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We propose a functional principal components method that accounts for
stratified random sample weighting and time dependence in the observations
to understand the evolution of distributions of monthly micro-level consumer
prices for the United Kingdom (UK). We apply the method to publicly avail-
able monthly data on individual-good prices collected in retail stores by the
UK Office for National Statistics for the construction of the UK Consumer
Price Index from March 1996 to September 2015. In addition, we conduct
Monte Carlo simulations to demonstrate the effectiveness of our methodol-
ogy. Our method allows us to visualize the dynamics of the price distribu-
tion and uncovers interesting patterns during the sample period. Further, we
demonstrate the efficacy of our methodology with an out-of-sample forecast-
ing algorithm which exploits the time dependence of distributions. Our out-
of-sample forecasts compares favorably with the random walk forecast.

1. Introduction. This paper investigates the evolution of the underlying dis-
tribution of price quotes collected to construct the Consumer Price Index (CPI) for
the United Kingdom. In all countries, the CPI is the most commonly used mea-
sure of the average price that households pay for their consumption, and it is also
widely used as a measure of the changes in the cost of living or inflation. The
ubiquity of the CPI in the everyday lives of consumers and firms makes it one of
the most watched, reported, and discussed statistic in a modern economy. Statis-
tical agencies such as the Bureau of Labour Statistics (BLS) in the United States,
the Office for National Statistics (ONS) in the United Kingdom, Statistics Canada,
and Eurostat devote considerable resources to the efficient collection and dissemi-
nation of these data. Central banks all over the world rely on the CPI to analyze and
formulate economic policies, especially countries with an explicit inflation target
such as the United States (US), United Kingdom (UK), and Canada.

The population of prices underlying the CPI exhibits much more complex dy-
namics than can be captured by an aggregated index. These dynamics manifest
themselves along two key dimensions: (1) prices do not move in a synchronous
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manner across goods and services; for example, food and energy prices tend to be
more volatile than other prices; and (2) relative expenditures for goods and services
are also time-varying, as households shift their consumption in response to price
changes, discounts, seasons and holidays, stockouts, changes in quality, or over the
business cycle [see Klenow and Malin (2010) and Nakamura and Steinsson (2013)
for comprehensive reviews of microeconomic evidence on price dynamics].

While in practice different measures of the CPI have been advocated for cap-
turing some of these dynamics, such measures shed little light on the evolution of
price distributions that underlie the CPI [see Diewert (2012) for a detailed discus-
sion of various CPI measures in the UK]. For example, little is known about which
part of the distribution drives the changes in the means or whether higher order
moments such as skewness or kurtosis play a role in changes in distributions. For
example, early empirical work using evidence for sector-level price indexes and
for micro prices for selected products focused on documenting the extent of price
or price change dispersion, including contributions by Lach and Tsiddon (1992),
Ball and Mankiw (1995), Debelle and Lamont (1997). Recent studies of the mo-
ments of price and price change distributions focused on price dispersion [Peterson
and Shi (2004), Kaplan and Menzio (2015), and Sheremirov (2016)], price-change
dispersion [Gautier and Le Bihan (2011) and Berger and Vavra (2018)], skewness
of price distribution [Chen et al. (2008) and Sheremirov (2016)], and kurtosis of
price changes [Midrigan (2011) and Alvarez, Le Bihan and Lippi (2016)].

Understanding these complex movements of relative prices and expenditure
weights requires information about micro-level prices and their respective weights
in the CPI. A limited availability of such data, however, hinders the advancement
of tools and methods that could be used by economists who study price dynamics.
This paper utilizes monthly data on individual-good prices collected in retail stores
by the ONS for the construction of the UK CPI from February 1996 to September
2015. These are the first publicly available monthly data on individual-good prices
collected by a national statistical agency, and can be download directly from the
ONS website: http://www.ons.gov.uk/ons/datasets-and-tables/index.html. We uti-
lize this data set to estimate the evolution of monthly consumer price distributions
for the UK.

The main challenge for this estimation stems from the complexity of the rel-
ative price and weight movements. We tackle this challenge by developing func-
tional principal component analysis (FPCA) with complex survey design method-
ology. Let f1, . . . , fT denote the super-population distributions of price (or price
changes) in the UK that can be recovered from this micro-level consumer price
data. We build over Kneip and Utikal’s (2001) model. This model uses the well-
known Karhunen–Loève decomposition to represent each super-population den-
sity at time t , ft , in terms of the principal functional components:

(1.1) ft = fμ +
J∑

j=1

θt,j gj .

http://www.ons.gov.uk/ons/datasets-and-tables/index.html
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Here the mean density, fμ = T −1 ∑T
t=1 ft , captures the underlying common in-

tertemporal distribution, while the J dynamic strength coefficients, θt,j , capture
the dynamics of the underlying distributions, and the common functional compo-
nents, or basis functions, gj , provide information about the part of the distribution
that changes. FPCA tracks how a density evolves over time by providing a dynamic
structure as opposed to standard static visualization of estimated cross-section dis-
tributions.

Although Kneip and Utikal (2001) and Huynh et al. (2011) already proposed a
way to estimate the model in (1.1) with repeated independent samples, the problem
we consider here involves adapting the original methodology to complex survey
data that is longitudinal in nature, that is, recorded prices from the same strata that
are potentially correlated over time. These data features require a modification of
Kneip and Utikal’s (2001) original estimators to include survey weights so that
the dynamics of the super-population densities is described by FPCA, and not the
dynamics of the densities induced by the sampling scheme. We also introduce
an additional bias correction to account for temporal dependence which extends
Kneip and Utikal’s (2001) original results to handle temporally correlated samples.
The paper demonstrates the consistency of the resulting estimators of the score
coefficients and the pointwise asymptotic normality of the functional components.
A data-driven procedure is then proposed to choose the optimal number (J ∗) of
principal components based on a density forecast exercise.

This methodology allows for a simple representation and visualization of the
temporal dynamics of price distributions. According to (1.1), the distributions of
the detrended prices or the month-to-month price changes can be decomposed into
functional principal components. The time-variation of the corresponding θt,j ’s
can be used to visualize the evolution of the principal components over time. We
find that the first three components account for about 10 and 8% of the variation
in the price and price-change distributions in the UK CPI data, respectively. The
dynamics of the first three components, as described by the θt,j ’s, are correlated
with the key macroeconomic variables, and also autocorrelated. In the second part
of the paper, we explore these properties of the functional principal components
in two applications that study the comovement of the UK price distributions with
macroeconomic variables and forecasting of the UK consumer prices.

In the first application, we explore how the functional principal components co-
move with the unemployment and inflation rates—two key macroeconomic vari-
ables. Here, an advantage of FPCA naturally stems from its decomposition of price
(or price change) distributions into the time-varying dynamic strength coefficients
and time-invariant common functional components, given by θt,j ’s and gj ’s re-
spectively. Namely, the first deformation, θt,1g1, is closely related to the evolution
of the first moment of the distribution, and higher order components, {θt,j gj }j>1,
summarize contributions of higher order moments, such as the dispersion, skew-
ness, and kurtosis of the distribution. We find that the dynamics of the higher order
moments are as important as the first moment in driving temporal changes in price



UK PRICE DISTRIBUTIONS 2621

and price-change distributions. For example, price dispersion decreases and the
tails thin out in the wake of the 2009 recession, but these effects are reversed over
the ensuing 2011 recession. At the same time price changes become more dis-
persed suggesting that the time of economic turmoil trigger across-the-board price
adjustments. In all, the facts unraveled with the help of FPCA can be influential
for sorting out models of inflation and business cycles used in academia and cen-
tral banks, because their predictions are inherently linked to assumptions about
individual price adjustments in response to economic shocks.

