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FRÉCHET ESTIMATION OF TIME-VARYING COVARIANCE
MATRICES FROM SPARSE DATA, WITH APPLICATION

TO THE REGIONAL CO-EVOLUTION OF MYELINATION
IN THE DEVELOPING BRAIN
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Assessing brain development for small infants is important for determin-
ing how the human brain grows during the early period of life when the rate
of brain growth is at its peak. The development of MRI techniques has en-
abled the quantification of brain development. A key quantity that can be
extracted from MRI measurements is the level of myelination, where myelin
acts as an insulator around nerve fibers and its deployment makes nerve pulse
propagation more efficient. The co-variation of myelin deployment across
different brain regions provides insights into the co-development of brain re-
gions and can be assessed as correlation matrix that varies with age. Typi-
cally, available data for each child are very sparse, due to the cost and logistic
difficulties of arranging MRI brain scans for infants. We showcase here a
method where data per subject are limited to measurements taken at only one
random age, so that one has cross-sectional data available, while aiming at
the time-varying dynamics. This situation is encountered more generally in
cross-sectional studies where one observes p-dimensional vectors at one ran-
dom time point per subject and is interested in the p × p correlation matrix
function over the time domain. The challenge is that at each observation time
one observes only a p-vector of measurements but not a covariance or cor-
relation matrix. For such very sparse data, we develop a Fréchet estimation
method. Given a metric on the space of covariance matrices, the proposed
method generates a matrix function where at each time the matrix is a non-
negative definite covariance matrix, for which we demonstrate consistency
properties. We discuss how this approach can be applied to myelin data in the
developing brain and what insights can be gained.

1. Introduction. Modern Magnetic Resonance Imaging (MRI) methodology
has made it possible to study structural elements of the brain for small infants. Of
special interest is to utilize this technique for the study of how the brain grows and
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develops in the early childhood years, a period of rapid brain and cognitive growth
[Lenroot and Giedd (2006)], during which the brain’s structural and functional
networks are formed. The maturity of the developing brain is customarily mea-
sured in terms of level of myelination, which can be extracted from MRI signals.
Myelin serves as an insulating sheath around nerve fibers and higher myelin levels
are thought to be associated with more efficient signaling and thus improved brain
function. Altered brain connectivity has been hypothesized to underlie a number
of intellectual, behavioral, and psychiatric disorders [Stiles and Jernigan (2010),
Lebel and Beaulieu (2011), Shaw et al. (2008)]. To evaluate the development of
brain connectivity, the evolution of correlations between myelin levels for various
white matter brain regions as a function of age in normal children is of interest.
This is because brain development can be characterized by the degree of myelina-
tion and time-varying correlation matrices that quantify the dynamic correlations
of myelination between different brain regions pinpoint the regions that are devel-
oping at similar age periods, characterizing the spatio-temporal brain development
map.

A general problem for the analysis of MRI studies in children is the sparsity
of data in the time domain, which is a consequence of cost and logistic difficul-
ties. Even in studies that were intended to be longitudinal, for many infants only
measurements at one point in time are available. This motivates the development
of the approach that we present here, where we obtain consistent estimates of the
underlying time-varying correlation matrices from sparse observations, where the
estimates are guaranteed to be symmetric and nonnegative definite matrices at each
time argument. We consider here the sparsest possible case, namely that each sub-
ject is observed at only one random age. Our methodology is of interest for any
study where one aims at time-dynamic information for the correlation/covariance
structure of continuous multivariate observations, when one essentially has only
one measurement per subject available.

In our application to brain development, the underlying process of each sub-
ject corresponds to the myelination levels for p = 21 brain regions, which evolve
continuously over time. However, observations are measured only at a single time
point, so that the data available for each subject are the (random) time point at
which the measurement was taken as well as a multivariate p-vector of region-
specific myelin levels. As the data are vectors from which the smoothly varying
correlation matrix is the desired target, we show here that an adaptation of Fréchet
regression [Petersen and Müller (2018)] provides a simple and effective approach
to recover the correlation matrices. The proposed method produces for each age
an estimate of the population correlation matrix with the following properties: the
estimates are correlation matrices themselves; and they are consistent, with con-
vergence rates that can be derived from the general theory of Fréchet regression.

In Section 3, we will demonstrate these methods with data obtained as part of
an on-going accelerated longitudinal neuroimaging study, the Brown University
Assessment of Myelination and Behaviour Across Maturation (BAMBAM) study
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[Deoni et al. (2011, 2015)], by estimating time-varying correlation matrix func-
tions. The cross-correlation matrices of myelination level in dependency on age
entail a spatio-temporal map of development that indicates the locations of early
and late development, as well as the changing connectivity of various sets of re-
gions of interest. For the children in the BAMBAM study, at each age where a
MRI was obtained, the Early Learning Composite (ELC) score is also available,
which quantifies neurocognitive development. As an application of the estimated
covariance structure between the myelination levels of various brain regions across
age, we use this estimated covariance matrix, in addition to a similarly constructed
cross-correlation between the ELC outcome and the brain region myelin levels,
to obtain linear regressions of ELC versus the actual myelination levels for the
p = 21 brain regions. Since the coefficients in the linear regression are also time-
dependent, without the age-dependent covariance and cross-covariance estimates
this regression would not be possible as for each age where predictors (brain myeli-
nation levels) and response (ELC) are available, we have only one measurement.
Our analysis pinpoints the relevance of various brain regions for neurocognitive
outcomes in dependence of the age of infants.

Previous work on modeling and quantifying brain development has not ad-
dressed the modeling of cross-correlations and covariances, with the exception
of Dai et al. (2017a), where ad hoc kernel smoothing techniques were employed to
obtain pairwise cross-correlation functions for the sparsely observed BAMBAM
data. However, the ensemble of the recovered pairwise correlations does not form
a valid covariance/correlation matrix function, which at each age argument is re-
quired to be symmetric and nonnegative definite [Petersen and Müller (2016)]. Of
these properties, symmetry can be easily guaranteed, while nonnegative definite-
ness is a different matter and is not guaranteed for pairwise correlation function
estimation approaches.

