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Response time (RT) data from psychology experiments are often used to
validate theories of how the brain processes information and how long it takes
a person to make a decision. When an RT results from a task involving two or
more possible responses, the cognitive process that determines the RT may be
modeled as the first-passage time of underlying competing (racing) processes
with each process describing accumulation of information in favor of one of
the responses. In one popular model the racers are assumed to be Gaussian
diffusions. Their first-passage times are inverse Gaussian random variables
and the resulting RT has a min-inverse Gaussian distribution. The RT data
analyzed in this paper were collected in an experiment requiring people to
perform a two-choice task in response to a regularly repeating sequence of
stimuli. Starting from a min-inverse Gaussian likelihood for the RTs we build
a Bayesian hierarchy for the rates and thresholds of the racing diffusions.
The analysis allows us to characterize patterns in a person’s sequence of re-
sponses on the basis of features of the person’s diffusion rates (the “footprint”
of the stimuli) and a person’s gradual changes in speed as trends in the dif-
fusion thresholds. Last, we propose that a small fraction of RTs arise from
distinct, noncognitive processes that are included as components of a mixture
model. In the absence of sharp prior information, the inclusion of these mix-
ture components is accomplished via a two-stage, empirical Bayes approach.
The resulting framework may be generalized readily to RTs collected under
a variety of experimental designs.

1. Introduction. Human performance data, measurements of the speed and
accuracy with which tasks can be performed, is the foundation of most work in
experimental psychology. Theories about behavior and how the brain processes
information are evaluated on the basis of how human performance data change
over different experimental conditions. Response times (RTs) in particular have
been the foundation of much work in cognitive psychology for well over 100 years
[Luce (1986)].

RTs in a typical sample are not independent and identically distributed (i.i.d.).
Not only does the data generating mechanism change as the person becomes more
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experienced with or tires from the task, but there are also short-term dependen-
cies over consecutive responses arising from repetitions of stimuli or responses,
making mistakes or other factors. Furthermore, RT data are not “clean.” That is,
a sample of RTs measured from an individual performing a task contains not only
observations generated by the cognitive mechanism that is the focus of research but
also “contaminant” observations resulting from inadvertent slips, momentary inat-
tention and so forth. Such observations are more likely to be very fast or very slow
and are thought to contribute to the heavy tails typically seen in the marginal dis-
tributions of RT sequences. Theoretically-motivated models are inappropriate for
these contaminated trials. The inclusion of the more extreme observations may ul-
timately distort estimation of parameters of the true cognitive model, as discussed
by Ratcliff (1993) and Whelan (2008).

Popular strategies for mitigating the influence of contaminants include trans-
forming the data or, more commonly, discarding the most extreme RTs. Alter-
native approaches have avoided removing data by modeling RTs as a mixture of
a cognitive process and two additional processes that account for the short and
long responses. Vandekerckhove and Tuerlinckx (2007) used such a model with
uniform distributions on the mixture components, and, more recently, Kim et al.
(2017) modeled the contaminants using log-normal distributions, where informa-
tive priors on these distributions were used to promote a stochastic ordering of the
mixture components.

While many researchers make the assumption of i.i.d., uncontaminated observa-
tions out of computational convenience, Craigmile, Peruggia and Van Zandt (2010)
proposed a modeling framework that deliberately incorporated these well- i.i.d.
characteristics of the data. Their purpose was to obtain better estimates of the pa-
rameters of the data-generating mechanism by using a more complete model that
included mechanisms by which contaminant observations, changes due to experi-
mental conditions, and trial-by-trial dependences might arise.

In the descriptive model proposed by Craigmile, Peruggia and Van Zandt
(2010), log RTs were generated by a simple autoregressive process of order 1
[AR(1)]. In this model the distribution of a log RT on any given trial was a function
of the RT on the preceding trial. In addition there was some probability that the
RT would be delayed or sped up by some amount, the amount determined by an
exponential random variable that was either added to or subtracted from the log RT
generated by the AR(1) process. Long-term trends over trials were described using
a wavelet regression added to the log RT. This model was embedded in a Bayesian
hierarchy and fit to data from a simple detection task published by Wagenmakers,
Farrell and Ratcliff (2004), and model diagnostics suggested that the model ac-
counted for the data well.

The research in the present paper builds on the modeling framework presented
by Craigmile, Peruggia and Van Zandt (2010) in three major ways. First, we ex-
plore a theoretically motivated data-generating mechanism with more explanatory
power than the AR(1) process originally proposed. This mechanism supposes that
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simple decisions arise from a race between two diffusion processes and that RTs
are determined by the first-passage time of the process that reaches a fixed thresh-
old first. This kind of mechanism has seen wide success in explaining simple de-
cision processes in cognitive psychology [Logan et al. (2014), Usher and McClel-
land (2001)] and has received some support from observations of brain activity in
studies involving both human and nonhuman primates [Heitz and Schall (2012)].

Second, we test the utility of this kind of modeling framework by using it to
recover “signals” in the stream of measured RTs induced by regularities in the
sequence of stimuli presented to the students who participated in the experiment.
We manipulated the response-relevant visual features of the stimulus sequence
so that changes in stimulus discriminability induced by relative color intensity
and distance from the center of the computer monitor varied cyclically over trials.
A major test of the modeling framework is to try and recover the “footprints” of
these signals in the data free from distortion due to outlying contaminant RTs.

Third, we accommodate contaminant RTs using a mixture model. In the absence
of sharp prior information about the processes that generate these observations, we
use a two-stage procedure that begins with a preliminary model that includes only a
cognitive component. We then identify ill-fitting points that are likely to have been
generated from the noncognitive processes. We use these points and an empirical
Bayes approach to build data-dependent priors for the parameters of the mixture
components.

In Section 2 we present a brief description of the experiment we conducted. The
data from this experiment were used to develop and test the hierarchical model
that we present in Section 3. We summarize the fits of the model in Section 4 and
discuss model validation in Section 5. Finally, in Section 6 we present our find-
ings and outline directions for possible extensions. The Supplementary Material
[Kunkel et al. (2019)] provides additional detail on the experimental procedure,
displays the RT sequences for all students and reports the results of the analysis
for all students. The Supplementary Material also includes a demonstration of the
ability of our estimation procedure to recover the parameter values used to gen-
erate simulated data for a prototypical experimental participant, a comparison of
the performance of our theoretically-motivated modeling framework with that of a
descriptive generalized additive model and an evaluation of the predictive perfor-
mance of our approach.