In the second application, we demonstrate the efficacy of our methodology by
applying it to an out-of-sample density forecasting exercise for the price-level and
price-change distributions. We conduct this exercise for one and three-month fore-
cast horizons as they are the standard time horizons between the release of official
price data. We find that our FPCA model-based forecasts compare favourably with
the benchmark random-walk or the “no-change” forecast.

Section 2 provides a description of the UK price data used in the paper. Sec-
tion 3 discusses the FPCA with complex survey design methodology. Section 4
conducts the analysis of the distribution dynamics and provides numerical evi-
dence of the proposed estimators in a simulation study. Section 5 discusses the
results of the simulations and studies the comovement of the UK price distribu-
tions with macroeconomic variables. This section also suggests how to perform
model validation through a density forecasting exercise and offers some sensitiv-
ity analysis. Finally, Section 6 concludes.

2. UK Consumer Price Index data. To construct the CPI, the ONS surveys
prices for goods and services that are included in the household final monetary
consumption expenditure component of the UK National Accounts. The survey
excludes housing portion of consumer prices, such as mortgage interest payments,
house depreciation, insurance, and other house purchase fees. Detailed description
of the data underlying the CPI, the statistical methodology used, collection and
validation of prices, and calculation of weights, can be found in the ONS (2014)
or Clews, Sanderson and Ralph (2014). In total, the survey includes prices for over
1100 representative items (e.g., onions, men’s suit, single bed), which are collected
locally or centrally, for more than 14,000 retail stores across 12 geographical re-
gions (London, South East, South West, Eastern, East Midlands, West Midlands,
Yorkshire and The Humber, North West, North East, Scotland, Wales, and North-
ern Ireland). Each item is assigned a weight that reflects its relative importance
in households’ consumption expenditures. Weights are calculated based on the
Household Final Monetary Consumption Expenditure and ONS Living Cost and
Food Survey. Changes in expenditure weights over time reflect gradual shifts in
expenditure composition of households’ consumption baskets. The data published
on ONS website includes only locally collected prices, covering about 57% of the
UK CPI basket.
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Observations are stratified by shop type, by region, and by region and shop type.
Two types of shops are identified: retailers with fewer than 10 outlets are classified
as independents, while retailers with 10 or more outlets are classified as multiples.
This study only utilizes the samples stratified by region and shop type yielding a
total of 24 strata (L) to better capture price heterogeneity in the population. The
sample period includes 235 months (T ), from March 1996 till September 2015.
The total number of observations is over 26 million, or about 110,000 per month.

Figure 1 displays the UK CPI and annualized monthly inflation rate. The light
yellow areas highlight the UK’s late 2000s (2008–04/2009–09) and the double-
dip (2011–10/2012–06) recessions. The red solid line represents zero. The figure
shows that the CPI level in the UK displays significant trend and cyclical varia-
tions across time. The price level grew by an average of 2.0% per year between
1996 and 2015, and the standard deviation of their changes was 0.4 percentage
points per month; in particular, inflation fell by 2 to 3 percentage points in annu-
alized terms during each of the two recessions in 2000s. These changes are due
to a combined effect of micro-level time co-variations of prices across different

FIG. 1. UK Monthly CPI and Inflation. Top graph plots the monthly CPI (source:
http://www.ons.gov.uk/ons/ index.html), and the bottom graph plots the implied annualized season-
ally adjusted monthly inflation in percentages. The base year is 2015. The light yellow areas highlight
the UK’s late 2000s (2008–04/2009–09), and the double-dip (2011–10/2012–06) recessions.

http://www.ons.gov.uk/ons/index.html
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products, stores, and locations. As we will show below, much of information on
such complex micro-level price co-variations is contained in the dynamics of the
distribution of prices.

To study these dynamics, we construct the following variables. Let t de-
note a month, k denote an item-stratum bin and i denote an individual prod-
uct, so that p̆k,i(t) represents the natural logarithm of the price of a product or
service i (in nominal British pounds) in month t , for item-stratum bin k; and
�p̆k,i(t) = p̆k,i(t) − p̆k,i(t − 1) is the change of the natural logarithm of price
for that product from month t − 1 to t . We also define the de-trended price levels,
p̆∗

k,i(t) = p̆k,i(t) − p̆k(t), where p̆k(t) is the across-time linear trend of p̆k,i(t)

estimated for each item-stratum bin k. As a point of comparison, Figure 1 in the
Supplementary Material [Chu et al. (2018)] displays estimates of the population
mean, median, and inter-quartile range of p̆k,i(t) for each of the 235 months.

Considerable variations of prices at store and product levels suggest that the
observed dynamics of distributions of p̆k,i(t) or �p̆k,i(t) could be driven by a
subset of stores or goods with particularly volatile prices, creating numerical diffi-
culties when recovering the overall movement of the super-population distribution
of prices. Furthermore, in a given month roughly 84% of prices do not change
from the previous month. To address these issues, we proceed by standardizing
price levels and price changes as suggested in Klenow and Kryvtsov (2008) and
defined as follows:

(2.1) x∗
k,i(t) = (

p̆∗
k,i(t)− p̆∗

k

)
/σ̂p̆∗

k
and �xk,i(t) = (

�p̆k,i(t)−�p̆k

)
/σ̂�p̆k,i

,

where p̆∗
k and �p̆k are across-time sample means of p̆∗

k,i(t) and nonzero �p̆k,i(t)

computed for each item-stratum k, and σ̂p̆∗
k,i

and σ̂�p̆k,i
for the standard deviations.

Hereafter, we refer to x∗
k,i(t) and �xk,i(t) as the “log(Price)” and “�log(Price)”

respectively. Their underlying super-population distributions in each month, gen-
erally denoted by ft , are the focus of our analysis.

3. Functional principal component analysis (FPCA) of densities. Kneip
and Utikal (2001) provide a method to identify {gj }Jj=1 and {{θt,j }Jj=1}Tt=1 on the
right-hand side of (1.1). Let M be the variance-covariance matrix with the ele-
ments

(3.1)

Mt,s = 〈ft − fμ,fs − fμ〉

= Mt,s − 1

T

T∑
i=1

(Mt,i + Mi,s) + 1

T 2

T∑
t=1

T∑
s=1

Mt,s,

where Mt,s = 〈ft , fs〉 = ∫
X ft (x)fs(x)w(x) dx, w(x) > 0 is some continuous,

uniformly bounded weighting function ∀x ∈ X , and X represents a compact sup-
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port. Kneip and Utikal (2001) show that θt,j and gj can be written as

θt,j = λ
1/2
j pt,j ,

gj =
∑T

t=1 θt,j ft∑T
t=1 θ2

t,j

,
(3.2)

where p1 = (p1,1, . . . , pT,1)
�; . . . ;pj = (p1,J , . . . , pT,J )� are the eigenvectors

of M and λ1 ≥ λ2 ≥ · · · are the eigenvalues of M. Thus, in view of (1.1) and
(3.2) from classical PCA one has

T∑
t=1

θt,j = 0,

T∑
t=1

θt,j θt,l = 0 if j 	= l,

T∑
t=1

θ2
t,j = λj , j = 1, . . . , J,

(3.3)

∫
X

gr(x) dx = 0.(3.4)

3.1. FPCA with complex survey data. Equations (3.1) and (3.2) are the basis to
construct feasible estimators of each component in the right-hand side of the model
(1.1). However, we face two data features that need to be addressed when con-
structing these estimators, namely, having a stratified random sample each month,
and the fact that prices are recorded from the same strata units through time. In
this section we describe how Kneip and Utikal’s (2001) original estimators can be
adapted to these situations, and we also investigate their asymptotic behavior when
accounting for these new data features.