In this paper, we study kernel smoothing methods for the coherent estimation of
these time-varying covariance matrices, where “coherent” means that the estima-
tors are symmetric nonnegative definite matrices at all time points. In Section 2.2,
we describe existing smoothing techniques which allow one to estimate the in-
dividual elements of each covariance matrix and discuss their drawbacks in the
current setting. Sections 2.3 and 2.4 reformulate the problem as the smoothing of
entire covariance matrices, opening a connection to a recent method for regression
for complex objects, the Fréchet regression model. Section 3 gives more detailed
background on the BAMBAM study and the Fréchet estimation technique is ap-
plied to study dynamic myelin correlations. We also demonstrate that the estimated
covariance matrix functions are instrumental to establish the relation between the
myelination levels over the 21 brain regions with concurrent ELC scores. Section 4
validates the approach by demonstrating in a simulation study the ability of the
Fréchet estimator to consistently recover dynamic covariances from such sparse
data using similar sample size and dimension, and its superiority to an alterna-
tive kernel estimator. Section 5 demonstrates theoretical advantages of the Fréchet
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smoother and extends theory for consistent estimation, which, by necessity, must
be performed using biased and degenerate covariance matrices as only multivariate
random vectors are observed.

2. Regression with covariance as response.

2.1. Preliminaries. We begin by defining the data objects and targets for es-
timation. The observed data consist of i.i.d. pairs (Xi, Yi), i = 1, . . . , n, where
Xi represents the age at which the child was examined and Yi ∈ R

p is a vec-
tor that contains the myelin water fraction (MWF) levels at p = 21 brain re-
gions measured during the visit (only available at one age). It is natural to think
of Yi as a point observation of a latent smooth multivariate stochastic process
{Ui(x) ∈ R

p : x ∈ [0, T ]}, where the Ui are i.i.d. mean-square continuous pro-
cesses [Ash and Gardner (1975), Hsing and Eubank (2015)], and Yi = Ui(Xi).
Thus, the process Ui tracks the MWF levels of subject i at all ages, and Yi is the
value of this process at a random age Xi that is independent of the process Ui . The
targets of interest are the cross-sectional mean and covariance of the latent process,
which can be expressed in terms of the conditional mean and covariance of Yi |Xi

via

(2.1)
μ(x) = E(Yi |Xi = x) = E

(
Ui(x)

)
,

�(x) = Cov(Yi |Xi = x) = Cov
(
Ui(x)

)
.

Notice that the covariance target is a function � : [0, T ] → Sp , where Sp is the
space of symmetric nonnegative definite matrices of dimension p. Similarly, one
is interested in the corresponding pointwise correlation matrices R(x). Estimators
μ̂j (x) of the component functions μj(x) of μ(x) can be obtained in a variety of
ways, including smoothing splines and local polynomial methods or other scat-
terplot smoothers, and have been well explored while this is not the case for the
estimation of �(x). Therefore we will focus our attention on the covariance esti-
mation.

2.2. Cross-covariance estimation. Established nonparametric techniques
could be invoked for the estimation of the individual matrix elements �jk(x) by
smoothing so-called raw covariances

(2.2) cijk = (
Yij − μ̂j (Xi)

)(
Yik − μ̂k(Xi)

)
.

Let K be a univariate density function, hjk a bandwidth and Kh(y) = h−1 ×
K(yh−1). Local constant (Nadaraya–Watson) and local linear smoothing are two
common tools that can be enlisted to smooth these raw covariances, with respective
estimators �̂0

jk(x) = â and �̂1
jk(x) = b̂, where

â = argmin
a∈R

n∑
i=1

Khjk
(Xi − x)(cijk − a)2,
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(b̂, ĉ) = argmin
b,c∈R

n∑
i=1

Khjk
(Xi − x)

(
cijk − b − c(Xi − x)

)2
.

As solutions to weighted least squares problems, both of these kernel estimators
take the form of a weighted average [Fan and Gijbels (1996)],

(2.3) �̂m
jk(x) =

n∑
i=1

win,mcijk,

where m = 0,1 correspond to Nadaraya–Watson and local linear smoothing, re-
spectively. Letting

r� = 1

n

n∑
i=1

Khjk
(Xi − x)(Xi − x)�, � = 0,1,2,

and σ 2 = r0r2 − r2
1 , the weights win,m in (2.3) are, respectively,

win,0 = win,0(x,hjk) = Khjk
(Xi − x)∑n

i=1 Khjk
(Xi − x)

and(2.4)

win,1 = win,1(x,hjk) = 1

σ 2 Khjk
(Xi − x)

[
r2 − r1(Xi − x)

]
,(2.5)

both satisfying
∑n

i=1 win,m = 1. This approach is closely related to the method
used in Dai et al. (2017a).

The above described estimators are known to be consistent on the interior
(0, T ), while the local linear estimator is preferable due to its improved perfor-
mance near the boundaries, which can make a substantial difference in practical
applications [Fan and Gijbels (1996)]. However, in our application, these estima-
tors possess some undesirable properties when combined into matrix estimators
�̂m(x), m = 0,1. First, while both lead to symmetric matrices, neither is guar-
anteed to be nonnegative definite, so that standard analyses involving covariance
matrices cannot be applied without some post-hoc alterations.

In the case of the Nadaraya–Watson estimator, this can in fact be resolved by
setting a common bandwidth hjk = h. Since the weights win,0 are strictly positive
and the space of covariance matrices is convex, this will give a coherent unified es-
timator �̂m(x) ∈ Sp . However, this apparent fix does nothing to resolve poor per-
formance near the boundaries. On the other hand, even with a common bandwidth,
the local linear estimator can still fail to be nonnegative definite, since win,1 can
be (and often are) negative, especially near the boundaries. If one requires a true
covariance, a natural procedure would be to project onto the space of covariance
matrices by truncating negative eigenvalues to zero. In the next section, we jus-
tify this approach by reframing the covariance estimation problem as a geometric
problem involving Fréchet means and an adapted version of a recently developed
regression method for responses that are random objects in a metric space.
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2.3. Time-varying covariance matrices as conditional Fréchet means. A key
step is to characterize the matrix �(x) as a conditional Fréchet mean. The Fréchet
mean of a random element Z of an arbitrary metric space (�,d) is

(2.6) E⊕(Z) = argmin
ω∈�

E
(
d2(Z,ω)

)
,

where existence can be guaranteed by compactness, but uniqueness cannot. If �

is a convex subset of a Euclidean space, and d is the Euclidean metric, then the
ordinary mean and Fréchet mean are known to coincide. Let U be a random p-
vector with zero mean and covariance matrix � and set Z = UU�. Then, if � =
Sp and d = dF is the Frobenius distance, it can be easily shown that the unique
Fréchet mean of Z is E⊕(Z) = � due to the fact that dF is a Euclidean norm as it
arises from an inner product.

