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GROUND-LEVEL OZONE: EVIDENCE OF INCREASING SERIAL
DEPENDENCE IN THE EXTREMES

BY DEBBIE J. DUPUIS1 AND LUCA TRAPIN

HEC Montréal and Università Cattolica del Sacro Cuore

As exposure to successive episodes of high ground-level ozone concen-
trations can result in larger changes in respiratory function than occasional
exposure buffered by lengthy recovery periods, the analysis of extreme val-
ues in a series of ozone concentrations requires careful consideration of not
only the levels of the extremes but also of any dependence appearing in the
extremes of the series. Increased dependence represents increased health risks
and it is thus important to detect any changes in the temporal dependence of
extreme values. In this paper we establish the first test for a change point in
the extremal dependence of a stationary time series. The test is flexible, easy
to use and can be extended along several lines. The asymptotic distributions
of our estimators and our test are established. A large simulation study ver-
ifies the good finite sample properties. The test allows us to show that there
has been a significant increase in the serial dependence of the extreme levels
of ground-level ozone concentrations in Bloomsbury (UK) in recent years.

1. Introduction. Ground-level ozone is a secondary pollutant that is formed
in the atmosphere due to chemical reactions that depend on meteorological con-
ditions, the latter being most favorable for synthesis in the summer. The ozone
precursor compounds of relevance are methane, nonmethane volatile organic com-
pounds (VOC), nitrogen oxides (NOx) and carbon monoxide. Controls of NOx

and VOC emissions in the United Kingdom (UK) and Europe have generally led
to decreases in the intensity of summer ozone episodes [Air Quality Expert Group
(2009)].

We study ground-level ozone concentrations in Bloomsbury (UK) and examine
the daily maximum of the 8-hour running mean, measured in units of micrograms
per cubic metre, from January 1993 to December 2014. Data are obtained from the
Environmental Research Group, King’s College London (2015). The upper panel
of Figure 1 shows decreases in the intensity of summer ozone episodes. We also see
that there is a substantial year-to-year variability in summer ozone concentrations
because of the variability in the weather, and that the warmest summers (1995,
2003, 2006) led to large concentrations.

Extreme values of ground-level ozone have been studied in the literature. For
example, Smith (1989) seeks to detect trends in extreme ozone levels, Eastoe and
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FIG. 1. Ozone levels in Bloomsbury. Upper panel: Ground-level ozone in μg/m3 (dots) and the
dynamic threshold (blue line). Threshold is set to the 98th quantile of the detrended and deseason-
alized ozone levels over the 1993–2014 time period. Detrending and deseasonalization is detailed in
Section 6. Lower panel: detrended and deseasonalized exceedances.

Tawn (2009) seek to explain the changes in extreme ozone levels conditionally on
the covariates relating to the precursor concentrations and meteorological condi-
tions, while Dupuis (2005) studies the spatial dependence in extreme behavior. In
the first paper the author considers cluster maxima so as to assume temporal in-
dependence. In the second paper the authors assume that extreme events of ozone
levels, or of ozone levels given the covariates, are temporally independent, while
in the third the author works with slightly less correlated weekly maxima under
an independence assumption. Noven, Veraart and Gandy (2015a) are the first to
consider the temporal dependence of a time series of extreme ozone levels.

When studying extreme values in a time series context both the tail decay and
the dependence between consecutive extreme observations are of interest. The first
quantity is informative of whether the occurrence of an extreme event is more or
less probable than under a Gaussian paradigm and is determined by the marginal
distribution of the time series. The second provides information regarding the per-
sistence of a sequence of extreme events and is determined by the extremal depen-
dence structure of the time series.

Figure 2 shows empirical estimates of the conditional probability that the ozone
level in Bloomsbury on day t exceeds a high threshold given that this threshold was
exceeded on day t − 1. Estimates of the conditional probability in the latter part of
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FIG. 2. Exploring serial dependence in the extremes. Empirical estimates of the conditional prob-
ability that the ozone level in Bloomsbury on day t exceeds a high threshold given that this threshold
was exceeded on day t −1. Estimate for day t is based on detrended and deseasonalized ozone levels
in Bloomsbury from day t − 3000 to day t . Threshold is set to the 98th quantile of the detrended and
deseasonalized ozone levels over the 1993–2014 time period.

the sample period are more than twice the size of some of the estimates in the first
half of the sample period, indicating that the serial dependence of extreme ozone
levels in Bloomsbury may have changed over the period studied. Our interest lies in
detecting a possible change in the extremal dependence structure over the 1993–
2014 time period. There is no methodology currently available to carry out this
task.

Clustering of extremes is ubiquitous in natural sciences and social-economic
phenomena, and extensive efforts have been made in the extreme value literature
to measure the degree of dependence appearing in the extremes of a stationary
time series [Davis and Mikosch (2009), Ferro and Segers (2003), Ledford and
Tawn (2003)]. Investigations directed at determining whether the behavior of this
dependence changes over time, however, are currently missing.

Detection of change points in the extremes typically focuses on the tail de-
cay [Dierckx and Teugels (2010), Kim and Lee (2009), Quintos, Fan and Phillips
(2001)] and tries to understand whether extreme events have become more or less
likely over time. In contrast this paper focuses on the dependence aspect and seeks
to determine whether the persistence of extreme events has increased or decreased
over time.

Given a stationary time series {Yt }, we consider a high threshold u and obtain
a censored sequence of extreme observations {Xt }, where Xt = max{Yt − u,0}.
Standard asymptotic arguments suggest that the distribution of the exceedances
Yt − u given that Yt > u converges to a Generalized Pareto (GP) distribution
[Pickands (1975)]. Following Bortot and Gaetan (2014), we use a decomposition
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of the GP distribution to construct a hierarchical model for exceedances that pre-
serves the GP distribution marginally. Rather than using a Markov chain as the
latent process as in Bortot and Gaetan (2014), we proceed as in Noven, Veraart
and Gandy (2017b) and use a trawl process as the latent process. Trawl processes
are stationary, infinitely divisible stochastic processes that have been recently in-
troduced by Barndorff-Nielsen, Benth and Veraart (2011) and that have already
shown wide applicability; see, for example, Shephard and Yang (2017). Applying
a subsequent marginal transformation model as suggested by Bortot and Gaetan
(2014) and explored in Noven, Veraart and Gandy (2017b), we manage to separate
the marginal parameters and the dependence parameter. A change-point test for the
extremal dependence can then be established testing the stability of the dependence
parameter over time.