2. Description of the experiment. Data were collected from 22 Ohio State
University (OSU) undergraduates recruited from introductory psychology courses
through the Research Experience Program at OSU. The experiment asked these
students to quickly judge whether a small square was presented to the left or right
of the center of a computer monitor. The difficulty of the discrimination was varied
by: (i) presenting the square at varying distances from the center (3, 10, 30 or
80 pixels from the screen center) and (ii) varying the contrast between the square
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FIG. 1. Experimental procedure. The left panel shows the structure of a single trial for the task.
The duration for each frame is shown above each rectangle, while the frame’s role in the trial is
stated below. The right panel shows the sequence of horizontal offsets and relative color intensities
used for the target stimulus over one segment of trials.

and the background (gray levels of 0 [black] or 115 [gray] against a background
gray level of 127 [darker gray]).

Students completed a series of 552 trials with no rest breaks. The left panel
of Figure 1 presents the structure of a single trial from the task. The right panel
of Figure 1 shows the sequence of stimuli over trials. The stimulus appeared ran-
domly to the left or right of center, while the sequence of eight stimuli (varying in
distance and color intensity) was repeated over the 552 trials, resulting in a pattern
of stimulus changes with periods 8.

We discarded the first 40 trials as a “practice” period. The resulting series of
512 log RTs are shown in Figure 2 for Students 3, 5, 6, 10, 19 and 21. For ease
of presentation, we focus our figures and discussion on these students. We chose
Students 3, 5, 10, 19 and 21 because our analysis revealed that they were represen-
tative of several interesting features also found in other study participants and Stu-
dent 6 because the analysis revealed this student to have anomalous, idiosyncratic
features not shared by any of the other students in the study. The Supplementary
Material contains the entire data set and a detailed description of the experimental
design.

3. Hierarchical Bayesian min-inverse Gaussian race model. Modeling the
accumulation of evidence over time as a stochastic process has been very success-
ful in providing explanations for a wide range of behaviors in tasks as diverse as
recognition memory, signal detection, pattern matching and economic decisions
[Caplin and Martin (2016), Ratcliff and McKoon (2007), Van Zandt, Colonius and
Proctor (2000)]. In particular, models based on Gaussian processes have been fit
to human performance data to explain how decision speed and accuracy trade off
against each other and have also formed the basis of models that connect behavior
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FIG. 2. Observed log RTs for Students 3, 5, 6, 10, 19, and 21.

to specific neural events [Nelson, Murthy and Schall (2016)]. While other kinds of
stochastic processes have been used to describe human performance data [Brown
and Heathcote (2008), Van Zandt, Colonius and Proctor (2000)], it is generally
agreed that those based on continuous Gaussian processes provide the best fits to
the data [Ratcliff, Smith and McKoon (2015)].

A class of these models—“race” models—casts the decision process as a race
between independent accumulators with each one representing a possible response
to a given problem. The first accumulator to reach a fixed threshold determines
the response to be made, and its first-passage time determines the RT. With two
possible responses in this experiment, this model states that the distribution of
RTs, without consideration of contaminants, sequential effects or long-term trends,
should be distributed as the minimum of two first-passage times, one correspond-
ing to each of the possible responses to the stimulus. Further, we specify, consis-
tent with prior research [Logan et al. (2014)], that the accumulation process be
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described as Brownian motion, so that the first-passage time distributions both fol-
low inverse Gaussian distributions, and the RT is determined by the minimum of
the two, the min-inverse Gaussian race model.

3.1. Min-inverse Gaussian race model. The min-inverse Gaussian race model
describes observed RTs as a minimum of two inverse Gaussian random variables.
In the context of our experiment, this model arises if we assume that two racing
accumulators, corresponding to “right” or “left” responses, are each described as
Brownian motion processes with drifts νs , where the superscript s = l or r refers to
the left (l) or right (r) response process. The first-passage time of one such process
at a threshold αs is distributed as an inverse Gaussian variable with probability
density function

(3.1) f
(
y|αs, νs) =

(
αs

2πy3

)1/2
exp

(−(νs)2(y − αs/νs)2

2yαs

)
, y > 0.

Under this distribution the first-passage time has a mean of αs/νs and variance
of (αs)2/(νs)3. This distribution accommodates noisy accumulation of informa-
tion in favor of a particular response and its parameters are directly interpretable
as mechanisms in the race model. The diffusion rate νs describes how quickly in-
formation is accumulated, whereas the threshold αs characterizes the amount of
evidence necessary to conclude that the response is the correct one [Logan et al.
(2014)]. Slower first-passage times may result from a decrease in the drift νs , an
increase in the threshold αs or both.

In this model responses are generated from the racing “left” and “right” pro-
cesses, whose first-passage times at trial t are inverse Gaussian random variables
which may have different rates and thresholds. We observe an RT Yt , which is the
smaller of the two first-passage times, and St , an indicator of which process won
at trial t which equals l if the student’s response was “left” and r if the response
was “right.”

At trial t , the joint density of (Yt , St ) is

f (yt , st ) =
{
fl(yt )

(
1 − Fr(yt )

)
if st = l,

fr(yt )
(
1 − Fl(yt )

)
if st = r,

(3.2)

where fl = f (yt | αl, νl) and fr = f (yt | αr, νr) are the inverse Gaussian densities
for the left and right processes respectively, and Fl and Fr are the corresponding
cumulative distribution functions. We will refer to (3.2) as the “min-inverse Gaus-
sian” distribution.

3.2. Hierarchical model for racing processes. For Student j , j = 1, . . . ,21,
and trial t , t = 1, . . . ,512, we observe the RTs and responses (Yjt , Sjt ).

The pairs (Yjt , Sjt ) are distributed as min-inverse Gaussian random variables
and are conditionally independent given the thresholds and rates of the left and
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right processes. We write these parameters for Student j at trial t as (αs
jtu, ν

s
j tuc),

where the subscript u = l (left) or r (right) refers to the side at which the stimulus
was presented at trial t , and the color intensity is either c = b (black) or g (gray).
We assume that the two processes are symmetric, so that(

αl
jtl, ν

l
j tlc

) = (
αr

jtr , ν
r
j trc

)
and

(
αr

jtl, ν
r
j tlc

) = (
αl

jtr , ν
l
j trc

)
,(3.3)

for all j , t , c; that is, the rate and threshold of process s depend only on the side
on which the stimulus was presented.

When referring to the process s that controls the response that is consistent with
the side on which the stimulus u is presented, that is, when u = s, we will use the
term “correct process.” When u �= s, we will use the term “incorrect process.”