Now, let X and U be generic copies of the sample elements Xi and the latent
multivariate processes Ui , Y = U(X) and C(X) = (Y −μ(X))(Y −μ(X))�. Then,
for the Frobenius metric dF , the matrix �(x) in (2.1) can naturally be expressed
as

(2.7) �(x) = E
(
C(X)|X = x

) = E⊕
(
C(X)|X = x

)
.

This characterization suggests that, while smoothing is an appropriate method
for estimation of �(x), it should not be done on the scalar raw covariances in
(2.2), as this merely targets the individual entries of �(x). Rather, one should
smooth entire covariance matrices and target the Fréchet mean �(x). As our data
consist of multivariate observations, the data objects closest to our targets are the
raw covariance matrices

(2.8) Ĉi = (
Yi − μ̂(Xi)

)(
Yi − μ̂(Xi)

)�
.

Before we develop the estimator, we provide two remarks that highlight the unique
difficulties and challenges associated with this estimation problem.

REMARK 1. The covariances Ĉi are biased in the sense that

E⊕(Ĉi |Xi = x) �= �(x).

This is because they serve only as approximations for the unobservable quantities

(2.9) Ci = (
Yi − μ(Xi)

)(
Yi − μ(Xi)

)�
,

for which E⊕(Ci |Xi = x) = �(x).

REMARK 2. Another feature of the raw covariances Ĉi , which we would still
face if we actually observed the unknown Ci in (2.9), is that they are degenerate,
that is, they have rank one. The challenge is then that we are attempting to estimate
the object �(x) that lies in the interior of Sp using a sample of objects that, by
definition, reside on the boundary of the space.
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In recent years, the smoothing of covariance matrices has been studied in vari-
ous contexts, with two prominent examples being the mapping of neural pathways
using DTI [Yuan et al. (2012), Carmichael et al. (2013)] and the spatial modeling of
speech recordings [Tavakoli et al. (2016)]. In the DTI application, the data consist
of a random sample of pairs (Pi, Si), where Pi ∈ R and Si is a symmetric posi-
tive definite matrix, and the target is the conditional Fréchet mean E⊕(Si |Pi = p)

under two particular Riemannian metrics for Sp . Being based on the sampling of
nondegenerate covariance matrices, due to the availability of much richer data in
this context, these previous approaches were not affected by the challenges sum-
marized in Remarks 1 and 2. Furthermore, since Fréchet means generally depend
on the chosen metric, in these applications specific features of the chosen metric
could be exploited. This is in contrast to our situation, where the goal is to gain an
understanding of the time-varying covariability of multivariate data. The canonical
metric for this purpose is the Frobenius or L2 metric for covariance matrices.

The importance of estimating time-varying covariance matrices is also evident
in the spatial analysis of sound objects in Tavakoli et al. (2016), where the covari-
ance also has a spatial component. Here, the smoothing of covariances takes place
only over space and, at least conceptually, the objects that are smoothed are not
random but fixed. In practice, these objects need to be estimated, and assumptions
are included under which the estimation error is negligible. Such assumptions are
common in functional data settings, but do not apply to the cross-sectional data
that we consider here, where the raw data are decidedly inconsistent. In short, the
nature of our data requires overcoming the challenges that are highlighted in the
above remarks, whereas these challenges do not arise in covariance estimation set-
tings that have been previously studied.

Tavakoli et al. (2016) also introduced the so-called d-covariance for multivariate
data. In our setting, if d is a metric on Sp , the d-covariance is

(2.10) �d⊕(x) = argmin
S∈Sp

E
(
d2(

C(X),S
)|X = x

)
.

The motivation for the d-covariance is that other metrics besides the Frobenius
metric are more suitable for analysis on Sp , which is a nonlinear Riemannian
manifold. As Tavakoli et al. (2016) demonstrated, if d is the square-root metric
d(C1,C2) = dF (C

1/2
1 ,C

1/2
2 ), one can readily use linear methods on the square-

root space, which can be identified with the linear space of symmetric matri-
ces. The d-covariance thus provides a natural class of covariance objects that
can be estimated using Fréchet methods. Alternative metrics that would have
similar limitations as the d-covariance are those in the Box–Cox class, where
dα(C1,C2) = dF (Cα

1 ,Cα
2 ), with appropriately defined matrix logarithms for the

case α = 0 [Pigoli et al. (2014), Petersen and Müller (2016)].
However, since �(x) = �d⊕(x) if and only if d is the Frobenius metric, one

cannot smooth under an alternative metric without losing the ability to interpret
the target as a true covariance of the observed random vector. In the particular



400 A. PETERSEN, S. DEONI AND H.-G. MÜLLER

application of these methods to the study of myelination that is our primary mo-
tivation, we work with the Frobenius metric for two reasons. First, practitioners
are more comfortable with assessing ordinary covariance and correlation between
myelin levels due to its well-established interpretation. Second, many statistical
models that one might wish to apply to the study of myelin levels necessitate an
estimate of their covariance properties, which would not be provided when ap-
plying a smoothing procedure under a different metric, as this results in estimates
that target a different quantity. The motivating problem of regressing ELC scores,
which assess cognitive development, on myelin levels as predictors provides one
such instance.

While we consider Fréchet methods under the Euclidean or Frobenius metric,
it bears emphasizing that our approach is not restricted to this choice. Indeed,
the theory in Section 5 is based on results in Petersen and Müller (2018), which
hold under very general conditions and can readily be extended to the Fréchet
estimation of d-covariances for various metrics d .

2.4. Fréchet estimation. The expression of �(x) as a conditional Fréchet
mean in (2.7) suggests estimation by a locally weighted sample Fréchet mean [see,
e.g., Pigoli et al. (2014)]

(2.11) �̂NW(x) = argmin
C∈Sp

n∑
i=1

Kh(Xi − x)d2
F (C, Ĉi).

The individual components of this estimator coincide with those in (2.3) for m = 0,
with weights as in (2.4) and all bandwidths hjk being equal. So, while the standard
Nadaraya–Watson smoother does not incorporate the constraints of the space Sp ,
it results in a standard Fréchet estimate of �(x), due to convexity. As mentioned
before, this estimator does not work well near boundaries due to bias, and a local
linear type estimator based on weights (2.5) is preferable.