Our model presents intractable likelihoods, therefore, standard inference and
testing strategies are not feasible in this setting. We rely on multistage composite
likelihood to estimate the model parameters. We then extend the Wald test based
on generalized method of moments (GMM) estimators of Andrews (1993) to the
class of composite likelihood estimators to test the stability of the dependence
parameter.

Throughout the paper we develop the methodology around the time series model
for extremes of Noven, Veraart and Gandy (2017b); however, our approach is fully
applicable to a more general class of models that can be estimated by composite
likelihood.

This paper makes three main contributions. First, to the best of our knowledge,
it presents the first change-point test for the serial dependence of a time series of
extremes. Second, we extend the test for parameter stability of Andrews (1993)
based on the GMM to the case of composite likelihood. Finally, our analysis of
ground-level ozone data from Bloomsbury (UK) shows that, although extreme lev-
els of ozone have decreased since 1993, there has been a significant upward shift
in their serial dependence over the same period.

The remainder of the paper is organized as follows. Section 2 presents the time
series model for the extremes. Section 3 presents the two-step pairwise likelihood
approach to estimate the model. Section 4 presents the test for structural changes in
the extremal dependence. Section 5 studies via simulation the finite sample proper-
ties of the two-step pairwise likelihood estimator and the size and the power of the
test. The ozone data are analyzed in Section 6. A complete discussion of our results
appears in Section 7. We outline possibilities for future methodological research
in Section 8. More technical results are gathered in the Appendix.

2. Modelling the extremes of a time series. Let {Yt } be a stationary sequence
and define the extremes as the observations of {Yt } exceeding a high threshold u.
Define the censored sequence of excesses {Xt } as

Xt = (Yt − u)I{Yt>u},
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where I{·} denotes the indicator variable of the set {·}. If {Yt } is iid, then the event
of exceeding the threshold u, I{Yt>u}, is a Bernoulli random variable, and the dis-
tribution of the excesses, Pr(Yt − u < y|Yt > u), converges to a GP distribution as
u → ∞ [Pickands (1975)].

2.1. A hierarchical model. When the sequence {Yt } presents dependence,
a model for the joint distribution of the extremes is required. Bortot and Gaetan
(2014) exploit a useful decomposition of the GP distribution into an exponential-
gamma mixture and propose a hierarchical model for the extremes. Like Bortot
and Gaetan (2014), we assume that the distribution of Xt depends on the value
of a latent process � at time t , denoted by �t , and that conditionally on the
latent process � the Xt are independent and Xt |(Xt > 0,�t) ∼ Exp(�t). The
latent process determines both the probability of observing an exceedance and
the distribution of the exceedances. Like Bortot and Gaetan (2014), we assume
that Pr(Xt > 0|�t = λ) = exp(−κλ), where κ is a parameter controlling the
exceedance rate of the threshold u. Choosing any stationary stochastic process
� with Gamma marginal distribution will lead to threshold exceedances {Xt :
Xt > 0} that follow a GP distribution so that the classical Pickands extreme-value
paradigm is respected, and more specifically choosing a latent process �t with
marginal Gamma(1/α,β/α) distribution leads to a {Xt : Xt > 0} process that is
marginally distributed as a GP distribution with scale β +ακ and tail parameter α,
which we denote GP(β + ακ,α) [Bortot and Gaetan (2014)].

One of the limits of the latter model is that α is tied to both the marginal distri-
bution and the dependence structure. To obtain more flexibility, Bortot and Gaetan
(2016) and Noven, Veraart and Gandy (2017b) propose an alternative formula-
tion where the parameter controlling the dependence in the latent process is the
only parameter controlling the dependence in the extremes, and this parameter
is not tied to the marginal distribution. To achieve this separation, they trans-
form the sequence {Xt } into a sequence {Zt } using a standard probability trans-
form argument. Fixing the parameters α = β = 1 and applying the transformation
Zt = g(Yt )I{Xt>0} with

(1) g(y) = ν/ξ

{(
1 + y

1 + κ

)ξ

− 1
}
,

they obtain a process for the extremes with GP(ν, ξ) marginal distribution but with
dependence structure fully characterized by the dependence parameter of the latent
process (parameter ρ in the models outlined in Section 2.2). The parameter κ is
only tied to the probability of exceedance of the threshold, more specifically, κ =
1/p − 1 where p = Pr (Xt > 0). The alternative parametrization also allows the
shape parameter of the GP distribution to be negative. A negative shape parameter
is necessary to capture the tail behavior of many environmental processes.
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2.2. Latent trawl process. Any latent process with a marginal Gamma distri-
bution will yield a resulting {Xt : Xt > 0} process with marginal distribution that
respects the classical extreme-value paradigm, but we should choose the latent
process wisely. As the conditional independence assumption of the hierarchical
model means that any dependence between observations comes from the latent
process, the latter process should have a very flexible dependence structure. Hav-
ing a Markovian structure [Bortot and Gaetan (2014), Bortot and Gaetan (2016)]
on the dependence in the extremes is limiting. Noven, Veraart and Gandy (2017b)
propose a trawl process for {�t }. Trawl processes are a new class of Lévy-driven
processes defined in Barndorff-Nielsen, Benth and Veraart (2011). They are sta-
tionary infinitely divisible stochastic processes which are made up of two compo-
nents, a Lévy basis and a trawl set. Let the set A ⊆ [0,1] × (−∞,0] be the trawl
and drag it through time without changing its shape to create a collection of trawl
sets {At }:

At = A + (0, t) := {
(a1, a2 + t) : (a1, a2) ∈ A

}
t > 0.

A trawl process is defined as L(At) where L(·) is a homogeneous Lévy basis. The
definition of a homogeneous Lévy basis appears in the Appendix. The Lévy basis
L(·) can be associated to a Lévy seed L′, and the law of L(A) is fully determined
by L′ and the Lebesgue measure on the set A. The trawl process {�t } is defined
by evaluating the homogeneous Lévy basis over the trawl set: �t = L(At) for
t ∈ R. Noven, Veraart and Gandy (2017b) consider an exponential trawl set with
parameter ρ, that is, A = {(x, s) : 0 ≤ x < d(s), s ≤ 0} with d(s) = exp(ρs). By
considering a Lévy seed that has a normalised Gamma distribution, they obtain a
{�t } process with the required Gamma marginal distribution. See Noven, Veraart
and Gandy (2017b) for a more complete discussion of trawl processes and their
properties. The use of a kernel mixture of a Lévy process in the second stage of a
hierarchical model has been previously suggested by Wolpert and Ickstadt (1998).

