of comparisons among glass
fragments, it may be possible to work with fewer than 18 elements without losing
discrimination power.

Figure 11 shows the variable importance estimated by a random forest trained
with downsampling (left panel) and SMOTE (right panel). Importance is scaled to
take on values between 0 and 100, and in Figure 11 elements are shown in decreas-
ing order of importance. To select the most discriminating subset of features, we
monitor the increase in error (or decrease in importance) as we move down the list.
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FIG. 11. Variable importance from the random forest with down sampling or SMOTE.

The set of nine most discriminating elements includes K, Ce, Zr, Ti, Hf, Rb, Al,
Fe and Mn, regardless of the sampling approach. We compared the performance of
the classifiers when using the full set of 18 features, the nine most discriminating
features and the subset of 12 elements that have been identified as important and
that are known to be good discriminators (e.g., Dorn et al. (2015)). In terms of
AUC, results were similar whether based on the full set of features or on the sub-
sets with nine or 12 features, but there was some loss in sensitivity and specificity
when subsets of the features were used to train the classifiers.

Oftentimes in casework, forensic scientists are able to obtain multiple fragments
from the broken glass at the crime scene. The ASTM standards recommend that at
least three fragments be obtained from the reference sample at the crime scene, and
that on each fragment, measurements be replicated three times. To explore whether
increasing the number of reference fragments would have an impact on the clas-
sification ability of the standard 4 − σ and the modified 4 − σ approaches, we
repeated the comparison described in Section 6 using three, six, nine and 12 frag-
ments from K with measurements on each fragment replicated five times. Table 6

TABLE 6
Out-of-bag classification errors on test set using 3, 6, 9 or 12 control samples

Standard 4 − σ

Error 3 controls 6 controls 9 controls 12 controls

FNR 0.0559 0.0176 0.0067 0.0042
FPR 0.1866 0.1948 0.2017 0.2043

Modified 4 − σ

Error 3 controls 6 controls 9 controls 12 controls

FNR 0.4482 0.4303 0.4184 0.4203
FPR 0.0628 0.0646 0.0662 0.0674
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shows the results we obtained. The performance of the modified 4 − σ algorithm
did not change. This was expected, because the algorithm relies on a fixed standard
deviation estimate that is independent of the observed measurements. More inter-
esting was the behavior of the standard 4−σ classifier as a function of the number
of reference fragments. While the FNR decreased by over five percentage points,
the FPR increased slightly, by a bit over one percentage point, as the number of
reference fragments increased from three to 12. An explanation for these mod-
est changes in classification performance, even when the reference sample size
quadrupled, is the fact that the estimate of σ is bounded below by a value equal to
3% of the corresponding mean elemental concentration. When the number of ref-
erence fragments J was equal to three, the SD of the measurements exceeded the
3% of the mean floor for 12 elements, and, therefore, the SD was set to 3% of the
mean elemental concentration for six out of 18 elements. When J = 12, however,
the actual SD was used to construct the 4 − σ intervals for 15 out of 18 elements.

We envision that at some point there will be relevant and stable enough training
databases, so that the distributions of scores under the two scenarios (same or
different source) can be well estimated. If so, then a practicing forensic scientist
who must compare a single fragment recovered from a suspect to a few fragments
known to originate from the crime scene would be able to compute the comparison
score on the pairs of evidence fragments and then decide whether the score is
high enough to suggest same source. To determine what is “high enough,” the
forensic practitioner would refer to the relevant distributions of the score under the
two competing hypotheses of same or different source calculated from appropriate
reference datasets. We insist on the importance of developing those reference score
distributions using the appropriate datasets. In the case of glass, these reference
datasets might need to be updated on a regular basis. Alternatively, the forensic
scientist could also compute a score-based likelihood ratio statistic as in Section 8
but at the cost of making additional assumptions about the score distributions that
may or may not be plausible.

When applied to the dataset that combines the BKA measurements and the mea-
surements obtained by Iowa State, the two interval-based criteria exhibited higher
miss-classification errors than the learning-based methods. Both the random forest
and standard 4 − σ criterion tend to misclassify pairs of fragments that originate
from panes produced within one to two days in the same manufacturing facility.