We model the log rate for Student j , trial t , side u, color intensity c and process s

as a baseline rate μs
juc to which we add a conditionally independent term for the

correct process:

log
(
νs
jtuc

) =
{
μs

juc + bs
ju(t) if s = u,

μs
juc if s �= u.

(3.4)

The term bs
ju(t) is a periodic signal that is a function of trial t and accounts for the

changing difficulty of the task due to the distance of the presented stimulus from
the center.

We first present a hierarchical model for the baseline rates μs
juc. We next present

the model for the signal bs
ju(t) which incorporates the effects of stimulus dis-

tance from center. We will then present a semiparametric model for the thresholds
log(αs

jtu). The hierarchical structure on the rates permits dependence between
rates for trials whose stimuli are similar in color intensity or location. The hi-
erarchy also permits dependence between thresholds across trials to account for
sequential effects.

Model for baseline rates μs
juc. All trials for Student j , stimulus side u and

color intensity c share a common baseline rate μs
juc which may be different for

the correct and incorrect processes. We assume that for process s and side u, the
baseline rates μs

jub and μs
jug are conditionally independent and distributed as

μs
jub ∼ N

(
μs

ju + γ s
u ,

(
τ s
μju

)2)
and μs

jug ∼ N
(
μs

ju − γ s
u ,

(
τ s
μju

)2)
,

where N(a, b) denotes a normal distribution with mean a and variance b. Here
2γ s

u represents an additive effect of the darker intensity on the log rate for process
s and side u, and μs

ju is the student-specific mean rate for process s and side
u. The difference μs

jub − μs
jug captures the student-specific mean effect of color

intensity change for the correct process when s = u and for the incorrect process
when s �= u.

We give each effect of color intensity γ s
u a normal prior with mean γ and vari-

ance τ 2
γ . The baseline rates μs

ju have normal priors with means μj + δ (s = u) and
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TABLE 1
Hyperpriors on the model parameters for μs

juc

(τ s
μju)−2 τ−2

μj τ−2
μ τ−2

γ γ δ μ

G(8,2) G(8,2) G(1,1) G(1,1) N(0,20) N(0,20) N(0,20)

μj − δ (s �= u) and variance τ 2
μj . The student-specific precisions (τ s

μju)
−2 and τ−2

μj

are i.i.d. G(8,2) for all students, where G(a,b) is a gamma distribution with mean
a/b and variance a/b2. These distributions put high probability on higher preci-
sions and make it unlikely, a priori, for the baseline rates of the two processes to
be vastly different. The means μj are normal with mean μ and common variance
τ 2
μ. The prior distribution of the remaining hyperparameters are given in Table 1,

where conditional independence is assumed throughout. The hyperparameters for
τ−2
μ , τ−2

γ , γ , δ and μ were chosen to be somewhat diffuse to reflect our prior ig-
norance about these parameters. In future studies more informative choices could
be made using, in part, the additional information gathered from this study. While,
formally, the posterior distribution from the current study should become our fu-
ture prior, we do not fully endorse such an approach due to the complexities of the
model and the data. Rather, we prefer to recommend a more cautious approach in
which the distributions of the hyperparameters are kept fairly diffuse.

Model for effects of stimulus distance bs
ju(t). As we explained in Section 2,

students in this study were presented with a sequence of stimulus distances and
intensities in repeating cycles of eight trials, with randomly chosen left or right
side placement.

When the stimulus was presented on side u, we expect the diffusion rate for the
correct process s = u to increase with increasing distance, reflecting the greater
ease with which the left/right discrimination could be made and the corresponding
faster RTs. We assume that distance changes on side u do not influence the rate of
the incorrect process s �= u.

To account for possible periodicities, we defined bs
ju(t) in (3.4) as a sinusoidal

signal using a harmonic regression at a set of four prespecified frequencies, F =
{f1, f2, f3, f4}, where fi = 1/2i for each i. This harmonic regression model for
Student j , side u and process s is given by

(3.5) bs
ju(t) =

4∑
i=1

(
βs

1iju cos(2πfit) + βs
2iju sin(2πfit)

)
, t = 1, . . . ,512.

The amplitude As
iju and phase ωs

iju at the ith frequency are determined by the
coefficients βs

1jiu and βs
2iju as follows:

As
iju =

√(
βs

1iju

)2 + (
βs

2iju

)2
, As

iju > 0;
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ωs
iju = tan−1

(βs
2iju

βs
1iju

)
, ωs

iju ∈ [0,2π).

The amplitude As
3ju at frequency f3 = 1/8 reflects the sensitivity of the rate for

process s to the changes in stimulus distance. The remaining amplitudes As
iju re-

flect the magnitude of predictable variation in the rates that cannot be easily at-
tributed to the stimuli.

Let βs
1ju denote the vector whose elements are the coefficients βs

1iju for fre-
quencies i = 1, . . . ,4, and let βs

2ju be defined analogously. Because the sine and
cosine functions are orthogonal, we assume that βs

1ju and βs
2ju are conditionally

independent and normally distributed with mean vectors β1 and β2 respectively
and covariance matrix τ 2

βD for j = 1, . . . ,21. Here D is a 4 × 4 diagonal matrix
whose ith diagonal entry is 1/(2fi), where fi is the ith frequency in F .

This specification for the covariance matrix D assigns larger prior variance to
coefficients associated with lower frequencies (longer wavelengths). We further
assign independent N4(0,6D) distributions to β1 and β2, where 0 is a vector of
0s. We give the precision parameter τ−2

β a G(1,1) prior.
Model for response thresholds αs

jtu. In addition to regularly repeating changes
arising from experimental conditions, the series of RTs also exhibit local trends
such as unusually slow responses at the beginning or end of the experiment, or
periods of consecutive fast responses. Several of the students’ log RT series in Fig-
ure 2 show such trends, for example, Students 3 and 19 appear to answer quickly
at the beginning of the experiment and slow down over time, Student 6 appears to
speed up over time, and Student 10 has unusually slow responses in the first 50
trials. These behaviors may be due to factors such as fatigue, periods of delayed
response and learning; it is hard to attribute them to the systematic changes in the
experimental design.

Within the context of our model, these features cannot be explained by the log-
linear expansion for logνs

jtuc. They can, however, be explained by incorporating
smooth trends in the thresholds αs

jtu. Because the mean and variance of the inverse

Gaussian distribution increase with αs
jtu and (αs

jtu)
2 respectively, RTs and their

variability will tend to be large during periods when αs
jtu is elevated. We performed

an exploratory data analysis calculating the moving averages of the means and
variances of the RT sequences that supported the need for these trends.

