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MODELING BIOMARKER RATIOS WITH GAMMA DISTRIBUTED
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University of Bonn∗ and German Center for Neurodegenerative Diseases†

We propose a regression model termed “extended GB2 model”, which
is designed to analyze ratios of biomarkers in epidemiological and medical
research. Typical examples of biomarker ratios are given by the LDL/HDL
cholesterol ratio in cardiovascular research and the amyloid-β 42/40 ratio in
dementia research. Unlike regression modeling with a log-transformed re-
sponse, which is often used to describe ratio outcomes in observational stud-
ies, the extended GB2 model directly links the expectation of the untrans-
formed biomarker ratio to a set of covariates. This strategy allows for a simple
interpretation of the predictor-response relationships in terms of multiplica-
tive increases/decreases of the expected outcome, similar to Poisson and Cox
regression. In the theoretical part of the paper, we derive the log-likelihood
of the proposed model, analyze its properties, and provide details on con-
fidence intervals and hypothesis testing. We will also present the results of
a simulation study demonstrating the robustness of the proposed modeling
approach against model misspecification. The usefulness of the method is
demonstrated by two applications on the aforementioned LDL/HDL choles-
terol and amyloid-β 42/40 ratios. For this, we analyze data from a cohort
study on kidney disease and from a large observational database on neurode-
generative diseases.

1. Introduction. This paper presents a regression model for the ratio of two
positively correlated biomarkers U and V , which are assumed to follow a joint
bivariate distribution with gamma distributed components. The model relates the
expectation of the ratio U/V to a set of explanatory variables X = (X1, . . . ,Xp)�,
allowing for model building and inference in the same way as in generalized linear
models (GLMs).

Outcome variables of the type U/V are frequently encountered in observa-
tional studies. Important examples, which will also be considered here, are the
LDL/HDL cholesterol ratio in cardiovascular research [Natarajan et al. (2003)]
and the amyloid-β 42/40 ratio in dementia research [Koyama et al. (2012)]. The
LDL/HDL cholesterol ratio is defined as the ratio of the low-density lipoprotein
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(LDL) and the high-density lipoprotein (HDL) concentrations in plasma or serum.
Both concentrations can be described by right-skewed random variables with pos-
itive correlation. Since high values of LDL/HDL are a strong predictor of cardio-
vascular events [Natarajan et al. (2003), Millan et al. (2009)], extensive epidemi-
ological research is conducted to study the effect of lifestyle factors, nutritional
components, dietary patterns, and other nutrition-related parameters (such as body
mass index) on LDL/HDL cholesterol levels [Müller et al. (2003), Weggemans
and Trautwein (2003), Sacks et al. (2006), Sundram, Karupaiah and Hayes (2007),
Shamai et al. (2011)]. In dementia research, the amyloid-β 42/40 ratio is defined
as the ratio of the amyloid-β 42 protein level and the amyloid-β 40 isoform con-
centration in cerebrospinal fluid or plasma. Again, both concentrations can be
described by right-skewed random variables with positive correlation. In recent
years, the amyloid-β 42/40 ratio has been identified as a diagnostic and prognos-
tic factor for the progression of Alzheimer’s disease [AD, Koyama et al. (2012),
Lewczuk et al. (2015)]. Importantly, decreases in the amyloid-β 42/40 ratio are
considered to be an early phenomenon in AD progression that is often evident in
patients long before the first clinical symptoms of AD. It is therefore of consid-
erable interest to model the effects of dementia-related factors such as age and
education on the amyloid-β 42/40 ratio, and to investigate the characteristics and
progression of AD in its early stages.

Another important example is the CD4/CD8 ratio in HIV research, which mea-
sures the ratio of T helper cells to cytotoxic T cells in the human immune system.
A low CD4/CD8 ratio indicates ongoing immune activation and affects the risk of
non-AIDS morbidity and mortality. Recently, a persistent CD4/CD8 ratio < 1 has
been found to be associated with several risk factors, like a low CD4 T-cell nadir
and a shorter duration of viral suppression [Caby et al. (2016)].

A common approach to model biomarker ratios in observational studies is to ap-
ply a logarithmic transformation to the variable U/V and to fit a regression model
with log-transformed outcome log(U/V ). This approach can be considered as a
special case of the more general theory on log-ratio transformations used in com-
positional data analysis [Aitchison (1986), Wang and Zhao (2017)]. A well-known
property of log-ratio analysis is that inference is not possible for the conditional
expectation E[U/V |X] but only for the expectation on the log-transformed scale
E[log(U/V )|X]. This affects the interpretability of the predictor-response relation-
ships and the conclusions drawn from the results of associated hypothesis tests.

An alternative approach, which forms the basis of the method developed here,
is to model right-skewed positive data by gamma distributed random variables.
This strategy is justified by the result that analyzing log-normal data assuming a
gamma distribution is often more efficient than analyzing gamma data assuming
log-normality [see Wiens (1999) and Firth (1988), who compared formulas for the
asymptotic relative efficiencies of the two approaches]. However, while gamma
regression for the positive random variables U and V is widely used in practice,
only few models for the ratio of two gamma distributed random variables U and V
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exist. If independence between U and V can be assumed, the ratio U/V follows
a generalized beta distribution of the second kind [“GB2 distribution”, Kleiber
and Kotz (2003)]. For the latter distribution, Tulupyev et al. (2013) proposed a
GLM-type regression model, which, however, was originally not intended to an-
alyze ratio outcomes but to adjust a time-to-event model for a specific sampling
pattern. As a consequence, the model by Tulupyev et al. (2013) makes strong as-
sumptions about the parameter space, restricting one of the two shape parameters
to the value 2. A more general model for the GB2 distribution was proposed by
Yee (2015) as part of the VGAM framework. Regarding the ratio of correlated
gamma distributed variables, which is of particular interest in biomarker research
[Long et al. (2016)], no regression modeling strategy for E[U/V |X] exists (to the
best of our knowledge). In fact, although there are several well-established results
on the probability density function (p.d.f.) and the moments of U/V , these have
not been incorporated in a GLM-type regression framework yet. In part, this may
be due to the fact that the p.d.f. and the moments of U/V involve mathematical
expressions that are not available as analytic formulas [Lee, Holland and Flueck
(1979), Tubbs (1986)], making iterative procedures for maximum likelihood esti-
mation infeasible.