Local linear kernel estimation does not immediately generalize to nonlinear
spaces, regardless of whether they are convex or not, as it introduces negative
weights near the boundaries, which is necessary to control bias. In Yuan et al.
(2012), intrinsic local polynomial regression (ILPR) was proposed using mani-
fold features of Sp under metrics different from dF . Since the Frobenius met-
ric is the natural choice given our target, ILPR is not directly applicable and,
more importantly, more complex than necessary. A simpler, yet more general,
re-characterization of local linear smoothing for arbitrary metric spaces (Local
Fréchet Regression or Fréchet smoothing) has recently been developed in Petersen
and Müller (2018). Fréchet smoothing can be easily applied to the current problem
of smoothing covariance matrices, where it becomes

(2.12) �̂LF(x) = argmin
C∈Sp

n∑
i=1

win,1(x,h)d2
F (C, Ĉi),

and is represented as a weighted Fréchet mean, with weights win,1 as in (2.5).
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In Fréchet smoothing, we are not weighting the covariances directly, but rather
the squared distances which define the Fréchet functional to be minimized. Again,
these weights can be negative, since they are derived from the local linear weights
in a standard Euclidean smoothing problem, so that

∑n
i=1 win,1Ĉi is not guaran-

teed to be in Sp . However, similar to the Nadaraya–Watson estimator, the local
Fréchet estimator has an analytic expression in the case of covariance matrices
and the Frobenius metric, given by

�̂LF(x) = 	Sp

(
n∑

i=1

win,1(x,h)Ĉi

)
,

where 	Sp is the projection operator onto Sp under dF . This projection operator
is easy to compute, as it corresponds to truncating negative eigenvalues to zero
while keeping the eigenspaces the same. It is interesting, albeit unsurprising, that,
while �̂LF(x) as defined in (2.12) is clearly an intrinsic estimator as a minimizer
of a Fréchet functional, it is also equivalent to the projection onto Sp of the ordi-
nary, extrinsic local linear estimator. This phenomenon is explained by the fact that
Fréchet means under Euclidean metrics coincide with ordinary means, along with
the uniqueness of Euclidean projections onto closed, convex spaces such as Sp .

3. Regional co-evolution of brain myelination in the developing brain.

3.1. Background and the BAMBAM study. Altered early brain development is
hypothesized to underlie many neurological, behavioral, and intellectual disorders.
Infancy and early childhood are sensitive periods of brain growth, coinciding with
the emergence of nearly all cognitive, behavioral, and social functioning abilities.
Beginning in utero, myelination advances rapidly over the first 2 years of life in a
carefully choreographed caudal-cranial, posterior-to-anterior pattern [Brody et al.
(1987), Paus et al. (2001)], and continues throughout childhood and adolescence
[Bartzokis et al. (2010)]. This maturation pattern is driven by the tight regula-
tion of myelination by neural activity [Fields (2005), Ishibashi et al. (2006), Lang
et al. (2003)], which likely underpins its spatio-temporal coincidence with emerg-
ing neurobehavior [Fields (2008), Nagy, Westerberg and Klingberg (2004), Casey,
Galvan and Hare (2005)].

The prolonged nature of myelination imparts a high degree of flexibility and
plasticity to developing neural systems. However, this protracted timeline of de-
velopment also places these systems at prolonged risk to injury or deviant devel-
opment [Rodier (1995)]. It is increasingly recognized that alterations in myeli-
nation timing and/or extent can significantly affect behavioral and cognitive out-
comes [Fields (2008)], with altered white matter microstructure being a consistent
finding in many neurological and neuropsychiatric disorders [Wolff et al. (2012),
Flynn et al. (2003), Xiao et al. (2014)]. Despite the importance of coordinated neu-
ral communication, relatively little is known regarding the development of struc-
tural and functional networks in infants or toddlers or the relationships linking the
emergence of neural networks to evolving cognition or neurobehavioral outcomes.
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The Brown University Assessment of Myelination and Behavior Across Matu-
ration (BAMBAM) study provides voxelwise data on the myelination for neurotyp-
ical children that were very sparsely measured across age, and which we analyze
in Section 3.2 to demonstrate some of these issues. Only children with measure-
ments before the age of 1250 days were included, resulting in a sample size of
n = 223 children. Additionally, for those children who were assessed at multiple
time points during this period, one observation per subject was selected randomly.

Imaging measures include anatomical T1-weighted (T1w), quantitative relax-
ometry (qT1, qT2), and quantitative myelin water fraction (MWF), among other
measurements. The children included in the study were devoid of major risk factors
for neurologic and psychiatric disorders. Children with in utero alcohol or illicit
substance exposure, premature (<37 weeks gestation) or multiple birth, fetal ul-
trasound abnormalities, complicated pregnancy, APGAR scores <8, NICU admis-
sion, neurological disorder, psychiatric or developmental disorders in the infant,
parents or siblings were excluded [Chlebowski et al. (2013), Bilenberg (1999)].

The BAMBAM study acquired high-quality and artifact-free MRI data that in-
form on different characteristics of the developing brain [Fornari et al. (2007),
Miller et al. (2012), Hagmann et al. (2010), Grydeland et al. (2013), Shafee, Buck-
ner and Fischl (2015)], including morphometric (whole-brain, white and gray mat-
ter volume), myelin water fraction (which informs more specifically on myeli-
nation, a key process of brain connectivity), and other modalities [Deoni et al.
(2008a), Deoni, Rutt and Peters (2006), Deoni et al. (2015)]. Such high quality
MRI measurements (see Figure 1) are a prerequisite to assess brain development
[Knickmeyer et al. (2008), Deoni et al. (2008b), Deoni et al. (2011), Deoni, Rutt
and Peters (2003), Deoni (2007), Deoni et al. (2004), Deoni (2011), Deoni, Peters
and Rutt (2004), Deoni and Kolind (2015)]. It is also of interest to relate myelin

FIG. 1. A multi-modal assessment of development. Mean myelin water fraction (MWF), quantita-
tive relaxometry (qT 1, qT 2) and fractional anisotropy (FA) maps, and T1-weighted (T1w) images
from three months to five years of age.
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level correlation across brain regions to concurrent developmental and cognitive
scores [Shaw et al. (2006)], where we use the Early Learning Composite (ELC),
derived from the verbal and nonverbal development quotient (VDQ and NVDQ,
respectively) scores of the Mullen Scales of Early Learning [Mullen et al. (1995)];
these scores are standardized for age. It is of special interest to identify the brain
regions for which myelination levels are most predictive of these scores at certain
ages. This will help to pinpoint the relative relevance of brain regions for neu-
rocognitive performance across age, a goal that has been elusive so far.

