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GENOME-WIDE ANALYSES OF SPARSE MEDIATION EFFECTS
UNDER COMPOSITE NULL HYPOTHESES

BY YEN-TSUNG HUANG1

Academia Sinica

A genome-wide mediation analysis is conducted to investigate whether
epigenetic variations M mediate the effect of socioeconomic adversity S on
adiposity Y . The mediation effect can be expressed as a product of two pa-
rameters, the S–M association and the M–Y association conditional on S. We
show that the joint significance test examining the two parameters separately
has smaller p-values than the normality-based or the normal product-based
test for the product and is a size α test. However, under multiple tests with
sparse signals, the conventional joint significance test has a conservative test
size and low power within a study because of the sparsity in signals and not
accounting for the composition of different null hypotheses. We develop a
novel test assessing the product of two normally distributed test statistics un-
der a composite null hypothesis, where either one parameter is zero or both
are zero. We show that the null composition can be adjusted by variances
of test statistics without directly estimating proportions of different nulls.
Advantages of the new test are illustrated in simulation and the epigenomic
study. The new test identifies four methylation loci mediating the socioeco-
nomic effect on adiposity with the false discovery rate less than 20% while
existing methods had none surviving this cut-off.

1. Introduction. Mediation analyses first proposed in psychological litera-
ture have become a popular approach to interrogate whether there exists an effect
of an exposure or intervention on an outcome mediated through an intermediary
factor called mediator [Baron and Kenny (1986), MacKinnon (2008)]. Baron and
Kenny (1986) studied mediation effects in simple linear models. By employing the
counterfactual outcome framework [Rubin (1978)], identifiability issues were dis-
cussed [Robins and Greenland (1992)] and no unmeasured confounding assump-
tions [Pearl (2001), VanderWeele and Vansteelandt (2009)], or equivalently, se-
quential ignorability assumptions [Imai, Keele and Yamamoto (2010)] have been
carefully studied. Causal inference provides a more general framework to extend
mediation analyses in linear models to a more complex setting such as general-
ized linear models [VanderWeele and Vansteelandt (2010)] and survival models for
time-to-event data with censoring [Lange and Hansen (2011), Tchetgen Tchetgen
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(2011), VanderWeele (2011), Huang and Cai (2016)]. On the practical side me-
diation analyses have also been applied across various scientific fields to advance
scientific discoveries [Bullock, Green and Ha (2010), Pan et al. (2015), Song et al.
(2015)]. Mediation analyses for a large number of mediators have also been pro-
posed for transcriptomic markers [Huang and Pan (2016)] and epigenetic markers
[Zhang et al. (2016)].

This paper is motivated by an epigenome-wide mediation analysis for the effect
of socioeconomic adversity on obesity. The association of socioeconomic disad-
vantage with obesity and epigeneic DNA methylation and the association between
obesity and DNA methylation have been reported [Agha et al. (2015), Borghol
et al. (2012), Senese et al. (2009)]. Building on the existing evidence, we hypoth-
esized that socioeconomic disadvantage during the childhood altered epigenetic
DNA methylation which in turn affected adiposity at adulthood. We conducted
analyses using the New England Family Study (NEFS) where the childhood so-
cioeconomic disadvantage at age seven using a socioeconomic index and body
mass index (kg/m2) at the mean age of 47 years were assessed in 74 women. DNA
methylation of adipose tissue samples collected in the 74 women at adulthood was
measured using the Infinium HumanMethylation450K BeadChip (Illumina, San
Diego, CA, United States). We conducted epigenome-wide mediation analyses to
investigate the mechanism link between the childhood socioeconomic disadvan-
tage and obesity. The epigenome-wide mediation analyses for 285,163 epigenetic
DNA methylation loci were conducted one at a time to investigate whether the ef-
fect of socioeconomic disadvantage S on adiposity measured by body mass index
(BMI) Y was mediated by the DNA methylation level of a locus M .

It has been well established that the mediation effect is proportional to the prod-
uct αSβM , which is comprised of the association of S and Y , αS and the association
of M and Y conditional on S, βM [MacKinnon (2008)], provided that confounding
is fully adjusted. A normality-based test was performed on α̂Sβ̂M , where α̂S and
β̂M were maximum likelihood estimators of αS and βM respectively. Suppose that
σ 2

αn and σ 2
βn respectively are variances of α̂S and β̂M , the variance of α̂Sβ̂M can

be approximated using the delta method, β̂2
Mσ 2

αn + α̂2
Sσ 2

βn, also known as Sobel’s
test [MacKinnon (2008), MacKinnon et al. (2002), Sobel (1982)]. The histogram
of the p-values from Sobel’s test denoted as pN obtained from normal approxi-
mation for α̂Sβ̂M is shown in Figure 1. Even for a collection of hypothesis tests
conducted entirely under the null, we expect the histogram of p-values to be uni-
formly distributed. Figure 1 suggests that the test is overly conservative, that is,
the signals are much weaker than the expected under the null, only 0.12% of tests
with p < 0.05 compared with the expected 5%.

In addition to the normality-based test, a variety of hypothesis tests for media-
tion have been available [MacKinnon et al. (2002)] and will be formally defined in
Section 3. Unfortunately, none of these existing tests provides a valid study-wise
test size. MacKinnon et al. (2002) and Barfield et al. (2017) concluded via numer-
ical simulation that the joint significance test of α̂S and β̂M examining H0 : αS = 0
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FIG. 1. Histograms of 285,163 p-values in epigenome-wide mediation analyses of CpG loci using
the normality-based test (pN ) and the joint significance test (pJT).

and H0 : βM = 0 separately dominates other tests by providing the best balance of
Type I error rate and statistical power. However, joint significance tests still have
a considerably conservative departure from the theoretical null in the motivating
study (Figure 1). These tests were proposed without taking into account the com-
position of null hypotheses and have very conservative study-wise performance
when such information is available within a study. We define H

(1)
0 : αS = βM = 0,

H
(2)
0 : αS �= 0, βM = 0 and H

(3)
0 : αS = 0, βM �= 0, and the test of mediation effects

is conducted under a composite null hypothesis,

H0 : H(1)
0 ∪ H

(2)
0 ∪ H

(3)
0 ,(1)

against an alternative hypothesis,

HA : αS �= 0, βM �= 0.

The previous empirical findings are based on numerical studies and have a lack of
theoretical justification. Furthermore, with a rapid growth of research data, there is
an imperative need for an efficient hypothesis test to facilitate studies that exploit
high-dimensional data to examine the effects in multiple mediation analyses. Sim-
ilar issues of power losses in multiple mediation analyses have also been reported
[Barfield et al. (2017)]. To address these, this paper aims to: (1) establish theoret-
ical properties of various hypothesis tests for mediation effects, and (2) develop
a new testing procedure for multiple mediation tests that takes into consideration
the nature of the composite null hypothesis. The proposed method is expected to
provide uniformly distributed p-values under the composite null.