In both the framework of Bortot and Gaetan (2016) and that of Noven, Veraart
and Gandy (2017b), the parameter ρ controls the temporal dependence in the time
series of extremes. The main difference is that the parameter ρ in Bortot and Gae-
tan (2016) determines the transition probability of the Markov process while in
Noven, Veraart and Gandy (2017b) the parameter ρ defines the trawl set character-
izing the nonMarkovian stationary trawl process. The autocorrelation function of
the exponential trawl process has the same shape as the trawl set. Figure 3 shows
the autocorrelation function for different values of ρ and that larger values of ρ

correspond to weaker dependence. Since the parameter ρ determines the level of
dependence in the extremes, the problem of testing for structural changes in the
dependence reduces to testing for changes in ρ.

3. Estimation and inference. The exponential trawl model for the extremes
has four parameters to be estimated κ , ξ , ν and ρ. The first three parameters de-
fine the marginal GP distribution. The parameter ρ controls the dependence in the
extremes, and we want to test whether it stays constant over time.
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FIG. 3. Autocorrelation function of latent exponential trawl model.

Recall that {Xt }nt=1 is the censored sequence of excesses of a high threshold
u. If there are k nonzero Xt in {Xt }nt=1, then κ is estimated as n/k − 1. Letting
θ = (ν, ξ, ρ)′ ∈ � ⊂ R

3, the likelihood of the sequence of excesses under the latent
exponential trawl model can be written as

�ML(θ |x1, . . . , xn) =
∫
R

n+

k∏
i=1

J
(
x+
i

)
λi exp

(−λi

(
κ̂ + g−1(

x+
i

)))

×
n−k∏
j=1

(
1 − exp(−κ̂λj )

)
dF(λ1, . . . , λn),

where F is the joint density of the trawl process variables �1, . . . ,�n, x+ is the
vector containing the k observations exceeding the threshold u, g is as in equation
(1), and J (x) = fGP(x|ν, ξ)/fGP(x|1 + κ̂, κ̂) is the Jacobian necessary to apply
the marginal transformation in equation (1). Although the likelihood of the model
is available analytically, it is difficult to compute as it requires multiple numerical
partial derivatives to be performed. Noven, Veraart and Gandy (2017b) consider a
pairwise likelihood using only observations up to  time steps apart, that is,

(2) �
PL(θ |x1, . . . , xn) =

n−1∑
i=1

min(i+,n)∑
j=i+1

f (xi, xj ),

where f (xi, xj ) is the bivariate density of the model and closed-form expressions
for f (xi, xj ) can be found in the Appendix of Noven, Veraart and Gandy (2017b).
Define the maximum pairwise likelihood (MPL) estimator as

θ̂
MPL = arg max

θ
�

PL(θ |x1, . . . , xn).

We conjecture that the proofs in Davis and Yau (2011) could be adapted to show
that

√
n(θ̂MPL − θ0)

d−→ (
0,H−1

0 J0H
−1
0

)
,



SERIAL DEPENDENCE IN EXTREMES 41

where H0 = −E[ ∂2

∂θ∂θ ′ �
PL(θ0|x1, . . . , xn)], J0 = Var[ ∂

∂θ
�

PL(θ0|x1, . . . , xn)] and
θ0 = (ν0, ξ0, ρ0) ∈ � is the true parameter vector. The latter is the standard asymp-
totic result for iid sequences provided by Cox and Reid (2004) where a general
discussion on pairwise likelihood can also be found.

As we want to test for changes in the dependence parameter ρ, the parameters
ξ and ν are nuisance parameters in our test hypothesis. We consider a two-step
procedure to further simplify the estimation strategy. The marginal distribution of
the extremes is GP with parameters ξ and ν. We first estimate these parameters
by maximizing the likelihood of the GP distribution and obtain the corresponding
ML estimators,

(̂νML, ξ̂ML) = arg max
ν,ξ

�GP(ν, ξ |x1, . . . , xk),

where �GP(ν, ξ) = ∑k
i=1 1/ν(1 + ξx+

i /ν)(−1/ξ−1). Under standard regularity con-
ditions (satisfied only for ξ > −0.5 [Smith (1985)]), the estimators (̂νML, ξ̂ML) are
consistent and jointly normal, but the variance needs to be adjusted for the de-
pendence in the observations, using, for example, the HAC estimator of Newey
and West (1987). Probability plots and quantile plots are useful for assessing the
quality of the fitted GP distribution; see Coles (2001).

In a second step we estimate the parameter ρ with the pairwise likelihood pro-
cedure as

ρ̂
MPL = arg max

ρ
�

PL(ρ, κ̂, ν̂ML, ξ̂ML|x1, . . . , xn),

where �
PL is as in (2). We denote the estimator obtained from these two steps,

(̂νML, ξ̂ML, ρ̂
MPL), as θ̂

TSML, the two-step maximum likelihood (TSML) estima-
tor. The second stage of the estimation strategy clearly depends on parameter esti-
mates from the first step, and the accumulation of estimation error must be properly
incorporated into standard error calculations for θ̂

TSML. The two-step estimation
that includes a composite likelihood stage can be viewed as a form of multistage
GMM estimation, and, under standard regularity conditions, the results in Newey
and McFadden (1994) mean that θ̂

TSML is asymptotically normal and

√
n
(
ρ̂

MPL − ρ0
) d−→ N(0, σ̃ρ) as n → ∞,

where

(3) σ̃ρ = �−1
ρ E

[(
s

PL − �−1
ν,ξϒ

−1sGP
)(

s
PL − �−1

ν,ξϒ
−1sGP

)′]
�−1′

ρ

with s
PL = s

PL(x|ν0, ξ0, ρ0) and sGP = s
GP(x|ν0, ξ0) the scores of the pair-

wise and GP likelihood respectively, and �−1
ρ = E[∇ρs

PL(ν0, ξ0, ρ0)], �−1
ν,ξ =

E[∇ν,ξ s

PL(ν0, ξ0, ρ0)], and ϒ = E[∇ν,ξ sGP(ν0, ξ0)] where ∇{·} denotes the gra-

dient with respect to {·}. The parameter κ is set to κ̂ in the above variance calcu-
lations. The asymptotic variance of θ̂

TSML incorporates the uncertainty of the first
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step and is greater than or equal to the asymptotic variance of θ̂
MPL. We investigate

the extent of the efficiency loss of TSML relative to MPL in a simulation study in
Section 5.

