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Early infancy from at-birth to 3 years is critical for cognitive, emotional
and social development of infants. During this period, infant’s developmental
tempo and outcomes are potentially impacted by in utero exposure to en-
docrine disrupting compounds (EDCs), such as bisphenol A (BPA) and ph-
thalates. We investigate effects of ten ubiquitous EDCs on the infant growth
dynamics of body mass index (BMI) in a birth cohort study. Modeling growth
acceleration is proposed to understand the “force of growth” through a class
of semiparametric stochastic velocity models. The great flexibility of such a
dynamic model enables us to capture subject-specific dynamics of growth tra-
jectories and to assess effects of the EDCs on potential delay of growth. We
adopted a Bayesian method with the Ornstein–Uhlenbeck process as the prior
for the growth rate function, in which the World Health Organization global
infant’s growth curves were integrated into our analysis. We found that BPA
and most of phthalates exposed during the first trimester of pregnancy were
inversely associated with BMI growth acceleration, resulting in a delayed
achievement of infant BMI peak. Such early growth deficiency has been re-
ported as a profound impact on health outcomes in puberty (e.g., timing of
sexual maturation) and adulthood.

1. Introduction. The Developmental Origin of Health and Disease (DOHaD)
hypothesis is an essential theoretical framework in environmental health sciences.
One of its central aims is to study how prenatal and early postnatal risk factors in-
fluence children’s growth and developmental outcomes. Environmental endocrine
disrupting compounds (EDCs) such as bisphenol A (BPA) and phthalates are ex-
amples that have long-term detrimental effects on human growth. BPA is a high
production chemical used in the manufacture of polycarbonate plastics, epoxy
resins and thermal paper, while phthalates are a diverse class of high-production
industrial chemicals used to make plastics more flexible. Both BPA and phthalates
are widely in use, and the majority of women are constantly exposed [Nhanes
(2009)]. These EDCs affect both lipid metabolism and regularization of hormones
[Casals-Casas, Feige and Desvergne (2008)] and possibly alter the growth and de-
velopment trajectory of children [Diamanti-Kandarakis et al. (2009)].
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FIG. 1. Conceptual population-level child growth BMI pattern for children aged 0 to 5 years ac-
cording to the World Health Organization.

Infancy is of the greatest importance not only for the cognitive, emotional
and social development [Piaget (2000), Saarni (1999)], but also for the physical
changes of transitioning from an infant to a toddler. In effect, this period is domi-
nated by two major growth processes: the faster growth of weight than height over
the first six months or so after birth, followed by the faster growth of height than
weight. This height-weight growth pace yields the first human growth milestone,
the infant body mass index (BMI) peak (see Figure 1). The infant BMI peak occurs
on average at age one or so and has been found to be associated with BMI in later
childhood [Silverwood et al. (2005)], which consequently has a profound impact
on infant’s putative later outcomes (e.g., sexual maturation and obesity) [Jensen
et al. (2015), Jones-Smith et al. (2013), Taylor et al. (2005)]. Hence, studying as-
sociations of the child’s growth modes such as the infant BMI peak and adiposity
rebound with environmental exposures is of great importance in the life-course
epidemiology to address the DOHaD hypothesis.

Statistical contributions to the methodology for analyzing growth curves have
been abundant, including both parametric and nonparametric approaches [Botton
et al. (2008), Cole, Donaldson and Ben-shlomo (2010), Jenns and Bayley (1937),
López-Pintado and McKeague (2013), McKeague et al. (2011), Preece and
Baines (1978)]. The existing methods have often focused on modeling growth
mean trajectory and velocity, such as SuperImposition by Translation And Rota-
tion (SITAR) approach recently developed by Cole, Donaldson and Ben-shlomo
(2010). SITAR directly models a growth outcome via a nonlinear function within a
generalized linear mixed framework in which subject-specific “shift” and “scale”
random effects are used to characterize growth size, timing of peak velocity and
velocity. The subject-specific parameters in a SITAR model for velocity are useful
to perform an association analysis with exposures.

We adopt a dynamic model based on a stochastic differential equation to investi-
gate infant’s growth pattern and potential growth changes associated with environ-
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mental exposure to EDCs. Our model formulation is originated from the Newton’s
laws of motion because acceleration, not velocity, drives motion. There have been
no studies concerning growth acceleration modeling, in spite of the fact that accel-
eration is a more fundamental characterization of dynamics than velocity.

The goal of this paper is to jointly analyze three elements of motion: BMI
growth trajectory, velocity and acceleration, which are referred to as growth dy-
namics in the rest of this paper. To incorporate the existing World Health Orga-
nization (WHO) population growth data into our analysis, we adopt a Bayesian
method. Our analysis objective is to investigate whether, and how, in utero expo-
sure to each, or a mixture, of EDCs in pregnant women during three trimesters is
associated with infant BMI growth dynamics. Specifically, due to distinctive de-
velopmental phases every 3 months of pregnancy, we investigate associations of
each trimester exposure to EDCs with infant BMI growth, separately.

Several statistical challenges arise in the association analysis using continuous-
time dynamic models. First, the number of longitudinal visits is relatively small
with fixed schedules (i.e., 8 time points of at-birth, 3, 6, 12, 18, 24, 30, 36 months).
At such paneled longitudinal visits, limited amounts of between-visit sample vari-
abilities are available for growth curve estimation. Given the fact that human an-
thropometric growth is a highly regulated process, we postulate some regularity
conditions to alleviate the limitation of such sparse data via the following strate-
gies: (i) restrain short-scale growth dynamics over the time periods where no data
are recorded, and (ii) optimize large-sale growth dynamics by utilizing auxiliary
WHO data. Through these strategies, we are able to develop a flexible model that
can not only effectively capture individual-level BMI growth dynamics, but also
relate these dynamics with exposure to EDCs to address the DOHaD hypothesis.

In this paper, we extended a Bayesian semiparametric stochastic velocity model
(B-SSVM) [Zhu, Taylor and Song (2011)] to formulate infant BMI growth dy-
namics. One of our new contributions to growth curve modeling is an important
extension of the B-SSVM, which allows us to examine how prenatal exposure to
EDCs is associated with postnatal growth acceleration of BMI. Our approach dif-
fers from the previous application of the B-SSVM; we focus on inference, such
as testing for association of BMI growth acceleration with EDC exposure, instead
of focusing on prediction as in the previous implementation. We further improve
some aspects over the previous B-SSVM implementation; (i) we incorporate rele-
vant auxiliary data (e.g., WHO data) to improve growth curve estimation; (ii) we
implement a more efficient MCMC method via a direct posterior sampling that
evaluates the exact transition density function of B-SSVM. This improved compu-
tational efficiency is crucial to make the proposed approach practically useful.