The implementation of Fréchet regression that we propose here is a one-step
approach that leads directly to bona fide correlation/covariance matrix functions
and is supported by theoretical consistency and rate of convergence results that
are applicable even for the extremely sparse data case that we consider here. We
demonstrate that also in practice this method leads to sensible results when applied
to the very sparse data case, where the observed data do not correspond to a sample
covariance matrix paired with each predictor, but rather just one random vector of
observed levels for each predictor level. Our goal is to quantify the evolution of
the cross-correlations with age from data that contain only one measurement per
subject. For this, we select p = 21 discrete anatomical brain regions as an example.
The methods generalize to other local aggregations of the MWF levels, which are
recorded at the voxel level. These regions are listed in Table 1 together with their
acronyms used throughout the remainder of the paper.

While modeling cross-correlation and cross-covariance of myelination has not
been well explored, a related topic with more substantial work is the modeling of
the myelin trajectories as a function of age. Nonlinear approaches have been ap-
plied previously to model overall myelination level trajectories by averaging over
brain regions and focusing on the dependence of myelin levels as a function of

TABLE 1
List of all p = 21 regions/tracts and their acronyms for which MWF levels are measured

Region Acronym Region Acronym

body Corpus Callosum bCC left Cingulum lC
genu Corpus Callosum gCC right Cingulum rC
splenu Coropus Collosum sCC left Corona Radiata lCR
left Frontal lF right Corona Radiata rCR
right Frontal rF left Internal Capsule lIC
left Parietal lP right Internal Capsule rIC
right Parietal rP left Optic Radiation lOR
left Occipital lO right Optic Radiation rOR
right Occipital rO left Superior Longitudinal Fasciculus lSLF
left Temporal lT right Superior Longitudinal Fasciculus rSLF
right Temporal rT
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age [Shaw et al. (2008), Knickmeyer et al. (2008), Casey, Galvan and Hare (2005),
Deoni et al. (2016), Deoni et al. (2015)]. Recently, Dai et al. (2017b) proposed a
method to obtain whole brain MWF trajectories, modifying approaches of Şentürk
and Müller (2010), Şentürk and Nguyen (2011). For the case where repeated mea-
surements are available for each subject, ideally densely spaced, related work on
modeling multivariate trajectories by functional data analysis methods includes
Zhou, Huang and Carroll (2008), Chiou and Müller (2016). However, these ap-
proaches are not applicable if only one or very few observations per subject are
available.

3.2. Age-varying correlations of regional myelination. The BAMBAM study
cohort includes n = 233 children who were observed during the first 1250 days
of life, with the earliest observation at age 65 days. Some children were observed
repeatedly within this time period for a total of N = 440 visits, although nearly
half (48%) of the children have just one measurement and 90% have at most 3
measurements. For this reason, in our analysis we assume that only a single ob-
servation per subject is available, which is chosen uniformly from the available
observations. For comparison purposes, we also conducted this analysis using the
full data set, with corresponding figures being relegated to the Supplementary Ma-
terial [Petersen, Deoni and Müller (2019)].

We investigated the patterns of MWF development in the p = 21 regions/tracts
listed in Table 1. A subset of the observed data are shown in the left panel of
Figure 2, where the children were binned into 35 age groups of equal width, and
one child per bin was chosen randomly for display. The right panel of Figure 2
also shows the preliminary estimates of the mean MWF levels, using local lin-
ear smoothing with a bandwidth of 50 days. This bandwidth was chosen by five-

FIG. 2. (a) Scatterplot of MWF levels for a subset of 20 children, with different plotting characters
and colors corresponding to distinct brain regions. (b) Estimated mean functions for all 21 regions.
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fold cross validation combined across all regions. Comparison with Figure 2 in
Petersen, Deoni and Müller (2019) shows similar patterns for estimates obtained
from the complete data set.

We then computed cross-sectional covariance estimates as in (2.12); the alterna-
tive estimators in (2.3) and (2.11) are not shown due to their inferior performance,
which is expected theoretically and empirically demonstrated in the simulations of
Section 4. For bandwidth choice, a standard cross validation criterion would not
be expected to perform well as the raw covariance matrices are known to live on
the boundary of the space (see Remark 2). Letting �̂−i (Xi)(h) denote a leave-out
estimate of �(Xi) using bandwidth h, we consider the following criteria:

ĥ1 = argmin
h

n∑
i=1

d2
F

(
Ĉi, �̂−i(Xi)(h)

)2
,

ĥ2 = argmin
h

n∑
i=1

tr
(
�̂+

−i (Xi)(h)Ĉi

)
,

(3.1)

where A+ denotes the pseudo inverse of a matrix A. As expected, ĥ1 tends to
undersmooth the data, whereas ĥ2 oversmooths due to the inversion. We found
that using the geometric mean ĥopt = (ĥ1ĥ2)

1/2 provides a reasonable choice of
150 days for the covariance smoothing, using five-fold cross validation.

We visualize the 231 distinct covariance curves �̂jk(x), 1 ≤ j ≤ k ≤ 21 for
four ages in Figure 3. We see from the diagonals that variability of MWF lev-
els increases with age, while covariability also scales but to a lesser extent. An
interesting finding is the weak dependence of the right occipital region with all
other regions, despite having a similar variability pattern. We can also examine
the dependency patterns while normalizing the scale by considering the 210 dis-
tinct correlation curves R̂jk , 1 ≤ j < k ≤ 21, this time using Functional Principal
Component Analysis (FPCA). We note here that the correlation curves are depen-
dent as they are constructed from the same individuals so that many of the basic
results such as consistency of FPCA are not applicable. We also ignore the con-
straint that correlation curves are between −1 and 1 when implementing FPCA.
However, none of this precludes us to use FPCA for purely descriptive purposes,
and this is the premise for the following FPCA application.

Figure 4(a) shows the pointwise average of these correlation curves along with
a functional boxplot. The mean curve indicates that correlation between regional
myelin development remains roughly constant, when averaging across all region
pairs. Comparing these results with the estimates for the full data set, we again
find consistency in the dynamics of covariance estimates [Figure 3 and Figure 8
in Petersen, Deoni and Müller (2019)], as well as similar patterns in the corre-
sponding correlation curves [Figure 4 and Figure 9 in Petersen, Deoni and Müller
(2019)].
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FIG. 3. Estimated MWF covariance matrices at four distinct ages x (in days). Circle size indi-
cates magnitude of covariance (all are positive), and the color/shade indicates a discretization of the
covariance values for easier visual comparison.