To investigate why these interval based algorithms exhibit larger FNR, we car-
ried out a small simulation study as follows. We considered three scenarios: a frag-
ment compared to itself, a fragment compared to another fragment from the same
pane, and a fragment compared to a fragment from a different pane. We estimated
an 18-dimensional mean vector and covariance matrix for each fragment included
in the simulation, by using a subset of fragments in Dataset 3 for which we had 20
replicate measurements on each. The fragments we used in this simulation were
AB-14, AB-24, AAR-14, AAR-24, AL-14, AL-24, BJ-14 and BJ-24. We also in-
cluded fragment 104G from pane X. For this fragment we had 11 measurements
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TABLE 7
Simulation results: estimated classification error rate

Same Pane & Same Fragment

Pane Fragment Pane Fragment Error (Modified 4 − σ ) Error (RF)

AB 14 AB 14 0.214 0
AB 24 AB 24 0.208 0
AAR 24 AAR 24 0.005 0
AAR 14 AAR 14 0.094 0
X 104G X 104G 0 0

Same Pane & Different Fragment

Pane Fragment Pane Fragment Error (Modified 4 − σ ) Error (RF)

AAR 14 AAR 24 1 0
AB 14 AB 24 0.945 0
AL 14 AL 24 0.692 0
BJ 14 BJ 24 1 0

Different Pane

Pane Fragment Pane Fragment Error (Modified 4 − σ ) Error (RF)

AB 24 AAR 14 0 0
AB 14 BJ 14 0 0
X 104G BJ 14 0 0

made on consecutive days, each replicated six times, for a total of 66 observa-
tion vectors. Next, using the estimated mean vector and covariance matrix from
each fragment, we generated five random draws from a multivariate log-normal
distribution. We used these five replicates to compare pairs of fragments using the
modified 4−σ criterion and the random forest with down sampling on 18 variables
built in Section 6. We generated 1,000 sets of five replicates for each fragment and
used those to carry out the comparisons shown in Table 7. Results are shown in the
last two columns of the table.

In these particular simulation scenarios, when comparing a fragment to itself or
to a fragment from the same source, the modified 4 − σ criterion results in false
negative errors in a large proportion of cases. For example, the modified 4 − σ

criterion incorrectly classified fragments 14 and 24 from pane AB as originating
from a different source almost 95% of the time. The modified 4 − σ criterion did
well, however, when comparing fragments from different panes. This suggests that
the modified 4 − σ criterion performs well when fragments are sufficiently differ-
ent, but results in a large number of false exclusions (different source conclusions)
when fragments are similar. The random forest, on the other hand, performed well
in all cases.
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FIG. 12. Within pane variances (dots) from 31 Company A panes and between pane variance (line).

Why would the modified 4 − σ criterion fail when fragments have similar (but
not identical) elemental composition? The problem arises when elements are more
variable within source than between sources. Figure 12 shows the within-pane
variances for six elements (diagonal elements of the covariance matrices) as dots.
The between-source variances are shown as a constant line. Intuitively, we would
expect to see that the within-pane variances are smaller than the between-pane
variances, but that is not the case for several elements in our data. This constitutes a
challenge for both interval-based methods because they rely exclusively on within-
pane variances. The random forest, on the other hand, “learns” which features
are more discriminating by looking at the within and between pane variance of
elemental concentrations. From Figure 12 we see that elements such as Ca and Mg
(also Sr, Na, Pb, not shown) have larger within pane variance than between pane
variance (line). Those elements are ranked as less important for classification, as
shown in Figure 11.

Finally, we note that while this paper has focused on forensic glass compar-
isons, the protocols outlined here are broadly applicable to many other forensic
disciplines, including those that rely on pattern recognition; see, for example, Song
(2015), Hare, Hofmann and Carriquiry (2017), Swofford et al. (2018). The basic
two-step approach, appropriately tailored to the measurements that can be made in
the various contexts, can be an appealing alternative to a probability model-based
likelihood ratio approach. At the very least it can provide a valid means to compare
two or more items and to assess the probative value of the evidence while research
on likelihood-based or Bayes factor-based approaches is ongoing.
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