The remainder of the article is organized as follows. Section 2 describes our mo-
tivating data from the Early Life Exposures in Mexico to ENvironmental Toxicants
(ELEMENT) study. Section 3 presents the formulation of our proposed growth
dynamic model. Section 4 illustrates application of the proposed method to the
ELEMENT data analysis. Section 5 reports simulation results for an experiment
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examining roles of the model parameters influencing the estimated growth dynam-
ics.

2. ELEMENT longitudinal cohort data. The ELEMENT cohort includes
three birth cohorts (cohort 1 in 1994–1997, cohort 2 in 1997–2000, cohort 3 in
2001–2005) from Mexico City maternity hospitals. Mother-infant pairs are fol-
lowed for over two decades to learn how environmental exposures to metals and
chemicals affect pregnant women and children.

Study population. The study population includes 250 pregnant women from a
subset of the ELEMENT birth cohorts (cohort 2 and 3) [González-Cossío et al.
(1997), Téllez-Rojo et al. (2004), Zhang et al. (2012)]. These mothers were fol-
lowed during pre/post-natal periods, completing interview-administered question-
naires and anthropometry evaluations, and provided biological samples for EDC
analysis. We excluded infants with missing in utero exposure data (n = 21) or pre-
mature birth that is less than 37 weeks of gestation (n = 16); this exclusion crite-
rion has been suggested to reduce bias for postnatal catchup growth [Afeiche et al.
(2011), Binkin et al. (1988)]. In addition, using BMI z-score (BMI-z) calculated
on the reference of the WHO growth chart [WHO (2016)], we further excluded
biologically implausible values of |BMI-z| > 5. The resulting numbers of infants
with complete observations in our analysis are n = 185, n = 184 and n = 180 (and
1257, 1269 and 1239 repeated measures) over three trimesters, respectively.

Outcome. The outcome of interest is infant BMI [weight (kg)/length (m2)],
where weight and length were measured longitudinally at eight times, namely at-
birth, 3, 6, 12, 18, 24, 36 months. Due to slightly different observational times
across infants, clinicians have clustered them as 8 fixed times in the data reporting.
Figure 2 displays some summary statistics regarding the data collection scheme
used in the ELEMENT cohort study.

Environmental exposure. BPA and phthalates are the EDC exposure of interest
in our analysis to address the DOHaD hypothesis. Specifically, our scientific ob-

FIG. 2. (a) Number of visits at 8 fixed visit times from at-birth to 3 years. (b) Total number of
visits across infants. (c) Longitudinal infant BMI trajectories among 116 infants with complete BMI
measured at all 8 visits. Enlarged figures are available in the Supplementary Material [Baek, Zhu
and Song (2019)].
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jective is to examine the association of growth dynamics with exposure to EDCs.
BPA and nine phthalates were measured from urine samples of mothers during
three trimesters of pregnancy by isotope dilution–liquid chromatography–tandem
mass spectrometry (ID-LC-MS/MS) at Lab NSF International (Ann Arbor, MI).
Nine phthalates include MEHP, MEHHP, MEOHP, MECPP, MBzP, MBP, MiBP,
MEP and MCPP. Full names of the nine phthalates and the procedure to calculate
specific-gravity adjusted EDCs are available in the Supplementary Material [Baek,
Zhu and Song (2019)]. In the analysis, we used log-transformed specific-gravity
adjusted EDCs.

Given the fact that prenatal exposure occurs in forms of mixtures, or combina-
tions of phthalates, it is of interest to evaluate the association of EDC mixtures in
addition to a single EDC with growth dynamics. We considered the following mix-
tures of great popularity: (i) SumPCP: sum of MBP and MEP, which is regarded
as an estimate of phthalate exposure from shampoos, conditioners, perfumes, nail
polishes and other personal care products [Braun et al. (2014), Kobrosly et al.
(2012), Schettler (2006)]; (ii) SumDEHP: sum of MECPP, MEOHP, MEHHP and
MEHP, which gives an estimate of DEHP exposure from products such as PVC
plastics used in food processing/packaging materials as well as building mate-
rials and medical devices [Braun et al. (2014), Kobrosly et al. (2012), Schettler
(2006)]; and (iii) SumAA: sum of SumDEHP, MBP, MiBP and MBzP, which is an
estimate of exposure with known anti-androgenic activity in experimental and/or
epidemiological studies [Marie, Vendittelli and Sauvant-Rochat (2015), Marsee
et al. (2006)]. We recognized that the overlap of the EDC mixture grouping would
lead to dependent results for associations. However, our primary focus on the sum-
mary measures would reduce the burden of adjustment of multiple comparisons in
examining each phthalate concentration individually. Hence, grouping EDCs al-
lowed us to facilitate the interpretation of the association results.

Potential confounders. Several key adjustment factors suggested by our collabo-
rators were considered in the association analysis of growth dynamics with the ex-
posure to EDCs. For 213 mother-infant pairs, the considered confounding variables
[Mean (SD) or %] are as follows: cohort indicator (22.5% pairs from cohort 2 and
77.5% pairs from cohort 3), infant’s sex (53.1% girls), breast-fed for 6 month (62%
yes), birth weight [3.2 (0.4) kg], gestational age [39.1 (1.1) weeks], mother’s age
at-birth [27.6 (5.6) years], years of education [11.1 (2.8)], marital status (88.3%
for married/with partner and 11.7% of single/separated/divorced/widow), number
of previous pregnancies (29.1, 7.5, 63.4% for 0, 1, 2+, respectively), and cur-
rent/previous smoking (10.8% yes).