Let ‖v‖ be the Euclidean norm of v = (v1, . . . , vdim(v))
�; v∧ = min(v1, . . . ,

vdim(v)); v∨ = max(v1, . . . , vdim(v)); Uk,i(t, x) = Khk
(x − Xk,i(t)); 〈Uk,i(t),

U�,j (s)〉 = ∫
Uk,i(t, x)U�,j (s, x)w(x) dx, where w(x) is the norm weight and

Kh(·) = h−1K(·/h) is some kernel function defined below, hk denotes a smooth-
ing parameter, K(·) satisfies Assumption 2 below; K∗(z) = ∫

K(y)K(z + y)dy;
Op(·), Oa.s.(·), op(·), and oa.s.(·) are symbols for stochastic orders of magni-
tude (“in probability” and “almost surely” respectively) taken with respect to the

distributional law of the actual data;
d−→ denotes convergence in distribution (un-

der the distributional law of the actual data); w.p. 1 stands for “with probability
(w.r.t. the survey sampling scheme) approaching 1.” Finally, all the expectations
are taken with respect to the distributional law of the actual data, so that we just
write E[·] ≡ EX[·] to simplify notation.
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3.1.1. Stratified random sampling, dependence and estimation. Further no-
tation is now introduced in order to describe the estimators and their asymp-
totic properties. Let N1, . . . ,NL denote the sizes of L subpopulations, U1(t), . . . ,

UL(t), available at time t , and let N = ∑L
k=1 Nk be the size of the entire super-

population. Here we make the assumption that the population sizes are invariant
over time so as to keep all calculations involving multiple summations tractable.
This assumption does not invalidate the theoretical results obtained in this paper,
and can be relaxed at the expense of more cumbersome notations and algebra.

We assume that the elements in each Uk(t) are realizations of the i.i.d. ran-
dom variables, Xk,1(t), . . . ,Xk,Nk

(t), distributed according to a density, ft,k ; also,
Xk,i(t) and X�,j (t), where i = 1, . . . ,Nk and j = 1, . . . ,N�, are pairwise indepen-
dent for all k 	= �. The stochastic process Xk,i(t) is strongly mixing in the sense
of Rosenblatt (1956) for each k ∈ [1,L] and i ∈ [1,Nk]; this process is generally
nonstationary as its density, ft,k , will not vary over time in case Xk,i(t) is a strictly
stationary process.

The stratum (subpopulation) weights are defined by Wk = Nk/N . The super-
population density, ft , then becomes a mixture of the subpopulation densities:

(3.5) ft (x) =
L∑

k=1

Wkft,k(x).

It is assumed that random samples of nk observations are taken without re-
placement from each stratum, Uk(t)—denoted by Sk(t); then S(t) = ⋃L

k=1 Sk(t)

is a stratified random sample of size n = ∑L
k=1 nk from the super-population,

U(t) = ⋃L
k=1 Uk(t). This survey sampling design can be represented by random

indicators, Ik,i(t) = 1 if unit i of the stratum k belongs to Sk at time t , and
zero otherwise. Because a part of the super-population can be sampled, Buskirk
(1998, 1999), Bellhouse and Stafford (1999), and Buskirk and Lohr (2005) pro-
pose to estimate ft (x) by a sample weighted kernel density (SWKD):

(3.6) f̂n,t (x) = 1

N

L∑
k=1

Nk

nk

Nk∑
i=1

Ik,i(t)Khk

(
x − Xk,i(t)

) =
L∑

k=1

Wkf̂t,k(x),

where the strata-specific bandwidth, hk , goes to zero as the sample size becomes
large, and f̂t,k(x) = n−1

k

∑Nk

i=1 Ik,i(t)Khk
(x − Xk,i(t)). Note that a single overall

bandwidth h, that is, h1 = · · · = hL = h, can be used instead (as in our simula-
tion study and empirical application) but this flexibility might be needed in other
settings where sparseness and small samples are practical problems. Below, we
assume that nk = O(Nk) for k = 1, . . . ,L.

The SWKD estimator in (3.6) is the building block of the proposed estima-
tors of θt,r and gr for r = 1,2, . . . . It is used to estimate M by a survey sam-
ple variance-covariance matrix, that is, a natural candidate seems to be M̃t,s =
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〈f̂n,t − f̂n,μ, f̂n,s − f̂n,μ〉 with f̂n,μ = T −1 ∑T
t=1 f̂n,t . One has that

(3.7) M̃t,s = M̃t,s − 1

T

T∑
i=1

(M̃t,i + M̃i,s) + 1

T 2

T∑
t=1

T∑
s=1

M̃t,s,

where M̃t,s = 〈f̂n,t , f̂n,s〉.
We have observed that, for t 	= s, the candidate estimator M̃t,s has some bias

caused by serial correlation of Xk,i(t). After removing this bias, we obtain a bias-
corrected representation for M̃t,s :

M̂t,s = 〈f̂n,t , f̂n,s〉 −
L∑

k=1

W 2
k

1

n2
k

Nk∑
i=1

Ik,i(t)Ik,i(s)
〈
Uk,i(t),Uk,i(s)

〉

+
L∑

k=1

W 2
k

1

n2
k(nk − 1)

Nk∑
i=1

Nk∑
j 	=i

Ik,i(t)Ik,j (t)
〈
Uk,i(t),Uk,j (s)

〉
,

(3.8)

where the last term is needed so to ensure the same convergence rates for the bias
and the asymptotic variances as in Kneip and Utikal (2001). When t = s, the bias-
corrected representation for M̃t,t is given by

M̂t,t = 〈f̂n,t , f̂n,t 〉 −
L∑

k=1

W 2
k

1

n2
k

Nk∑
i=1

Ik,i(t)
〈
Uk,i(t),Uk,i(t)

〉

+
L∑

k=1

W 2
k

1

n2
k(nk − 1)

Nk∑
i=1

Nk∑
j 	=i

Ik,i(t)Ik,j (t)
〈
Uk,i(t),Uk,j (t)

〉
.

(3.9)

Thus the bias-corrected estimate of Mts is given by

(3.10) M̂t,s = M̂t,s − 1

T

T∑
i=1

(M̂t,i + M̂i,s) + 1

T 2

T∑
t=1

T∑
s=1

M̂t,s .

After calculating the eigenvalues λ̂r , and eigenvectors p̂r of M̂ for r =
1, . . . , J , one can then estimate (3.2) by the analogy principle, that is,

(3.11) θ̂t,r = λ̂1/2
r p̂t,r , ĝr =

∑T
t=1 θ̂t,r f̂

∗
n,t∑T

t=1 θ̂2
t,r

,

where f̂ ∗
n,t is defined as in (3.6) but with bandwidths b1, . . . , bL instead.