We use αs
ju to denote the vector containing αs

jtu, t = 1, . . . ,512, the thresholds
for Student j , process s and stimulus u at trial t . We model trends in log(αs

jtu) via
a cubic spline regression on trial number using a B-spline basis. This basis uses
nine basis functions that span the same space as {1, t, t2, t3, (t − κ1)

3, . . . , (t −
κ5)

3}, where κ = {κ1, . . . , κ5} are evenly spaced knots [Ruppert, Wand and Carroll
(2003)]. The log thresholds can be represented as

log
(
αs

jtu

) =
9∑

i=1

φs
ijuBi(t),(3.6)
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FIG. 3. Basis functions used to model log(αs
j tu).

where Bi(t) is the ith basis function evaluated at trial t . We constructed this ba-
sis using the R “splines” library with a default choice of knots at the 17th, 33rd,
50th, 67th and 83rd quantiles of the trial numbers; κ = (86.2,171.3,256.5,341.7,

426.8). Figure 3 shows these functions for the sequence of 512 trials. We chose to
use five knots because this choice of basis allows local flexibility in the threshold
while keeping the number of parameters modest. A sensitivity analysis using sev-
eral different choices of knots showed that the predictive properties of the cognitive
model was not sensitive to this choice.

We denote by φij = (φl
ij l, φ

r
ij l)

T = (φr
ijr , φ

l
ijr )

T the vector of coefficients asso-
ciated with Bi(t) for Student j ’s correct and incorrect processes. For each j we
assume that the prior for φij , i = 1, . . . ,9, is a bivariate normal distribution with
mean μφj 12 and covariance matrix τ 2

φ((1 − ρφ)I 2 + ρφJ 2), where 12 is a column
vector of ones, I 2 is the 2 × 2 identity matrix, and J 2 is a 2 × 2 matrix of ones.
This defines an exchangeable correlation structure where, for Student j , φl

iju and

φr
iju have correlation ρφ for a fixed basis function i, and φl

iju and φr
i′ju are uncor-

related for i �= i ′. The student-specific mean threshold is captured by μφj , whose
prior is a normal distribution with mean μφ and variance τ 2

φ , where μφ and τ−2
μφ

have N(0,20) and G(1,1) distributions respectively.

3.3. Mixture likelihood to account for contaminant RTs. As discussed in the
Introduction, RTs are “contaminated” by unusually long and short responses that
are generated by processes unrelated to the cognitive process of interest. We ac-
commodate these contaminants with a mixture model that generates observations
from the min-inverse Gaussian cognitive model with high probability, and from
two other processes, G and H , with small probability (ηG and ηH respectively).
The process G describes the faster (“subcognitive”) RTs, and H generates the un-
usually long (“supracognitive”) RTs. The full mixture likelihood for (Yjt , Sjt ) is

(3.7) P(Yjt ≤ y,Sjt = s) = (1 − ηGj − ηHj )F (y, s) + ηGjG(y) + ηHjH(y),

where F is the min-inverse Gaussian distribution in (3.2) and G and H denote the
cumulative distribution functions of the log-normal distribution. The parameters
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of G are fixed and determined by prior information, and the parameters of H are
student-specific. As we next explain, the prior distributions for the parameters of
H are chosen using prior knowledge and diagnostic information from the data.

3.3.1. Models for G and H . We take G, the model for subcognitive RTs, to
be a log-normal distribution such that the log RTs have a mean of log(150) and
standard deviation of 0.25 denoted by log-normal(log(150), 0.25). This choice
is motivated by existing work on “fast outliers,” which suggests that RTs below
100 ms are almost certainly not generated from a cognitive process, and those
lower than 200 ms are also likely to be guesses [Ratcliff (1993), Whelan (2008),
Baayen and Milin (2010), Kim et al. (2017)]. Our choice for G places about 98%
of its mass below 250 ms.

The supracognitive component H is a log-normal(aj , bj ) distribution for Stu-
dent j , where the student-specific parameters aj and bj , j = 1, . . . ,21, are condi-
tionally independent and drawn from priors Pa and Pb respectively. We take Pa to
be a log-normal(μa, σa) distribution and Pb to be a log-normal(μb, σb) distribu-
tion.

Choosing the appropriate values for the hyperparameters μa , σa , μb and σb

is not straightforward. Little prior information is available about the appropriate
location shift for H , and the features of H may vary across individuals. Fully non-
informative priors cannot be used, however, because the model is weakly identified
unless we use the prior to distinguish H from the cognitive model. To address this
problem, we take a two-stage, empirical Bayes approach and use a reweighted
version of the observed data to estimate μa , σa , μb and σb.

Our approach is as follows: for Student j , we assign a weight 0 ≤ wjt ≤ 1 to
each observed RT at trial t that reflects our empirical belief that this observation
may be generated from H . We then calculate weighted maximum likelihood (ML)
estimates of the log-normal location and shape parameters using the weighted like-
lihood

∏512
t=1 f (yjt |aj , bj )

wjt . We denote these ML estimates by âj and b̂j . Last,
we set μa and σa to equal the log-normal ML estimates calculated from the âj .
Similarly, μb and σb are derived as ML estimates based on the b̂j .

In the paragraphs below, we first describe how we estimated the likelihood
weights wij . We then describe the model for the mixture probabilities ηG and
ηH .

Method for calculating likelihood weights wjt . To calculate the weights wjt , we
use three principles from the RT literature: first, very slow RTs are likely to have
been generated from H ; second, observations that fit poorly in the cognitive model
are likely to have been generated from H ; third, we do not know with certainty
whether any single observation was or was not generated from H . These principles
are consistent with discussions found in, among others, Ratcliff (1993), Whelan
(2008) and Baayen and Milin (2010) in the context of deciding which observations
should be trimmed from an RT dataset. Baayen and Milin (2010) in particular
focus on excluding those extreme RTs that seem to contribute to a lack of fit in the
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FIG. 4. Q–Q plots for the preliminary fit of the cognitive model only. The dashed line is the identity
line, and the solid line is the piecewise linear fit using equation (3.8). The asterisks denote the fitted
values at yj (q1) and yj (q2).

cognitive model; we build on this principle by using model diagnostics to quantify
the lack of fit for each observation and using this information to calculate wjt .

To this end we fit a restricted model in which ηGj = ηHj = 0; only the min-
inverse Gaussian component of the mixture was fit to the RTs. We evaluated the
fit of this model by comparing the observed RTs with samples from its posterior
predictive distribution. For most students the slowest RTs were much slower than
those predicted by the min-inverse Gaussian model, as exhibited by poor coverage
of posterior intervals and by quantile–quantile (Q–Q) plots that show misfit of
the tails of the distribution. These Q–Q plots, shown for Students 3, 5 and 19 in
Figure 4, exhibit model fits that deteriorate sharply after a point in the upper tail,
as indicated by an “elbow” in the plot. The points at or above this elbow should
contribute the most information about the parameters of H .