3. Statistical analysis.

3.1. Bayesian modeling of dynamics. To incorporate the Newton’s law of mo-
tion in the infant BMI growth modeling, we propose a statistical dynamic equa-
tion based on a semiparametric stochastic velocity model, which is referred to as
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Newton’s growth model (NGM) in the rest of the paper. The details of NGMs are
described as follows. Let Yi(tij ) denote the measured BMI of the ith infant at time
tij , j = 1,2, . . . , Ji , i = 1,2, . . . , n. For notational simplicity for the paneled lon-
gitudinal data considered in this paper, we write tij as t from now on. An NGM
is to model continuous-time dynamics of BMI growth, consisting of the following
three equations: for the ith infant, the three elements of growth motion are given
by

Trajectory: Yi(t) = Ui(t) + εi(t), where εi(t)
i.i.d.∼ N

(
0, σ 2

ε

)
,(3.1)

Velocity: dUi(t) = Vi(t) dt,(3.2)

Acceleration: dVi(t) = a
{
Vi(t);Xi , θ i

}
dt + b

{
Vi(t);Xi , θ i

}
dWi(t),(3.3)

where the trajectory equation (3.1) involves the individual mean BMI trajectory,
Ui(t), of the ith infant’s BMI curve with normally distributed errors εi(t) with
mean zero and variance σ 2

ε ; the velocity equation (3.2) describes the mean velocity
function, Vi(t); and the acceleration equation (3.3) specifies dynamic behaviors of
Vi(t) through a stochastic differential equation (SDE), where a{Vi(t);Xi , θ i} is a
drift term for a large-scale acceleration and b{Vi(t);Xi , θ i} is a diffusion term for
an instantaneous fluctuation of acceleration, and Wi(t) is assumed to the standard
Wiener process satisfying dWi(t) ∼ N(0, dt). These two terms, a(·) and b(·), are
assumed to be functions of observed covariates Xi and subject-specific parameters
θ i . In the above NGM specification, equation (3.3) may be regarded as a prior for
velocity function Vi(t). According to Wahba (1978), the resulting estimation of the
Ui(t) from the NGM (3.1)–(3.3) is closely related to the estimation of the Ui(t)

from nonparametric smoothing splines.
The NGM equation (3.3) plays an important role in the modeling of growth

dynamics, which enables us to examine whether, and to what extent, covari-
ates of environmental exposures affect infant’s growth acceleration, and conse-
quently infant’s growth trajectory. Specifically, to perform the association analy-
sis, we specify the Ornstein–Uhlenbeck (OU) process in the equation (3.3). The
OU process may be expressed as, with covariates being suppressed, dVi(t) =
−ρi(Vi(t) − ν̄i ) dt + σξ dWi(t).

The OU process has several properties particularly appealing to our growth data
analysis. First, as shown in Figure 3(c) and (f), the resulting BMI growth curves
Ui(t) from the OU exhibit proper shapes highly aligned with those reported by
WHO for the world population of infants and toddlers [see Figure S.1 in the Sup-
plementary Material [Baek, Zhu and Song (2019)]]. Second, in the OU process
above, acceleration, Ai(t) = dVi(t)/dt , and velocity are characterized by two pa-
rameters: the rate parameter ρi(> 0) and stable level parameter ν̄i . The rate param-
eter ρi controls acceleration which affects the speed of the velocity process Vi(t)

moving toward a stable velocity level ν̄i as shown in Figure 3(a)–(b). The larger
the ρi , the faster the initial velocity reaches a stable level ν̄i .
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FIG. 3. Illustration of realizations from the Ornstein–Uhlenbeck (OU) process. Mean growth ac-
celeration A(t), velocity V (t) and trajectory U(t) with σ 2

ξ = 0 (a)–(c) and σ 2
ξ = 5 (d)–(f). Growth

mean trajectory curve with σ 2
ξ = 0 (c) and σ 2

ξ = 5 (f).

In Figure 3(a)–(c), we also see that with σ 2
ξ = 0 and a fixed common stable

velocity ν̄i , Vi(t) moves to its stable velocity ν̄i faster with a higher rate parame-
ter ρi , which consequently results in an earlier infant peak with a lower BMI (or
slimmer infant) at the age of the peak for those with ν̄i < 0 during the study pe-
riod. In addition, the impact of the instantaneous variance σ 2

ξ of the OU process
is demonstrated by Figure 3(d), (f) indicating clear short-term variations on the
growth dynamics. It is worth reiterating the point that the infant BMI peak is one
of the most important growth milestones, and so a significantly delayed timing of
this milestone is detrimental for health later in life.

One of our new contributions to the growth curve analysis is an important ex-
tension of the classical OU process, which allows both rate parameter ρi and sta-
ble velocity ν̄i to vary across infants with environmental exposure of interest (e.g.,
BPA or phthalates), denoted by Xi , as well as confounding factors Zi . Specifically,
due to the positivity of the rate parameter ρi , we propose the following association
models for the two parameters in the OU process:

log(ρi) = β0 + β1Xi + ZT
i βz + bρi, where bρi

i.i.d.∼ N
(
0, σ 2

ρ

)
,(3.4)

ν̄i = γ0 + ZT
i γ z + bν̄i, where bν̄i

i.i.d.∼ N
(
0, σ 2

ν̄

)
,(3.5)

where normally distributed random intercepts bρi and bν̄i capture subject-specific
variabilities. Here, EDC Xi is included in equation (3.4), not in equation (3.5), be-
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cause the rate parameter ρi characterizes the initial growth force at birth, through
which we are able to assess if, and how, ρi is altered by in utero exposure to EDCs.
Our analysis in this paper explicitly models the rate parameter ρi as a function of
exposure variables in order to address the DOHaD hypothesis. In contrast, the pa-
rameter ν̄i concerns the stable level occurring on average approximately one year
after birth, and so it is not immediately adjacent to in utero conditions. Scientif-
ically, this rate parameter determines the timing of the infant BMI peak for an
individual with ν̄i < 0 during the study period of birth to 3 years old. It is worth
pointing out that when the infant BMI peak exists for each subject in the cohort,
constraining ν̄i to be negative gives rise to a model ensuring the existence of infant
BMI peak during the age period considered, which may help gain statistical power
and better interpretations of the results. In this study, ν̄i was not constrained to be
negative because some infants may possibly not reach the BMI peak during the
study period.

3.2. Incorporation of WHO data. Several world population-level infant BMI
growth patterns have been reported in the literature, and among those, the world-
population curves given by WHO present most relevant knowledge to our analysis.
Given that human growth is a highly regulated biological process, incorporating
such population-level information into our analysis can help us improve our esti-
mation of infant growth curves. Using WHO information is particularly appealing
in our setting where we worked with regularly-spaced longitudinal data with rela-
tively small number of visit times. In our proposed NGM, the initial distributions
of growth dynamics at-birth played an important role in constraining the space of
potential growth trajectories, over which the statistical solution is searched. Hence,
we proposed to utilize the relevant existing knowledge in the specification of the
initial distributions for robust and reliable parameter estimation, in a similar spirit
of empirical Bayes.