To address these issues, we propose the extended GB2 model, which relates the
expectation of the untransformed ratio E[U/V ] directly to the covariates X. The
log-likelihood function of the model is derived from a bivariate gamma distribu-
tion for (U,V ) [“Kibble–Wicksell distribution”, Kibble (1941)], which allows for
possibly different means and variances of the components U and V . The extended
GB2 model also accounts for correlations between U and V , with one of the model
parameters being directly interpretable in terms of the Pearson correlation coeffi-
cient ρ. For ρ = 0, the extended GB2 model reduces to the standard GB2 model
for independent variables U and V (hence the name extended GB2 model).

A major advantage of the proposed modeling strategy is that it is possible to
derive an analytic formula for the p.d.f. of (U/V )|X. This allows for maximum
likelihood estimation and hypothesis testing in the same way as in GLMs. The
estimates of the model parameters have a simple interpretation in terms of multi-
plicative increases/decreases of the expected ratio E[U/V |X].

The rest of the paper is organized as follows: Section 2 introduces notation
and definitions, and provides details on the derivation and the interpretation of the
extended GB2 model. In addition, we will show how to construct GLM-type con-
fidence intervals and hypothesis tests. Section 3 presents two applications from
observational research dealing with the analysis of the aforementioned LDL/HDL
cholesterol and amyloid-β 42/40 ratios. Modeling of the LDL/HDL cholesterol
ratio will be based on data collected for the German Chronic Kidney Disease
(GDKD) Study, which is one of the largest cohort studies worldwide to ana-
lyze CKD patients without dialysis treatment [Titze et al. (2015)]. To model the
amyloid-β 42/40 ratio, we will use data collected for the Dementia Competence
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Network (DCN), which maintains a large observational database on neurodegen-
erative diseases [Kornhuber et al. (2009)]. In Section 4 we will summarize the
results of two simulation studies that were carried out to investigate the finite-
sample properties of the extended GB2 model. In these studies, which will be pre-
sented in more detail in the supplemental article of the paper [Berger, Wagner and
Schmid (2019)], we will compare the extended GB2 model to the Gaussian model
with log-transformed outcome variable and analyze its robustness with respect to
model misspecification. Section 5 summarizes the main findings of the paper. The
proposed method has been implemented in the R add-on package eGB2 [Berger
and Schmid (2019)], which is part of the Supplementary Material of the paper.

2. Methods.

2.1. Notation and distributional results. Let U and V be two gamma dis-
tributed random variables with probability density functions

fU(u) = λα
u

�(α)
uα−1 exp(−λuu),(1)

fV (v) = λα
v

�(α)
vα−1 exp(−λvv),(2)

where α > 0 denotes a common shape parameter and λu, λv > 0 are the rate pa-
rameters of fU and fV , respectively. The assumption of a common shape parame-
ter for fU and fV ensures that the density functions in (1) and (2) share the same
basic form. The means and variances of U,V are given by α/λu, α/λv, and α/λ2

u,
α/λ2

v , respectively.
To derive a model for the ratio U/V , we assume that the pair (U,V ) follows a

bivariate gamma distribution with probability density function

(3)
fU,V (u, v) = (λuλv)

α

(1 − ρ)�(α)

(
uv

ρλuλv

) α−1
2

× exp
(
−λuu + λvv

1 − ρ

)
Iα−1

(
2
√

ρλuλvuv

1 − ρ

)
,

where 0 < ρ < 1 and Iα−1(·) is the modified Bessel function of the first kind of or-
der α − 1. The p.d.f. defined in (3) was first introduced by Kibble [Kibble (1941)]
and is known as “Kibble’s bivariate gamma distribution” or “Kibble–Wicksell dis-
tribution” [Balakrishnan and Lai (2009)]. It can be shown that the additional pa-
rameter ρ equals the Pearson correlation coefficient of U and V .

The p.d.f. of the ratio R := U/V is derived as follows:

PROPOSITION 1. Let the joint distribution of (U,V ) be defined by the proba-
bility density function in (3). Then the p.d.f. of the random variable R := U/V is
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given by

(4)

fR(r;α,ρ, θ) = �(2α)

�2(α)
θ−α(1 − ρ)α

×
(1−θ

θ
r

1+r
+ 1)( rα−1

(1+r)2α )

((1−θ
θ

r
1+r

+ 1)2 − 4ρ r
θ(1+r)2 )

α+0.5
,

where θ := λv/λu = E[U ]/E[V ] denotes the ratio of the two rate parameters.

PROOF. See Appendix A. �

By Proposition 1, the p.d.f. in (4) defines a distribution for the ratio of two
correlated gamma distributed random variables with possibly different means and
variances. For ρ = 0 the p.d.f. in (4) reduces to

(5) fR(r;α, θ) = �(2α)

�2(α)
θ−αrα−1

(
r

θ
+ 1

)−2α

,

which corresponds to the p.d.f. of the generalized beta distribution of the second
kind. This p.d.f. is obtained when U and V are independent [Kleiber and Kotz
(2003)]. Illustrations of the p.d.f. of R = U/V are shown in Figure 1.

The expectation of R can be expressed as follows:

PROPOSITION 2. Under the assumptions of Proposition 1, the expectation of
the random variable R = U/V is given by

(6)

E[U/V ] = E[U ]
E[V ] · �(α + 1)�(α − 1)

�2(α)
2F1(−1,1;α;ρ)

= θ
�(α + 1)�(α − 1)

�2(α)
2F1(−1,1;α;ρ)

= θC(α,ρ), α > 1,

FIG. 1. Examples of the p.d.f. of the ratio R = U/V derived in Proposition 1. The curves visualize
the distribution of R for parameters α ∈ {2,4}, ρ ∈ {0.2,0.5,0.8} and θ = 10.
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where C(α,ρ) := �(α+1)�(α−1)/�2(α)2F1(−1,1;α;ρ) and 2F1(·) is the gen-
eralized hypergeometric function.

PROOF. Proposition 2 follows from the application of Corollary 1 in Candan
and Orguner (2013), who derived a general expression for the moment function of
U/V . �

Proposition 2 implies that the expectation of R = U/V increases with the value
of the correlation coefficient ρ (see also Figure 1). Since the existence of E[R] is
not guaranteed if α ≤ 1, we will assume α > 1 when deriving the extended GB2
model in the next section.