To isolate this subset of the data, we used a piecewise linear model of predicted
quantiles on observed quantiles. Let yj (t) be the t/512th sample quantile of the
observed data for Student j and use ỹb

j (t), b = 1, . . . ,300, to denote 300 samples
from the posterior predictive distribution of that quantile. The following weighted
least-squares regression of ỹb

j t on yj (t) allows three connected line segments to
comprise the best-fit response function,

ỹb
j (t) = β0 + β1yj (t) + β2(yj (t) − yj (q1)) + β3(yj (t) − yj (q2)) + εb

j (t),

εb
j (t) ∼ N

(
0, σ 2vj (t)

)
, b = 1, . . . ,300,

(3.8)

where yj (q1) and yj (q2), the q1/512 and q2/512 sample quantiles of yj , are the
knots at which the slope of the line is allowed to change. We set the least-squares
weights vj (t) in this segmented regression model to be proportional to an esti-
mate of the posterior variances of ỹj (t). For each student we identified the values
of q1 and q2 that minimized the residual sum of squares and determined which
observations fell above the upper “elbow” yj (q2). These points provide the most
information about H and should have large weights.



A BAYESIAN RACE MODEL FOR RESPONSE TIMES 283

FIG. 5. Densities of the prior distributions Pa and Pb , Pη,F , Pη,G and Pη,H . The gray diamonds
are â1, . . . , â21 and b̂1, . . . , b̂21 in the first and second panels respectively.

The sampling weight wjt , which determines each observation’s weight in esti-
mating the hyperparameters of Pa and Pb, was made to increase with the magni-
tude of the observation, djt = yjt/maxh(yjh). Specifically, we let

wjt = exp(c1djt )/
(
c2 + exp(c1djt )

)
.(3.9)

We computed the constants c1 and c2 by setting the desired weight for the q1/512
and q2/512 sample quantiles equal to 0.05 and 0.5 respectively and solving the
resulting system of two equations. With this selection of the sampling weights, we
use a weighted log-normal likelihood to calculate the weighted log-normal ML
estimates â1, . . . , â21 and b̂1, . . . , b̂21. Finally, the parameters μa and σa were set
equal to the ML estimates calculated from â1, . . . , â21, and μb and σb were set
equal to the ML estimates calculated using b̂1, . . . , b̂21.

Many other reasonable methods could be used to calculate the sampling
weights. The exact functional form of Expression (3.9) is somewhat ad hoc; how-
ever, the parameter recovery study reported in Section 3 of the Supplementary
Material lends credibility to the method, because the proposed procedure led to
increased accuracy in parameter estimation. Further, the sensitivity analysis pre-
sented in Section 5 suggests that, because the procedure is not very sensitive to
changes of the hyperparameters μa,σa,μb and σb, the specifics governing the cal-
culation of the weights are, within reason, unlikely to influence the conclusions of
the analysis.

Priors on ηj . For Pη, the prior on ηj = (ηFj = 1 − ηGj − ηHj , ηGj , ηHj ),
we specified a Dirichlet distribution with hyperparameter m = (mF ,mG,mH)

whose marginals we denote by Pη,F , Pη,G and Pη,H . As with the hyperparam-
eters of Pa and Pb, we required concentrated priors on these mixture proportions
to impose identifiability between the flexible log-normal component and the min-
inverse Gaussian distribution. Ratcliff (1993) has recommended that at least 85%–
90% of observations be classified as arising from the cognitive model, in part to
ensure that the long tails of the cognitive model are fully described. We chose
m = (450,22.5,30) which gives a concentrated prior with expected proportions
of 0.90,0.04,0.06 of components F , G and H respectively. Figure 5 shows a
graphical summary of the priors Pa , Pb, Pη,F , Pη,G and Pη,H .
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Two key aspects of our model specification are the theoretically motivated min-
inverse Gaussian race model describing the cognitive RTs and the two-stage, data-
informed procedure for specifying the distributions of the sub- and supracognitive
RTs. To ensure that the information in the data is sufficient to learn about these
two aspects of the model, we conducted a proof of concept experiment in which
we analyzed simulated RTs for a prototypical student, with and without contam-
inant sub- and supracognitive RTs. The results of the experiment, reported in the
Supplementary Material, confirm that, in the absence of contaminants, the param-
eters of the min-inverse Gaussian race model can be accurately recovered. We
demonstrate that if contaminants are present, the min-inverse Gaussian race model
alone cannot describe adequately the variability in the data, but, once the sub-
and supracognitive mixture component are added and the two-stage specification
procedure is applied, the parameter values used to simulate the data can again be
recovered accurately.

4. Results. We fit the full mixture model using Markov chain Monte Carlo
(MCMC) with a Gibbs sampling algorithm. We ran multiple chains for 350,000
iterations after burn-in and thinned the chains by keeping every 500th sample. We
assessed convergence using trace plots and running multiple chains from different
starting values. Here, we discuss our results, focusing on the six selected students.

Effects of stimulus changes. Underlying “signals” due to stimuli, if present, are
captured in the posterior distribution of the log diffusion rates log(ν). If a student’s
RTs respond predictably to changes in distance, we expect to see this reflected in
the rate as a strong signal at the frequency 1/8. We similarly evaluate sensitivity
to changes in the color intensity by looking for shifts in the posterior distribution
of the log rate corresponding to the black and gray stimuli.

Figure 6 summarizes the posterior distributions of the log rates log(νs
j tuc) for

the six selected students. The rates have been aligned so that a given rate index on
the horizontal axis corresponds to the same experimental condition for all students,
ordered as in the illustration in the right-hand panel of Figure 1. The plots on the
left show the log rate for the correct process at trial t [i.e., log(νl

j tlc) or log(νr
j trc)]

and those on the right show the log rates for the incorrect process [log(νl
j trc) or

log(νr
j tlc)]. Except for Student 6, the patterns seen in this figure are generally rep-

resentative of all the students who participated in the experiment.
We focus first on the correct process. In general the rate drops substantially

when the stimulus shifts from black to gray on trial 5. This downward shift sug-
gests that, although the stimulus at this setting is presented at the largest distance
of 80, the discrimination is not easy because of the difficulty introduced by the
switch to the lower color intensity. For many of the students, the rate is in fact
slowest for this first trial after the switch.