The WHO population-level growth BMI data with two month sampling intervals
up to two years for boys and girls are provided by WHO [WHO (2016)]. We fitted
our NGM to such WHO data and obtained the estimates for parameters in the
initial distributions of [U(t0),V (t0)]T for boys and girls, separately (see Figure S.1
in the Supplementary Material [Baek, Zhu and Song (2019)]). Note that the initial
distribution of the trajectory and velocity [Ui(t0),Vi(t0)]T ∼ N2(m0,C0), with
mean vector m0 = (m01,m02)

T and covariance matrix C0 = (clk)2×2, l, k = 1,2.
It is worth noting that from the WHO summary statistics data only the mean vector
m0 and the variance c11 were estimable, namely; (m̂01, m̂02)

T = (13.2,31)T for
boys and (13.1,23)T for girls, with ĉ11 = 0.9 for both boys and girls. These mean
estimates were adopted in the specification of the corresponding hyper-parameters
of the priors in this paper. The variance of velocity c22, however, was not estimable
given the available WHO growth data which only contains the summary statistics
of population BMI trajectory means and its standard deviations. Without actual
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individual data, those summary statistics were insufficient to obtain an estimate of
the variance c22.

3.3. Priors. For covariance C0 in the initial distribution, we specified c11 =
10 which was about 10 times greater than the estimated variance ĉ11 = 0.9 from the
WHO data. Since there was no available data to determine plausible values of c12
and c22, we began with an assumption of independence between Ui(t0) and Vi(t0)

at birth, namely c12 = 0. Then, we calculated an empirical estimate of the velocity
variance c22 according to the infant BMI slopes between at-birth and six months
of the ELEMENT data. Then, we set c22 = 20, which was about twice greater
than the empirical estimate. Moreover, assuming the mutual independence of εi(t),
bρi , bν̄i and Wi(t), we imposed the following noninformative priors: (i) for the
variance of the error εi(t), σ 2

ε ∼ IG(0.01,0.01), where IG stands for the inverse
gamma distribution; (ii) for the parameters in equation (3.4), β = [β0, β1,βz]T ∼
N(0,108I) and σ 2

ρ ∼ IG(0.01,0.01); (iii) the parameters in equation (3.5), γ =
[γ0,γ z]T ∼ N(0,108I) and σ 2

ν̄ ∼ IG(0.01,0.01); and (iv) for the instantaneous
volatility parameter σ 2

ξ ∼ IG(0.1,0.1).

3.4. MCMC algorithm. The MCMC method previously implemented for B-
SSVM was based on a data augmentation approach under the approximated transi-
tion density. Although the data augmentation approach seemed easy to use because
of the conjugate forms of posterior distributions, it artificially increases number of
parameters on unobserved time points. Due to the increased number of parame-
ters, convergence rate of posterior samples could be slow, and mixing for posterior
sampling would be of low quality.

In this paper, we implemented an highly efficient MCMC method that directly
carried out posterior sampling by evaluating the exact transition density function,
where evaluating the density function can be computationally parallelized. Be-
cause the proposed NGM can be expressed in terms of a state space model repre-
sentation, justifying the model identifiability as well as the validity for parameter
estimation and inference may be routinely done by applying the existing theory
of the state space models [Zhu, Taylor and Song (2011)]. Our posterior sampling
approach was based on a shrinkage slice sampling [Agarwal and Gelfand (2005)],
which was extended by Neal (2003). See the MCMC details in Section S.4 and
S.5 in the Supplementary Material [Baek, Zhu and Song (2019)]. Our proposed
MCMC method is generally applicable for any B-SSVM which is a reduced model
of the NGM. Our proposed implementation of the MCMC algorithm has shown a
substantial improvement in the computational efficiency in drawing posterior sam-
ples, in comparison to the standard B-SSVM implementation. For instance, our
method enabled us to draw posterior samples of certain parameters 1000 times
faster over the standard B-SSVM implementation, and this improvement made the
proposed method practically useful. See more details in Section S.6 in the Supple-
mentary Material [Baek, Zhu and Song (2019)].
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4. ELEMENT data analysis.

4.1. Preliminary analysis. Before we began with our analysis of the ELE-
MENT data, we performed an exploratory data analysis for the association be-
tween infant’s BMI growth rate and individual log-transformed EDC or mixture of
EDCs at each trimester. We first calculated empirical BMI growth velocities at 6
months, Ṽi , for each infant using data at birth, 3 and 6 months. Then, we fitted a
simple linear regression model, Ṽi = η0 +η1Xi + εi , to examine the association of
the 6-month BMI growth velocity with EDC exposure Xi . Figure 4(a) shows the
estimates, η̂1, where the x-axis accommodates 10 single EDCs and 3 mixtures of
EDCs over the three trimesters. We noticed that only during the first trimester, the
6-month BMI growth velocity was positively associated with in utero exposure to
EDCs. This positive association suggested that during the first 6 months the mean
BMI tended to increase faster with more severe exposure to EDCs. However, no
significant signals were detected in the second and third trimesters.

4.2. Model-based analysis. With those specified priors aforementioned in
Section 3.3, we fitted the proposed NGM with the confounding variables discussed
in Section 2, which were sequentially added into models in the equations (3.4)–
(3.5). We ran the MCMC algorithm via the shrinkage slice-sampling over 5000
iterations, with the first 1000 iterations being discarded for the burn-in, and the
remaining 4000 draws being retained for the subsequent Bayesian analysis. It took
approximately 7 minutes in run-time for each candidate model on a PC with Intel
(R) Xeon (R) CPU E5-1620 v3 (3.5 Hz). We used the classical deviance informa-
tion criterion (DIC) to assess whether there is variability of both individual rate and
stable velocity and to select confounding factors that do not vary by trimesters. Our
model fitness assessment indicated that rate and stable velocity vary by individu-
als and provided the following confounding factors that do not vary by trimesters:

FIG. 4. (a) Preliminary results of associations (η̂1) between the 6-month BMI growth velocity and
in utero exposure to a single EDC or a mixture of EDCs over the three trimesters. (b) Estimated
associations (δ̂1) from the SITAR model with a single EDC or a mixture of EDCs for the first trimester
(see Section 4.3). Enlarged figures are available in the Supplementary Material [Baek, Zhu and Song
(2019)].
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FIG. 5. (a) Estimated overall mean BMI trajectory (bold line) and individual mean BMI trajectories
(grey dash lines). (b) Estimated overall mean BMI velocity (bold line) and acceleration (bold dash
line) with individual mean BMI velocities (grey dash lines). (c) Histogram for timing of the infant
BMI peak across infants with those who did not achieve the milestone at age 3 or younger (shaded
bar).

cohort, infant’s sex, breast feeding up to 6 months, birth weight, gestational age
and mother’s age at birth. We assessed validity of the proposed model and checked
convergence of drawn posterior samples (see Section S.7 in the Supplementary
Material [Baek, Zhu and Song (2019)]).