2.2. Definition and interpretation of the extended GB2 model. By Proposi-
tion 2, the mean ratio E[U/V ] can be written as the product of the ratio of means
θ = E[U ]/E[V ] and a factor C(α,ρ) that is a function of the parameters α and ρ.
Based on these considerations, we relate θ to X1, . . . ,Xp by the model equation

(7) log(θ |X) = γ0 + γ1X1 + · · · + γpXp,

where γ := (γ0, γ1, . . . , γp)� is a set of real-valued coefficients. The logarith-
mic transformation in (7) projects the positive random variable θ |X to the
set of real numbers, ensuring that there are no restrictions on the coefficients
(γ0, γ1, . . . , γp)�. In the following, we will refer to the model defined in (7) as
extended GB2 model. Note that it was implicitly assumed in (7) that categorical
covariates are represented by dummy-coded variables or an equivalent coding.

PROPOSITION 3. Under the assumption that the shape parameter α and the
correlation coefficient ρ do not depend on X, the extended GB2 model is equivalent
to the following model for the mean ratio E[U/V |X]:
(8) log

(
E[U/V |X]) = γ̃0 + γ1X1 + · · · + γpXp,

where γ̃0 := γ0 + log(C(α,ρ)).

PROOF. Proposition 3 follows from equation (7) and from the proportionality
between θ and E[U/V ] stated in Proposition 2. �

Proposition 3 shows that the predictor-response relationships defined by
γ1, . . . , γp are the same for the mean ratio E[U/V |X] and the ratio of means
θ |X = E[U |X]/E[V |X], provided that α and ρ can be treated as nuisance param-
eters. More specifically, since (7) can be re-written as

(9) θ |X = exp(γ0) · exp(γ1X1) · · · · · exp(γpXp),

the expressions exp(γ1), . . . , exp(γp) have a simple interpretation in terms of mul-
tiplicative increases/decreases of the expected ratio E[U/V |X]. For example, if
γk > 0, k ∈ {1, . . . , p}, increasing Xk by one unit implies that E[U/V |X] is in-
creased by the factor exp(γk).
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2.3. Maximum likelihood estimation, inference, and point predictions. Es-
timates of the parameters γ0, γ1, . . . , γp are obtained by maximizing the log-
likelihood of the extended GB2 model. Let (ri, x1i , . . . , xpi)

�, i = 1, . . . , n,
be a set of independent realizations of (R,X1, . . . ,Xp)� and define xi :=
(1, x1i , . . . , xpi)

�. Then, according to Proposition 1 and equation (7), the log-
likelihood of the extended GB2 model is given by

l(γ,α,ρ; r1, . . . , rn, x1, . . . , xn)

=
n∑

i=1

{
log

(
�(2α)

) − 2 log
(
�(α)

) − α · x�
i γ + α log(1 − ρ)

+ log
((

exp
(−x�

i γ
) − 1

) ri

ri + 1
+ 1

)
+ (α − 1) log(ri)(10)

− 2α log(1 + ri) − (α + 0.5)

(
log

(((
exp

(−x�
i γ

) − 1
) ri

ri + 1
+ 1

)2

− 4ρ exp
(−x�

i γ
) ri

(ri + 1)2

))}
.

By standard maximum likelihood arguments, consistent estimators of the model
parameters are defined by

(11)
(
γ̂ �, α̂, ρ̂

)� := argmax
γ,α,ρ

l(γ,α,ρ; r1, . . . , rn, x1, . . . , xn).

Details on the numerical optimization of (10) are provided below.
Because of the asymptotic normality of the maximum likelihood estimators, sta-

tistical tests of the hypotheses “H0: γk = 0 vs. H1: γk �= 0”, k = 1, . . . , p, are ob-
tained by plugging the estimates in the observed information matrix J (γ,α,ρ) :=
−∂2l(γ,α,ρ; r1, . . . , rn, x1, . . . , xn)/∂γ γ � and by calculating the test statistics

(12) Zk = γ̂k√
J−1

kk (γ̂ , α̂, ρ̂)
, k ∈ {1, . . . , p},

where J−1
kk denotes the kth diagonal element of J−1. For a given type I error

level αI, the null hypothesis “H0: γk = 0” is rejected if |Zk| > z1−αI/2, where
z1−αI/2 is the (1 − αI/2)-quantile of the standard normal distribution. More gen-
eral linear hypotheses of rank r̃ ≥ 1 (e.g., associated with several covariates or
a factor variable with more than two levels) can be investigated by using stan-
dard log-likelihood ratio test statistics (denoted by LR) that asymptotically fol-
low chi-squared distributions with r̃ degrees of freedom. P -values are defined by
2 · min{P(Zk ≤ Zk,obs),P(Zk ≥ Zk,obs)}, and P(LR ≥ LRobs) under the respective
null hypotheses, where Zk,obs and LRobs denote the observed values of Zk and
LR, respectively.
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Asymptotic (1 − αI)% Wald confidence intervals for the parameters γk are

defined by γ̂k ± z1−αI/2

√
J−1

kk (γ̂ , α̂, ρ̂). Alternatively, it is possible to construct
(1 − αI)% profile likelihood confidence intervals, which are given by the sets
of parameters γ 0

k for which the log-likelihood ratio test statistic (comparing the
full model and the model under the null hypothesis γk = γ 0

k ) does not exceed the
(1−αI)-quantile of the chi-squared distribution with one degree of freedom. Com-
parisons of Wald and profile likelihood confidence intervals will be presented in
the two applications in Section 3.

The maximum likelihood estimates also allow for computing point predictions
for the expected ratio E[U/V |X]. According to Proposition 3, these are given
by

(13) Ê[U/V |xi] = exp(γ̂1x1i ) · · · · · exp(γ̂pxpi) · exp(γ̂0) · C(α̂, ρ̂).

Maximization of the log-likelihood function (10) over γ can be carried out using
the R package eGB2 [Berger and Schmid (2019)], which also allows for fitting the
simple GB2 model with correlation coefficient ρ = 0. The optimization algorithm
used by eGB2 is based on the implementation of the “Broyden, Fletcher, Gold-
farb, and Shanno” (BFGS) algorithm in the R function optim(). Profile likeli-
hood confidence intervals can be computed via the function profileCI(). Al-
ternatively, eGB2 offers to use a gradient boosting algorithm with component-wise
linear base-learners [Hofner et al. (2014)] for maximization of the log-likelihood.
Details on gradient boosting are presented in Section 1 of the supplemental arti-
cle.