To assess the goodness of fit of our model for serial dependence, we need to
go beyond our estimates for ρ. We compare empirical and model-implied ex-
tremal index [Leadbetter (1983)] estimates. The extremal index can be loosely
defined as (limiting mean cluster size)−1 where limiting is in the sense of clusters
of exceedances of increasingly high thresholds [Coles (2001)]. Similarly, model
estimates of Pr (Yt+k > u|Yt > u) can be compared to empirical estimates. The
model-implied probabilities, along with confidence bands, can be computed via
Monte Carlo simulation. Data-based estimates should be within the bands if the
model for serial dependence is appropriate.

4. Detection of a structural break in the dependence. We want to perform
a test on the stability of the parameter ρ against the alternative of an unknown
change point. We use our GMM estimator and rely on the Wald-type test for a
structural break of Andrews (1993). More precisely, we consider the exponential-
trawl model for the extremes indexed by parameters ν0, ξ0, and ρt for t = 1, . . . , n.
Letting P ⊂R be the parameter space of ρ, the null hypothesis of interest is

H0 : ρt = ρ0 for all t ≥ 1 for some ρ0 ∈ P .

The alternative hypothesis is a one-time structural change with change point π ∈
(0,1),

H1(π) : ρt =
{
ρ1(π) for t = 1, . . . , πn�,
ρ2(π) for t = πn� + 1, . . .

for some constants ρ1(π), ρ2(π) ∈ P ⊂ R. The parameters ν0 and ξ0 are taken to
be constant under the null hypothesis and the alternative, and are considered nui-
sance parameters in the estimation and in the test statistic. We focus on a one-time
change in the value of the parameter ρ at an unknown break time π0. A discussion
of a possible extension to the case of multiple changes appears in Section 8.

As we do not know π0, we need to test H0 against a composite alternative⋃
π∈(0,1)H1(π). As discussed in Andrews (1993), the standard Wald-, LM- and

LR-type tests do not possess their usual asymptotic distributions when π is treated
as a parameter as it appears only under the alternative. As a consequence a Wald-
test statistic of the form supπ∈� Wn(π), where � is some prespecified subset of
(0,1), is considered.

Define the partial-sample estimator ρ̂
PS(π) = (ρ̂

1 (π), ρ̂
2 (π))′ as

(4)

arg max
ρ1,ρ2

{
nπ∑
i=1

i+∑
j=i+1

f (xi, xj |ρ1, ν̂ML, ξ̂ML, κ̂)

+
n−1∑

i=nπ+1

min(i+,n)∑
j=i+1

f (xi, xj |ρ2, ν̂ML, ξ̂ML, κ̂)

}
,
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where ν̂ML, ξ̂ML and κ̂ are obtained from the full sample. As ρ̂
PS(π) is a pairwise

likelihood estimator, it is included in the partial-sample GMM estimator definition
of Andrews (1993) and under mild regularity conditions it follows from Theorem
1 of the latter that

√
n
(
ρ̂

1 (π) − ρ̂
2 (π)

) d−→ N

(
0,

(
1

π
+ 1

1 − π

)
σ̃ρ

)
,

where σ̃ρ is given in (3). According to equations (3.11)–(3.13) in Andrews (1993),
consistent estimators of σ̃ρ can be obtained from the full sample, and we rely on
the ̂̃σρ estimator, based on equation (6.12) of Newey and McFadden (1994). Our
estimator takes the form in equation (5) in the Appendix. It is easy to see from
(5) that uncertainty in the first step estimation adds to the “sandwich” variance
of the ML estimator in the second step. The Wald statistic for testing H0 against⋃

π∈�H1(π) is given by

Wn(π) = n
(ρ̂

1 (π) − ρ̂
2 (π))2

( 1
π

+ 1
1−π

)̂̃σρ

,

and from Theorem 3 of Andrews (1993), we have that, under the null hypothesis,

sup
π∈�

Wn(π)
d−→ sup

π∈�

D(π)2

π(1 − π)
,

where D(π) is a Brownian bridge on the interval [0,1]. As evaluation of the statis-
tic Wn(π) requires a minimum number of observations in each of the two terms
in (4), we look for changes over the subinterval � = (π̄,1 − π̄) where π̄ > 0 is
large enough to assure this minimum. The minimum value of π̄ that may be con-
sidered is thus dependent on the threshold u, with higher thresholds demanding
larger values of π̄ and limiting the time period over which a change point can
be identified. Asymptotic critical values are tabulated for different values of π̄ in
Andrews (1993).

We also obtain consistency results under the alternative hypothesis following
Andrews (1993) where the limiting distribution of the test under a set of local
alternative hypotheses is found. These results are outlined in the Appendix, and
the asymptotic power can be obtained by simulation. Finite sample performance is
examined in the following section.

5. Simulation study. We design simulation studies to assess the finite sample
properties of the proposed two-step estimator and of the test for the null hypothesis
of constancy of ρ. We consider both the heavy-tailed case assuming a marginal GP
distribution with parameters ν = 15 and ξ = 0.15 and the light-tailed case where
the GP parameters take values ν = 4 and ξ = −0.1. The values of ξ have been set
according to the estimates obtained in the analysis of ozone data in Noven, Veraart
and Gandy (2017b) and are realistic values for the tail decay in general. The values
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of ν are chosen to explore two different scales of the GP distribution. The value of
κ is set such that the number of exceedances is k where k is specified below. To
generate the dependence in the extremes, we consider latent exponential trawl pro-
cesses with ρ = {0.2,0.5,0.8}. Figure 3 shows the corresponding autocorrelation
functions.

5.1. Performance of the two-step estimator. In this section, we use simulations
to compare the finite sample properties of the pairwise likelihood estimator θ̂

MPL
of Noven, Veraart and Gandy (2017b) and our two-step estimator θ̂

TSML, most
notably assessing efficiency, any small-sample biases and the possible impact of
the value of .

We generate censored samples of n observations fixing the number of ex-
ceedances at k = 0.1 · n. The value of k is set to match the number of exceedances
considered in our ozone data. We estimate the parameter ρ with both estimators
using only observations up to  = {4,10,20} time steps apart. As there exists
a trade-off between efficiency of the estimator and computational burden in the
choice of , it is important to understand to what extent it is worth saving com-
puting time at the expense of efficiency. We examine B = 1000 replications under
heavy- and light-tail scenarios with sample sizes n = {2000,5000}.