3.1.2. Computational considerations. The calculation of M̂ can be performed
in an embarrassingly parallel fashion. Since M̂ is symmetric, its T (T − 1)/2 el-
ements (3.10) only requires samples S(t) and S(s) for their calculation. Further-
more, if a new sample, that is, S(T + 1) is available at time T + 1, a new M̂
can be readily obtained by appending a new column of T + 1 new elements (and
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its transpose as a row vector) without recalculating its other elements. This is the
basis of our density forecast exercise in Section 5.4.

Although the next section will provide the theoretical requirements on band-
widths, hk and bk , for the consistency of θ̂t,r and pointwise asymptotic normality
of ĝr defined in (3.11) to hold, we can provide a valid way to compute them in prac-
tice here. As explained earlier, in the absence of sparseness or small sample within
strata, at each time period t , one can set h1 = · · · = hL = h and b1 = · · · = bL = b

and then set h = ĥ5/4 and b = ĥ × T −1/5, where ĥ corresponds to Duin’s (1976)
likelihood cross-validation bandwidth. These choices will be consistent with our
theoretical developments below when the serial dependence is not very strong, and
as shown in the simulation study and application they seem to work very well in
practice. The Supplementary Material [Chu et al. (2018)] provides a sensitivity
analysis when ĥ is calculated by Silverman’s (1986) rule of thumb instead.

3.2. Inference. We investigate the asymptotic behavior of the eigenvalues λ̂r

and eigenvectors p̂r of M̂ for r = 1, . . . , J , as well as of estimators (3.11).
To make the derivation of the asymptotics more tractable, we fix J and L

and the asymptotics is based on assuming that N∧ = min(N1, . . . ,NL) and
N∨ = max(N1, . . . ,NL) go to infinity such that N∧/N∨ = O(1), Wk = O(1)

and max1≤k≤L nk/Nk = O(1). We need the following standing assumptions for
asymptotic analysis:

ASSUMPTION 1. The true subpopulation densities, ft,k , have partial deriva-
tives up to order k∗, satisfying a Lipschitz condition uniformly on a compact sub-
set, X ⊂ R for t = 1, . . . , T and k = 1, . . . ,L.

ASSUMPTION 2. (1) The kernel weight K(u) used in the estimation procedure
is a bounded probability density function with support, {u : |u| ≤ 1}, such that
K(u) = K(−u), and

∫
K2(u) du < ∞. (2) The weighting function w(·) in the

inner product 〈·, ·〉 is a bounded continuous nonnegative function supported on an
open convex set of the real line.

ASSUMPTION 3. There exist constants, 0 < C3,r < ∞ and 0 < C4,r ≤ C5,r <

∞ such that mins=1,...,T ;s 	=r |λr − λs | ≥ C3,rT and C4,rT ≤ λr ≤ C5,rT for any
T , N , and any fixed r ∈ {1, . . . ,L}.

ASSUMPTION 4. For each k ∈ [1,L] and i ∈ [1,Nk], the random variables
Xk,i(t) are strongly mixing in the sense of Rosenblatt (1956) with the strong-
mixing coefficient α(τ) verifying

∑∞
τ=1 τα(τ) < ∞.

Assumption 1 is a stronger version of Assumption A1 in Kneip and Utikal
(2001) in that it requires all subpopulation densities and their partial derivatives
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to satisfy an uniform Lipschitz condition. Assumption 2 is standard in the ker-
nel smoothing literature, while Assumption 3 is the same as A2 in Kneip and
Utikal (2001). Assumption 4 is introduced here to account for possible serial de-
pendence among elements in the subpopulations in the form of a strongly mixing
process. Note that a natural implication of this assumption is that the random prob-
ability densities of the random variable Xk,i(t) are also serially correlated. How-
ever, as pointed out by Kneip and Utikal (2001) and Benko, Härdle and Kneip
(2009) the proposed method still work for dependent random densities as long as
〈ft − fμ, ξ〉(ft − fμ) where ξ ∈ L2(D) with D ⊂ R forms a stationary ergodic
process. In our application, a simple visual inspection of the estimated principal
components in Figure 5 confirms the latter.

The following theorem effectively adapts Theorem 1 in Kneip and Utikal
(2001) to allow for sampling weights and weak dependence across samples
S(1), . . . , S(T ).

THEOREM 1. Let hk = O(N
−δk

k ) for some δk ∈ [1/4,1), k = 1, . . . ,L, such
that (T 1−4ε/h2

k)α(T 1/2+ε) ↓ 0 and (
√

N∧T /hk)α(T 1/2−ε) ↓ 0 for some ε ∈
(0,1/2). Suppose that T/N∧ ↓ 0. Then:

1. For a fixed r ∈ {1, . . . , T },
(3.12) λ̂r − λr = p�

r (M̂−M)pr + Op

(
T/N∧) = Op

(√
T/N∧)

.

2. Write qr = (q1,r , . . . , qT ,r ) with

qt,r =
T∑

s=1

ps,r

(〈f̂n,s − fs, ft − fμ〉 + 〈f̂n,t − ft , fs〉 − 〈f̂n,μ − fμ,fs〉)
and Sr = ∑T

s=1
s 	=r

1
λs−λr

psp
�
s . One has that

(3.13) E
[∣∣p̂r − pr − Sr(M̂−M)pr

∣∣] = Oa.s.

(
1

N∧
)

and

(3.14) E
[|p̂r − pr − Srqt,r |] = Oa.s.

(
1

N∧ + 1

N∧√
T h∧ + (h∨)2

√
T N∧

)
.

Moreover, we also have |θ̂t;r −θt;r | = Op(N∧−1/2) and |p̂r −pr |2 = Op(N∧−1/2).

The asymptotic normality of the normalized partial summation of eigenval-
ues

√
N∧/T

∑T
r=J+1 λ̂r is provided in Section B in the Supplementary Material

[Chu et al. (2018)]. Theorem 1 shows that the speed of convergence of the es-
timated eigenvalues and strength components to their true values is governed by
how quickly the number of observations in the smallest strata increases. Our pro-
posed bias correction that adjusts for possible serial dependence in the raw data



UK PRICE DISTRIBUTIONS 2629

enables one to obtain the same convergence rates for the biases of λ̂r , p̂r , and
θ̂t;r , r ∈ {1, . . . , T } [see, i.e., (3.12)–(3.14) above] as in Kneip and Utikal (2001),
Theorem 1.

Since the right-hand side of (3.11) is just a weighted sum of T SWKD estima-
tors, the following theorem characterizes the pointwise asymptotic normality of
the functional principal components.

THEOREM 2. Define θ∗
t;r = θt;r/

∑T
t=1 θ2

t;r and suppose that bandwidths bk ↓
0 such that n

1/2
k b

5/2
k → const., bk = O(b�) for every k 	= �, and nkbk ↑ ∞.

Moreover, let bk satisfy N∨
b∧T 4ε α(T 1/2+ε) ↓ 0 and

√
N∨
b∧ α(T 1/2−ε) ↓ 0 for some

ε ∈ (0,1/2). Under the assumptions of Theorem 1, it then holds that
√

N∨b∨(ĝr − gr)

d−→ N

(
lim

N↑∞
√

N∨b∨ 1

2

{∫
x2K(x)dx

} L∑
k=1

Wkb
2
k

T∑
t=1

θ∗
t;rf

′′
t,k(x),

lim
N↑∞N∨b∨

L∑
k=1

W 2
k

1

n2
kbk

ft,k(x)

T∑
t=1

Nk∑
i=1

Ik,i(t)θ
∗2
t;r

∫
K2(x) dx

)
.