2. Causal mediation model. We are interested in the effect of the socioeco-
nomic status S on the body mass index Y mediated by a mediator M , the methyla-
tion level of a locus. The natural indirect [VanderWeele and Vansteelandt (2009)]
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or mediation effect of S = s1 vs. s0 is defined as

E
[
Y

(
s1,M(s1)

)] − E
[
Y

(
s1,M(s0)

)]
,(2)

where Y(s,m) denotes the BMI Y , that is, the potential outcome that would have
been observed had S and M been set to s and m respectively, and M(s) denotes
the measured value of DNA methylation M , that is, the mediator that would have
been observed had S been set to s. We assume two models:

Mi = αT
XXi + αSSi + εMi,(3)

h(Yi) = βT
XXi + βSSi + βMMi + εY i,(4)

where X is a vector of potential confounders with the first element being 1 for the
intercept, εMi and εY i follow two independent arbitrary zero mean distributions,
i = 1, . . . , n, and h(·) is a known or unknown strictly increasing smooth transfor-
mation function. The independence of εMi and εY i holds by the following assump-
tions. By denoting the independence of A and B conditional on C as A ⊥ B|C, we
list four no unmeasured confounding assumptions that are sufficient to identify the
effect in (2): conditional on known confounders X, (1) Y(s) ⊥ S|X, no confound-
ing for the relation of S and Y ; (2) Y(s,m) ⊥ M|(S,X), no confounding for the
relation of M and Y , conditional on S; (3) M(s) ⊥ S|X, no confounding for the
relation of S and M ; and (4) Y(s,m) ⊥ M(s∗)|X, no confounder for the M–Y rela-
tion that is affected by S. Under the above assumptions, E[h{Y(sa,M(sb))}|X] =∫

E[h(Y )|sa,m,X]dFM(m|sb,X) = βT
XX + αT

XXβM + βSsa + αSβMsb, and me-
diation effect in (2) can be expressed as

E
[
h
{
Y

(
s1,M(s1)

)}] − E
[
h
{
Y

(
s1,M(s0)

)}] = αSβM(s1 − s0).(5)

Since h(·) is strictly increasing, E[Y(s1,M(s1))] − E[Y(s1,M(s0))] = 0 ↔
E[h{Y(s1,M(s1))}] − E[h{Y(s1,M(s0))}] = 0. It follows that a test for the me-
diation effect is to test the null hypothesis: H0 : αSβM = 0 which is equivalent
to (1).

We stress that the results in this paper are applicable to pure indirect effect
[VanderWeele (2013)], E[Y(s0,M(s1))] − E[Y(s0,M(s0))] and not limited to the
model specification in (3) and (4); the product expression of the mediation ef-
fect is shared by various models. Under logistic regression models [VanderWeele
and Vansteelandt (2010)] or accelerated failure time models [VanderWeele (2011)]
assuming a rare outcome or probit models for a survival time [Huang and Cai
(2016)], mediation effects all have the same product expression, αSβM , if a mono-
tone function of the outcome Y is determined linearly by βSS + βMM . Further-
more, even for cases that have no explicit product expression for mediation effects,
its null hypothesis in general can still be shown to be the composite null (1) [Huang
(2015)]. Therefore, the results to be introduced are readily generalizable to various
model assumptions provided that αS and βM respectively characterize the uncon-
founded association of S and M and that of M and Y given S.
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We let α̂S and β̂M be
√

n-consistent estimators for αS and βM respectively,

where
√

n(α̂S − αS)
d→ N(0, σ 2

α ) and
√

n(β̂M − βM)
d→ N(0, σ 2

β ) as the sam-
ple size n → ∞. We construct test statistics a(αS) = √

n(α̂S − αS)/(
√

nσαn)

and b(βM) = √
n(β̂M − βM)/(

√
nσβn), where nσ 2

αn

p→ σ 2
α and nσ 2

βn

p→ σ 2
β . a ≡

a(0)
d→ N(0,1) under αS = 0, and b ≡ b(0)

d→ N(0,1) under βM = 0, where a

and b are independent under the above no unmeasured confounding assumptions.

3. Hypothesis tests of mediation effect.

3.1. Single hypothesis test. We define and study the following five existing
tests for mediation effects that were commonly used and compared in the previous
literature [MacKinnon et al. (2002)]:

• Normality-based test [Sobel (1982)]: perform a z-test on the test statistic
|ab|/√a2 + b2 to obtain the p-value, pN ≡ 2 × �(−|ab|/√a2 + b2), where �(·)
is the cumulative distribution function of N(0,1).

• Normal product-based test under the alternative: calculate two times of the
smaller tail probability of the normal product distribution z1z2 from zero to +∞
or −∞, where z1 ∼ N(a,1), z2 ∼ N(b,1), and z1 is independent of z2. Denote
the p-value as pNP1

• Normal product-based test centered at 0: calculate two times the smaller tail
probability of the normal product distribution z1z2 at |ab| or more extreme, where
z1 and z2 are independent standard normals. Denote the p-value as pNP0 ≡ F(ab)

where F(z) = 2
∫ ∞
−∞

∫ ∞
| z
x
| 1

2π
e− x2+y2

2 dy dx.
• Joint significance test: conduct z-tests on a and b and obtain the larger p-

value of the two tests, that is, pJT ≡ 2 × max{�(−|a|),�(−|b|)}.
• Bootstrap test: collect bootstrap samples of α̂S and β̂M : {α̂(b)

S } and {β̂(b)
M },

where b = 1, . . . ,B , B is the number of bootstrap and calculate two times of the
smaller tail probability of {α̂(b)

S β̂
(b)
M } at 0 or more extreme as the p-value, pB .

Let
√

n(α̂S − αS)
d→ U − √

nαS ∼ N(0, σ 2
α ) and

√
n(β̂M − βM)

d→ V −√
nβM ∼ N(0, σ 2

β ). The product UV follows a normal product distribution
[Aroian (1947)] with moment generating function (m.g.f.):

MUV (t) = 1√
1 − t2σ 2

ασ 2
β

e

1
1−t2σ2

ασ2
β

{nαSβMt+(nα2
Sσ 2

β+nβ2
Mσ 2

α )t2/2}
.(6)

Suppose ζ = (UV −nαSβM)/
√

nα2
Sσ 2

β + nβ2
Mσ 2

α and nα2
Sσ 2

β +nβ2
Mσ 2

α → ∞, the

m.g.f. of ζ , Mζ(t) converges to et2/2, the m.g.f. of standard normal which justifies

the normality-based test with the test statistic nα̂Sβ̂M/
√

n2α̂2
Sσ 2

βn + n2β̂2
Mσ 2

α =
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ab/
√

a2 + b2 and the p-value pN . We note that the normal approximation depends
on the condition nα2

Sσ 2
β +nβ2

Mσ 2
α → ∞, which only holds if at least one of αS and

βM is not zero, that is, under H
(2)
0 and H

(3)
0 , and is not satisfied under H

(1)
0 :

αS = βM = 0. However, in the real application such as genome-wide analyses, the
majority of the tests are conducted under H

(1)
0 due to the sparse signals. Therefore,

the normality-based test performs poorly in applications with weak signals.

THEOREM 3.1. The joint significance test is an intersection-union test (IUT)
with size α, and its p-value of joint significance tests pJT is smaller than that of
normality-based tests, pN and normal product-based tests under the alternative,
pNP1.

It is straightforward to show the inequality |ab|/√a2 + b2 ≤ min(|a|, |b|),
where the equality is attained if either a or b is zero. It follows that pN =
�(−|ab|/√a2 + b2) ≥ max{�(−|a|),�(−|b|)} = pJT. The proof that pJT is
smaller than pNP1 is provided in the Appendix. Because bootstrap distributions of√

nα̂S and
√

nβ̂M converge to normal distributions with a reasonably large sample
size, the bootstrap distribution of nα̂Sβ̂M should converge to a normal distribution,
if the condition nα2

Sσ 2
β + nβ2

Mσ 2
α → ∞ is satisfied or a normal product distribu-

tion. We therefore expect that as n → ∞, pB converges to pNP1 or pN and thus is
also larger than pJT.

The results shown in this section hold regardless of the composition for the
null mixtures. Because of its better power and proper test size shown in Theo-
rem 3.1, we applied the joint significance test in the epigenome-wide mediation
analysis. Unfortunately, the joint significance test still suffers from severe power
losses with Type I error rate within the study much less than the nominal level
[Figure 1(b)]. Although we show that the joint significance test is a size α test, that
is, supθ∈
0

π(θ) = α where π(θ) is the power function of parameter θ and 
0 is
the parameter space under the null, it should be noted that the supremum only oc-
curs when either αS or βM is extremely large. Again, in the genome-wide setting
with sparse signals the majority of the tests are conducted under small αS and βM .