Figure 4 shows the bias and the standard deviation of the estimates. Estimates
for the dependence parameter ρ are nonbiased and show similar variability under
both heavy-tailed and light-tailed margins. For both MPL and TSML estimators,
the performance is almost the same for  = 4, 10 and 20, with more numerous
time steps improving only slightly the %bias of the MPL estimates of the marginal
scale parameter ν when n = 2000. We conclude that the values of the marginal tail
parameters do not affect the performance and that  = 4 represents a good choice
for both estimators. This value of  was also suggested in Noven, Veraart and
Gandy (2017b). Both estimators show small biases and root mean square errors. As
the two-step estimator performs as well as θ̂

MPL, losing relatively little efficiency,
we move forward confidently using θ̂

TSML.
Table 1 reports the rejection probabilities from the different scenarios. With

n = 2000, the test is slightly oversized when ρ = 0.2 and slightly undersized when
ρ = 0.8. Note however that there is little information available for the estimation as
the partial-sample spans from 800 (π̄n) to 1200 (1 − π̄n) observations only. With
n = 5000 the size is better respected. When ρ equals 0.2 and 0.5 the test presents
the correct size, but it is still slightly undersized when ρ = 0.8, that is, for the least
dependent of our three latent trawl processes. The thickness of the marginal tail
has no impact on the size.

5.2. Power of the test. We assess the power of the test assuming: (i) an in-
crease in the strength of the dependence, ρ1 = 0.5 → ρ2 = 0.2, and (ii) a decrease
in the strength of the dependence, ρ1 = 0.5 → ρ2 = 0.8. True location of the
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FIG. 4. Performance of estimators. Bias and standard deviation of the estimates computed over
B = 1000 replications. Results are for heavy-tails (ξ = 0.15, ν = 15) and light-tails (ξ = −0.10,
ν = 4). %bias is shown for estimators of ν. For each combination of tail thickness and dependence
parameter ρ, triplets show results for estimates based on observations only up to  = 4, 10 and 20
time steps apart respectively. Symbols for MPL are shown when results are overlapping.

change point is π0 = 0.5. We generate censored samples of n observations fix-
ing the number of exceedances at k = 0.1 · n. We consider n = {2000,5000} and
perform the study under both the heavy- and light-tail scenarios. We use  = 4 in
the partial-sample two-step estimator ρ̂

PS(π) and consider π̄ = 0.4, that is, subin-
terval � = [0.4,0.6].

Table 2 reports the rejection probabilities under each alternative hypothesis.
Power, like size, appears unaffected by the decay rate of the marginal tail. Fig-
ure 3 shows that a change in the parameter ρ from 0.5 to 0.2 represents a larger
change in dependence in the latent process than that from ρ equal 0.5 to ρ equal
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TABLE 1
Size of the test. Rejection probabilities under the null hypothesis computed over B = 1000
replications using  = 4 in the estimation. Heavy and Light correspond respectively to the
scenarios (ξ = 0.15, ν = 15) and (ξ = −0.1, ν = 4). Level of significance of the test is α

n = 2000 n = 5000

Heavy Light Heavy Light

ρ \ α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

0.2 0.12 0.07 0.02 0.12 0.07 0.02 0.11 0.05 0.01 0.11 0.05 0.01
0.5 0.11 0.05 0.01 0.11 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
0.8 0.07 0.03 0.004 0.07 0.03 0.004 0.08 0.04 0.01 0.08 0.04 0.01

0.8. In the former case our test already exhibits good power when n = 2000, while
for the latter good power is attained when n = 5000. The size of the change in the
dependence, and not the direction of the change, is important.

6. Data analysis. Our interest lies in detecting a possible change in the ex-
tremal dependence structure of the ozone levels in Bloomsbury over the 1993–
2014 time period, and we use the test developed in Section 4 to do so. Exceedances
over 81 μg/m3 still show considerable seasonality and cannot be the entrants for
our test for a structural break in the dependence. Recall that our test is consistent if
the parameters of the GP are constant over time. To achieve the latter constancy, we
consider exceedances over a carefully selected, although easily computed, time-
varying threshold. More precisely, we divide the 22 years of data into four bins
of length six, six, five and five years respectively. We choose a threshold for each
bin-month combination so as to simultaneously take care of the seasonal effect and
the downward trend in time. The threshold for each bin-month combination is set
to the 98th quantile of the data therein. Inspection of quantile-quantile plots (not
shown) for the fitted GP models reveals that the latter offer a good fit when using

TABLE 2
Power of the test. Rejection probabilities under the alternative hypothesis (ρ1 → ρ2) computed over
B = 1000 replications using  = 4 in the estimation. Heavy and Light correspond respectively to

the scenarios (ξ = 0.15, ν = 15) and (ξ = −0.1, ν = 4). Level of significance of the test is α

n = 2000 n = 5000

Heavy Light Heavy Light

ρ1 → ρ2 \ α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

0.5 → 0.2 0.75 0.64 0.40 0.75 0.63 0.41 0.98 0.95 0.87 0.98 0.96 0.89
0.5 → 0.8 0.27 0.16 0.05 0.28 0.16 0.06 0.60 0.44 0.21 0.59 0.44 0.21
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TABLE 3
Full sample estimates. The standard errors (s.e.) for the GP

parameters are corrected to account for the dependence.
The standard error for ρ accounts for the noise induced by

the first-step estimator

ν ξ ρ

est. 5.63 0.37 0.41
s.e. 0.86 0.14 0.05

a threshold set to the 98th quantile and beyond. We use the 98th quantile so as to
include the maximum number of points in the analysis. The time-varying thresh-
old appears as the solid line in the upper panel of Figure 1, and the corresponding
exceedances are reported in the lower panel of Figure 1.

We start by estimating the model parameters over the whole sample using the
two-step estimator θ̂

TSML and only observations  = 4 time steps apart. The es-
timates reported in Table 3 reveal that the marginal GP distribution presents a
heavy-tail after detrending and deseasonalizing.

To assess the goodness of fit of our model, we compare empirical and model-
implied estimates of the extremal index. Figure 5 shows data-based estimates of
the extremal index along with estimates of the extremal index for the latent trawl
model and both latent Markov chain models of Bortot and Gaetan (2016). Time se-
ries of length 100,000 are simulated from the fitted models. The extremal index is
estimated using the intervals estimator of Ferro and Segers (2003) as implemented
in the R package extRemes [Gilleland and Katz (2016)]. Both latent Markov
chain models underestimate the extremal dependence, and the extremal depen-
dence structure for the deseasonalized data is better captured by the trawl-based
model. In order to investigate possible changes in ρ, we apply the test statistic
Wn(π) over � = [0.25,0.75], still using  = 4 for the computation of the partial-
sample estimator. Figure 6 shows the value of the test for each π ∈ [0.25,0.75]
along with the asymptotic critical values for the tests at the 10% and 5% levels of
significance. The null hypothesis of constancy of the ρ parameter is rejected at the
10% level on 2007/09/23–24 and from 2008/03/11 to 2009/07/08 (except for on
2008/04/20), with the statistic reaching its maximum on 2008/11/16. The partial-
sample estimates on 2008/11/16 are ρ̂1 = 0.51 and ρ̂2 = 0.24, indicating that the
strength of the dependence is greater in more recent years.