(3.15)

As in traditional density estimation, this theorem highlights that the functional
components will display less variability in the tails of the distribution of the data
than in its interior, and that larger biases are associated with more curvature.
Note that the bandwidth sequences are allowed to differ across clusters as well
as across different estimated eigenfunctions. Furthermore, our simulation study
below shows that the asymptotic approximation can be quite accurate even with ef-
fective samples of just a few hundreds from stratas with just a couple of thousands
observations to draw from. Since the functional principal components estimators
are asymptotically normal, one can calculate pointwise confidence intervals using
the bootstrap procedure described in Section 5.3.

For our data set, it can be argued that, at each point in time, prices set by nearby
stores tend to be correlated. This spatial dependence in the prices can effectively be
modelled by a strongly mixing random field. The strong-mixing condition quan-
tifies the notion of weak dependence in random fields. In the simplest case, one
can assume that prices in each stratum and at each point in time are generated by
a m-dependent random field while maintaining that prices in different strata are
cross-sectionally independent.

In particular, let i represent the “site” (or location) of a store, i, and Vk is the col-
lections of all sites in a stratum, k. A close inspection of the term τ̂ts [defined in the
Supplementary Material, Chu et al. (2018)] reveals that the source of biases in the
cross-sectional dimension lies in the summands close to the diagonal in the dou-
ble summations of type

∑
i∈Vk

∑
j∈Vk

. Therefore, a bias-corrected estimate of Mt,s
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would involve the truncated double summations of type
∑

i∈Vk

∑
j∈Vk : ‖j−i‖>m,

where ‖ · ‖ is the Euclidean norm, that appear in τ̂ts .
Moreover, Tran (1990) showed that the kernel density f̂n,t remains asymptoti-

cally normal with the same asymptotic variance as in the independence case if the
spatial dependence is sufficiently weak and the bandwidth tends to zero at some
rate depending on the decay rate of the strong-mixing coefficient. Therefore, we
conjecture that the asymptotic properties of the estimates of the principal compo-
nents and the score functions (calculated from the aforementioned bias-corrected
estimate of the variance-covariance matrix M̂) still remain valid. However, the for-
mal proof of this conjecture would involve many lengthy and nontrivial arguments
and therefore left for future research.

Finally, we can see in view of Theorems 1 and 2 above and Proposition 1 in
the Supplementary Material [Chu et al. (2018)] that if the serial dependence is
sufficiently weak, the sequence of bandwidths in each cluster can be chosen as
originally suggested by Kneip and Utikal (2001). This is illustrated both in our
simulation study and in the empirical applications in the next sections.

4. Simulation study. In this section we conduct simulations to assess the per-
formance of the proposed estimators of {{θt,j }Jj=1}Tt=1 and {gj }Jj=1 with stratified
random samples using various scenarios, sample and population sizes, and weight-
ing schemes.

We consider the case when J = 1 and T = 30, where the super-populations
{ft }30

t=1 are generated by a mixture of two normal distributions, that is, ft =
fμ + θt,1g1 where g1 = φ−1/2,1/2 − φ1/2,1/2, with φμ,σ representing a Normal
density function with mean μ and variance σ 2. The sequence θt,1 = ϑt − ϑ̄ and
function fμ = ϑ̄φ−1/2,1/2 + (1 − ϑ̄)φ1/2,1/2, where ϑ̄ = (1/30)

∑30
t=1 ϑt , are gen-

erated using three scenarios as follows:
Scenario 1: ϑt = t

30 + 1
4π

sin(πt
30 ) − 3

8π
sin(2πt

30 ),
Scenario 2: ϑt = 1

2 + 1
2 sin(30

t
),

Scenario 3: ϑt = 1
2Beta3/2,3/2(

t
30),

where Betaα,β represents the Beta probability density function with shape parame-
ters α and β . The implied dynamics of these super-populations densities are shown
in Figure 2. Note that these three scenarios provide rich dynamic settings in which
to assess the numerical performance of the proposed estimators in this paper. Sce-
nario 1 provides a setting in which densities are diverging systematically from each
other, while Scenario 2 depicts a situation where densities seems to be shuffling
around at first and then a pattern of convergence emerges. Finally, Scenario 3 por-
trays a case in which densities differ very little before and after a period of large
changes in the dynamics of these super-populations.

At each period, t , we then randomly draw (without replacement) a total sample
of n = ∑6

k=1 nk from N = ∑6
k=1 Nk observations distributed over L = 6 strata as

described in Table 1.
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FIG. 2. Super-populations used in the simulation study. Top row panels display sequences {θt,1}30
t=1

that along with the common g1 function displayed in the bottom row panels generate the set of 30
super-populations, f1, . . . , f30 displayed in the middle row panels. The dashed horizontal lines mark
zero.

To simplify calculations and computational time we set ft,1 = · · · = ft,6 = ft

in (3.5). For the same reasons bandwidths are also set as h1 = · · · = h6 = h, b1 =
· · · = b6 = b, h = ĥ5/4 and b = ĥ × T −1/5, where ĥ corresponds to Duin’s (1976)
likelihood cross-validation bandwidth. These are done in each period t = 1, . . . ,30
and along with a Gaussian kernel, the SWKD estimators are also estimated, that is,
f̂n,1, . . . , f̂n,30 and f̂ ∗

n,1, . . . , f̂
∗
n,30. We then proceed to calculate {θ̂t,1}30

t=1 and ĝ1

on an equally spaced grid on [−2.7,2.7] using three different weighting functions

TABLE 1
Simulation Design

n1/N1 n2/N2 n3/N3 n4/N4 n5/N5 n6/N6 n/N

667/2223 223/4445 1067/6666 555/2219 334/2223 201/2224 3047/20,000
1501/3334 501/6667 2400/9999 1250/3331 751/3334 451/3335 6854/30,000
2667/4445 889/8889 4267/13,333 2221/4442 1334/4445 801/4446 12,179/40,000
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FIG. 3. Simulated Root Mean Squared Error of the Dynamic Strength Components. Simulated
Root Mean Squared Error of estimators of θ10,1, . . . , θ20,1 in various sampling designs for all three
Scenarios using all three weighting functions.

[see Figure E.1 in the Supplementary Material, Chu et al. (2018)]:

(4.1)

w1(u) = 1,

w2(u) = 10

π [exp(u) + exp(−u)] ,

w3(u) = 16|u|
π [exp(u) + exp(−u)] .

In (4.1), w1 provides equal weights to all points in the integral, while w2 down-
weights extreme points in favor of points near zero, and w3 downweights most
points in the center of the distribution, while giving higher weights to points in the
tails.

The experiment is repeated 1000 times and Figure 3 summarizes our results
[the Supplementary Material, Chu et al. (2018), shows the results when using
Silverman’s (1986) rule-of-thumb bandwidths instead). Figure 3 displays the sim-
ulated Root Mean Squared Error (RMSE) of estimators of θ10,1, . . . , θ20,1 in each
scenario when using weighting functions w1, w2, and w3 in (4.1). These simula-
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tions show that the precision of the proposed estimators for the dynamic strengths
components increases with sample and population sizes when accounting for the
complex survey design. The performance of the estimators is however sensible
to the weighting functions being used. In particular, the performance in terms of
RMSE using weighting schemes w1 or w2 is strictly dominated by the weighting
function w3 in Scenarios 1 and 2. On the other hand, although weighting scheme
w3 displays smaller RMSE than when using w2, no weighting scheme w1 gives the
smallest simulated RMSE in scenario 3. Interestingly, as seen in Figure 2, weight-
ing function w3 seems to work best when the inter-temporal dynamics concentrates
in the tails, and these are given larger weights as can be seen in Scenarios 1 and 2.