3.2. Multiple hypothesis tests. We emphasize that this study is not specifi-
cally for developing multiplicity methodology but more for producing uniformly
distributed nominal p-values under the null for subsequent multiplicity adjustment
using existing methods. Under multiple tests the composition of H

(1)
0 , H

(2)
0 , and

H
(3)
0 may affect the performance of different tests. To address this, we propose

a testing procedure under the composite null hypothesis and provide an analytic
explanation about its advantage over the joint significance test.

One test on the list in Section 3.1 that we have not discussed is the normal
product-based test centered at zero. It examines a very restricted null hypothe-
sis, that is, H(1) : αS = βM = 0, and therefore may mistakenly reject other pos-
sible null hypotheses such as αS = 0, βM �= 0 if one is interested in testing (1).
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Nevertheless, we use it as a basis to construct the proposed test. We provide an
overview of the following theoretical development. We first derive a technical re-
sult in Lemma 3.2 for approximating the weighted sum of multiple F(·) functions
into a single F(·). With that we are able to develop in Theorem 3.3 a closed form
p-value formula for our proposed composite test, if the nonzero mean of test statis-
tics under H

(2)
0 and H

(3)
0 follows normal distribution. In Theorem 3.4 we further

generalize the result to the condition that the nonzero mean of test statistics under
H

(2)
0 and H

(3)
0 follows a mixture of normal distributions.

LEMMA 3.2. With arbitrary weights w1, . . . ,wJ ,
∑J

j=1 wjF(ab/
√

1 + σ 2
j )

can be expressed as (
∑J

j=1 wj)F (ab/
√

1 + σ 2) + δ, where σ 2 = ∑J
j=1 wjσ

2
j /∑J

j=1 wj . And, |δ| is bounded by 2π−1 ∑
j wj (|ab|/√1 + σ 2 −|ab|/√1 + σ ∗2) ×

K0(|ab|/√1 + σ ∗2), where K0(z) is the modified Bessel function of the second

kind with order zero, and σ ∗2 satisfies
∑J

j=1 wjF(ab/
√

1 + σ 2
j ) = (

∑J
j=1 wj) ×

F(ab/
√

1 + σ ∗2).

We note that δ → 0 if σ 2
j are similar or close to 0. In the setting where

w1 = w2 = 0.5, σ 2
1 = 0, σ 2

2 = 1, and the ratio of c′ to c [both defined in the Sup-
plementary Material, Huang (2019)] is set to 1.3, we show in Figure S1a that the
bound of |δ| approaches 0. We suppose that under the null the three hypotheses
H

(1)
0 , H

(2)
0 and H

(3)
0 occur with unknown probabilities π0, πa and πb respectively,

and π0 +πa +πb = 1. Using Lemma 3.2, we prove in the Appendix the following
main result.

THEOREM 3.3. Suppose that with probability π0, the two independent test
statistics a and b follow standard normal distribution; with probability πa , b fol-
lows the standard normal and a follows N(μa,1); with probability πb, a follows
the standard normal and b follows N(μb,1), where μa ∼ N(0, σ 2

a ) and μb ∼
N(0, σ 2

b ). The p-value for testing the composite null hypothesis (1) is pcomp =
πaF(ab/

√
1 + σ 2

a ) + πbF(ab/
√

1 + σ 2
b ) + π0F(ab) = p̂N

comp + δN , where

p̂N
comp = F

(
ab√

Var(a)

)
+ F

(
ab√

Var(b)

)
− F(ab),(7)

and the bound for |δN | is provided in the Appendix.

The result enables us to calculate the p-value using (7) without estimating the
unknown π0, πa and πb. As shown in the Supplementary Material [Huang (2019)],
|δN | tends to zero rapidly and its magnitude relative to pcomp is so small that in
practice, p̂N

comp is sufficient to approximate pcomp with decent accuracy. F(z) =
2

∫ ∞
|z| f (z) dz is calculated by numerical integration of probability density function
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of normal product distribution: f (z) = K0(z)/π . The function K0(z) is available
in R, besselK(, nu=0). We establish a similar result in Theorem 3.4 for a
more general setting where the distributions of μa and μb are not Gaussian but
can be represented as a mixture of Gaussians.

THEOREM 3.4. Suppose that with probability π0, two independent test statis-
tics a and b follow standard normal distribution; with probability πa , b follows the
standard normal and a follows N(μa,1); with probability πb, a follows the stan-
dard normal and b follows N(μb,1), where μa ∼ Qa(μa) and μb ∼ Qb(μb); and
both Qa(μa) and Qb(μb) are zero-mean symmetric distributions with respective
variances σ 2

Qa and σ 2
Qb and can be represented by a mixture of Gaussians. Un-

der the composite null hypothesis (1), p-value is pcomp = πaF(ab/
√

1 + σ 2
Qa) +

πbF(ab/
√

1 + σ 2
Qb) + π0F(ab) + δQ1 and pcomp = p̂comp + δQ1 + δQ2, where

p̂comp = F

(
ab√

Var(a)

)
+ F

(
ab√

Var(b)

)
− F(ab),(8)

δQ1 = πaδQ1a + πbδQ1b with bounds for |δQ1a|, |δQ1b| and |δQ2| provided in the
Appendix.

Note that p̂N
comp and p̂comp share an identical expression. Because p̂comp of the

composite tests considers both α̂S and β̂M , its value decreases as the absolute value
of either one increases. For |b| > |a|, pJT given the same |a| is identical no matter
how large the value of |b| is. Although pJT is robust under any arbitrary null by
not assuming the mixture composition of null hypotheses, it loses considerable
power, that is, a strong signal in β̂M does not help the test for αSβM = 0 if the
signal in α̂S is weak. The advantage of the composite test over the conventional
joint significance test is formally characterized as follows.

PROPOSITION 3.5. Suppose |b| > |a|, the p-value of the conventional joint
significance test pJT is larger than pcomp if |b| >

√
1 + σ ∗2�−1((1 + �(|a|))/2)

where pcomp = F(ab/
√

1 + σ ∗2).

|b| >
√

1 + σ ∗2�−1((1 + �(|a|))/2) is a sufficient condition but not nec-
essary. By Lemma 3.2 the condition for p̂comp < pJT is approximately |b| >√

Var(a) + Var(b) − 1�−1((1 + �(|a|))/2). The higher variability in a or b re-
quires even larger |b| to ensure a smaller p-value in the composite tests than
pJT. As long as the variances of a and b are finite, p̂comp would eventually be
smaller than pJT if |b| is large enough. Because a and b are independent and sym-
metric, the above result also implies the following: pJT > pcomp if |a| > |b| and
|a| > √