2.4. Quasi-likelihood and relationship to gamma regression. According to
Proposition 2 and Corollary 1 in Candan and Orguner (2013), the extended GB2
model is characterized by the mean-variance relationship

E[R] = θC(α,ρ),(14)

Var[R] = E
[
R2] − (

E[R])2

= θ2C2(α,ρ) − θ2C(α,ρ)2

(15)
= θ2(

C2(α,ρ) − C(α,ρ)2)
= E[R]2C3(α,ρ),

where C2(α,ρ) := �(α + 2)�(α − 2)/�2(α)2F1(−2,2;α;ρ) and C3(α,ρ) :=
C2(α,ρ)/C(α,ρ)2 − 1. This relationship can be used to fit a “quasi extended GB2
model”, which is helpful when the fully parametric extended GB2 model does not
fit the data well and the underlying assumptions on the p.d.f. of the ratio U/V

given in (4) need to be relaxed.
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Up to a multiplicative factor, the mean-variance relationship in (14) and (16) is
the same as the one defined by an ordinary gamma regression model with outcome
variable R∗ ∼ Gamma(α∗, λ∗), link function

(16) log
(
E

[
R∗|X]) = log

(
α∗)+ γ ∗

0 + γ ∗
1 X1 +· · ·+ γ ∗

pXp =: log
(
α∗)+ log

(
θ∗)

,

and mean-variance relationship

E
[
R∗] = θ∗α∗,(17)

Var
[
R∗] = (

θ∗)2
α∗

(18)
= E

[
R∗]2

C∗(
α∗)

,

where λ∗ = 1/θ∗ and C∗(α∗) := 1/α∗. It follows that the quasi-likelihood func-
tions of the two models are equivalent, and that software designed for fitting
quasi gamma models can be used for fitting quasi extended GB2 models as well.
In particular, the quasi-likelihood function defined by the mean-variance rela-
tionship in (17) and (19) yields the same maximum quasi-likelihood estimates
as the one defined by the quadratic mean-variance relationship μ := E[R∗]/α∗
and V(μ) := Var[R∗]/α∗ = μ2 [McCullagh and Nelder (1989), pp. 325 ff.]. The
quasi extended eGB2 models considered in this paper are therefore based on the
quadratic mean-variance relationship V(μ) = μ2. For details on quasi-likelihood
estimation, see in particular McCullagh and Nelder (1989), Chapter 9.

REMARK. The mean-variance relationship in (14) and (16) also allows for
fitting a quasi extended GB2 model to longitudinal data via generalized estima-
tion equations (GEE). This kind of analysis additionally requires to specify an
appropriate working correlation matrix representing within-subject dependencies.
An example using longitudinal data collected for the GCKD Study is presented in
Appendix B.

3. Applications.

3.1. German chronic kidney disease study. To illustrate the application of the
extended GB2 model, we analyzed the LDL/HDL cholesterol ratios collected in
the German Chronic Kidney Disease (GCKD) Study [Titze et al. (2015)]. The
GCKD Study is an ongoing multi-center cohort study that enrolled 5217 patients
with either stage III chronic kidney disease or overt albuminuria/proteinuria be-
tween March 2010 and March 2012. Data collection comprised measurements on
clinical variables (e.g., renal function), lifestyle factors (e.g., smoking behavior
and alcohol consumption), and laboratory measurements obtained from blood and
urine samples (in particular, serum LDL and HDL cholesterol concentrations). For
details on the inclusion/exclusion criteria and the design of the study, we refer to
Eckardt et al. (2012) and Titze et al. (2015).
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One of the aims of the GCKD Study is to investigate the risk of cardiovascular
events in patients with renal disease. Since LDL and HDL cholesterol concen-
trations are associated with a number of cardiovascular diseases [CVD, Mendis,
Puska and Norrving (2011)] it is of high interest to relate the LDL/HDL choles-
terol ratios of CVD-free study participants to explanatory variables such as age,
smoking behavior, body mass index, and renal function.

Here we focus on the LDL/HDL cholesterol ratios of the subgroup of GCKD
Study participants that neither suffered from coronary heart disease at baseline nor
experienced one or more previous strokes. This resulted in a data set with n = 3669
patients. There were missing values in 4.3% of the patients (see the description in
Table 1). The largest part of these missing values (94 out of 157 patients) oc-
curred in the HbA1c levels, which could not be determined in all patients due to
insufficient sample volumes or possible problems with the analytes during labora-
tory analysis. A test on random missingness [“MAR+” assumption, Potthoff et al.
(2006)] did not lead us to suspect any violations of the missing-at-random assump-
tion (p = 0.9790, for details on the test see Section 2 of the supplemental article).
After the exclusion of patients with missing values in any of the analyzed vari-
ables, we obtained an analysis data set with n = 3512 participants. Figure 2 shows

TABLE 1
Description and summary statistics of the variables used for the analysis of the baseline LDL/HDL

cholesterol ratios in the GCKD Study (Q1 = first quartile, Q3 = third quartile). High levels of
urinary albumin and/or low levels of the estimated glomerular filtration rate indicate a decreased

renal function. HbA1c levels > 6.5% are an indicator of diabetes. Out of the n = 3669 patients that
neither suffered from coronary heart disease nor experienced one or more previous strokes, 157
patients (4.3%) had missing values in at least one of the analyzed variables. For details on the

collection of the data, see Eckardt et al. (2012) and Titze et al. (2015)

Summary statistics

Variable min Q1 median Q3 max mean sd

LDL/HDL cholesterol ratio 0.20 1.75 2.35 3.09 13.22 2.51 1.06
Age (years) 18 50 61 69 76 58.24 12.67
Body mass index (kg/m2) 15.50 25.30 28.40 32.80 69.70 29.46 6.08
Urinary albumin (g/l) 0.002 0.006 0.041 0.300 17.44 0.329 0.833
Est. glomerular filtration
rate (ml/min per 1.73 m2) 8 36 45 55 151 48.34 17.64

Gender male: 1964 (56.0%) female: 1548 (44.0%)
Heavy alcohol consumption no: 2841 (80.9%) yes: 671 (19.1%)
HbA1c level > 6.5% no: 2553 (72.7%) yes: 959 (27.3%)
Smoking no: 1373 (39.1%) former: 1559 (44.4%)

yes: 580 (16.5%)
Physical activity 0: 583 (16.6%) 1–2: 894 (25.4%)
(times per week) 3–5: 1014 (28.9%) >5: 1021 (29.1%)
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FIG. 2. Distribution of the baseline LDL/HDL cholesterol ratios measured in the GCKD study
(n = 3512). The black line refers to the p.d.f. of the ratio R = U/V defined in (4). It was estimated
by fitting a covariate-free extended GB2 model to the GCKD baseline data.

the unconditional distribution of the LDL/HDL ratios. The unconditional Pearson
correlation coefficient between the LDL and HDL cholesterol levels was 0.161.
Summary statistics of the variables used in the analysis are presented in Table 1.