Similarly, Figure 2 in the Supplementary Material for this paper [Chu et al.
(2018)] shows the Q–Q plots of the standardized simulated ĝ1 evaluated at x = 0.5.
These plots show that the pointwise asymptotic normal approximation is good
across all scenarios and sample/population sizes. Again, the performance of the
weighting function in w3 seems to dominate throughout in terms of tail behavior.
These results along with those in Figure 3 are in line with our theoretical predic-
tions in Section 3.2. They also highlight the fact that the weighting function w3
seems to provide better estimates of the strengths components and basis functions.
Furthermore, as shown in the Supplementary Material [Chu et al. (2018)], these
findings are robust to bandwidth choice.

5. Applications to the UK CPI data. In this section, we demonstrate that the
FPCA methodology can be used to visualize in a structured manner the evolution
of micro price distributions, see, for example, Huynh and Jacho-Chávez (2010)
and Huynh et al. (2016) for similar applications. We apply the FPCA methodology
to the UK price data to analyze the time evolution of the distribution of the stan-
dardized and de-trended natural-logarithm prices [log(Price)] and their changes
[� log(Price)]. We utilize the R packages npRmpi (cross-validation) and snow
(numerical integration). All computations were performed on EDITH, the Bank
of Canada High Performance Cluster, which consists of 664 cores on 36 nodes.
All jobs utilize about 250 cores; bandwidth cross-validation takes about 24 hours
while numerical integration takes about an hour.

5.1. Data visualization. Measurement of the dynamics of economy-wide
price distributions offers important implications for economists and central
bankers, who are interested in understanding fluctuations in inflation and other eco-
nomic variables. Understanding the evolution of the joint dynamics of micro-level
prices is of a first-order importance for economists. A voluminous literature in this
area is represented by papers including inter alia Bils and Klenow (2004), Dhyne
et al. (2006), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008),
Gagnon (2009), Klenow and Malin (2010), Kryvtsov (2016), and Kryvtsov and
Vincent (2017). Since inflation measures a change in the price level for goods and
services sold by retailers across the country, inflation dynamics depends on how

http://cran.r-project.org/web/packages/npRmpi/index.html
http://cran.r-project.org/web/packages/snow/index.html
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individual retailers set and change their prices across time, and on how price be-
haviour across retailers balance out at the economy-wide scale. Information about
these two sources of aggregate price movements is handily embedded in price
distributions and their movements across time. Micro price data can be used to
estimate price distributions, and therefore, provide valuable evidence on the nature
of aggregate inflation fluctuations and the effects of monetary policy.

Figure 4 utilizes Hyndman, Bashtannyk and Grunwald’s (1996) highest den-
sity regions, stacked density plots, and its smoothed version in Castro Camilo and
de Carvalho (2017) to display the resulting SWKD estimators for both variables
using a second-order Gaussian kernel in each month. Given the large number of
observations and the absence of sparseness within strata, we use a common band-
width across stratas that are chosen by Duin’s (1976) likelihood cross-validation.
This cross-validation is completed for each month in our sample and the result-
ing bandwidths can be found in the top graph in Figure 4 in the Supplementary
Material [Chu et al. (2018)]. We observe several empirical regularities for the dis-

FIG. 4. Estimated distributions of log(Price) and � log(Price). Top and bottom graphs utilize
Hyndman, Bashtannyk and Grunwald’s (1996) stacked density plots device and their highest den-
sity regions per month with 50% (dark gray), 95% (gray), 99% (light gray) probability coverage,
and the mode (•). Middle plots display the Castro Camilo and de Carvalho’s (2017) smooth stacked
density plots.
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tributions of the demeaned price levels [log(Price), left panel] and price changes
[� log(Price), right panel].

First, from month to month, distributions shift their mass across different den-
sity regions, captured by shaded areas on the right-hand side plots. Second, the
relative sizes of density regions change across time, reflecting fluctuations in the
degree of price dispersion. Third, changes in relative density regions are asymmet-
ric from month to month, resulting in varying skewness of the distribution (top and
middle left panels). Fourth, the densities at the peak and at the tails vary extensively
(middle and bottom right panels). Finally, fluctuations in density regions stand out
during recessions. For example, the peak of price-level distributions is markedly
higher during mid-2000s, and the 50% density is smaller for price changes during
both recessions.

These descriptive statistics are visually appealing. However, it is difficult to
quantify how these distributions are evolving over time especially with complex
survey weights. In the next section, we operationalize the estimators described in
Section 3.1.1 by using weighting function (w1) in (4.1) over the observed support
of the entire sample (as permitted in Assumption 2). This weighting function was
found to outperform no weighting in the simulation study in Section 4. The re-
quired bandwidths in each month are chosen as described in Section 3.1.1. A total
of T × (T − 1)/2 = 27,495 univariate numerical integrals were calculated in par-
allel using an adaptive quadrature algorithm in Piessens et al. (1983). Results are
shown in Figure 5.

5.2. Dynamic scree plots and strength coefficients. The left-hand side plots
in Figure 5 display the dynamic scree plots—the contribution of the respective
eigenvalues to total variation of distributions. Visual inspection of the dynamic
scree plot for the log(Price) reveals that the first four components account for about
5% of the log(Price) distributions variation after which the dynamic scree plot is
relatively flat. For the �log(Price) the first four components account for 7% of the
variation. Hence, a bulk of the time-variation in price distributions is characterized
by just a few principal components. Furthermore, the scree plots demonstrate that
the second, third, and fourth components together are about as important as the
first common component in accounting for the variance of these distributions. This
is an important result for understanding the drivers of inflation fluctuations as it
highlights the key role of higher order components.

The right-hand side of Figure 5 provides a normalized version of the esti-
mated first three dynamic strength coefficients, that is, θ̂

†
t,r − θ̂

†
1996−03,r , where

θ̂
†
t,r = θ̂t,r/mint θ̂t,r , and θ̂t,r is defined in (3.11), for r = 1, . . . ,3. These plots de-

scribe how each component evolves over time. Note that these location/scale nor-
malizations are useful in describing the movements in terms of a common initial
value of zero, and in terms of order-of-magnitudes larger than the lowest tempo-
ral deviation, that is, scale free. They also better highlight the correlation between
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FIG. 5. Estimated dynamic scree plots and strength components: log(Price) and � log(Price).
Each plotted estimated strength components are normalized to start at zero on 1996–03, that is,
θ̂

†
t,j − θ̂

†
1996−03,j , where θ̂

†
t,j = θ̂t,j /mint θ̂t,j , for j = 1,2,3.

them and other key economic variables. The dynamics for the first three estimated
dynamic strength coefficients deviations for the log(Price) resemble an AR(1) pro-
cess with the AR estimated coefficients of 0.19, 0.61, and 0.64, respectively. For
the �log(Price) the process has AR(1) coefficients of 0.37, 0.22, and −0.36, re-
spectively.