1 + σ ∗2�−1((1 + �(|b|))/2).
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4. Simulation. We conducted numerical studies to evaluate the performance
of the proposed testing procedures in Theorems 3.3 and 3.4 in the setting of mul-
tiple tests. We simulated 107 pairs of test statistics (aj , bj ), j = 1, . . . ,107, as-
suming all a’s and b’s are independent and repeated the experiment for 20 times.
Among the 107 pairs of test statistics, there were m0 pairs of aj and bj both follow-
ing N(0,1), m1 pairs with aj following N(μa,1) and bj following N(0,1), m2
pairs with aj following N(0,1) and bj following N(μb,1), m3 pairs with aj fol-
lowing N(μa,1) and bj following N(μb,1), and m = m0 +m1 +m2 +m3 = 107.
We explored four different distributions for μa and μb: (1) both μa and μb fol-
lowed independent zero-mean normal, (2) μa followed N(0,0.52) with probabil-
ity of 0.3 and N(0,1.52) with probability of 0.7, and μb followed N(0,0.52) with
probability of 0.4 and N(0,1.52) with probability of 0.6, (3) μa and μb followed
two independent t-distributions with five degrees of freedom, and (4) μa and μb

followed two independent uniform distributions both ranging from −1 to 1. The
four distributions were standardized to have standard deviation σa for μa and σb

for μb.
The joint significance test and three composite tests were conducted. The

first composite test calculated the p-value pcomp by plugging in the true πa =
m1/(m0 + m1 + m2), πb = m2/(m0 + m1 + m2), σ 2

a and σ 2
b . The second method

estimated the proportion of null [Langaas, Lindqvist and Ferkingstad (2005)] in
{aj , j = 1, . . . ,10,000} and {bj }, denoted by π̂a and π̂b respectively, and subse-

quently, the proportion of H
(3)
0 , H

(2)
0 and H

(1)
0 as w3 = π̂a(1 − π̂b)/π̂ab, w2 =

π̂b(1 − π̂a)/π̂ab and w1 = π̂aπ̂b/π̂ab respectively, where π̂ab = π̂a + π̂b − π̂aπ̂b.
With the proportion of three types of null, we calculated the p-value under each
type of null and weighted by the proportion. Specifically, we calculated p-value
denoted as p̃comp as w3�(−|a|)+w2�(−|b|)+w1F(ab). The third was our pro-
posed method calculating p-value p̂comp = F(ab/

√
Var(a)) + F(ab/

√
Var(b)) −

F(ab).
Under the null where m0 = 5 × 106, m1 = 3 × 106, m2 = 2 × 106, m3 = 0

and σa = σb = 0.5 (Table 1), our proposed method p̂comp had a comparable per-
formance to pcomp. Their Type I error rates were close to the expected under the
setting where the distributions of μa and μb are normal, mixture of normals or
uniform; at the significance level of 10−6 or lower, there was an inflation of Type I
error rate when μa and μb followed t distributions. The joint significance test had
a much more conservative Type I error rate even at the level of 0.1, and p̃comp
had a conservative Type I error rate at the level of 0.001 or lower. Under the al-
ternative where m0 = 1 × 106, m1 = 2 × 106, m2 = 2 × 106, m3 = 5 × 106 and
σa = σb = 1.5 (Table 2), the proposed test outperformed other tests at the level of
0.001 or lower, but p̃comp had better power at the level of 0.1 and 0.01. Similar
patterns emerged when μa and μb followed t distributions, mixtures of normals or
uniforms.

We further conducted three sets of simulation studies to investigate the impact
of (π0, πa,πb, σa, σb) on the performance of p̂comp. In the first simulation study
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TABLE 1
Proportions (with Monte Carlo standard deviations) of p-values at various cut-offs using different

tests under the null where m0 = 5 × 106, m1 = 3 × 106, m2 = 2 × 106 and m3 = 0

Cut-offs pcomp p̂comp p̃comp pJT

(μa,μb) ∼ normal distribution
p < 10−1 0.99 (0.0008) ×10−1 0.99 (0.0005) ×10−1 1.06 (0.0007) ×10−1 0.12 (0.0004) ×10−1

p < 10−2 0.99 (0.003) ×10−2 1.01 (0.003) ×10−2 1.01 (0.003) ×10−2 0.02 (0.0004) ×10−2

p < 10−3 1.00 (0.01) ×10−3 1.04 (0.01) ×10−3 0.65 (0.008) ×10−3 0.002 (0.0004) ×10−3

p < 10−4 1.00 (0.03) ×10−4 1.11 (0.03) ×10−4 0.22 (0.01) ×10−4 0.0003 (0.0006) ×10−4

p < 10−5 0.99 (0.11) ×10−5 1.18 (0.12) ×10−5 0.04 (0.02) ×10−5 0.0 (0.0)
p < 10−6 1.06 (0.27) ×10−6 1.36 (0.31) ×10−6 0.02 (0.04) ×10−6 0.0 (0.0)
p < 10−7 0.85 (0.99) ×10−7 1.25 (1.25) ×10−7 0.0 (0.0) 0.0 (0.0)

(μa,μb) ∼ mixture of normal distribution
p < 10−1 0.99 (0.001) ×10−1 0.99 (0.0007) ×10−1 1.06 (0.0008) ×10−1 0.12 (0.0003) ×10−1

p < 10−2 1.00 (0.004) ×10−2 1.01 (0.003) ×10−2 1.02 (0.002) ×10−2 0.02 (0.0004) ×10−2

p < 10−3 1.02 (0.01) ×10−3 1.06 (0.01) ×10−3 0.68 (0.009) ×10−3 0.002 (0.0005) ×10−3

p < 10−4 1.05 (0.03) ×10−4 1.16 (0.03) ×10−4 0.24 (0.01) ×10−4 0.0002 (0.0004) ×10−4

p < 10−5 1.09 (0.11) ×10−5 1.29 (0.10) ×10−5 0.04 (0.02) ×10−5 0.0 (0.0)
p < 10−6 1.04 (0.28) ×10−6 1.37 (0.32) ×10−6 0.0 (0.0) 0.0 (0.0)
p < 10−7 1.15 (0.67) ×10−7 1.50 (1.00) ×10−7 0.0 (0.0) 0.0 (0.0)

(μa,μb) ∼ t distribution
p < 10−1 0.99 (0.001) ×10−1 0.99 (0.0007) ×10−1 1.06 (0.0008) ×10−1 0.12 (0.0003) ×10−1

p < 10−2 1.00 (0.002) ×10−2 1.01 (0.003) ×10−2 1.03 (0.002) ×10−2 0.02 (0.0005) ×10−2

p < 10−3 1.06 (0.01) ×10−3 1.11 (0.01) ×10−3 0.71 (0.009) ×10−3 0.002 (0.0006) ×10−3

p < 10−4 1.22 (0.04) ×10−4 1.34 (0.03) ×10−4 0.27 (0.02) ×10−4 0.0005 (0.0008) ×10−4

p < 10−5 1.69 (0.13) ×10−5 1.92 (0.16) ×10−5 0.06 (0.02) ×10−5 0.0 (0.0)
p < 10−6 3.17 (0.61) ×10−6 3.75 (0.62) ×10−6 0.02 (0.04) ×10−6 0.0 (0.0)
p < 10−7 9.65 (3.15) ×10−7 11.4 (3.41) ×10−7 0.0 (0.0) 0.0 (0.0)

(μa,μb) ∼ uniform distribution
p < 10−1 1.00 (0.0007) ×10−1 0.99 (0.0006) ×10−1 1.06 (0.0007) ×10−1 0.12 (0.0004) ×10−1

p < 10−2 0.99 (0.004) ×10−2 1.00 (0.003) ×10−2 0.99 (0.004) ×10−2 0.02 (0.0002) ×10−2

p < 10−3 0.97 (0.009) ×10−3 1.02 (0.01) ×10−3 0.62 (0.008) ×10−3 0.002 (0.0005) ×10−3

p < 10−4 0.95 (0.03) ×10−4 1.04 (0.03) ×10−4 0.19 (0.01) ×10−4 0.0003 (0.0005) ×10−4

p < 10−5 0.88 (0.09) ×10−5 1.04 (0.08) ×10−5 0.04 (0.02) ×10−5 0.0 (0.0)
p < 10−6 0.90 (0.42) ×10−6 1.13 (0.50) ×10−6 0.01 (0.02) ×10−6 0.0 (0.0)
p < 10−7 1.05 (1.47) ×10−7 1.55 (1.67) ×10−7 0.0 (0.0) 0.0 (0.0)

we set up a very sparse effect: 90% H
(1)
0 , 5% H

(2)
0 and 5% H

(3)
0 ; in the second

study we made πa and πb very different: 50% H
(2)
0 and 0% H

(3)
0 (and 50% H

(1)
0 );

and finally, we made σa = 0.2 and σb = 0.8. Because the proposed composite test
accommodates the proportion of null with the variance of a and b, p̂comp still well
protected Type I error rate up to the significance level of 10−7 provided that μa and
μb followed normal, mixture of normals or uniform distributions (Tables S1–S3).