Table 2 presents the results obtained from fitting the extended GB2 model to
the GCKD baseline data using the BFGS algorithm. The coefficient estimates and
p-values confirm various established results on the associations between clinical
variables, lifestyle factors, and cardiovascular disease. For example, body mass
index, which is a major CVD risk factor, was estimated to increase the expected
LDL/HDL cholesterol ratio by the factor exp(0.0115) = 1.0116 (i.e., by 1.16%)
per kg/m2. A similar result was obtained for physical activity, which lowered the
expectation of the LDL/HDL cholesterol ratio (γ̂ ≤ −0.0312). Table 2 also con-
firms the positive association between alcohol consumption and HDL cholesterol
[Linn et al. (1993), γ̂ = −0.0886, p < 0.0001]. The effects of the renal parame-
ters urinary albumin (γ̂ = 0.0191, p = 0.0326) and estimated glomerular filtration
rate (γ̂ = −0.0007, p = 0.0976) confirm the previously established association
between chronic kidney disease and CVD [Gansevoort et al. (2013)].

To investigate the goodness-of-fit of the extended GB2 model, we computed the
quantile residuals of the fitted model [Dunn and Smyth (1996)] and compared them
to the respective quantiles of a standard normal distribution (Figure 3). Although
the distribution of the residuals shows slight deviations from normality, Figure 3
does not indicate any substantial problems with the fit of the extended GB2 model.
Also, the profile likelihood confidence intervals presented in Table 2 were similar
to the respective Wald intervals, indicating that the quadratic approximation of the
extended GB2 log-likelihood worked well.

3.2. Cohort study of the German dementia competence network. In a second
application, we analyzed data from the multi-center observational cohort study
conducted by the German Dementia Competence Network [DCN, Kornhuber et
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TABLE 2
Analysis of the LDL/HDL cholesterol ratios in the German Chronic Kidney Disease Study.

Coefficient estimates, p-values and confidence intervals were obtained by fitting an extended GB2
model to the GCKD baseline data using the BFGS algorithm (γ̂ = coefficient estimate, CI =

confidence interval). Reference categories of categorical covariates are indicated by dots. The
maximum likelihood estimates of α and ρ were 4.766 and 0.658, respectively

95% CI

γ̂ exp(γ̂ ) Wald Profile p-value

Age (years) −0.0011 0.9989 [0.9977; 1.0001] [0.9977; 1.0001] 0.0676
Body mass index (kg/m2) 0.0115 1.0116 [1.0093; 1.0139] [1.0093; 1.0139] <0.0001
Urinary albumin (g/l) 0.0191 1.0193 [1.0016; 1.0374] [1.0018; 1.0376] 0.0326
Est. glomerular filtration rate
(ml/min per 1.73 m2) −0.0007 0.9993 [0.9985; 1.0001] [0.9985; 1.0001] 0.0976
Gender (male) .
Gender (female) −0.1764 0.8383 [0.8142; 0.8631] [0.8148; 0.8637] <0.0001
Heavy alcohol consumption (no) .
Heavy alcohol consumption (yes) −0.0886 0.9153 [0.8827; 0.9490] [0.8825; 0.9488] <0.0001
HbA1c level ≤6.5% (no) .
HbA1c level >6.5% (yes) 0.0127 1.0128 [0.9823; 1.0442] [0.9828; 1.0417] 0.4140
Smoking (non-smoker) .
Smoking (former) −0.0483 0.9528 [0.9242; 0.9824] [0.9242; 0.9824] 0.0004
Smoking (yes) 0.0242 1.0245 [0.9841; 1.0665] [0.9842; 1.0529]
Physical activity (0) .
Physical activity (1–2) −0.0312 0.9692 [0.9287; 1.0115] [0.9468; 1.0102] 0.2358
Physical activity (3–5) −0.0408 0.9600 [0.9208; 1.0009] [0.9210; 1.0014]
Physical activity (>5) −0.0397 0.9611 [0.9219; 1.0019] [0.9450; 1.0026]

FIG. 3. Analysis of the baseline LDL/HDL cholesterol ratios in the German Chronic Kidney Dis-
ease Study. The left panel shows a plot of the quantile residuals obtained from the extended GB2
model against the quantiles of a standard normal distribution. The right panel shows a plot of the
quantile residuals against the fitted values of the extended GB2 model.
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al. (2009)]. The study included patients older than 50 years who sought evaluation
at one of the participating university memory clinics. Dementia-related diagnoses
were either mild cognitive impairment (MCI), Alzheimer’s disease (AD), or other
dementia. All diagnoses were made using clinical and neuropsychological assess-
ments.

The aims of the study were to establish the diagnostic and prognostic power
of clinical, laboratory, and imaging methods. Cerebrospinal fluid (CSF) samples
were collected, and a variety of laboratory parameters (in particular, amyloid-β
42 and 40 protein concentrations) were measured. Baseline data collection took
place between 2003 and 2007. For details on the assessment procedures, we refer
to Kornhuber et al. (2009).

A major challenge in the diagnosis and prognosis of AD is the decades-long pe-
riod between disease onset and the first clinical symptoms of AD [Sperling, Kar-
lawish and Johnson (2013)]. This problem is further aggravated by the fact that not
all patients passing through the MCI stage will eventually suffer from underlying
AD pathology [Kornhuber et al. (2009)]. It has therefore been suggested to use
biomarkers such as amyloid-β 42 protein concentrations for early AD diagnosis
and prediction, and to relate them to AD risk factors such as age and level of edu-
cation. Since the amyloid-β 42/40 ratio is considered to be a stronger predictor of
AD progression than amyloid-β 42 concentrations alone [Wiltfang et al. (2007),
Koyama et al. (2012)], it is of high interest to relate amyloid-β 42/40 measure-
ments to dementia-related risk factors in MCI patients.