We find that some of these components are correlated with economic variables.
Figure 6 illustrates that the first three estimated strength coefficients for log(Price)
and �log(Price) comove with the UK monthly unemployment rate and the in-
flation rate. For log(Price), the correlations of the first three estimated dynamic
strength coefficients and the unemployment rate are 0.66, −0.20, and 0.12, respec-
tively; and for �log(Price), the correlations of the first three estimated dynamic
strength coefficients and the inflation rate are 0.20, −0.11, and −0.06, respec-
tively.

While we are able to estimate the correlations consistently, their standard errors
remain unknown so we are unable to test their statistical significance. Nonethe-
less, since by construction the dynamic strength coefficients are statistical “model-
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FIG. 6. Estimated strength components, UK unemployment, and inflation. Top plot: Left hand side

axis is the scale for the normalized estimated strength components, that is, θ̂
†
t,j = θ̂t,j /mint θ̂t,j ,

j = 1,2,3, for log(Price) (red solid line represents its zero), while the right hand side axis is the
scale for the UK monthly unemployment rate measured in percentages. Bottom plot: Left hand side
axis is the scale for the normalized estimated strength components (defined before) for � log(Price),
while the right hand side axis is the scale for the UK monthly inflation as measured by the CPI
measured in percentages.

free” concepts, correlation of the coefficients with economic variables suggests
that FPCA methodology has potential value for price measurement and macroe-
conomic analysis. Note that these correlations already take into account the in-
formation contained in the sampling design through the estimated coefficients as
described in Theorem 2 above.

5.3. Basis functions and their deformations. The estimated dynamic strength
coefficients summarize the dynamics of the distributions through time, but they
do not provide information about the parts of the distributions that are evolving.
This information is captured by the estimated time-invariant basis functions, or
functional principal components, ĝj . Black solid lines in Figures 7 and 8 plot the
first four bootstrap bias-corrected estimated common functional components, ĝj ,
j = 1, . . . ,4, for log(Price) and �log(Price), respectively.
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FIG. 7. Estimated first four basis functions and their deformations for log(Price). Each plot dis-
plays bootstrap bias-corrected estimates of the first four basis functions, ĝj (·), for j = 1, . . . ,4
(black solid line), as well as three deformations corresponding to the beginnings of two recessions,
that is, 2009–08 (blue dashed line) and 2011–11 (blue dotted line), as well as the beginning a period
of normal economic activity, that is, 2001–04 (blue solid line). The red solid line represents zero.

The shape of the common functional components outlines the density regions
that are deformed over time; and the extent of the temporal deformation is given by
the corresponding estimated dynamic strength coefficients, θ̂t,j . For example, ĝ1

on Figures 7 and 8 is positive for prices and price changes that are roughly below
zero and negative for prices and price changes that are above zero, respectively.
This means that time variation in the estimated dynamic strength coefficient θ̂t,1

will be shifting the mass in the distribution of prices (price changes) back and
forth from low to high prices. The mass that is distributed is given by the total
estimated component deformation, θ̂t,1ĝ1. Likewise, estimated higher order basis
functions represent mass shifts away from the middle (ĝ2), between the tails (ĝ3),
and between the middle and the tails (ĝ4). These inherent features of the first four
common functional components can therefore be related to the temporal variations
in the first four central moments of the distributions: the mean, variance, skewness,
and kurtosis.
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FIG. 8. Estimated First Four Basis Functions and their Deformations for � log(Price). Each plot
displays bootstrap bias-corrected estimates of the first four basis functions, ĝj (·), for j = 1, . . . ,4
(black solid line), as well as three deformations corresponding to the beginnings of two recessions,
that is, 2009–08 (blue dashed line) and 2011–11 (blue dotted line), as well as the beginning a period
of normal economic activity, that is, 2001–04 (blue solid line). The red solid line represents zero.

To illustrate the usefulness of FPCA, Figures 7 and 8 plot the estimated com-
mon component deformations, θ̂t,j ĝj , for three important periods of the British
economy in the past 19 years: for April 2001, representing an expansionary pe-
riod of economic activity (θ̂2001−04,j ĝj for j = 1,2,3,4), and the beginning of
two recessions in August 2009 (θ̂2009−08,j ĝj ), and December 2011 (θ̂2011−12,j ĝj ).
The unemployment rate was 5% in April 2001, and 8% (8.5%) in August 2009
(December 2011).

Based on the pointwise asymptotic normality result in Theorem 2, a 95% boot-
strap pointwise confidence intervals based on 999 replications are also shown in
these plots, as gray areas. To mimic the original stratified sampling design in each
month, the following bootstrap procedure was implemented:

1. For each month, t = 1, . . . ,235, 999 bootstrap samples within strata are
taken and bootstrap replication weights are constructed as suggested in Canty and
Davison (1999), Section 3.4, pages 383–384.
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2. Based on the 999 bootstrap samples and replication weights generated in
the first step, bootstrap analogues of the original estimator of (3.11) are then con-
structed using bandwidths and kernel functions used for the original sample.

Hence, components with basis functions for which gray areas are above or below
zero make a statistically significant impact on the underlying distributions.

The first estimated common component deformation shows that in 2011 the
underlying baseline distribution of prices shifts the weight from the left part of
the distribution (less than zero) toward the right part of the distribution, which
is indicative of an increase in the mean. Note that the 2001 and 2009 estimated
common component deformations are not discernible in the figure. The second
component deformation for 2009 (top right panel in Figure 7) indicates that the
weight is moving toward the center of the distribution which is indicative of de-
crease in price distribution variance in the wake of the Great Recession in the UK.
The shape of the corresponding estimated basis function (bottom left panel in Fig-
ure 7) implies that during slumps there is less weight assigned to the left of the
distribution so that positive skewness is lower, which is the case for the 2009 and
2011 recessions and is virtually not discernible on the figure. The fourth estimated
basis function (bottom right panel) complements this interpretation by showing
that the middle part of the distribution is gaining at the expense of the tails.

Similarly, for �log(Price) in Figure 8, the first, second, and third components’
confidence intervals contain zero for some of the range, but are nonetheless infor-
mative. For example, the first component reveals a positive mean-effect in 2001
while in 2009 there is a negative mean effect, which is consistent with predic-
tions of standard sticky price models that economic expansions (contractions) are
associated with higher (lower) inflation rates. The second estimated common com-
ponent deformations (top right panel in Figure 8) suggest that 2009 and 2011
recessions are associated with larger dispersion than 2001 expansion. The third
estimated common component deformations shows an increase in the left tail at
the expense of the middle and right tail in 2001 expansion, which is indicative of
higher positive skewness. The fourth estimated common component deformation
shows that during the 2009 and 2011 recessions the mass in both tails and the
middle of the distribution was lower which is indicative of higher kurtosis.

5.4. Density dorecasting. In this section, we propose a density forecast exer-
cise based on (1.1) to forecast price distributions and track the underlying price dy-
namics. This exercise also serves as a data-driven mechanism for choosing J , the
number of principal components. First, recall we can estimate nonparametrically
T super-populations, namely f1, . . . , fT based on a sample {{Xit ,wit }nt

i=1}Tt=1 as
in (3.6), that is, {f̂t }Tt=1. By choosing T ∗ < T , one can implement the following
procedure to select the number of components, J , and the best (in the Integrated

Squared Error sense) forecast, ˆ̂fT ∗+�|T ∗ for � = 1,2, . . .:
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Step 1. Using the first T ∗ estimated densities, {f̂t }T ∗
t=1, calculate {{θ̂∗

t,r}L∗
r=1}T

∗
t=1,

and {ĝ∗
r }L∗

r=1 where L∗ ≤ T ∗ represents the number of the first nonzero eigenvalues
of the T ∗ × T ∗-matrix M̂∗ as in Section 3.1.1. Also set f̂ ∗

μ = (1/T ∗)∑T ∗
t=1 f̂t .