For approximation the proposed method requires small σ 2
a and σ 2

b , a function
of sample size, and thus the assumption may be violated with a very large sample
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TABLE 2
Proportions (with Monte Carlo standard deviations) of p-values at various cut-offs using different
tests under the alternative where m0 = 1 × 106, m1 = 2 × 106, m2 = 2 × 106 and m3 = 5 × 106

Cut-offs pcomp p̂comp p̃comp pJT

(μa,μb) ∼ normal distribution
p < 10−1 2.99 (0.002) ×10−1 1.32 (0.0009) ×10−1 2.23 (0.001) ×10−1 0.81 (0.0009) ×10−1

p < 10−2 6.22 (0.008) ×10−2 3.17 (0.005) ×10−2 3.56 (0.005) ×10−2 1.23 (0.003) ×10−2

p < 10−3 14.7 (0.03) ×10−3 8.80 (0.02) ×10−3 6.39 (0.03) ×10−3 2.33 (0.02) ×10−3

p < 10−4 37.2 (0.16) ×10−4 26.0 (0.16) ×10−4 12.7 (0.13) ×10−4 4.78 (0.08) ×10−4

p < 10−5 97.6 (1.13) ×10−5 78.6 (1.03) ×10−5 26.5 (0.55) ×10−5 10.1 (0.29) ×10−5

p < 10−6 260 (6.14) ×10−6 242 (5.60) ×10−6 56.8 (2.87) ×10−6 22.6 (1.87) ×10−6

p < 10−7 701 (31.4) ×10−7 749 (29.2) ×10−7 130 (10.9) ×10−7 49.8 (5.23) ×10−7

(μa,μb) ∼ mixture of normal distribution
p < 10−1 2.75 (0.001) ×10−1 1.20 (0.001) ×10−1 2.10 (0.0009) ×10−1 0.70 (0.001) ×10−1

p < 10−2 5.82 (0.008) ×10−2 3.11 (0.005) ×10−2 3.36 (0.006) ×10−2 1.14 (0.003) ×10−2

p < 10−3 15.6 (0.03) ×10−3 10.0 (0.02) ×10−3 6.99 (0.03) ×10−3 2.75 (0.02) ×10−3

p < 10−4 48.5 (0.25) ×10−4 36.0 (0.25) ×10−4 18.0 (0.16) ×10−4 7.65 (0.09) ×10−4

p < 10−5 162 (1.46) ×10−5 137 (1.25) ×10−5 51.5 (0.75) ×10−5 22.5 (0.64) ×10−5

p < 10−6 573 (8.08) ×10−6 540 (7.57) ×10−6 153 (4.77) ×10−6 68.0 (3.05) ×10−6

p < 10−7 2069 (59.5) ×10−7 2182 (63.2) ×10−7 465 (22.8) ×10−7 208 (12.7) ×10−7

(μa,μb) ∼ t distribution
p < 10−1 2.70 (0.002) ×10−1 1.15 (0.001) ×10−1 2.07 (0.001) ×10−1 0.67 (0.0009) ×10−1

p < 10−2 5.41 (0.008) ×10−2 2.86 (0.005) ×10−2 3.07 (0.005) ×10−2 0.97 (0.003) ×10−2

p < 10−3 14.4 (0.05) ×10−3 9.39 (0.03) ×10−3 5.67 (0.03) ×10−3 2.13 (0.01) ×10−3

p < 10−4 48.0 (0.30) ×10−4 36.8 (0.22) ×10−4 14.0 (0.12) ×10−4 6.08 (0.09) ×10−4

p < 10−5 189 (2.09) ×10−5 165 (1.89) ×10−5 43.3 (0.86) ×10−5 21.3 (0.67) ×10−5

p < 10−6 850 (12.9) ×10−6 815 (12.1) ×10−6 159 (5.48) ×10−6 85.2 (3.30) ×10−6

p < 10−7 4218 (103) ×10−7 4362 (102) ×10−7 667 (31.3) ×10−7 388 (27.2) ×10−7

(μa,μb) ∼ uniform distribution
p < 10−1 3.31 (0.002) ×10−1 1.49 (0.001) ×10−1 2.41 (0.001) ×10−1 0.98 (0.001) ×10−1

p < 10−2 6.73 (0.008) ×10−2 3.14 (0.004) ×10−2 3.82 (0.005) ×10−2 1.31 (0.004) ×10−2

p < 10−3 12.3 (0.03) ×10−3 6.34 (0.02) ×10−3 5.09 (0.02) ×10−3 1.57 (0.009) ×10−3

p < 10−4 19.3 (0.11) ×10−4 11.5 (0.08) ×10−4 5.65 (0.08) ×10−4 1.61 (0.04) ×10−4

p < 10−5 26.2 (0.52) ×10−5 18.7 (0.45) ×10−5 5.24 (0.19) ×10−5 1.38 (0.11) ×10−5

p < 10−6 30.6 (1.60) ×10−6 27.0 (1.48) ×10−6 4.24 (0.71) ×10−6 1.02 (0.32) ×10−6

p < 10−7 31.1 (6.68) ×10−7 35.4 (6.90) ×10−7 3.00 (2.18) ×10−7 0.70 (0.66) ×10−7

size. We conducted another set of simulation studies to investigate the influence
of sample size (n) provided that the nonzero effects of exposure-mediator (20%
of tests) and mediator-outcome (30%) were drawn from the indicated distributions
(Figure 2). Specifically, we simulated the effects αS and βM from the aforemen-
tioned normal distribution with mean following normal, mixture of normals, t or
uniform distribution and then used models (3) and (4) to generate mediator and
outcome, where Si ∼ N(0,1), αT

XXi = βT
XXi = βS = 1.



TESTS OF MEDIATION UNDER COMPOSITE NULL HYPOTHESES 71

(a) (b)

(c) (d)

FIG. 2. Quantile–quantile plots of p̂comp by different sample sizes n: (a) the noncentrality param-
eters for αS and βM (μa,μb) ∼ normal distribution; (b) (μa,μb) ∼ mixture of normal distribution;
(c) (μa,μb) ∼ t distribution; and (d) (μa,μb) ∼ uniform distribution.

In Figure 2 the QQ plot suggests that the Type I error rate was well protected
if the sample size was less than 500, and would be inflated if the sample size
was larger than 2000. The impact of sample size may be better reflected by vari-
ances of the test statistics a and b. A practical suggestion is to apply our method
when Var(a) and Var(b) are both less than 1.5. When the signal is not sparse, for
example, due to the large sample size, or large Var(a) and Var(b), the normal ap-
proximation for the majority of the tests is more likely to hold as shown in the
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preceding Section. Therefore, under such scenarios one may resort to Sobel’s test
or joint significance test.

In order to investigate the effect of number of mediators on our proposed
method, we conducted a simulation study with the number of mediators m be-
ing 100, 1000, 10,000 and 100,000 under the condition that μa and μb follow
various types of distributions with 50%, 30% and 20% of m being m0, m1 and m2
respectively. Type I error at the cut-offs = 0.1, 0.01, 0.001, and 0.0001 was evalu-
ated (Table S3). The results suggest that the number of mediators did not seem to
largely affect the performance of our proposed composite tests.