Figure 5 shows the results of estimated growth dynamics from the selected
model. As shown in Figure 5(a), the estimated mean BMI trajectory appeared to
fit well with the BMI growth trajectories; it rose rapidly during the first 6 months
after birth, and then achieved the BMI infant peak at an average of 10.8 months
with 95% credible interval (CI), (9.6, 14.4). Note that the timing of the infant BMI
peak corresponds to the time t satisfying E[V̂i(t)] = 0 for those with ν̄i < 0 over
the period of 0–3 years old; see Figure 5(b). It was clear that infants with higher or
lower BMI at birth tended to stay at the respective BMI rank over time, which indi-
cated strong within-subject correlations and noticeable variabilities across infants.
The mean BMI velocity curve began to decay around the 11th months and then
became gradually stabilized due largely to rapid muscle development soon after
infants started to walk and become more physically active. Figure 5(c) indicated
that the distribution of individual timing of the infant BMI peak was highly right
skewed, suggesting variable growth tempos during this most important growth pe-
riod of early human life. The majority of infants achieved their infant peak between
6 and 12 months, while there were a noticeable number of infants who experienced
delayed infant peak in comparison to the average age of infant peak at 11 months.
An interesting finding was that 69 infants [the shaded bar in Figure 5(c)] among
213 did not achieve their infant peak before 3 years (i.e., ν̄i > 0).

Figure 6 shows four representative examples of estimated infant BMI trajecto-
ries and the estimated corresponding ages of achieving infant BMI peak, where a
comparison was made to the estimated curves given by various models (see Sec-
tion 4.3). The infant in Figure 6(a) achieved the BMI peak earlier than the aver-
age age of 10.8 months, while the infant in Figure 6(d) experienced a clear delay
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FIG. 6. Estimated individual mean BMI trajectories across various models: NGM, BS, FPCA, PS,
GS, SITAR. Infant BMI peak was achieved at age around (a) 6 months, (b) 10 months, (c) 18 months,
while (d) infant BMI steadily rose with no peak (or delayed BMI peak after 3 years).

to achieve the milestone before 3 years old. In regard to the DOHaD hypothesis
in environmental health sciences, it is of great importance to understand whether
such large discrepancy of tempo for the infant peak was associated with prena-
tal environmental exposure to EDC. Our method in this paper enabled us to an-
swer such an important question. We stratified the infants by the estimated median
(10.8 months) infant peak age and then compared their mean of the first trimester
exposure to EDCs between the two groups. Note that the group with their age peak
> 10.8 months also includes infants with their estimated ν̄i > 0. As shown in Ta-
ble 1, the mean exposure to EDCs for those with delayed infant peak tended higher
than for those with early infant peak. Based on the stratification by the median of
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TABLE 1
Summary statistics for the first trimester exposure to 10 single EDCs and 3 mixtures of EDCs

between two groups of infants stratified by the median (10.8 months) age at the infant BMI peak.
P -value was calculated based on two sample t-test

The first trimester
exposure

Age peak ≤ 10.8 months Age peak > 10.8 months

Mean SD Mean SD P -value

Single EDC
BPA −0.367 0.185 0.833 0.437 <0.001
MBP −0.049 0.906 0.088 0.918 0.309
MBzP 3.944 1.413 4.165 1.403 0.287
MCPP 0.788 1.360 1.055 1.377 0.186
MECPP −0.056 1.071 0.254 1.039 0.047
MEHHP 3.269 0.967 3.487 1.063 0.145
MEHP 2.661 1.156 2.923 1.126 0.120
MEOHP 1.554 1.159 1.573 0.964 0.901
MEP 2.034 1.147 2.302 1.123 0.110
MiBP 5.035 1.412 4.824 1.496 0.325

Mixture of EDCs
SumPCP −0.287 1.531 0.154 1.499 0.049
SumDEHP 5.523 1.288 5.409 1.385 0.562
SumAA 4.022 1.017 4.222 1.020 0.182

ages at the peak, the first trimester exposure to BPA, MECPP and SumPCP was
associated with the delayed infant peak. In additional comparisons for those who
had a peak (ν̄i < 0) versus those without a peak (ν̄i > 0), BPA remained signifi-
cant.

The NGM with the regression models in equations (3.4)–(3.5) allowed to ac-
count for the confounding relevant to the growth acceleration, comparing between
trajectory/velocity curves between infants. Table 2 shows that the estimated effects
of all single EDCs in the first trimester were negative, suggesting that in utero ex-
posure to a single toxicant was inversely associated with the growth acceleration
of infant BMI; the inverse association with the acceleration indicates delayed in-
fant BMI peak and higher BMI at the peak (see Figure S.2 in the Supplementary
Material [Baek, Zhu and Song (2019)]). We estimated the posterior probability of
the inverse association, P(β1 < 0|Y,X,Z) according to

∑4000
k=1 I (β̃

(k)
1 < 0)/4000,

where β̃
(k)
1 is a drawn posterior sample of β1 at the kth iteration. The estimated

posterior probabilities P(β1 < 0|Y,X,Z) were 0.962, 0.967, 0.969, 0.968 for the
first trimester exposure to MBP, MEHHP, MEOHP, MiBP, respectively, and 0.994
for the second trimester exposure to MiBP.

In regard to mixtures of EDCs, the estimated effects in the first trimester were
negative as well. We found that the first trimester exposure to SumAA was as-
sociated with the BMI growth acceleration, with the estimated posterior proba-
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TABLE 2
Estimated regression coefficients β1 with 95% credible intervals concerning in utero exposures to a single EDC and mixtures of EDCs in the selected

NGM. Here, p∗ denotes the estimated posterior probability P(β1 < 0|X,Y,Z)

First trimester (n = 185) Second trimester (n = 184) Third trimester (n = 180)

Parameter 50% 2.5% 97.5% p∗ 50% 2.5% 97.5% p∗ 50% 2.5% 97.5% p∗

Single EDC
BPA −0.044 −0.112 0.020 0.913 −0.006 −0.073 0.063 0.570 0.044 −0.028 0.118 0.125
MBP −0.040 −0.084 0.006 0.962 −0.005 −0.049 0.037 0.587 0.022 −0.026 0.068 0.184
MBzP −0.017 −0.062 0.025 0.787 −0.006 −0.052 0.041 0.602 0.045 −0.015 0.105 0.070
MCPP −0.038 −0.090 0.018 0.914 0.002 −0.054 0.059 0.474 0.022 −0.037 0.081 0.220
MECPP −0.055 −0.121 0.003 0.966 −0.034 −0.091 0.023 0.880 0.016 −0.044 0.076 0.296
MEHHP −0.052 −0.106 0.003 0.967 −0.018 −0.065 0.028 0.761 0.012 −0.047 0.067 0.334
MEHP −0.038 −0.097 0.017 0.924 −0.018 −0.072 0.040 0.734 −0.002 −0.059 0.051 0.526
MEOHP −0.051 −0.106 0.003 0.969 −0.017 −0.067 0.034 0.753 0.021 −0.034 0.076 0.223
MEP −0.003 −0.047 0.035 0.556 −0.017 −0.059 0.026 0.782 0.022 −0.019 0.063 0.144
MiBP −0.036 −0.073 0.002 0.968 −0.045 −0.080 −0.010 0.994 −0.008 −0.067 0.048 0.603