The first k = 3 eigenfunctions representing the principal deviations from the
average correlation curve observed in the estimated correlations are shown in
Figure 4(b); the fractions of variance explained (FVE) by these three curves are
90.1%, 6.15%, and 2.76%, respectively. The first eigenfunction has an increasing
trend up to day 800, followed by a decreasing trend. This indicates that variabil-
ity between correlation patterns amongst distinct region pairs is mostly explained
by an increased separation from the mean correlation up until approximately 800
days of age, followed by a regression to the mean, that is, moving towards the
average correlation. The eigenfunction curves in Figure 4(b) can be further inter-
preted by examining the corresponding functional principal component scores in
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FIG. 4. (a) Functional boxplot and mean curve (dashed), for correlation curves between the 21
regions. (b) First (solid, FVE = 90.1%), second (dashed, FVE = 6.15%), and third (dot-dash,
FVE = 2.76%) eigenfunction representing the variability in the collection of estimated correlation
curves. (c) First principal scores for all region pairs. Here FVE stands for Fraction of Variance Ex-
plained [for Functional Principal Component Analysis and related issues, see, e.g., Wang, Chiou and
Müller (2016)].

Figure 4(c). As previously observed, the occipital regions have markedly lower
correlations with the remaining regions as indicated by the negative scores in this
component. It can also be seen that the strongest correlations in region pairs tend
to include the Frontal and Parietal regions as well as the Corona Radiata.

We now aim at modeling the relation between myelin development and cog-
nitive ability, as quantified by the ELC score, building on the above approaches.
Denoting by Ei(x) a latent process that tracks the ELC score of the ith child con-
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tinuously over the age domain, we are able to actually observe only Ei(Xi), the
cognitive score at the random time Xi at which the child is studied. Recall that
Ui(x) is the vector latent process containing the MWF levels for the various re-
gions across age, with mean curve μ(x). Since both cognition and myelin devel-
opment are dynamic processes, we consider a varying coefficient linear model

(3.2) E
[
Ei(x)|Ui(x)

] = β0 + β�(x)
(
Ui(x) − μ(x)

)
,

where in our specific application we can substitute fixed intercept value β0 = 100,
owing to the fact that ELC scores are standardized to have a mean value of 100
and constant variance.

In view of the linear structure of (3.2), the solution for the slope vector function
is

β(x) = �−1(x)�(x),

where �(x) = Cov(Ui(x),Ei(x)) is the dynamic vector of covariances between
myelin development and the ELC score, and �(x) is the time-varying covariance
matrix that we are targeting with the approach described above.

We then propose to estimate the parameter functions β in (3.2) by first estimat-
ing the elements �j (x), j = 1, . . . ,21. For this, we compute

Gij = (
Yij − μ̂j (Xi)

)(
Ei(Xi) − 100

)
and then apply local linear smoothing for pairs (Xi,Gij ) with bandwidth h = 150
days. Finally, we use the estimate �̂(x) obtained by Fréchet smoothing to compute
the regularized ridge estimate

(3.3) β̂λ(x) = [
�̂(x) + λIp

]−1
�̂(x).

The bandwidths for the estimation of μ and � were set to 50 and 150, as done
previously, and the ridge parameter was chosen to minimize prediction error using
five-fold cross validation, resulting in λ̂opt = 0.14. Estimates �̂(x) and β̂

λ̂opt
are

shown in Figures 5(a) and 5(b). While the covariability between each MWF level
and ELC score has similar patterns over time, the interdependencies betwen the
MWF levels cause the estimates of the components of the vector function β to be
considerably more complex.

For example, these estimates indicate a stark contrast in the effects of myelina-
tion level in the Genu of the Corpus Callosum, which is associated with a lower
cognitive score, versus white matter in the right Parietal lobe, which is associated
with a higher score, particularly pronounced at 600 days, and also between the
right Optic Radiation, with lower scores associated, and left Corona Radiata, with
higher scores associated and most pronounced at 800 days. Despite the aforemen-
tioned similarities in mean and covariance estimates between the reduced and full
data sets, comparison of the estimates of the functional coefficients β shown in
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FIG. 5. Estimates �̂(x) in (a), β̂
λ̂opt

(x) in (b), and R̂2(x) in (c), corresponding to the varying coef-

ficient model (3.2) for regressing ELC scores on myelin water fraction levels. In panel (c), estimates
based on both one observation per subject (solid line) and the full data set (dashed line) are shown.

Figure 5 and Figure 10 in Petersen, Deoni and Müller (2019) demonstrate their
sensitivity to changes in �̂(x) due to the inversion in (3.3).

Another meaningful measure we can extract is an estimate of the time-varying
coefficient of determination, or multiple correlation,

R2(x) = �(x)��(x)−1�(x),
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which we estimate by

R̂2(x) = ˆ�(x)
�[

�̂(x) + λ̂optIp

]−1 ˆ�(x),

with the resulting estimates shown in Figure 5(c), where also the corresponding
estimates using the complete data set are shown. One finds that while MWF levels
only moderately account for variability in ELC score at younger ages, there is a
sharp and steady increase in their predictive power between the ages of two and
three.

These exploratory results clearly demonstrate the evolving relationships be-
tween maturing brain structure and developing cognitive functioning and be-
haviour, particularly throughout early neurodevelopment. In older children, ado-
lescents, and adults, neuroimaging results generally conform to the hypothesis that
increased brain structure, integrity, and myelin are associated with improved cog-
nitive function. Our results suggest that this relationship is less clear and exhibits
complex nonlinearities during infancy and early childhood. For example, our find-
ing that reduced myelination within portions of the Corpus Callosum is associated
with increased cognitive functioning runs contrary to preconceptions derived from
adult studies [Fryer et al. (2008)], however, may be a natural consequence of other
prior findings suggesting that slower maturation is also associated with improved
cognitive outcomes [Deoni et al. (2016), Erus et al. (2014)].

With respect to our finding that brain structure and function relationships be-
come increasingly stronger with age, this too may provide insight into the increas-
ing importance of white matter with age, with grey matter structure playing the
more important role in earlier life [Smyser et al. (2016)]. However, it is also im-
portant to note that early cognitive measures suffer high variability and poor pre-
dictive ability prior to 12–18 months of age [Slater (1997)], so that this finding may
also reflect intrinsic measurement variability. Clearly, in addition to the estimation
techniques introduced here, it will be useful in future work to develop inferential
methods for testing and confidence sets in order to assess the strength of evidence
for these findings.