To assure the consistency of our test, we use the change-point algorithm of
Dierckx and Teugels (2010) to test for the null of constancy of the GP parameters
over the sample. We find a p-value of 0.41, and the null hypothesis of constant GP
parameters cannot be rejected.2

2The Dierckx and Teugels (2010) test is designed for iid data. We also apply the test to declustered
data in order to account for the dependence, but the result does not change. Since the presence of
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FIG. 5. Estimated extremal index. For deseasonalized ozone data (circles), latent trawl model
(solid), latent Markov chain model with Walker process (dashed) and latent Markov chain model
with Warren process (dotted). Extremal index =(limiting mean cluster size)−1.

FIG. 6. Test statistics. The bullets represent the value of the test statistic Wn(π) for each
π ∈ [0.25,0.75], that is, for each day between 1998/06/24 and 2009/07/09, for the ozone data in
Bloomsbury (UK). The red (blue) line represents the critical value of the test at the 10% (5%) level
of significance when π̄ = 0.25. A value of the test statistic beyond these lines supports rejection of
the null hypothesis at the corresponding level of significance. The grey-shaded area marks days for
which the null hypothesis is rejected at the 10% level.

dependence in the data induces more false positives, nonrejection of the null for our data can really
be seen as a substantial lack of evidence in favor of non constant GP parameters.
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FIG. 7. Estimated extremal index. For deseasonalized ozone data (circles), latent trawl model
(solid), latent Markov chain model with Walker process (dashed) and latent Markov chain model
with Warren process (dotted). Models are fitted to data before (left) and after (right) the estimated
structural break of 2008/11/16. Extremal index =(limiting mean cluster size)−1.

Having established a structural break on 2008/11/16 using our trawl-based test,
we can also consider the fit of our trawl-based model and both latent Markov mod-
els of Bortot and Gaetan (2016) to the two partial samples. Proceeding as we did
for Figure 5, we calculate estimates of the extremal index under all models for
each partial sample. Figure 7 shows that over these partial samples, the asymp-
totically independent trawl-based process and the asymptoticaly dependent latent
Markov chain model with Walker process, demonstrate similarly good fits. The
asymptotically independent latent Markov chain model with Warren process is in-
adequate, especially in the second partial sample where more recent ozone levels
show greater serial dependence in their extremes. While also asymptotically inde-
pendent, the trawl-based process is showing good flexibility and adapting well to
the serial dependence observed at high thresholds.

We carry out some robustness checks. There are three extremely large obser-
vations in May 1995, visible in the lower panel of Figure 1, which cannot be
explained by unusually warm temperatures. To ensure that our findings do not
rest on these possibly influential observations, we repeat the analysis exclud-
ing the records for May 5–7, 1995. Full sample estimates are ν̂ = 5.72 (0.90),
ξ̂ = 0.28 (0.11) and ρ̂ = 0.43 (0.05). Figure 8 shows the values of the Wn(π)

statistic computed for the reduced dataset, and we find even greater evidence of a
change in dependence over the end of the observation period. The null of constant
ρ is rejected at the 10% level over the entire 2007/08/06 to 2009/07/09 period, with
the statistic reaching its maximum on 2008/10/20. The partial-sample estimates are
ρ̂1 = 0.56 and ρ̂2 = 0.24, indicating an even weaker extremal dependence in the
first part of the sample if data for May 5–7, 1995 are removed. We find a p-value
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FIG. 8. Test statistics removing data from May 5–7, 1995. The bullets represent the value of the test
statistic Wn(π) for each π ∈ [0.25,0.75] for the ozone data in Bloomsbury (UK). The red (blue) line
represents the critical value of the test at the 10% (5%) level of significance when π̄ = 0.25. A value
of the test statistic beyond these lines supports rejection of the null hypothesis at the corresponding
level of significance. The grey-shaded area marks days for which the null hypothesis is rejected at
the 10% level.

of 0.57 for the test of constant GP parameters. All analyses corroborate our initial
findings.

Figure 9 reports Pr (Yt+k > u|Yt > u) estimates for the pre and poststructural
break exceedances respectively, along with the confidence bands of the model-
implied estimates obtained with Monte Carlo simulations. We can see that splitting
the sample allows the model to nicely capture the extremal dependence observed
in the data. It is clear that the model-implied estimates from the prestructural break
period (blue-shaded area) do not reproduce the larger dependence observed in the
data at small lags during the poststructural break period as the estimates at the first
four lags for the poststructural break period (red dots) lie clearly outside the blue
band. Moreover, these red dots lie almost exactly in the middle of the red band
representing model implied estimates of our post structural break model which
nicely captures ρ̂2 � ρ̂1. We see much of the same in Figure 10 where the analysis
is repeated without data for May 5–7, 1995.

7. Discussion. High levels of ground-level ozone concentrations can have an
adverse effect on both human health and vegetation. Along with the number of
episodes in a season, the length of the recovery period between successive episodes
of high ground-level ozone concentrations can be an important factor in the nature
and magnitude of health impacts [WHO (1987)]. Similarly, the impact of the ex-
posure on plants depends on levels, duration, frequency, the time of day, the season
and the interval between exposures [Ackermann et al. (1999)]. Any changes in the
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FIG. 9. Extremal dependence. Empirical estimates of Pr (Yt+k > u|Yt > u) and 95% confidence
interval of the model implied estimates, computed on the exceedances of ozone data in Bloomsbury
(UK), pre (blue) and poststructural (red) break (left panel). Right panel shows the difference between
the pre and poststructural break empirical estimates of Pr (Yt+k > u|Yt > u).

temporal dependence of extreme ozone levels should be detected as studies seek-
ing to evaluate present risks should only be compiling data over comparable and
relevant time periods, for example.