Taken together, our proposed testing procedure p̂comp well protects the Type I
error rate across various scenarios with sparse effects and dominates the joint
significance test and the test estimating the proportion of null mixtures p̃comp.
The method has been implemented as an R software JT_Comp available at
http://www.stat.sinica.edu.tw/ythuang/JT-Comp.zip.

5. Epigenome-wide mediation analyses. The DNA methylation data mea-
sured by the Infinium HumanMethylation450K BeadChip were preprocessed and
normalized using the R methylumi package [Davis et al. (2015)] and the
Beta-Mixture Quantile Dilation approach [Teschendorff et al. (2013)]. The beta
values of methylation levels (ranging from 0 to 1) were logit transformed prior to
statistical analyses. After filtering by variation and genomic locations, there were
285,163 methylation markers [Huang et al. (2016)]. Socioeconomic adversity of
the 74 women was measured at age seven using a socioeconomic index assess-
ing prospectively by averaging the percentile of both parents’ educational attain-
ment, occupation and income relative to the general US population [Loucks et al.
(2016)]. Potential confounders including sex, age, race and cigarette smoking (cur-
rent number of cigarettes smoked per day) were adjusted as covariates throughout
the analyses.

We performed an epigenome-wide mediation analysis examining whether the
285,163 DNA methylation loci one at a time mediate the effect of socioeconomic
disadvantage on adiposity. Four testing methods were conducted: the conventional
joint significance test (pJT), the normality-based test (pN ), the composite test es-
timating the proportion of null (p̃comp) and our proposed composite tests (p̂comp).
The quantile–quantile plots and histograms of p-values in Figures 1, 3 and 4 show
that p̂comp performed well as opposed to power losses in pJT and pN and potential
inflation of Type I error rate in p̃comp.

After adjusting for multiple comparisons with the false discovery rate (FDR)
[Benjamini and Hochberg (1995)], only p̂comp had four methylation loci,
cg04145890 (at the gene FGFRL1), cg21120176 (at LOC285780), cg26750548
(at LDB3) and cg05157970 (at FASN), with FDR < 0.2, and the other methods
had none surviving this cut-off (Table 3). As shown in Figure 5, the four CpG
loci are also among top candidates using the other tests. The overall magnitude of
p-values in pN and pJT is larger than p̂comp.

http://www.stat.sinica.edu.tw/ythuang/JT-Comp.zip
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FIG. 3. Histograms of 285,163 p-values in epigenome-wide mediation analyses of CpG loci using
the p̃comp defined in Section 4 and p̂comp defined in (8).

Mutations in the gene LDB3, LIM domain binding 3 have been shown associ-
ated with several muscular diseases [Lopez-Ayala et al. (2014), Selcen and Engel
(2005)], and the genes FGFRL1, fibroblast growth factor receptor-like 1 and FASN,
fatty acid synthase respectively have been reported for the association with bone
formation [Niu et al. (2015)] and body weight [Loftus et al. (2000)]. While it has
been documented that individuals with socioeconomic adversity may have differ-
ent epigenetic profile by consuming less methyl donor foods such as fruits and
vegetables [Darmon and Drewnowski (2008), Giskes et al. (2010)], our analyses
support the hypothesis that socioeconomic status may alter epigenetics of these
genes via the dietary habit and the FGFRL1/LDB3/FASN expression regulated by
epigenetics has a subsequent influence on body weight or skeletomuscular growth.

We also used the bootstrap method to analyze the 16,394 CpG loci on chromo-
some 17. The bootstrap test was carried out with 1000 replicates, and the small-
est pB was set to 5 × 10−4. There were 95 (0.58%), 96 (0.59%), 14 (0.09%), 27
(0.16%) and 0 (0%) methylation loci with p < 0.005 for p̂comp, p̃comp, pJT, pB and
pN respectively; the respective computation time was 122.83 seconds, 115.55 sec-
onds, 108.71 seconds, 29.23 hours and 108.68 seconds using a laptop with Intel�

CoreTM i7-6500 CPU at 2.50 GHz/2.50 GHz and 8.00 GB RAM. We note that the
computation time was based on 1000 bootstrap resampling. To reach the genome-
wide significance, 107 replicates or more are usually required which makes it not
feasible for the epigenome-wide analysis. Similar to the epigenome-wide analysis,
p̂comp has a better performance in both Type I error rate and power than p̃comp,
pJT, pB and pN [Supplementary Material, Huang (2019)].

6. Discussion. The model (4) can be extended to incorporate an exposure-by-
mediator cross-product interaction βSMSiMi :

h(Yi) = βT
XXi + βSSi + βMMi + βSMSiMi + εY i.
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(a) (b)

(c) (d)

FIG. 4. Quantile–quantile plots of mediation p-values of 285,163 CpG loci for the socioeconomic
index-BMI association. (a) pN , p-value of the normality-based test; (b) pJT, p-value of the joint
significance test; (c) p̃comp defined in Section 4; and (d) p̂comp defined in (8).

TABLE 3
The four CpG loci with FDR < 0.2 based on p̂comp for the mediation effect

of socioeconomic index on BMI

Probe name Gene p̂comp FDR p̃comp pJT pN

cg04145890 FGFRL1 3.1 × 10−7 0.04 2.0 × 10−4 6.9 × 10−4 0.0059
cg21120176 LOC285780 3.1 × 10−7 0.04 5.0 × 10−6 2.3 × 10−5 0.0024
cg26750548 LDB3 5.8 × 10−7 0.05 1.4 × 10−5 1.8 × 10−4 0.0053
cg05157970 FASN 1.1 × 10−6 0.14 2.1 × 10−4 7.1 × 10−4 0.0066
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FIG. 5. p-values of epigenome-wide mediation analyses. p̂comp defined in (8); p̃comp defined in
Section 4; pJT, p-value of joint significance tests; and pN , p-value of normality-based tests. Red
dots: FDR < 0.2 based on p̂comp.
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It follows that

E
[
h
{
Y

(
sa,M(sb)

)}] = βT
XX + αT

XX(βM + βSMsa) + βSsa + αS(βM + βSMsa)sb,

and mediation effect (2) is proportional to

αS(βM + βSMs1).

By letting β̂SM be the estimator for βSM , b(β∗
M) =

√
n(β̂∗

M−β∗
M)√

nσβn
where β∗

M = βM +
s1βSM and β̂∗

M = β̂M + s1β̂SM . The results in Section 3 are readily applicable to
such a generalization.

The proposed method depends on the independence within a and b and between
each other. The dependence between a and b may exist if the assumptions of no
unmeasured confounding in Section 2 do not hold. Sensitivity analyses may be
conducted to evaluate the influence by the potential confounding [Imai, Keele and
Yamamoto (2010), VanderWeele (2010)]. The independence within a is equivalent
to the independence of α̂Sj , j = 1, . . . ,m. One sufficient condition is that Mj is
independent conditional on S and X. Similarly, we require the independence of
β̂Mj . These independence assumptions may not necessarily hold in applications.
How to account for the dependence of the test statistics warrants further research.

The proof of Theorems 3.3 and 3.4 utilizes the equalities Var(a) = 1 + πaσ
2
Qa

and Var(b) = 1 + πbσ
2
Qb, which only hold under the null, π0 + πa + πb = 1.

Suppose that with probability πc, a ∼ N(μa,1) and b ∼ N(μb,1) where μa ∼
N(0, σ 2

a ) and μb ∼ N(0, σ 2
b ), then variances of a and b would be 1 + (πa +πc)σ

2
a

and 1 + (πb + πc)σ
2
b respectively. Under the alternative, π0 + πa + πb + πc = 1,

p̂comp is larger than the theoretical p-value, pcomp because

F
(
ab/

√
Var(a)

) + F
(
ab/

√
Var(b)

) − F(ab)

> F
(
ab/

√
1 + πaσ

2
Qa

)
+ F

(
ab/

√
1 + πbσ

2
Qb

)
− F(ab).