Mixture of EDCs
SumPCP −0.017 −0.063 0.030 0.772 −0.016 −0.063 0.034 0.743 0.028 −0.019 0.073 0.120
SumDEHP −0.056 −0.117 0.002 0.971 −0.027 −0.084 0.029 0.833 0.013 −0.047 0.070 0.331
SumAA −0.055 −0.108 −0.004 0.985 −0.021 −0.074 0.033 0.791 0.019 −0.042 0.081 0.271
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FIG. 7. Estimates of β1 in equation (3.4) with 95% credible interval for the first trimester ex-
posure to EDCs. The estimates were obtained and displayed according to the sequence of the
variances of initial velocity c22 ∈ {5,10,15,20,40,103} and no WHO auxiliary data with setting
m01 = 0, c11 = 108,m02 = 0, c22 = 108. Note that the data analysis was performed with c22 = 20.

bility P(β1 < 0|Y,X,Z) = 0.985. Also, it is noted that the estimated posterior
probability of the inverse association was 0.971 for the first trimester exposure to
SumDEHP. The results are all in agreement with those reported in the prelimi-
nary association analysis in Section 4.1. The effect of SumPCP, which is sum of
MBP and MEP, was probably downsized by MEP whose effect was found to be
close to the null with the posterior probability of the inverse association equal to
0.556.

We performed a sensitivity analysis with varying variance of the initial veloc-
ity c22, with the focus on the robustness pertaining to estimation and inference
for β1, the key parameter of association with the first trimester exposure to EDCs.
We assigned value c22 ∈ {5,10,15,40,103}. Furthermore, we investigated con-
sequences of fitting models without any WHO auxiliary data. Note that the data
analysis above used c22 = 20 which has been marked by solid black lines in Fig-
ure 7. As shown in Figure 7, the point estimates and their 95% CI of the association
parameter β1 appeared to be rather consistent unless c22 is too large (103). Note
that when strong prior variance c22 ∈ {5,10} were used, the resulting 95% CIs of
β1 turned out to be similar and comparable. We reported more thorough simulation
experiments to examine the sensitivity of the prior specification on the analysis re-
sults in Section 5. Without WHO auxiliary data, all parameter estimates of EDCs
went toward the null as similarly observed in Section 5. Overall, we learned from a
simulation study in Section 5 that the proposed Bayes inference tended to be valid
to the choice of the prior values of c22.

4.3. Comparison to existing models. In the current literature, there has been
a limited arsenal developed to analyze the association between environmental ex-
posure and growth dynamics. To run a confirmatory analysis we considered the
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following nonparametric or growth models: BS-model: a B-spline linear mixed
effects model [Rice and Wu (2001)]; FPCA-model: a functional principal compo-
nents analysis for sparse data [Yao, Müller and Wang (2005)]; PS-model: a penal-
ized linear spline mixed effects model [Durbán et al. (2005)]; GS-model: non-
parametric gradients for sparsely observed functional data [López-Pintado and
McKeague (2013)]; SITAR-model: the SuperImposition by Translation And Ro-
tation proposed by Cole, Donaldson and Ben-shlomo (2010). A shared feature
among the BS-, FPCA- and PS-model pertains to the use of pre-specified basis
functions to model the mean trajectories of growth, in which the BS-, FPCA-
and PS-model uses, respectively, B-spline basis functions, Karhunen–Loève ba-
sis expansion and penalized linear splines for the underlying subject-specific tra-
jectories. The GS-model directly estimates individual-level empirical velocities
from which we estimated trajectories by simply numerically integrating these
empirical velocities. The SITAR-model takes the form: E[Yi(t)] = ai + h((t −
bi)/ exp(−ci)), where Yi(t) is the BMI for infant i at time t , h(t) is a nonpara-
metric smoothing function approximated by natural cubic splines and ai, bi and ci

are infant-specific “shift” and “scale” random effects corresponding to size, tim-
ing of peak velocity and velocity, respectively. Note that the BS-, FPCA-, PS- and
SITAR-model directly specify the mean BMI growth curve and the GS-model fo-
cuses the mean BMI velocity curve. Only our proposed NGM explicitly addresses
three key growth dynamics including trajectory, velocity and acceleration in one
growth dynamic system.

In this comparison analysis, we fitted these models to subjects observed at all
8 visits (n = 116) because the GS-model only allowed to use subjects equally
observed over time (i.e., a rectangular type of data). Then, we performed a cross-
validation (CV) analysis to evaluate the performance of prediction among these
models. We removed each time point, tj , j = 2, . . . ,7, of all subjects and predicted
its mean at that time point by a fitted model. The CV errors were calculated by
CV (tj ) = ∑n

i=1(Yi,tj − Ŷi,−tj )
2/n, which was not evaluated at j = 1 (at-birth) or

j = 8 (36 months) to avoid extrapolation. Since the performance of each model
may depend on the selection of knots, we searched the best model of each case
via appropriate tuning procedures (see Section S.8 in the Supplementary Material
[Baek, Zhu and Song (2019)]).

As shown in Table 3, the BS-model provided the least overall CV errors and
was followed by our NGM. Looking more closely, we found that for each time
point, the BS-model was the best at j = 2,3 (3 and 6 months); NGM was the
best at j = 4 (12 months); the FPCA-model was the best at j = 5,6,7 (18, 24, 30
months). Figure 6 shows that individual fitted trajectories estimated across various
methods obtained from these models. The GS-model provided the wiggliest curve
(i.e., no advantage of de-noising). The SITAR-model tends to fail capturing indi-
vidual specific features. Individual trajectories from NGM seems slightly smoother
than from the BS-, FPCA- and PS-model while NGM still enables to capture in-
dividual curves. However, the most important feature of NGM is that researchers
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TABLE 3
Cross-validation errors across methods at each time point tj , j = 2, . . . ,7.