Here we focus on the amyloid-β 42/40 ratios of the DCN Study participants at
baseline, which were available in 380 of the 1095 patients diagnosed with MCI.
The reason for this reduction in sample size was the incomplete number of CSF
biosamples, which were not collected from all patients due to either logistic rea-
sons or lack of consent to the invasive procedure of lumbar puncture. Of note, the
biomarker sampling rate of the DCN cohort is comparable to that of other observa-
tional MCI memory clinic cohorts in the field of AD, for example, the ADNI Study
[Kornhuber et al. (2009)]. Out of the 380 patients, seven patients were excluded
from analysis because they did not meet the inclusion criteria (age ≤ 50 years).
Out of the remaining 373 patients, 37 patients had missing values in one or more
of the analyzed covariates; 35 of these patients had a missing value in the ApoE ε4
covariate (defined in more detail below), which could not be measured for the same
reasons as those stated above. Again, testing the MAR+ assumption [Potthoff et
al. (2006)] did not lead us to suspect nonrandom missingness (p = 0.1442, for
details on the test see Section 2 of the supplemental article). Exclusion of the 37
patients with missing values resulted in an analysis data set with n = 336 patients.
Figure 4 shows the unconditional distribution of the amyloid-β 42/40 ratios. The
unconditional Pearson correlation coefficient between the amyloid-β 42 and the
amyloid-β 40 concentrations was 0.422.

The following covariates were considered for inclusion in the extended GB2
model: (i) gender, (ii) age in years, (iii) educational level (measured by the number
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FIG. 4. Distribution of the amyloid-β 42/40 ratios measured in patients with MCI (DCN study,
n = 336). The black line refers to the p.d.f. of the ratio R = U/V defined in (4). It was estimated by
fitting a covariate-free extended GB2 model to the DCN study data collected at baseline.

of years of education), and (iv) a binary variable indicating whether a patient was a
carrier of the apolipoprotein E ε4 (ApoE ε4) allele, which is a strong genetic pre-
dictor of AD. Summary statistics of the variables used in the analysis are presented
in Table 3.

Table 4 presents the results obtained from fitting the extended GB2 model to the
DCN baseline data using the BFGS algorithm. According to the p-values given in
the last column of Table 4, the AD risk factors age and ApoE ε4 showed strong
evidence for an effect on the amyloid-β 42/40 ratios of the study participants
(p = 0.0002 and p < 0.0001, respectively). Each year of age was estimated to
reduce the expected amyloid-β 42/40 ratio by the factor exp(−0.0093) = 0.9907,
corresponding to a yearly decrease of approximately 1%. Expected amyloid-β
42/40 ratios of ApoE ε4 carriers were reduced by an estimated 18% compared
to patients not carrying the allele (exp(−0.2040) = 0.8154). These results confirm

TABLE 3
Description and summary statistics of the variables used for the analysis of the baseline amyloid-β
42/40 ratios in the DCN cohort study (Q1 = first quartile, Q3 = third quartile). All numbers refer to

a subset of patients diagnosed with MCI (n = 336). For details on the collection of the data, see
Kornhuber et al. (2009)

Summary statistics

Variable min Q1 median Q3 max mean sd

Amyloid-β 42/40 ratio 0.03 0.07 0.10 0.14 0.26 0.11 0.04
Age (years) 51 60 66 72 89 66.45 8.10
Education (years) 2 11 12 13 19 12.17 2.95

Gender male: 197 (58.7%) female: 139 (41.3%)
ApoE ε4 no: 185 (55.1%) yes: 151 (44.9%)
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TABLE 4
Analysis of the amyloid-β 42/40 ratios in the cohort study of the German Dementia Competence

Network. Coefficient estimates, p-values, and confidence intervals were obtained by fitting an
extended GB2 model to the DCN baseline data using the BFGS algorithm (γ̂ = coefficient estimate,
CI = confidence interval). Reference categories of categorical covariates are indicated by dots. The

maximum likelihood estimates of α and ρ were 9.607 and 0.379, respectively

95% CI

γ̂ exp(γ̂ ) Wald Profile p-value

Age (years) −0.0093 0.9907 [0.9858; 0.9956] [0.9858; 0.9957] 0.0002
Education (years) 0.0001 1.0001 [0.9864; 1.0140] [0.9864; 1.0140] 0.9882
Gender (male) .
Gender (female) −0.0596 0.9421 [0.8673; 1.0234] [0.9116; 1.0230] 0.1577
ApoE ε4 (no) .
ApoE ε4 (yes) −0.2040 0.8155 [0.7524; 0.8838] [0.7525; 0.8797] <0.0001

the negative associations between the two AD risk factors and amyloid pathology
[e.g., Jack et al. (2015)]. In contrast to age and ApoE ε4, there was no evidence
for an effect of educational level or gender on the amyloid-β 42/40 ratio.

The quantile residuals presented in Figure 5 indicate a very good fit of the ex-
tended GB2 model. Again, the profile likelihood confidence intervals were similar
to the respective Wald intervals (see Table 4).

3.3. Comparison of models. The evaluation of the quantile residuals in Sec-
tions 3.1 and 3.2 suggests that the extended GB2 model fitted the data well in both
applications. For comparison, we investigated the performance of the extended
GB2 model in terms of prediction accuracy and compared it to the performance

FIG. 5. Analysis of the baseline amyloid-β 42/40 ratios in the cohort study of the German Dementia
Competence Network. The left panel shows a plot of the quantile residuals obtained from the extended
GB2 model against the quantiles of a standard normal distribution. The right panel shows a plot of
the quantile residuals against the fitted values of the extended GB2 model.
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of competing models. To do so, we first generated 100 random subsamples with-
out replacement from both data sets and fitted regression models to all subsam-
ples. Up to rounding errors, each subsample comprised two thirds of the original
GCKD/DCN baseline data. The following models were considered: (i) the ex-
tended GB2 model, (ii) a Gaussian model with log-transformed outcome variable
(abbreviated by “logG” in the following), and (iii) a simple GB2 model with corre-
lation parameter ρ = 0. In the next step, we evaluated the model fits by computing
predictive log-likelihood values from the remaining patients not used for model fit-
ting (100 subsamples comprising one third of the original GCKD/DCN data each,
up to rounding errors). According to the results presented in Figure 6, the extended
GB2 model performed best when analyzing the LDL/HDL cholesterol ratios in the
GCKD Study. In the DCN Study, the differences between the three models were
less distinct. Wilcoxon signed-rank tests suggested that all median differences in
Figure 6 were significantly different from zero (p < 0.001 in all four tests). Since
the p-values of these tests depend on the number of subsamples (with no guide-
line on how to choose an “optimal” number of subsamples being available), we
additionally calculated Akaike’s information criterion (AIC) from the models. For
the GCKD Study, we obtained AIC values of 9615.455 (extended GB2), 9658.704
(logG), and 9640.651 (simple GB2), resulting in AIC differences of 43.249 (logG
− extended GB2) and 25.196 (simple GB2 − extended GB2). For the DCN Study,
we obtained AIC values of −1234.727 (extended GB2), −1236.634 (logG), and
−1236.411 (simple GB2), resulting in AIC differences of 1.907 (extended GB2
− logG) and 1.684 (extended GB2 − simple GB2). Hence, according to the rules
of thumb provided in Burnham and Anderson (2002), Section 2.6, the AIC differ-
ences obtained from the GCKD study suggest “essentially no empirical support”