4. Simulations. The simulations reported in this section aim, first, to demon-
strate the advantages of local Fréchet smoothing over the Nadaraya–Watson
smoother and, second, to establish the reliability of estimates obtained from real
data in Section 3.2. The simulations were conducted under the setting T = 1, with
Xi being independently sampled from a beta distribution with shape parameters
0.5 and 1.8, which roughly approximates the shape of the age distribution in the
BAMBAM data. Then, Yi |Xi , i = 1, . . . , n, were generated according to the model

(4.1) Yi |Xi = μ(Xi) + [
�(Xi)

]1/2
Zi.

In order to emulate the BAMBAM data, for a fixed dimension p, the mean vec-
tor μ(x) had components μj(x) = bj − 8(x − cj )

2, j = 1, . . . , p, where bj ∼
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U(10,16) and cj ∼ U(1,1.1) were drawn once and fixed for all simulations. These
parametric mean functions were chosen based on the estimated mean myelin tra-
jectories (see Figure 2 in Section 3.2). The covariance �(x) was formed by gener-
ating a p×p matrix A with independent N (0,0.5) random variables in each entry,
then computing S = 0.5(A + A�). A second p × p matrix V was generated with
elements drawn independently as U(0,0.5), from which θ = 0.5(V + V �) was
computed. Finally, with Exp denoting matrix exponentiation and 	 the Hadamard
product, we formed

(4.2) �(x) = (
1 + 10x + 20x5)

Exp
[
S 	 sin

(
2πθ(x + 0.1)

)]
.

The polynomial factor emulates the increasing variability of MWF levels seen in
the BAMBAM data, with minor fluctuations induced by the sine component. Re-
peated simulations were run by sampling the random variate Zi independently of
Xi as a standard p-dimensional Gaussian random vector. Mean trajectory esti-
mates μ̂j were obtained using local linear regression with the bandwidth chosen
by ordinary leave-one-out cross validation, pooled across j , and separately for
each simulation run. Covariance estimation was performed using both Nadaraya–
Watson (2.11), local Fréchet (2.12), and standard local linear estimators, which are
obtained as in (2.3), with m = 1 and weights win,1 as specified in (2.5). For the
latter, the various bandwidths were all taken to be equal, that is, hjk ≡ h.

To compare the various estimates, for each fixed bandwidth h over a grid, we
computed the integrated squared error (ISE)

ISE(h) =
∫ 1

0
d2
F

(
�̂(x)(h),�(x)

)
dx

for each simulation run, where �̂(x)(h) stands for a generic estimate of �(x) us-
ing bandwidth h. The results for comparing (2.11), (2.12), and (2.3) using this
metric are in Table 2 for 100 simulations, dimensions p = 20,40, and sample

TABLE 2
Logarithms of average ISE for Nadaraya–Watson (2.11), ordinary local linear (2.3), and local

Fréchet (2.12) estimators, minimized over a grid of bandwidth values h. The minimizing bandwidth
is given in parentheses

Dimension Method n = 250 n = 500 n = 1000

p = 20 Nadaraya–Watson 11.981 (0.08) 11.958 (0.06) 11.937 (0.05)
Local linear 10.799 (0.43) 10.430 (0.33) 10.032 (0.29)
Local Fréchet 10.798 (0.43) 10.430 (0.33) 10.031 (0.29)

p = 40 Nadaraya–Watson 14.693 (0.09) 14.673 (0.07) 14.655 (0.05)
Local linear 13.846 (0.60) 13.457 (0.33) 13.068 (0.29)
Local Fréchet 13.845 (0.60) 13.456 (0.37) 13.068 (0.29)
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sizes n = 250,500,1000. The settings we investigated include parameter values
that approximate the BAMBAM data, and go beyond by increasing both dimen-
sion and sample size. One finds that average ISE values are uniformly lower for
the local linear and Fréchet methods, and the very small optimal bandwidths used
for the Nadaraya–Watson estimator particularly reflect its well-known inherent
bias issues, and increasing sample size leads only to very small declines or no
declines in ISE, in contrast to the local linear and Fréchet methods, where in-
creasing sample sizes lead to noticeable improvements. While the tabulated inte-
grated MSE results demonstrate only slight improvement using local Fréchet esti-
mation versus ordinary local linear estimation, in fact the pointwise discrepancies
dF (�̂(x)(h),�(x)) are uniformly lower for the local Fréchet method, with larger
discrepancies near the boundaries where the ordinary local linear estimate tends to
suffer from influential negative eigenvalues.

The simulation results are visualized in Figure 6, demonstrating the ISE values
(in log scale) over all simulation runs rather than just the mean, where we leave out
the ordinary local linear estimator. The local Fréchet approach clearly outperforms
the Nadaraya–Watson estimator uniformly over all settings, which, again due to
its bias, is seen not to display the improved performance with increasing sample
size n that is found for the local Fréchet estimator and is expected for a reasonable
estimation approach.

To further validate our analysis in Section 3, we implemented two additional
estimates of the dynamic covariance for the setting n = 250 and p = 20. The first
alternative estimate is the local Fréchet estimator under the square root metric

FIG. 6. Boxplots of integrated squared errors for Nadaraya–Watson (NW) and local Fréchet (LF)
estimators for p = 20,40 and n = 250,500,1000, using the optimal bandwidths given in Table 2.
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d(C1,C2) = dF (C
1/2
1 ,C

1/2
2 ),

�̂d⊕(x) =
(

n∑
i=1

win,1(x,h)Ĉ
1/2
i

)2

.

The appeal of this estimate is that it is an intrinsic estimator that does not require
projection onto Sp . However, as noted in Section 2.2, this estimator no longer
targets the ordinary covariance, but rather the d-covariance of Tavakoli et al. (2016)
in (2.10). This inherent bias resulted in a worse average ISE of 11.376 (on the log
scale, and minimized over a grid of bandwidths) when compared to local Fréchet
estimation under the Frobenius metric in Table 2, although the performance was
better than that of the standard Nadaraya–Watson estimate.