Working within a hierarchical trawl-based framework, we propose a test for a
change point in the extremal dependence of a stationary time series. The test is
flexible and easy to use. The strength of our approach lies in its ability to reduce
the dependence modeling to a one-dimensional problem that can be cast in the
GMM framework of Andrews (1993). Our test allows us to go beyond a suspected
increased dependence based on empirical checks as in Figure 2 to establish a sta-

FIG. 10. Extremal dependence removing data from May 5–7, 1995. Empirical estimates of
Pr (Yt+k > u|Yt > u) and 95% confidence interval of the model implied estimates, computed on the
exceedances of ozone data in Bloomsbury (UK), pre (blue) and poststructural (red) break (left panel).
Right panel shows the difference between the pre and poststructural break empirical estimates of
Pr (Yt+k > u|Yt > u).
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FIG. 11. Upper tail of ozone levels in Bloomsbury. Open circles show annual maxima and upper
quantiles (99.5th down to 96.5th in steps of 0.5) of the daily maximum 8-hour running mean of
ground-level ozone concentration. Solid lines show fitted linear regression lines through each of
annual maxima (top) to 96.5th quantiles (bottom).

tistically significant change. Our analyses show that extreme episodes have be-
come increasingly clustered. Controls of NOx and VOC emissions in the UK and
Europe have generally led to decreases in the intensity of summer ozone episodes
[Air Quality Expert Group (2009)], and Figure 11 shows that the annual maximum
of the daily maximum 8-hour running mean has in fact decreased in Bloomsbury
over the 1993–2014 period. The figure also shows, however, that the lesser extreme
96.5th, 97th and 97.5th quantiles have actually increased slightly over the same
period. This tightening of the upper tail can have an effect on the temporal depen-
dence, but other factors are also likely contributing to extreme episodes becoming
increasingly clustered. It is well established that in many polluted regions, high
surface ozone levels correlate strongly with temperature; see, for example, Fiore
et al. (2012) and references therein. It is also well established that heat waves are
getting longer and more intense; see, for example, Dupuis (2012) and references
therein. Figure 12 shows empirical estimates of the conditional probability that the
daily maximum temperature at Heathrow Airport on day t exceeds a high thresh-
old given that this threshold was exceeded on day t − 1. Data at Heathrow Airport
are obtained from https://www7.ncdc.noaa.gov/CDO/cdo and are also deseasonal-
ized and detrended following the procedure described in Section 6. Estimates of the
conditional probability are trending upwards since 2005. This, in combination with
the tightening of the upper tail seen in Figure 11, could explain the increased clus-
tering of extremes. The formation and accumulation of air pollutants is also known
to correlate strongly with local meteorological variables such as wind; see, for ex-
ample, Fiore et al. (2012) and references therein. Figure 13 shows the distribution

https://www7.ncdc.noaa.gov/CDO/cdo
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FIG. 12. Exploring serial dependence in the temperature extremes. Empirical estimates of the con-
ditional probability that the temperature at Heathrow Airport on day t exceeds a high threshold given
that this threshold was exceeded on day t − 1. Estimate for day t is based on detrended and desea-
sonalized daily maximum temperature at Heathrow Airport from day t − 3000 to day t . Threshold is
set to the 98th quantile of the detrended and deseasonalized daily maximum temperatures over the
1993–2014 time period.

of hourly wind speed and direction at Heathrow Airport, along with the maximum
daily maximum of the 8-hour running mean of ground-level ozone concentrations
in Bloomsbury at these winds, over the period studied. Wind data are obtained
from https://www7.ncdc.noaa.gov/CDO/cdo and observations at 0000, 0100, . . . ,

2300 hours are retained. While there were fewer strong southwesterly winds over
the 2009–2014 period than previously, this reduction does not seem to have ad-
versely affected ozone concentrations. Easterly winds are not more frequent over

FIG. 13. Hourly winds. Frequency of hourly wind speed and direction at Heathrow Airport (left)
and maximum daily maximum of the 8-hour running mean of ground-level ozone concentrations in
Bloomsbury (right) at these winds from January 1993 to December 2014. Wind speeds are in meters
per second. Ozone concentration is measured in units of micrograms per cubic metre.

https://www7.ncdc.noaa.gov/CDO/cdo
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the 2009–2014 period than previously but are now resulting in the largest ozone
concentrations. This is consistent with the work of Pope et al. (2016) who show
that anticyclonic conditions and easterly flows significantly enhance ozone concen-
trations over the UK relative to summer-time average values. While the intensity
of the largest ozone concentrations under easterly winds has not increased from
the 2003–2008 period, these concentrations are now the most extreme, and their
temporal dependence could differ from that of the extreme concentrations over the
1993–2008 period which were mostly occurring under southwest winds.

Jacob and Winner (2009) observe correlation between surface ozone and tem-
perature in polluted regions and establish the detrimental effect of warming, how-
ever the analysis is restricted to marginal considerations. Studies on current and
future impacts of increasing heat waves on ozone episodes, for example, Schell
and Prather (2017) and Shen, Mickley and Gilleland (2016), also only examine
intensity. Our findings suggest that changes to the clustering and persistence of ex-
treme ozone levels should be studied. Epidemiological studies that compare ozone-
exposure related health problems before and after our estimated change point (late
2008) could also be pursued. Finally, health guidelines for ozone are set assuming
8-hour exposure [WHO (2000)], however further consideration should be given to
acceptable levels over longer exposure periods in light of the increased clustering
in the last 10 years.

8. Future work. Despite its simple form, our approach is very general and
can be extended along several lines. The Markov models of Bortot and Gaetan
(2014) could be used for the dependence instead of our trawl-based models. We
opted for the exponential-trawl model of Noven, Veraart and Gandy (2017b) as
it offered a superior fit for the ozone data of interest. Trawl processes in their
most general form are quite flexible and can be constructed to have any mono-
tonically decreasing autocovariance function; see Section 2.4.1 of Noven, Veraart
and Gandy (2015a). More general models involving more parameters to control
the dependence are easily fitted using the same partial-sample estimator. For in-
stance, one could consider a more general trawl set obtained by superimposing
several exponential trawl sets. This approach would give even greater flexibility to
capture large serial dependence at very high thresholds but with an asymptotically
independent process. We opt for a simple exponential trawl set as it is easier to
use and flexible enough for our data; see Figures 7 and 9. We leave these depen-
dence model extensions for future research. Our approach could also be used to
test for structural changes in the spatiotemporal correlation function. It would be
interesting to see if there has been a structural change due to climate change, for
example, in the extremal dependence among the hourly rainfalls analyzed in Huser
and Davison (2014).