CV (tj ) = ∑n
i=1(Yi,tj − Ŷi,−tj )2/n. The CV result is listed by ascending order of the overall CV

errors

CV (tj )

Model j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 Overall

BS 1.47 1.14 1.49 1.56 1.03 0.75 1.24
NGM 1.81 1.24 1.40 1.63 1.05 0.82 1.33
SITAR 2.12 1.44 1.42 1.58 1.22 1.22 1.50
FPCA 2.39 2.01 1.44 1.59 1.00 0.66 1.51
PS 4.64 1.42 1.42 1.52 1.07 0.84 1.82
GS 3.23 3.80 2.70 2.13 1.43 0.90 2.36

can examine how growth acceleration is associated with potential risk factors and
capture the structural change-point corresponding to the growth milestone. For in-
stance, NGM is able to directly indicate that subjects reached the infant BMI peak
through the stable velocity (i.e., ν̄i > 0). In addition, our NGM can be used to make
prediction of growth beyond the range of observations.

Furthermore, in the SITAR-model, we argue that the role of the timing param-
eter bi is somewhat similar to the rate parameter ρi in equation (3.4). Thus, we
considered an association analysis model fitted in the first trimester data (n = 185):
E[bi] = δ0 +δ1Xi +ZT

i δz, where a positive association δ1 indicates delayed timing
of peak velocity, and vector Zi consisted of the confounders used in our selected
model.

As shown in Figure 4(b), the SITAR-model unveiled that the peak timing pa-
rameter bi was positively associated with all single EDCs as well as mixtures of
EDCs. These findings fully agreed with those found by our NGM. That is, in utero
exposure to EDCs in the first trimester was associated with the delayed infant BMI
peak. Although the two parameters, the timing parameter bi in the SITAR-model
and the rate parameter ρi in our dynamic growth model, do not measure exactly
the same growth dynamics, we found conformal directions of association of the
infant peak timing with the first trimester exposure to EDCs. Our experience with
the use of SITAR-models suggested that the SITAR-model implicitly assumed that
individual infants must have achieved their infant peaks during a study time period
(e.g., 0–3 years) because this model required a shape of the mean trajectory to fol-
low that of a quadratic function [see Figure 6(a)–(d)]. This functional assumption
of the SITAR-model might sometimes cause convergence failure. It is more critical
to notice that from Figure 6(a)–(d), the SITAR-model seemed to lack the flexibility
of capturing individual infant’s growth trajectories, as opposed to the fact that our
proposed NGM showed great adaptability to infant’s growth patterns.
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5. Simulation experiment. To better understand the proposed Bayesian ap-
proach, we performed simulation studies with the following two major objectives:
(1) how auxiliary knowledge about the growth condition (e.g., WHO data) may
improve estimation of the association parameters of interest; (2) how, and to what
extent, the smoothness level σ 2

ξ imposed for the growth curve affects inference for
the parameters in the acceleration equation (3.4).

To simulate data that mimic the ELEMENT longitudinal data, we first fitted
our proposed NGM without any EDC Xi and confounders Zi in the two mod-
els (3.4) and (3.5). Then, we set the true values of the parameters similar to the
estimates: that is, σ 2

ε = 0.9, σ 2
ξ = 9, β0 = 1.95, γ0 = −0.25, σ 2

ρ = 0.02, σ 2
ν̄ =

0.1, [Ui(t0),Vi(t0)]T ∼ N(m0,C0) with m0 = (m01,m02)
T = (13,31)T and C0 =

diag{c11, c22} = diag{1,10}. Note that estimates of m0 and C0 were obtained from
the boy’s data. We set the true effect size for β1 at −0.05, which is in a similar mag-
nitude to the results of MECPP, MEHHP, MEOHP, SumDEHP or SumAA reported
in Table 2. Finally, we generated a baseline exposure covariate Xi ∼ N(0,1) and
then a longitudinal data set of 100 subjects with 8 fixed visit times.

The MCMC was run based on the following prior specification. To examine
how prior knowledge of the initial growth condition affects inference for the as-
sociation parameter of interest (i.e., β1), we set various prior means and variances
for the initial distribution [Ui(t0),Vi(t0)]T ∼ N(m0,C0) with m0 = (m01,m02)

T

and C0 = diag{c11, c22}, where m01 ∈ {12,13,14},m02 ∈ {26,31,36}, c11 ∈
{1,5,10,15,20,103}, c22 ∈ {5,10,15,20,40,103}; plus no auxiliary data setting
with m01 = 0, c11 = 108,m02 = 0, c22 = 108. Priors for smoothness level σ 2

ξ were

set in two scenarios: (i) σ 2
ξ ∼ IG(0.1,0.1) corresponding to a low-level con-

straint so that the resulting space of trajectories to be searched was large, and
(ii) σ 2

ξ ∼ IG(1,0.1) leading to a high-level constraint, so the solution would be
searched among much smoother curves than those in the first scenario. All other
priors for the remaining parameters were set in the same way as in Section 3.3. We
ran 1,000 simulations for each case to draw summary statistics. Within each sim-
ulation round, we carried out 1,500 MCMC iterations with the first 500 iterations
as the burn-in and the remaining 1,000 iterations for statistical analysis.

Figure 8 shows the simulation results that concern the influence of the initial
distribution priors on the estimation of the parameter β1 that measures an associ-
ation between growth acceleration and exposure under the low-level smoothness
prior σ 2

ξ ∼ IG(0.1,0.1). Figure 8(a) indicates that the amount of bias in estimate β̂1
increased when m01 was set either lower or larger than the true value (i.e., 13) with
small variance c11 ∈ {1,5} or when the initial variance c22 was set at a large value
(i.e., 103) for a vague prior. It is interesting to note that the prior mean initial veloc-
ity m02 had nearly no effect on both estimation and inference for β1 whereas it had
a noticeable influence on the estimation of parameter β0 [see Supplementary Fig-
ure S.4 in the Supplementary Material [Baek, Zhu and Song (2019)]]. Figure 8(b)
suggests that inference for β1 seemed to be influenced by the prior value c22. With
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FIG. 8. Simulation results with the space of trajectories unconstrained, that is, σ 2
ξ ∼ IG(0.1,0.1).

(a) Bias in β̂1 from various priors for the initial distribution [Ui(t0),Vi(t0)]T ∼ N(m0,C0)

with m0 = (m01,m02)T and C0 = diag{c11, c22}, where m01 = {12,13,14}, m02 ∈ {26,31,36},
c11 ∈ {1,5,10,15,20,103}, c22 ∈ {5,10,15,20,40,103}. (b) Corresponding coverage rates for β1.

a vague prior value, c22 = 103, the percent of bias in β̂1 increased and inference
for β1 tended to be conservative, namely, the credible coverage rate was greater
than the 95% nominal rate. This conservatism leads to a low rate of false positives
in the data analysis with a consequence of missing some true signals.