There are individual differences in how students reacted to changes in distance.
Some students (3, 19 and 21) showed a strong effect of decreasing distance when
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FIG. 6. Posterior means and 90% posterior intervals of log rates for selected students for stimuli
presented in the order shown in Figure 1. The plots on the left show the log rate for the correct
process [log(νl

j tlc) or log(νr
j trc)]. The plots on the right show the log rate for the incorrect process

[log(νl
j trc) or log(νr

j tlc)]. The color intensity of the plotting symbol (black or gray) matches that of
the stimulus.
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FIG. 7. 90% posterior intervals of amplitudes bs
j (t) at each frequency for selected students.

the stimulus was gray, with a large reduction in rate for a distance of 3. When
the stimulus was black, many students were less sensitive to distance. Student 5’s
rate slowed slightly as distance decreased, while Student 3’s rate increased with
distance. The rates for Student 6, on the other hand, were smaller than those of the
other students and changed perceptibly with distance when the stimulus was black
but remained more stable and comparable to those of the other students when the
stimulus was gray. Overall, the rates for the black stimuli were lower than those for
the gray stimuli, a pattern that is unique to this student. For all students the changes
in rates over each sequence of eight trials were nearly identical, indicating that the
periodic component is weak at frequency 1/16 and stronger at higher frequencies.

For the incorrect process the right column of Figure 6 shows that the log rates
tend to be smaller than for the other process and remain nearly constant across
trials. Our model for these rates includes a shift for the change in stimulus color
intensity. With one exception this shift is small for all students, indicating that the
diffusion rate for the incorrect process is not very sensitive to any changes in the
stimulus. For Student 6, however, the rate for this process tends to be higher and
shifts up substantially when the color intensity switches to gray—again, a feature
unique to this student that we will discuss in Section 6.

Figure 7 summarizes the strength of the periodic component bs
j (t) as reflected

by the posterior distributions of the amplitudes of each frequency. The posterior
mean amplitudes are highest at frequencies 1/4 and 1/8 for all students, and most
students have posterior mean amplitudes at frequency 1/8 that are higher than
those at frequency 1/4. For students with large 1/8 frequency amplitudes, such as
Students 3, 6 and 21, we see evidence of higher sensitivity to the stimulus distance.
This signal is particularly strong for Student 6. These results suggest that it is
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FIG. 8. Estimates of the student-specific effect of color intensity for the correct (left) and incorrect
(right) processes. The scales of the y-axes are different for the two plots.

indeed possible to recover the “footprint” of the changing stimulus distances in the
RT series.

The effect of changing stimulus color intensity in the log rates is captured by
the differences μl

jlb − μl
jlg (which equals μr

jrb − μr
jrg) for the correct process

and μl
jrb − μl

jrg (which equals μr
jlb − μr

jlg) for the incorrect process. Figure 8
shows boxplots of the posterior distribution of the color intensity effect for both
processes. For the correct process all students, except Student 6, exhibit some in-
crease in rate associated with higher color intensity, and for several students (3,
10, 19, 21) this effect is rather large. For the incorrect process, however, the ef-
fects of color intensity are negligible for all but Student 6. Consistent with what
we observed earlier, Student 6 is unique in that an increase in rate is associated
with lower color intensity.

Trend in thresholds. The estimated thresholds (posterior means and pointwise
95% credible intervals) for process s are shown in Figure 9 for selected students.
The panels in the left column show the thresholds for the correct process those in
the right column show the thresholds for the incorrect process. The changes in the
thresholds capture several prominent local trends in the RTs shown in Figure 2.

For example, the posterior mean threshold for Student 10 is unusually high for
the first 50 trials, corresponding to the student’s slow responses in the same pe-
riod. This elevated threshold may indicate that the student required more practice
before becoming comfortable with the task. Student 6’s posterior mean threshold
decreases more gradually over the course of the experiment. The posterior inter-
vals for the thresholds are wider for the incorrect than the correct process but the
posterior means follow similar patterns.

Mixture parameters. Table 2 provides the posterior means of ηGj and ηHj , the
probabilities that Student j ’s RTs were generated from G or H respectively as
well as the posterior means of the parameters of the log-normal distribution H (aj

and bj ).
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FIG. 9. Pointwise posterior 90% intervals of log thresholds for selected students. The dark line is
the posterior mean log threshold. The left column shows the log threshold for the correct process,
and the right column shows the log thresholds for the incorrect processes.
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TABLE 2
Posterior means and (standard deviations) of the mixture parameters for selected students

ηGj ηHj aj bj

Student 3 0.030 (0.005) 0.116 (0.013) 6.140 (0.049) 0.391 (0.035)
Student 5 0.025 (0.005) 0.136 (0.014) 6.658 (0.062) 0.508 (0.038)
Student 6 0.054 (0.008) 0.180 (0.017) 6.831 (0.064) 0.499 (0.042)
Student 10 0.035 (0.006) 0.155 (0.019) 6.108 (0.084) 0.572 (0.065)
Student 19 0.029 (0.006) 0.142 (0.020) 6.675 (0.085) 0.544 (0.043)
Student 21 0.034 (0.006) 0.096 (0.012) 6.118 (0.066) 0.420 (0.047)

The estimated proportions of RTs generated from the subcognitive component
G are between 0.03 and 0.05, while those from the supracognitive component H

are considerably higher at 0.10–0.18. Student 6 has particularly high values of
both ηGj and ηHj , indicating that the cognitive component of the fitted model was
active less often. This reflects, to some degree, a higher proportion of trials for this
student that are poorly described by the cognitive model and may be indicative of
some difficulty in performing the task due to inattention or some form of physical
or environmental interference. However, such interpretations should be made cau-
tiously. We placed very low probability on proportions greater than 0.15 for both
ηGj and ηHj , and the posterior estimates of these parameters are as much a con-
sequence of this modeling decision as they are evidence from the data themselves.
As discussed in Section 5, the results change if this feature of the prior is relaxed.

5. Model validation. We discussed our theoretical motivation for the min-
inverse Gaussian distribution for RTs in Section 3. Good fits lend credibility to
this model of the cognitive process. We evaluated our model fit by first looking
at the coverage of predictive intervals for each stimulus condition in the students’
data. Then, we compared the features of each student observed and predicted RT
sequences.