FIG. 6. Analysis of the baseline data of the GCKD Study (left panel) and the DCN Study (right
panel). All models were fitted to 100 subsamples without replacement of sizes ntrain = 2341 (GCKD
data) and ntrain = 224 (DCN data) each. Predictive log-likelihood values were computed from the
100 subsamples not used for model fitting (ntest = 1171 and ntest = 112 for the GCKD and DCN
data, respectively).
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of the logG and the simple GB2 models compared to the extended GB2 model
(AIC differences > 10), whereas in the DCN study the extended GB2 model had
“substantial empirical support” compared to the logG and the simple GB2 models
(AIC differences < 2).

4. Simulations. To further analyze the properties of the extended GB2 model,
we conducted two simulation studies. The aims of the studies were (i) to analyze
the model fit and the power of the hypothesis tests, and (ii) to compare the extended
GB2 model to the logG model. In Simulation Study 1, the data were generated ac-
cording to the p.d.f. of the extended GB2 model. Several scenarios with varying
correlation coefficients ρ were considered. In Simulation Study 2, the data were
generated according to the p.d.f. of a log-normal distribution. The following mod-
els were fitted to the data: (i) the extended GB2 model, (ii) the logG model, (iii) the
quasi extended GB2 model, and (iv) a simple GB2 model with ρ = 0.

The results of the two studies can briefly be summarized as follows: In Simu-
lation Study 1, the finite-sample bias of the maximum likelihood estimates of the
extended GB2 model was througout small, regardless of the value of ρ. Also, the
estimated power of the hypothesis tests was higher in the extended GB2 model
than in the simple GB2 model. The differences between the two models increased
with the value of ρ, confirming that the efficiency of the estimators increases when
the correlation between the ratio components U and V is taken into account. The
performance of the quasi extended GB2 model was comparable for small values
of ρ, but deteriorated already for moderate values of ρ. The rejection rates of the
logG model were almost identical to those of the simple GB2 model. Regarding
the goodness of model fit, the extended GB2 model performed throughout better
than the logG model in Simulation Study 1. This result, which was expected due
to the extended GB2 model being the true data-generating model in Simulation
Study 1, was particularly evident when ρ was large. In Simulation Study 2, the
extended GB2 model resulted in similar model fits as the logG model, despite the
latter model being the true data-generating model. For details on the simulation
studies, see Section 3 of the supplemental article [Berger, Wagner and Schmid
(2019)]. All the results can be reproduced using the supplementary files [Berger
(2018)].

5. Summary and conclusion. The extended GB2 model is a regression mod-
eling approach that is applicable whenever the outcome of interest is a ratio of two
variables with right-skewed distributions and positive correlation. In the applica-
tions presented in Section 3, we used the model to analyze outcomes defined by
the ratio of a biomarker of interest (LDL cholesterol/amyloid-β 42 protein) and a
positively associated “reference” marker (HDL cholesterol/amyloid-β 40 protein).

According to the theoretical and empirical results presented in Sections 2 to 4,
the main advantages of the extended GB2 model are:
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Interpretability. The proposed modeling approach is derived from a well-
defined theoretical model for the ratio of two correlated gamma distributed vari-
ables. Hence it reflects the true underlying composition of the biomarker ratio. In
addition, the extended GB2 model allows for a simple interpretation of the param-
eter estimates in terms of multiplicative increases/decreases of the expected ratio
outcome. This interpretation is analogous to Poisson and Cox regression and is
thus familiar to many researchers.

Applicability. Parameter estimates of the extended GB2 model are easily ob-
tained by maximum likelihood estimation. Furthermore, the proposed modeling
approach results in confidence intervals, hypothesis tests, and point predictions of
the conditional expectation of the ratio outcome. As demonstrated in Section 3, the
fit of the model can be assessed by computing and plotting quantile residuals.

Increase in Efficiency. Compared to the simple GB2 model that ignores the cor-
relation between the ratio components, the extended GB2 model increases both the
goodness of the model fit and the power of the associated hypothesis tests.

Robustness. The simulation study presented in Section 4 and the Supplementary
Material suggests that the extended GB2 model is fairly robust against model mis-
specification. This is in line with earlier findings by Firth (1988) and Wiens (1999).
In addition, as described in Section 2.4, it is possible to use a quasi-likelihood mod-
eling approach when the assumptions of the fully parametric extended GB2 model
are not satisfied.

Extensibility. There are numerous extensions and additional modeling options
for the extended GB2 model. For example, it is straightforward to extend the model
by interaction terms and nonlinear predictor effects [e.g., modeled via P-splines,
Eilers and Marx (1996)]. Furthermore, it is possible to increase the flexiblity of the
model by relating the parameters α and ρ to the covariates. This strategy would
embed the extended GB2 model in the generalized additive models for location,
scale, and shape (GAMLSS) framework developed by Rigby and Stasinopoulos
(2005). In higher-dimensional settings, variable selection could be carried out
using AIC- or BIC-based methods, or by modifying the gradient boosting algo-
rithm described in Section 1 of the supplemental article using early stopping [e.g.,
Hofner et al. (2014)]. Furthermore, it is straightforward to fit a GEE version of the
quasi extended GB2 model in order to analyze clustered and/or longitudinal data
(see the analysis of the GCKD follow-up data in Appendix B). Embedding the ex-
tended GB2 model in the framework of generalized mixed-effects models appears
to be possible but will require more complex optimization methods and is subject
to further research.