A second alternative estimate was considered in order to assess the relative
efficiency of using just one observation per subject versus the full data set in
the BAMBAM analysis. This estimate was obtained by generating repeated ob-
servations for the n = 250 subjects and then computing the local Fréchet es-
timate using all observations, ignoring dependencies. To mimic the BAMBAM
data, we generated independent obervation counts Ni ∈ {1,2,3,4} with probabil-
ities (0.48,0.28,0.14,0.1), resulting in a total of 497 observations including re-
peats, and these numbers were used across all simulation runs. For indices i with
Ni > 1, this required an adaptation of the generative model in (4.1) in order to
include dependencies. This was done by generating independent timepoints Xij ,
j = 1, . . . ,Ni , according to the beta distribution as before, followed by a zero-
mean multivariate normal random vector (Z�

i1, . . . ,Z
�
iNi

)� with Var(Zij ) = Ip and
Cov(Zij ,Zij ′) = 0.2Ip , j, j ′ = 1, . . . ,Ni , j ′ �= j . Lastly, the random vector

Yij |Xij = μ(Xij ) + [
�(Xij )

]1/2
Zij

was computed. Unsurprisingly, the increased information resulted in an improved
average ISE of 10.465 (again in log scale). Hence, when repeats are available, they
can indeed be beneficial. However, the methodology does not require repeats and,
most importantly, the challenges mentioned in Section 2.2 associated with single
observation data are not alleviated for very sparse longitudinal data such as those
available in the BAMBAM study.

5. Theoretical justifications. We analyze the pointwise behavior of the es-
timate �̂LF(x) and establish the rate of convergence for the metric dF (�̂LF(x),

�(x)). If μ were known, so that Ci in (2.9) can be computed, the estimator

(5.1) �̃LF(x) = argmin
C∈Sp

n∑
i=1

win,1(x,h)d2
F (C,Ci)

corresponds to the estimator studied in Petersen and Müller (2018). Thus, we can
make use of the inequality

dF

(
�̂LF(x),�(x)

) ≤ dF

(
�̂LF(x), �̃LF(x)

) + dF

(
�̃LF(x),�(x)

)
.
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Suppose that the marginal densities fX of X1 and fU(·, x) of U1(x) exist, the latter
for all x ∈ [0, T ]. Let ‖·‖ be the standard Euclidean norm on R

p , and h = hn → 0
be a bandwidth sequence. We require the following assumptions.

(A1) The kernel function K is a symmetric probability density function with
support [−1,1].

(A2) The density fX of X1 is twice continuously differentiable and
infx∈[0,T ] f (x) > 0.

(A3) There is a constant M1 > 0 such that supx∈[0,T ]‖U1(x)‖ ≤ M1 almost
surely. Futhermore,

inf
x∈[0,T ],‖y‖≤M1

fU(y, x) > 0.

(A4) The function fU(u, x) is continuous with respect to both arguments and
twice continuously differentiable with respect to x on the interior.

(A5) For any x ∈ [0, T ] and a null sequence qn = o(1), the auxiliary estimates
μ̂j satisfy

sup
|y−x|≤h

∣∣μ̂j (y) − μj(y)
∣∣ = Op(qn).

Assumption (A1) is common for estimation of a function with bounded sup-
port, but can be relaxed by controlling the tail behavior of K . Assumption (A2)
is also widely used in local polynomial estimation settings, while (A3) is a natu-
ral assumption which has the implication that the conditional density of Y1|X1 is
well behaved. Assumption (A4) can also be relaxed by controlling the pointwise
tail behavior of the process U1. The required rate in (A5) is needed to control the
error incurred by using Ĉi in place of Ci in the estimation, where the upper bound
q = n−2/5 log(n) is known to hold for local linear estimators under certain assump-
tions, which include that the functions μj(x) are twice continuously differentiable
and conditions on the bandwidth [Mack and Silverman (1982), Fan and Gijbels
(1996)].

THEOREM 1. Let h = hn → 0 and nh → ∞. Under assumptions (A1)–(A5),
for any interior point x ∈ (0, T ), the local Fréchet estimator satisfies

dF

(
�(x), �̂LF(x)

) = Op

(
h2 + (nh)−1/2 + qn

)
.

COROLLARY 1. Let R̂LF(x) and R(x) be the correlation matrices corre-
sponding to �̂LF(x) and �(x), respectively. Under the assumptions of Theorem 1,
for any x ∈ (0, T ),

dF

(
R(x), R̂LF(t)

) = Op

(
h2 + (nh)−1/2 + qn

)
.
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From the theorem and corollary, the bandwidth choice which leads to the fastest
rate of convergence is h = h(n) ∼ n−1/5 and the resulting Op rate is n−2/5 + qn.
The first term corresponds to the optimal rate of pointwise convergence for non-
parametric estimation of regression functions that are twice continuously differ-
entiable. A proof of Theorem 1 is provided below, while that of the corollary is
straightforward and is omitted.

PROOF OF THEOREM 1. First, assumptions (A1)–(A4) can be used to ver-
ify the conditions necessary to invoke Theorems 3 and 4 of Petersen and Müller
(2018), with the exception that the space Sp is not bounded. With minor alterations
to the proofs, assumption (A3) implies that these continue to hold, since Sp is a
subset of a Euclidean space, implying

dF

(
�(x), �̃LF(x)

) = Op

(
h2 + (nh)−1/2)

.

By the contraction property of the projection 	Sp , it follows that

dF

(
�̃LF(x), �̂LF(x)

) ≤ 1

n

∥∥∥∥∥
n∑

i=1

win,1(x)(Ci − Ĉi)

∥∥∥∥∥
F

,

where ‖·‖F is the Frobenius norm. Assumption (A5) also implies that, for large
enough n, we have

‖Ci − Ĉi‖F ≤ 4M1
∥∥μ̂(Xi) − μ(Xi)

∥∥.
Under (A1), it can easily be shown that |win,1(x)| = Op(Kh(Xi − x)), where the
Op term is uniform over i. Hence, using (A5), we have

dF

(
�̃LF(x), �̂LF(x)

) ≤ 1

n

n∑
i=1

∣∣win,1(x)
∣∣‖Ci − Ĉi‖F

= Op

(
qn

n

∑
i=1

Kh(Xi − x)

)
= Op(qn). �

SUPPLEMENTARY MATERIAL

Supplement to “Fréchet estimation of time-varying covariance matrices
from sparse data, with application to the regional co-evolution of myelina-
tion in the developing brain” (DOI: 10.1214/18-AOAS1195SUPP; .pdf). The
Supplementary Material contains figures similar to Figures 2–5 in the paper, but
corresponding to results obtained by using the full data set of 440 observations,
including repeated measurements for approximately half of the 223 total subjects.

https://doi.org/10.1214/18-AOAS1195SUPP
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ŞENTÜRK, D. and MÜLLER, H.-G. (2010). Functional varying coefficient models for longitudinal
data. J. Amer. Statist. Assoc. 105 1256–1264. MR2752619
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