We began these evaluations by drawing samples from the posterior predictive
distributions p(y∗

j t |y) for a new observation y∗
j t for student j at trial t . This distri-

bution satisfies

p
(
y∗
j t |y

) =
∫
θ
f

(
y∗
j t |θ

)
p(θ |y) dθ ,

where θ refers to all model parameters, y = (y1, . . . ,y21) is the full observed
data for all students, p(θ |y) is the posterior distribution of θ , and f (y∗

j t |θ) is the
mixture likelihood. We obtained Monte Carlo samples from this distribution by
drawing θb, b = 1, . . . ,B , from the posterior distribution of θ |y and then sampling
y∗b
jt values from the mixture distribution (3.7) with parameters θb. Because our

model assigns a different value of θ to each trial, these predictive distributions are
unique for each t .
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TABLE 3
Empirical coverage probability of 90% predictive intervals for each stimulus condition for selected

students. The number in each column header is the distance from the center (in pixels) of the
stimulus and the letter g or b refers to the gray or black stimulus color intensity. The far right

column gives the mean coverage across all conditions

3−g 10−g 30−g 80−g 3−b 10−b 30−b 80−b Mean

Student 3 0.91 0.86 0.92 0.94 0.81 0.91 0.97 0.86 0.90
Student 5 0.86 0.86 0.98 0.92 0.83 0.91 0.94 0.98 0.91
Student 6 0.80 0.81 0.81 0.78 0.95 0.92 0.91 0.98 0.87
Student 10 0.94 0.92 0.83 0.73 0.86 0.92 0.95 0.94 0.89
Student 19 0.88 0.89 0.88 0.94 0.83 0.92 0.97 0.94 0.90
Student 21 0.75 0.91 0.98 0.92 0.94 0.89 0.91 0.89 0.90

Coverage of predictive intervals. We used samples from the predictive distri-
bution to approximate predictive intervals for each student’s RTs at every dis-
tance/intensity combination. We were particularly interested in verifying that the
model accurately predicts changes in the RT distributions arising from changes in
the stimuli. We calculated the 90% predictive intervals for each stimulus condition
and then the proportion of observations that fell within those intervals. Table 3
shows the (in sample) results.

The empirical coverage is acceptable for most students for trials with the black
stimulus, although it is often considerably higher than the nominal level at larger
distances (30−b and 80−b). For several cells in the table the coverage is very low:
Student 21 has low coverage for low-color intensity near the screen center (3−g),
and Students 6 and 10 have low coverage for low-color intensity at a moderate
distance (30−g). For Student 6 coverage is far below the nominal level for the
conditions with the low-color intensity but is higher for the high-color intensity
conditions. Some unusual features of Student 6 contribute to this phenomenon,
and we will discuss a plausible explanation for it in Section 6. The other students
have coverage close to the nominal level. The lower coverage proportions under
these more difficult gray conditions may suggest that the model predicts RTs that
are too fast for these trials. Conversely, the somewhat higher coverage proportions
under the easier black conditions (especially for intermediate distances of 10 and
30 pixels) suggest that the posterior intervals may be too wide and, hence, that the
model predicts too many supracognitive responses. These proportions may indi-
cate residual misfit of the tails of the RT distributions.

Features of predicted RT series. To examine the posterior predictive RT se-
ries we generated, for each student j , 300 samples yb

j = (yb
j1, . . . , y

b
j512), b =

1, . . . ,300, from that student’s posterior predictive distribution. For each replica-
tion we used the same sequence of stimulus conditions experienced by the student
in the original experiment. Figure 10 shows the Q–Q plots for selected students,
in which we plotted the quantiles of the posterior predictive samples yb

j (y-axis)
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FIG. 10. Q–Q plots of the quantiles of the posterior predictive samples vs. the quantiles of the
observed RT sequences. The y = x line is the dark dashed line.

against the quantiles of the observed sequences yj (x-axis). Each vertical line seg-
ment represents a 95% pointwise predictive interval for that quantile. A straight
line relationship between these quantiles indicates that the sequences could have
realistically been drawn from the predictive distributions. To improve readability,
we use different scales for the x- and y-axes.

The plots show an adequate fit for most students in most parts of the distribution.
Within the central range of the RTs, the distributions of the posterior predictive
RTs are similar to those that were observed, suggesting an overall good fit of the
cognitive component of the model. The predictive distribution is still imperfect in
the tails for some students. For Student 5, for example, the predicted quantiles are
too low in both the lower and upper tails which is perhaps due to the particularly
large magnitudes of this student’s outliers. Students 3 and 21 show a bump at the
left tail, indicating a predictive distribution that puts somewhat too much mass in
the subcognitive component G. The apparent “elbows” from the preliminary fit
(see Figure 4), however, are absent, a result that confirms that the inclusion of the
supracognitive process H in the mixture is necessary to describe slower RTs.

In sum, the coverage proportions and the Q–Q plots show that, although the fits
of the model are not perfect for all students, the mixture representation provides
strong predictive performance, even in the heavy tails, without overfitting.

Predictive checks on held-out data. Another question of interest is the out-of-
sample predictive performance of the model. Predicting RTs for new students not
included in the data set used to fit the model is problematic because the model
accounts explicitly for subject effects that vary from student to student and these
effects would not be estimable for new students. It is possible, however, to fit the
model on a subset of the data obtained by omitting some of the RTs for each
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FIG. 11. Posterior intervals of aj , bj , ηGj and ηHj for selected students under the original priors
(black lines), Prior 2 (dark gray lines) and Prior 3 (light gray lines).

student. In this case, estimation of the student-specific effects is possible and pre-
dictions can be calculated. In the Supplementary Material we describe the results
of a predictive study in which we fit the model to a subset of the original data,
holding out about 17% of the trials and obtained posterior predictions of the RTs
for these held-out trials. With only a few exceptions the coverage of the derived
posterior predictive intervals was close to the nominal value.

Sensitivity to priors on mixture component. As we discussed in Section 3.3,
we constructed the priors Pη, Pa and Pb using diagnostic information from the
data; we will call these choices “Prior 1.” We now evaluate the sensitivity of our
results to these prior choices by fitting the model with less-informative priors that
ignore the diagnostic information from the data. In particular we fit the model two
additional times, changing Pa and Pb in the first run (“Prior 2”) and modifying Pη

in the second run (“Prior 3”).
For Prior 2 we chose Pa to be log-normal(log(6.34),0.15) and Pb to be log-

normal(log(0.45), 0.6). While the prior medians of log(aj ) and log(bj ) are un-
changed from Prior 1, these distributions are much more diffuse. Similarly, for
Prior 3 we replaced the concentrated prior on η with one that has the same prior
means but is much more diffuse: we used m = (30,1.5,2).