If πc, σ 2
a , and σ 2

b can be consistently estimated, one may gain power by a revised

p-value, F(ab/
√

Var(a) − πcσ 2
a ) + F(ab/

√
Var(b) − πcσ

2
b ) − F(ab).

We express the general test statistics a or b for the j th mediator as
√

n(θ̂j −θj )/√
nσ 2

θn where θ̂j is a maximum likelihood estimator for the true parameter θj ,

nσ 2
θn = Op(1), and n is the sample size. It follows that the noncentrality of the

test statistics, μa and μb, is θj /
√

σ 2
θn, which we assume is a random draw from

a normal distribution, θj /
√

σ 2
θn ∼ N(0, σ 2

θ ). We note that N(0, σ 2
θ ) is a working

distribution where σ 2
θ represents the dispersion of the noncentrality, and that σ 2

θ =
σ 2

a if θj = αS and θ̂j = α̂S , and σ 2
θ = σ 2

b if θj = βM and θ̂j = β̂M . If the nonzero
effect decreases with square root of the sample size, θj = Op(n−1/2), then σ 2

θ is
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bounded. We actually require the nonzero effect to be small enough to ensure a
small σ 2

θ and thus good approximation by (7) and (8). This setting corresponds
to the simulation studies in Tables 1 and 2. Alternatively, if θj is fixed and does
not vary by the sample size, then σ 2

θ grows with n, σ 2
θ = Op(n) which, depending

on the magnitude of the fixed θj , will eventually violate the assumption required
for our proposed method as n gets large. This is illustrated in simulation studies
in Figure 2. For application we suggest checking the sample variance of the test
statistics and to apply the proposed method if they are less than 1.5.

As shown in Section 3.1, the conventional test such as the normality-based test
is not valid under H

(1)
0 , and the joint significance test has a size α only under

H
(2)
0 and H

(3)
0 with a very large nonzero αS or βM . With a single test we have no

information about the proportion of H
(1)
0 , H

(2)
0 and H

(3)
0 . We are able to estimate

the mixture proportion of null or apply our proposed method only if a collection
of hypothesis tests for the similar purpose, for example, epigenetic mediation for
the socioeconomic effect on adiposity, is available to us.

APPENDIX

Proof of Theorem 3.1. One can show that

pNP1 =
∫ 0

−∞

∫ ∞
0

1

2π
e− (x−|a|)2+(y−|b|)2

2 dx dy

+
∫ ∞

0

∫ 0

−∞
1

2π
e− (x−|a|)2+(y−|b|)2

2 dx dy

=
∫ −|b|
−∞

∫ ∞
−|a|

1

2π
e− x2+y2

2 dx dy +
∫ ∞
−|b|

∫ −|a|
−∞

1

2π
e− x2+y2

2 dx dy

= �
(−|b|){1 − �

(−|a|)} + {
1 − �

(−|b|)}�(−|a|)
= �

(−|b|)�(−|a|) + �
(−|b|){�(|a|) − �

(−|a|)}
+ {

1 − �
(−|b|)}�(−|a|)

= �
(−|a|) + �

(−|b|){�(|a|) − �
(−|a|)}.

Similarly, once can express pNP1 as

�
(−|b|) + �

(−|a|){�(|b|) − �
(−|b|)}.

Therefore,

pNP1 > max
{
�

(−|a|,�(−|b|))} = pJT.

The proof is based on one-sided tests, and the result for two-sided tests are identical
by multiplying the above expressions by two.

Null hypothesis (1) can be re-expressed as

H0 : θ ∈ 
0 versus HA : θ ∈ 
c
0,
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where θ = (αS,βM)T , 
0 = 
1 ∪ 
2, and 
1 = {θ : αS = 0, βM ∈ �}, 
2 =
{θ : αS ∈ �, βM = 0}. Intersection-union test (IUT) is a test that has a rejection
region of the form R = ⋂K

k=1 Rk [Berger and Hsu (1996)]. The rejection region
of the joint significance test on a and b can be expressed as R = R1 ∩ R2, where
R1 and R2 are the rejection regions for H01 : θ ∈ 
1 and H02 : θ ∈ 
2 respec-
tively. Consequently, JT is an IUT, which has been shown the level α test, that is,
supθ∈
0

π(θ) ≤ α [Berger and Hsu (1996)], where π(θ) is the power function. We
next apply Theorem 2 in Berger and Hsu (1996) to prove that the joint significance
test is a size α test, that is, supθ∈
0

π(θ) = α. To apply the theorem, one needs to
show that there exists a sequence of parameters θl ∈ 
i (l = 1, . . . ,∞) such that:

1. liml→∞ Pθl
(Z ∈ Ri) = α,

2. for i ′ �= i, liml→∞ Pθl
(Z ∈ Ri′) = 1,

where Z is the data. Suppose that θl = (αSl, βMl)
T = (0, βMl)

T ∈ 
1 and
liml→∞ βMl = ∞. It is straightforward that liml→∞ Pθl

(Z ∈ R1) = α and
liml→∞ Pθl

(Z ∈ R2) = 1. Therefore, by Theorem 2 in Berger and Hsu (1996),
the joint significance test is a size α test.

Proof of Theorem 3.3. The two-sided tail probability at |ab| or more extreme
is

F(ab) = 2
∫ ∞
−∞

∫ ∞
| ab

x
|

1

2π
e− x2+y2

2 dy dx = 2
∫ ∞
−∞

1√
2π

e− x2
2

{
1 − �

(∣∣∣∣ab

x

∣∣∣∣
)}

dx.

By letting x be centered at 0 and y be centered at μb, we express this new normal
product distribution F(ab) as

F(ab;μb) = 2
∫ ∞
−∞

∫ ∞
| ab

x
|

1

2π
e− x2+(y−μb)2

2 dy dx

= 2
∫ ∞
−∞

1√
2π

e− x2
2

{
1 − �

(∣∣∣∣ab

x

∣∣∣∣ − μb

)}
dx.

Similarly, we let x be centered at μa and y be centered at 0 and obtain F(ab;μa) =
2

∫ ∞
−∞ 1√

2π
e− y2

2 {1 − �(|ab
y

| − μa)}dy. p-value under the composite null hypoth-
esis equals

(A.1)
pcomp ≡ πb

∫ ∞
−∞

F(ab;μb)√
2πσb

e
− μ2

b

2σ2
b dμb + πa

∫ ∞
−∞

F(ab;μa)√
2πσa

e
− μ2

a

2σ2
a dμa

+ π0F(ab).

We express the integral of the first term in (A.1)
∫ ∞
−∞

F(ab;μb)√
2πσb

e
− μ2

b

2σ2
b dμb as

∫ ∞
−∞[2 ∫ ∞

−∞ 1√
2π

e− x2
2 {1−�(|ab

x
|−μb)}dx] 1√

2πσb
e
− μ2

b

2σ2
b dμb and it can be further
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re-expressed as

2
∫ ∞
−∞

[∫ ∞
−∞

�

(
μb −

∣∣∣∣ab

x

∣∣∣∣
)

1√
2πσb

e
− μ2

b

2σ2
b dμb

]
1√
2π

e− x2
2 dx

= 2
∫ ∞
−∞

[
�

(
− |ab/x|√

1 + σ 2
b

)]
1√
2π

e− x2
2 dx

= 2
∫ ∞
−∞

[∫ ∞
|ab/x|√

1+σ2
b

1√
2π

e− y2

2 dy

]
1√
2π

e− x2
2 dx

= 2
∫ ∞
−∞

∫ ∞
|ab/x|√

1+σ2
b

1

2π
e− x2+y2

2 dy dx.