Step 2. In view of the orthogonality conditions in (3.3), we utilize the algo-
rithm in Hyndman and Khandakar (2008), Section 3.2, pages 10–11, to automat-
ically identify the best fitted ARMA model for each generated series, {θ̂∗

t,r}T ∗
t=1,

r = 1, . . . ,L∗, and then proceed to obtain an automatic forecast for period T ∗ + �

as described in Hyndman and Khandakar (2008), Section 2.6, page 8, that is,
{ ˆ̂θT ∗+�|T ∗,r}L∗

r=1.
Step 3. Set

Ĵ = arg min
l∈{1,...,L∗}

∫ (
f̂T ∗+�(x) − f̂ ∗

μ(x) −
l∑

r=1

ˆ̂θT ∗+�|T ∗,r ĝ
∗
r (x)

)2

dx,(5.1)

ˆ̂fT ∗+�|T ∗ = f̂ ∗
μ +

Ĵ∑
r=1

ˆ̂θT ∗+�|T ∗,r ĝ
∗
r .(5.2)

Results are displayed in Figure 9. We set T ∗ = 232 (or 2015–06) and calcu-
late Ĵ = 231 and Ĵ = 4 for log(Price) and �log(Price) respectively. Using these
calculated Ĵ s we then proceed to repeat Steps 1 and 2 above in each of the 999
bootstrap replications described in Section 5.3. The latter is done using the original
calculated bandwidths, Gaussian kernel functions, and weighting function (w1) in
(4.1) in each replication. 95% pointwise confidence intervals and bias-corrected

versions of f̂233, f̂235, ˆ̂f233|232, and ˆ̂f235|232 are then constructed using these boot-
strap samples.

As shown in Figure 9, the one-month (� = 1) and three-month (� = 3) pop-
ulation density forecasts for log(Price) and �log(Price) are spot on in terms of
overall shape, although the pointwise variability is larger for the 1-month fore-
cast density for �log(Price). The pointwise bootstrapped confidence intervals are
in general tighter for the forecasts than for the actual bias-corrected SWKD esti-
mators. Figure 3 in the Supplementary Material provides the resulting Q–Q plots
for these forecasts as well. The results are discussed there. Alternatively, one can
implement various formal quantitative methods for density forecast evaluation as
suggested in Thorarinsdottir, Gneiting and Gissibl (2013).

An interesting feature of this density forecast algorithm is that as time passes, it
can be re-run to update the chosen Ĵ and the estimated parameters of the automated
ARMA model for each generated series {θ̂∗

t,r}T ∗
t=1, r = 1, . . . ,L∗. However, the

theoretical justification of this proposed density forecast algorithm is beyond the
scope of the paper and therefore left for future research.
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FIG. 9. Feasible 1-month and 3-months density forecasts. The light gray and light blue areas rep-
resent 95% pointwise bootstrap confidence intervals based on 999 replications.

5.5. Sensitivity analysis. As a sensitivity analysis the entire empirical analysis
in this paper was performed using naive Silverman’s (1986) rule-of-thumb band-
widths instead of Duin’s (1976) cross-validated bandwidths, see Section F.5 in the
Supplementary Material [Chu et al. (2018)]. Similarly, the sensitivity of the results
were also analyzed when using the remaining weighting functions in (4.1) instead;
see Section F.4 in the Supplementary Material [Chu et al. (2018)]. A simple vi-
sual inspection of these results confirms that the empirical findings in this paper
are qualitatively the same when using different bandwidths and weighting func-
tions. General functional components’ shapes and components’ dynamics remain
the same and tell the same story. The density forecasting exercise also seems to be
robust to the choice of bandwidths and weighting functions, but the resulting val-
ues of Ĵ in (5.1) tend to be lower for �log(Price) when using rule-of-thumb band-
widths or the remaining weighting functions in (4.1) with cross-validated band-
widths instead.

Finally, we also check the sensitivity of the proposed algorithm in Section 5.4
when Ĵ in (5.1) is chosen as Ĵ = arg minl∈{1,...,L∗} |̂λl/

∑L∗
j=1 λ̂j − 1/T ∗|, where

we set T ∗ = 232, and L∗ ≤ T ∗. Results are displayed in Section F.6 in the Supple-
mentary Material [Chu et al. (2018)]. We find that this alternative way to choose J
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provides more parsimonious models when rule-of-thumb bandwidths are used for
log(Price). Otherwise, no other clear ranking can be found. Nevertheless, we note
that general shapes remain the same indicating that, at least for this application,
the choice of J does not seem to play an important role for density forecasting.

6. Discussion. In this paper, we adapt the conventional FPCA method of
Kneip and Utikal (2001) to allow for survey weights and temporal dependence.
This methodology is useful since most micro data comes with survey weights,
and it allows to understand the joint evolution of these distributions. This method
is superior to simple inspection of descriptive statistics tools such as median and
quantiles of distribution because we jointly model the cross-sectional and tempo-
ral dependence of survey data. In addition, the paper provides asymptotic evidence
that our estimator can be adapted to allow for survey weights while correcting for
temporal-dependency induced biases. We conduct an extensive simulation exer-
cise with different scenarios that contain different sample and population sizes,
and with different tuning parameters such as weighting functions. The simulation
demonstrates the efficacy of our methodology and robustness of our results to the
choice of bandwidths and weighting functions. Further, it allows us to decompose
how the distribution changes with the respective components.

We highlight the effectiveness of our method by applying it to a large scale
dataset that consists of 26 million unique price quotes used for constructing the
UK consumer price index for the period from March 1996 to September 2015. We
focus our analysis on the distribution of detrended logarithm of prices, log(Price),
and the month-to-month change in the logarithm of prices, �log(Price). We find
that in our application the dynamics of higher order moments of price and price-
change distributions are as important as the first moment in driving these changes
over time. For example, price dispersion decreases and the tails thin out in the
wake of the 2009 recession, but these effects are reversed over the ensuing 2011
recession. At the same time price changes become more dispersed suggesting that
the times of economic turmoil trigger across-the-board price adjustments. These
facts gleaned from this visualization method can be used by economists to sort out
models of inflation and business cycles because their predictions are inherently
linked to assumptions about individual price adjustments in response to economic
shocks.

Finally, we use the FPCA components to conduct an out-of-sample forecast-
ing exercise. We exploit the persistence of the dynamic strength components to
compute one-month and three-month out-of-sample forecasts of log(Price) and
�log(Price). We compare our forecasts with the random walk model and find that
log(Price) is observationally equivalent while the �log(Price) is superior. This ex-
ercise illustrates the usefulness of FPCA for visualization, to decompose the evo-
lution of a distribution, and then to exploit this evolution for forecasting purposes.
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SUPPLEMENTARY MATERIAL

Supplement to “On the evolution of the United Kingdom price distribu-
tions.” (DOI: 10.1214/18-AOAS1172SUPP; .pdf). In supplementary material we
provide mathematical proofs of all the main results in the manuscript.
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