Figure 11 shows the posterior distributions of ηGj , ηHj , aj and bj for the orig-
inal Prior 1 (black lines), Prior 2 (dark gray lines) and Prior 3 (light gray lines).
None of the posterior estimates change substantially under Prior 2.

Under Prior 3 the posterior mixture probabilities change substantially. The pos-
terior estimates of ηHj are much larger, with means approximately in the range
20–65%, while the estimates of ηGj are very small for most students. In addition
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the values of aj and bj tend to decrease for most students. When ηHj is large,
many slower RTs that would ordinarily be attributed to the cognitive component
of the model are instead attributed to the process H . These slower RTs, which
are faster than the even slower “outlier” RTs, influence the log-normal parameters
of H , reducing the mean of the supra-cognitive RTs and increasing the overlap
between the components F and H . The more concentrated prior on η in Prior 1
prevents this substantial overlap and ensures that the mixture components are iden-
tifiable. The use of the concentrated prior is a subjective modeling choice, but one
that forces the three mixture components to each play the role for which they were
originally introduced.

6. Conclusions and discussion. In this paper we have proposed a model that
explains choice performance in a two-choice discrimination task. This model states
that a choice between response alternatives arises as a race between competing
Gaussian diffusions which implies that the pairs of RT/response data follow a min-
inverse Gaussian distribution. We embedded this theoretical structure in a hierar-
chical framework similar to that proposed by Craigmile, Peruggia and Van Zandt
(2010) in which data are modeled as a mixture of observations from a process
of interest contaminated by too fast (subcognitive) and too slow (supracognitive)
observations. In addition to explaining how choices (responses and RTs) are in-
fluenced by stimulus conditions, this model explains the tail behavior of the RT
distributions, long-term fluctuations in the mean of the RT series and short-term
dependencies across experimental trials—characteristics of RT series that are dif-
ficult for standard cognitive models to explain and that hamper accurate estimation
of the effects of interest.

The min-inverse Gaussian model presented in this paper describes cognitive
decisions as arising from two distinct components of the cognitive process, the
diffusion rates and the decision thresholds. We modeled effects of changes in the
stimuli as shifts in the log diffusion rates, while we modeled local dependencies,
learning and fatigue as trends in the log decision thresholds. We collected data in
an experiment in which the stimulus varied cyclically over the experimental trials
producing cyclic changes in stimulus discriminability. Our goal was to isolate these
cyclic changes in the log diffusion rate and to verify that the modeling framework
of Craigmile, Peruggia and Van Zandt (2010) can be applied to a novel task.

The stimuli that we used varied in distance from the screen center and contrast
with the screen background, stimulus features that varied systematically and re-
peated every eight trials. Our results showed strong effects of color intensity and
distance on the diffusion rates for the process responsible for eliciting a correct
response; these effects were consistent with increasing diffusion rates under easy
discrimination conditions and decreasing rates under difficult conditions. Effects
of stimulus color intensity were stronger and more regular than those of stimu-
lus distance, but the posterior estimates of the amplitudes of different frequencies
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in a harmonic regression on the log diffusion rates were consistent with the pat-
tern of changes in stimulus discriminability. No strong effects of color intensity
were detected for the process controlling the incorrect response, possibly due to
the paucity of incorrect responses for most students.

Student 6 is the only exception to the preceding comments. The most striking
features uncovered by the analysis are that, for the black color intensity, the re-
sponse rates of Student 6 tend to be lower than those of the other students and
that the effect of color intensity is reversed. An ex-post-facto exploratory analysis
revealed that the error rate for this student is much higher than for the other stu-
dents. In particular Student 6’s performance when the stimulus is gray is no better
than guessing. This suggests that, possibly due to an unreported vision deficiency,
Student 6 did not perform the required task in the low-contrast condition but rather
resorted to rapid guessing. The student, however, appeared to be able to perform
the task adequately under the high-contrast condition, albeit more slowly than the
other students. This ability to uncover and describe unusual behavior in the experi-
ment participants is a testament to the flexibility and discriminating capabilities of
the model and its potential for fruitful applications in diagnostic settings in which
discovery and characterization of idiosyncratic features is necessary.

There are many other alternative modeling approaches that could describe RT
behavior, accommodating the changes in response rates due to experimental de-
sign, fatigue, and learning. In the Supplementary Material we consider one such
alternative based on a generalized additive model (GAM) and compare its esti-
mates and predictive performance to those of our proposed model. In many re-
spects the two approaches perform similarly, but, in our view, our approach has
two fundamental advantages. First, the min-inverse Gaussian model is grounded
in an established theory of cognitive processing, and, as a by-product, its estimates
can be meaningfully interpreted. Second, our approach models jointly the response
values and the RTs while the GAM only describes the RTs marginally, with no ob-
vious path toward joint modeling.

One novelty introduced in this paper is the use of diagnostic information from
the data to inform the priors on the mixture model parameters. Inclusion of the
sub- and supracognitive mixture components improved the model fit substantially
compared to a preliminary fit using only the cognitive model. This finding is con-
sistent with our earlier work arguing that these mixture components are necessary
for RT data [Craigmile, Peruggia and Van Zandt (2010), Kim et al. (2017)]. The
hierarchical nature of our model also allows for substructures in the model that
can predict extremely fast and slow RTs adequately for different individuals. The
mixture representation mitigates the influence of contaminant observations so that
the effects of stimulus changes may be estimated more accurately.

While our model is tailored to the design of our experiment, the proposed frame-
work is easily generalized to future experiments by small modifications to the hier-
archical models on the log rates or log thresholds. For example, additional factors
may be accommodated in the baseline log rate, and the cyclic component may be
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omitted in experiments without a repeating signal. Our model for the log thresholds
does not depend on experimental design and may readily be applied to any experi-
mental design or modified to allow more or less local flexibility. Different choices
of prior distributions on the parameters of the mixture component may be appro-
priate for new datasets, and these can be determined using the same principles
outlined in Section 3.3. Most importantly, when applied to a future populations,
this framework has the potential to isolate experimental effects across individu-
als that share common characteristics and allow for individual differences within
groups.

SUPPLEMENTARY MATERIAL

Supplement A (DOI: 10.1214/18-AOAS1192SUPP; .pdf). This supplement
provides additional detail on the experimental procedure, displays the RT se-
quences for all students, and reports the results of the analysis for all students.
This supplement also includes a demonstration of the ability of our estimation
procedure to recover the parameter values used to generate simulated data for
a prototypical experimental participant, a comparison of the performance of our
theoretically-motivated modeling framework with that of a descriptive generalized
additive model, and an evaluation of the predictive performance of our approach.
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