The last expression is F( ab√
1+σ 2

b

). Similarly, one can show

∫ ∞
−∞

F(ab;μa)√
2πσa

e
− μ2

a

2σ2
a dμa = F

(
ab√

1 + σ 2
a

)
.

Plugging them into (A.1), we obtain

pcomp = πbF

(
ab√

1 + σ 2
b

)
+ πaF

(
ab√

1 + σ 2
a

)
+ π0F(ab).(A.2)

Note that unless we know π0, πa and πb, we are not able to calculate a p-value
using (A.2). We re-express (A.2) as

pcomp = πbF

(
ab√

1 + σ 2
b

)
+ (1 − πb)F (ab)

+ πaF

(
ab√

1 + σ 2
a

)
+ (1 − πa)F (ab) − F(ab)

= F

(
ab√

1 + πbσ
2
b

)
+ F

(
ab√

1 + πaσ 2
a

)
− F(ab) + δN,

where by Lemma 3.2, |δN | <
∑

k=a,b
2
π
(

|ab|√
1+πkσ

2
k

− |ab|√
1+σ ∗2

k

)K0(
|ab|√
1+σ ∗2

k

), σ ∗2
a

and σ ∗2
b satisfy the following two equalities: F( ab√

1+σ ∗2
b

) = πbF( ab√
1+σ 2

b

) +
(1−πb)F (ab) and F( ab√

1+σ ∗2
a

) = πaF( ab√
1+σ 2

a

)+ (1−πa)F (ab). Under the null,

a is distributed as N(0,1) with probability 1 − πa and as N(μa,1) with prob-
ability πa where μa ∼ N(0, σ 2

a ). The marginal variance of a is (1 − πa) × 1 +
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πa(Var(E(a|μa)) + E(Var(a|μa))) = 1 + πaσ
2
a , and the marginal variance of b is

1 + πbσ
2
b . Therefore, we obtain the following equality:

F

(
ab√

1 + πaσ 2
a

)
+ F

(
ab√

1 + πbσ
2
b

)
− F(ab)

= F

(
ab√

Var(a)

)
+ F

(
ab√

Var(b)

)
− F(ab).

Proof of Theorem 3.4. The p-value under the composite null hypothesis
equals

(A.3)
pcomp ≡ πb

∫ ∞
−∞

F(ab;μb)dQb(μb) + πa

∫ ∞
−∞

F(ab;μa)dQa(μa)

+ π0F(ab),

where

dQa(μa)

dμa

=
Ja∑

j=1

waj

1√
2πσaj

e
−μ2

a/2σ 2
aj ,

dQb(μb)

dμb

=
Jb∑

j=1

wbj

1√
2πσbj

e
−μ2

b/2σ 2
bj

and

Ja∑
j=1

waj =
Jb∑

j=1

wbj = 1.

We express the integral of the first term as

∫ ∞
−∞

F(ab;μb)

Jb∑
j=1

wbj

1√
2πσbj

e
− μ2

b

2σ2
bj dμb

=
Jb∑

j=1

wbj

[∫ ∞
−∞

F(ab;μb)
1√

2πσbj

e
− μ2

b

2σ2
bj dμb

]

=
Jb∑

j=1

wbjF

(
ab√

1 + σ 2
bj

)

= F

(
ab√

1 + σ 2
Qb

)
+ δQ1b,
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where σ 2
Qb = ∑Jb

j=1 wbjσ
2
bj , |δQ1b| < 2

π
(

|ab|√
1+σ 2

Qb

− |ab|√
1+σ ∗2

Qb

)K0(
|ab|√

1+σ ∗2
Qb

), and σ ∗2
Qb

satisfies
∑Jb

j=1 wbjF ( ab√
1+σ 2

bj

) = F( ab√
1+σ ∗2

Qb

). The last equality is by Lemma 3.2.

Similarly, we show∫ ∞
−∞

F(ab;μa)dQa(μa) = F

(
ab√

1 + σ 2
Qa

)
+ δQ1a,

where σ 2
Qa = ∑Ja

j=1 wajσ
2
aj and |δQ1a| < 2

π
(

|ab|√
1+σ 2

Qa

− |ab|√
1+σ ∗2

Qa

)K0(
|ab|√

1+σ ∗2
Qa

), and

σ ∗2
Qa satisfies the equality,

∑Ja

j=1 wajF ( ab√
1+σ 2

aj

) = F( ab√
1+σ ∗2

Qa

). It follows that

pcomp − πaδQ1a − πbδQ1b = pcomp − δQ1 equals

πaF

(
ab√

1 + σ 2
Qa

)
+ πbF

(
ab√

1 + σ 2
Qb

)
+ π0F(ab)

= F

(
ab√

1 + πaσ
2
Qa

)
+ F

(
ab√

1 + πbσ
2
Qb

)
− F(ab) + δQ2,

where by Lemma 3.2, |δQ2| <
∑

k=a,b
2
π
(

|ab|√
1+πkσ

2
Qk

− |ab|√
1+σ ∗2

Qk

)K0(
|ab|√

1+σ ∗2
Qk

),

and σ ∗2
Qa and σ ∗2

Qb satisfy F( ab√
1+σ ∗2

Qa

) = πaF( ab√
1+σ ∗2

Qa

) + (1 − πa)F (ab) and

F( ab√
1+σ ∗2

Qb

) = πbF( ab√
1+σ 2

Qb

) + (1 − πb)F (ab). Under the null, variances of a and

b respectively are 1 + πaσ
2
Qa and 1 + πbσ

2
Qb, which do not depend on the entire

distribution of μa and μb, but only their first two moments. Therefore, we obtain

F

(
ab√

1 + πaσ
2
Qa

)
+ F

(
ab√

1 + πbσ
2
Qb

)
− F(ab)

= F

(
ab√

Var(a)

)
+ F

(
ab√

Var(b)

)
− F(ab).

Proof of Proposition 3.5. We express the difference of pJT and pcomp:

1

4
(pJT − pcomp) = 1

2
�

(−|a|) −
∫ ∞

0

∫ ∞
|ab/x|√
1+σ∗2

1

2π
e− x2+y2

2 dy dx

=
∫ ∞
|a|

∫ |ab/x|√
1+σ∗2

0

1

2π
e− x2+y2

2 dy dx

−
∫ ∞

|b|√
1+σ∗2

∫ |a|
|ab/x|√
1+σ∗2

1

2π
e− x2+y2

2 dy dx
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>

∫ |b|√
1+σ∗2

|a|

∫ |a|
0

1

2π
e− x2+y2

2 dy dx

−
∫ ∞

|b|√
1+σ∗2

∫ |a|
0

1

2π
e− x2+y2

2 dy dx

= {
�

(|a|) − �
(|0|)}

[
�

( |b|√
1 + σ ∗2

)

− �
(|a|) −

{
1 − �

( |b|√
1 + σ ∗2

)}]

= {
�

(|a|) − �
(|0|)}

[
2�

( |b|√
1 + σ ∗2

)
− �

(|a|) − 1
]
.

The last expression is greater than 0 because of |b| > √
1 + σ ∗2�−1(

1+�(|a|)
2 ).
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SUPPLEMENTARY MATERIAL

Supplement to “Genome-wide analyses of sparse mediation effects under
composite null hypotheses” (DOI: 10.1214/18-AOAS1181SUPP; .pdf). The sup-
plementary material includes the proof of Lemma 3.2, additional simulation stud-
ies for very sparse signals, unbalanced H

(2)
0 and H

(3)
0 , different number of hypoth-

esis tests within a study and p̃comp, and analysis results of chromosome 17 in the
epigenomic study.
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