Finally we emphasize that we do not consider the extended GB2 model to be
a “generally better” modeling option than Gaussian log-ratio modeling. While the
purpose of this paper is to introduce the extended GB2 model and to illustrate its
application to real-world data, considerably more work is required to conduct an
in-depth comparison of the various modeling approaches for biomarker ratios and
other ratio outcomes.
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APPENDIX A: PROOF OF PROPOSITION 1

To prove Proposition 1, we first consider the random variable W := U/(U +V )

with realization w ∈ (0,1) and probability density function fW(w). Under the as-
sumption that (U,V ) follows the bivariate gamma distribution defined in Equation
(3) of the paper, it can be shown that

(19)

fW(w;α,ρ, θ) = �(2α)

�2(α)
θ−α(1 − ρ)α

× (1−θ
θ

w + 1)(w(1 − w))α−1

((1−θ
θ

w + 1)2 − 4ρ
θ

w(1 − w))α+0.5
,

see Nadarajah and Kotz (2007) and Weinhold et al. (2016) for details.
To derive the p.d.f. of the random variable R = U/V with realization r = u/v,

we define the transformation function φ(w) := w/(1 − w) = u/v = r . Since φ is
strictly monotonically increasing in w, it follows that the p.d.f. of R can be written
as

(20) fR(r;α,ρ, θ) = fW

(
φ−1(r)

)∣∣∣∣ ∂

∂r
φ−1(r)

∣∣∣∣,
where

(21) φ−1(r) = r

1 + r

and

(22)
∣∣∣∣ ∂

∂r
φ−1(r)

∣∣∣∣ = 1

(1 + r)2

are the inverse of φ and its derivative, respectively.
Combining (19) to (22) yields the p.d.f. of the ratio R:

fR(r;α,ρ, θ)

= fW

(
r

1 + r

)
1

(1 + r)2

= �(2α)

�2(α)
θ−α(1 − ρ)α

1

(1 + r)2

· (1−θ
θ

· r
1+r

+ 1)( r
1+r

(1 − r
1+r

))α−1

((1−θ
θ

· r
1+r

+ 1)2 − 4ρ
θ

· r
1+r

(1 − r
1+r

))α+0.5
(23)

= �(2α)

�2(α)
θ−α(1 − ρ)α

1

(1 + r)2



MODELING BIOMARKER RATIOS 567

·
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· r
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θ
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APPENDIX B: GEE ANALYSIS OF THE GCKD STUDY DATA

To illustrate the application of the extended GB2 model to longitudinal data, we
analyzed the LDL/HDL cholesterol ratios using the baseline measurements and
the measurements of the first two follow-up visits of the GCKD Study. Out of
the n = 3512 participants in our analysis data set at baseline (Section 3.1), 3062
participants had at least one follow-up examination and 2073 participants had two
follow-up examinations. Reductions in sample size were either due to deaths (121
patients between baseline and follow-up 1, and 122 patients between follow-up 1
and follow-up 2) or due to drop-outs. Exclusion of patients with missing values
(following the same rationale as in Section 3.1) resulted in an analysis data set
including 2813 patients with at least one follow-up visit and 1641 patients with
two follow-up visits. Application of the test by Diggle (1989) did not lead us to
suspect informative drop-out (p = 0.3323, for details on the test see Section 2 of
the supplemental article).

For the GEE analysis we used the variables reported in Table 1. At the time of
the analysis (June 2018) the lifestyle characteristics alcohol consumption, smok-
ing, and physical activity were only available at baseline and were therefore treated
as time-independent covariates.

Table 5 shows the results obtained from fitting the GEE version of the quasi ex-
tended GB2 model with quadratic mean-variance relationship to the GCKD base-
line and follow-up data (cf. Section 2.4). The model contained separate intercept
terms for baseline and the two follow-up time points. The working correlation ma-
trix was assumed to be unstructured [argument corstr of the geeglm function
in R package geepack, Hojsgaard, Halekoh and Yan (2016)]. It is seen that the
coefficient estimates and the standard errors largely confirm the results obtained
from the analysis of the GCKD baseline data (cf. Table 2).

The estimated working correlation matrix was

(24)

⎛
⎝1.0000 0.6360 0.5777

0.6360 1.0000 0.6570
0.5777 0.6570 1.0000

⎞
⎠ ,

revealing positive associations between the baseline measurements and the mea-
surements at the two follow-up examinations.
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TABLE 5
Longitudinal analysis of the LDL/HDL cholesterol ratios in the German Chronic Kidney Disease
Study. Coefficient estimates and standard errors were obtained by fitting the GEE version of the

quasi extended GB2 model to the GCKD baseline and follow-up data (γ̂ = coefficient estimate, se
= standard error). Reference categories of categorical covariates are indicated by dots. Standard

errors refer to the robust estimates in the R add-on package geepack

γ̂ se(γ̂ ) exp(γ̂ )

Baseline 0.8491 0.0492 2.3375
Follow-up 1 0.7798 0.0492 2.1810
Follow-up 2 0.8080 0.0493 2.2434
Age (years) −0.0015 0.0005 0.9985
Body mass index (kg/m2) 0.0097 0.0010 1.0097
Urinary albumin (g/l) 0.0233 0.0072 1.0236
Est. glomerular filtration
rate (ml/min per 1.73 m2) −0.0011 0.0004 0.9989
Gender (male) .

Gender (female) −0.1662 0.0136 0.8469
Heavy alcohol consumption (no) .

Heavy alcohol consumption (yes) −0.0843 0.0175 0.9192
HbA1c level ≤ 6.5% (no) .

HbA1c level > 6.5% (yes) 0.0044 0.0089 1.0044
Smoking (non-smoker) .

Smoking (former) −0.0319 0.0142 0.9686
Smoking (yes) 0.0438 0.0195 1.0448
Physical activity (0) .

Physical activity (1–2) 0.0101 0.0117 1.0102
Physical activity (3–5) 0.0046 0.0112 1.0046
Physical activity (>5) 0.0154 0.0126 1.0155
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SUPPLEMENTARY MATERIAL

Supplemental Article: eGB2_supplements (DOI: 10.1214/18-AOAS1207
SUPPA; .pdf). Online appendix containing details on (1) gradient boosting, (2)
tests for nonrandom missingness and drop-out, and (3) simulations.

R add-on package: eGB2 (DOI: 10.1214/18-AOAS1207SUPPB; .zip). R pack-
age implementing the proposed methodology.
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Supplemental Files: R Code of Section 4 (DOI: 10.1214/18-AOAS1207
SUPPC; .zip). Files containing the R code to recompute the simulation studies
and to reproduce the results presented in Section 4 and the supplemental article.
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