With the mean initial velocity prior m02 = 31 (the true population mean ve-
locity), if the prior variance c22 was set to c22 = 103 to result in an uninformative
prior, the estimates of β̂0, γ̂0 may be noticeably biased, and consequently their cor-
responding credible coverage rates tend to be largely deviated from 95% nominal
level (see Figure S.4 in the Supplementary Material [Baek, Zhu and Song (2019)]).
Therefore, for such paneled longitudinal with a relatively small number of visit
times, it is important to utilize scientifically relevant auxiliary data to specify in-
formative priors for the initial distribution of [Ui(t0),Vi(t0)]T , so that the proposed
NGM gives adequate model parameter estimation and inference. Our strategy of
prior specification in this paper has been based on the utility of the WHO popu-
lation growth data. With the rationale that human growth is highly regulated, the
WHO data can be applicable to the Mexican population.

Similar effects were found with the prior for the high-level smoothness σ 2
ξ ∼

IG(1,0.1) that constrained the search space of trajectories, with the details avail-
able in Figure S.5 in the Supplementary Material [Baek, Zhu and Song (2019)].
The key point learned in this scenario was that this prior seemed to influence the
precision of estimating variability of individual stable velocity σ 2

ν̄i
.

Moreover, without any auxiliary data on the initial distribution (m01 = 0,
c11 = 108, m02 = 0, c22 = 108), estimated β1 was largely biased (67%), with 92%
coverage rate, toward the null or might not be well identified.
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We repeated this simulation study with setting true parameter σ 2
ξ = 0.1 to gener-

ate much smoother individual trajectories while keeping other conditions the same.
The simulation results were very similar and the prior for the high-level smooth-
ness σ 2

ξ ∼ IG(1,0.1) improved capturing the variability of individual stable veloc-

ity σ 2
ν̄ through an effective separation from uncertainty of short-term fluctuation.

In summary, given the regularly-spaced longitudinal data with relatively small
number of visits, our proposed method seemed to have limited power in estimating
variance components for the short term dynamics σ 2

ξ , the variance of random ef-

fects σ 2
ρ and the variance of stable velocity σ 2

ν̄ . However, estimation and inference
for the key association parameter β1 of scientific interest have been shown to be
reliable because (i) we can utilize the WHO population data to specify the reason-
able priors for the initial distribution of growth dynamics, and (ii) the sensitivity
analysis with varying prior values for the variance of velocity c22 has shown that
the estimation of β1 is sensitive to the choice of the prior values of c22; hence, the
use of an empirical estimate for the velocity variance c22 is necessary.

6. Concluding remarks. This paper focused on modeling infant growth dy-
namics, mainly growth acceleration. We developed a Bayes methodology to assess
the effect of exposure to a single EDC or mixtures of EDCs on growth dynam-
ics. We have extended the previous B-SSVMs to enter exposure covariates in the
acceleration model, which has never been studied in the literature. This extension
provided a useful analytic toolbox to address various important questions arising in
environmental health sciences while growth trajectories estimated from NGMs are
competitive to previous methods for sparse data, such as a B-spline linear mixed
effects model and a functional PCA.

Regularly-spaced longitudinal data are commonly collected in studies of in-
fant’s anthropometric measures because of study costs and limited manpower. This
type of data often limits researchers to build dynamic statistical models for study-
ing patterns of growth and development. However, this limitation may be alleviated
by incorporating some reliable prior knowledge or relevant auxiliary data (e.g.,
growth curve data from WHO) into analyses, which has been shown in this paper
to be advantageous in both bias reduction and statistical power gain for long-term
growth dynamics. Indeed, we ran simulation studies to confirm the reliability for
the detected associations of BMI growth acceleration with EDCs, and this confir-
matory analysis was extended to compare with the SITAR model. Meanwhile, we
were still cautious on statistical inference for some specific parameters (e.g., the
variance of short-term growth dynamics) due to data sparsity.

Our contribution to the development of an efficient MCMC algorithm with-
out data augmentation has made the needed computation substantially faster than
the previous algorithm implemented by Zhu, Taylor and Song (2011), allowing
researchers to perform data analysis with either the standard B-SSVM or NGM
within a reasonable time. Our proposed algorithm directly drew posterior samples
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from posterior distributions, which enhanced fast mixing in posterior samples and
increased significantly the computational efficiency. Moreover, the proposed algo-
rithm enjoyed parallelization in computing to handle data with a large number of
subjects. For practicality of our proposed method, an R package has been prepared
and will be released to the public.

In this study, we discovered that the first trimester in utero exposure to BPA
and phthalates was inversely associated with infant’s growth acceleration. This in-
verse association indicates the delayed infant BMI peak and higher BMI (or fatty
body mass) at the age of the first life milestone. It has been reported that such
early growth deficiency with a warning sign of fatty body mass may have adverse
health effects on infant’s putative later outcomes (e.g., tempo of sexual matura-
tion). Moreover, this delayed infant BMI peak could serve as a clinically important
bio-marker concerning epigenetic changes. For instance, a recent study found that
placental long interspersed nuclear element-1 (LINE1) methylation is negatively
associated with prenatal phthalate exposure [Zhao et al. (2015)], and such changes
in patterns of DNA methylation in the human placenta reliably and significantly
result in alteration of infant growth [Banister et al. (2011)].

As an implication of the observational cohort design of our study, we were un-
able to make casual inferences about any association between the growth profile
and in utero exposure to EDCs. Our effort has been centered on estimating ef-
fects of a single EDC or EDC mixtures on postnatal growth, by adjusting various
confounding factors. Although this proposed methodology was illustrated on the
ELEMENT cohort data, it may be applicable to the analysis of other similar growth
cohort data.

This paper presents the first study that directly investigates infant’s early life
growth acceleration and its association with prenatal exposures to EDCs. The pro-
posed Newton’s growth model in this paper allowed us to estimate both individual
acceleration and infant peak. These two estimated quantities, as well as others, are
useful results to further understand many other relationships regarding early life
growth characteristics with later life growth and development, and well-being.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian analysis of infant’s growth dynamics with in utero
exposure to environmental toxicants” (DOI: 10.1214/18-AOAS1199SUPPA;
.pdf). The supplementary document contains the details of the proposed MCMC
algorithm and additional figures.

https://doi.org/10.1214/18-AOAS1199SUPPA
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R code for NGM (DOI: 10.1214/18-AOAS1199SUPPB; .zip). An MCMC al-
gorithm written in R code for the NGM is publicly available.
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