Finally, the identification of multiple structural changes could be pursued. The
generalization could be investigated along two different paths. First, one could
adapt the test of Andrews (1993) to a null assumption of no breaks against an
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alternative of k > 1 breaks. Bai and Perron (1998) succeeded in the linear regres-
sion context where they exploited the analogy between the F-test and the Wald test
to test for differences in the residual sum of squares of the model with k breaks
and those of the model without breaks. In our setting this approach does not seem a
likewise viable solution. Alternatively, one could try to develop a similar test using
the likelihoods as a criterion instead of the residual sum of squares, but likelihood
ratio tests for composite likelihoods do not have the standard limiting distribution,
and calculations might quickly become cumbersome. A third more promising stra-
tegy might be a sequential procedure. Let m be the number of change points, and
let π = {π1, . . . , πm} ∈ (0,1)m be their location in the unit interval.3 An iterative
algorithm may be obtained as follows:

(i) Compute the test statistic Wn over the entire sample, t = 1, . . . , n.
(ii) If the null hypothesis is rejected at the level α1, record the location of the

break: t̂ = nπ : supπ∈� Wn > Bα1 where Bα1 is the (1−α1) quantile of the limiting
distribution of the test statistic. Otherwise the algorithm stops.

(iii) The algorithm proceeds iteratively. Let t̂1, . . . , t̂k be the locations of the
breaks collected up to the (i − 1)th iteration. Let {[1, t̂1], . . . , [̂tk−1 + 1, t̂k], [̂tk +
1, n]} be the k + 1 time intervals considered at the ith iteration, and compute the
test statistics Wtj−tj−1 over the corresponding subsamples, j = 1, . . . , k +1, where
we use the notation t0 = 0 and tk+1 = n for convenience.

(iv) Repeat steps (ii)–(iii) until no further rejections occur. At each iteration
the level αi of the tests needs to be adjusted to account for the reduced sample
size and the multiple k + 1 tests. In general αi needs to decrease toward zero at an
appropriate rate to keep the test consistent.

This kind of procedure generally yields desirable results, but its effective power
strongly depends on the sample size and the distance between the change points.
See Dupuis, Sun and Wang (2015) for a large simulation study in the context of
change-points in the tail index. We leave an analogous investigation of the sequen-
tial approach to the context herein for future work.

APPENDIX

Definition of a homogeneous Lévy basis. Let S be a Borel set in R
2 with

associated Borel σ -algebra S = B(S) and Lebesgue measure λLeb. Let Bb(S) be
the subsets of S with finite Lebesgue measure, that is, Bb(S) = {A ∈ S : λLeb(A) <

∞}.

3Similarly to the one change-point case, the search is effectively carried out over (π̄ ,1 − π̄) where
π̄ depends on the threshold. The threshold also has an impact on the number m of change points that
can be identified as evaluation of test statistics requires a minimum number of observations in each
term like those in (4).



56 D. J. DUPUIS AND L. TRAPIN

Definitions [Noven, Veraart and Gandy (2017)].

1. A random measure on (S,B(S)) is a collection of R-valued random variables
{M(A) : A ∈ Bb(S)} such that for any sequence A1,A2, . . . of disjoint elements of
Bb(S) with

⋃∞
j=1 Aj ∈ Bb(S), we have M(

⋃∞
j=1 Aj) = ∑∞

j=1 M(Aj) a.s.
2. A random measure M on (S,S) is independently scattered if for any se-

quence A1,A2, . . . of disjoint elements of Bb(S), the random variables M(A1),
M(A2), . . . are independent.

3. A random measure M on (S,S) is called infinitely divisible if for each n ∈N

there exist n independent, identically distributed random measures Zn
1 , . . . ,Zn

n

such that M
d= Zn

1 + · · · + Zn
n . In particular, infinite divisibility implies that

for any finite collection A1, . . . ,An of elements of Bb(S), the random vector
(M(A1), . . . ,M(An)) is infinitely divisible in R

n.
4. A random measure on (S,S) is called stationary if for any point s ∈ S

and finite collection A1,A2, . . . ,An ∈ Bb(S) such that Ai + s ⊂ S, we have that

(M(A1 + s),M(A2 + s), . . . ,M(An + s))
d= (M(A1),M(A2), . . . ,M(An)).

5. A homogeneous Lévy basis L on (S,S) is a random measure that is indepen-
dently scattered, infinitely divisible and stationary.

Consistent estimator of σ̃ρ . We use

(5) ̂̃σρ = �̂−1
ρ

̂̃�ρ�̂−1′
ρ + �̂−1

ρ �̂−1
ν,ξ

̂̃�ν,ξ �̂
−1′
ν,ξ �̂−1′

ρ ,

where �̂−1
ρ = 1

n

∑n
i=1 ∇ρs

PL(xi |̂ν, ξ̂ , ρ̂), �̂−1
ν,ξ = 1

n

∑n
i=1 [∇ν,ξ s


PL(xi |̂ν, ξ̂ , ρ̂)]′,̂̃�ρ = 1

n

∑n
i=1 s

PL(xi |̂ν, ξ̂ , ρ̂)s′
PL(xi |̂ν, ξ̂ , ρ̂) and ̂̃�ν,ξ is the covariance matrix of

the ML estimator for the GP distribution obtained from the first step of the estima-
tion.

Asymptotic power. Local alternatives are obtained substituting the assump-
tion that the expected value of the score of the partial-sample estimator at the op-
timum must be equal to zero, E(s

PS(π,ρ0, ν̂, ξ̂ )) = 0, with supπ∈� ‖s
PS(π,ρ0, ν̂,

ξ̂ ) − μ(π)‖ = op(1), where μ(π) = (μ1(π),μ2(π))′ ∈ R
2 is a nonrandom func-

tion on �. See Assumption 1-LP in Section 5.4 of Andrews (1993) for details. In
short, μ(π) acts as a displacement factor on the value of the objective function at
the optimum. The greater the value of μ(π) the further the alternative hypothesis
is from the null. Then, from Theorem 4 of Andrews (1993), we have that under the
alternative hypothesis,

sup
π∈�

Wn(π)
d−→ sup

π∈�

(
D(π)√
π(1 − π)

− S−1/2
[
μ1(π)

(
1 − π

π

)1/2
− μ2(π)

(
π

1 − π

)1/2])2
,
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where S is the asymptotic variance of the score of the pairwise likelihood estima-
tor ρ̂

MPL. From Equation (3), we have that S = e′
1E[(s

PL − �−1
ν,ξϒ

−1sGP)(s
PL −

�−1
ν,ξϒ

−1sGP)′]e1 where e1 is the unitary vector. We can thus easily obtain asymp-
totic power by simulation.
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