
The Annals of Applied Statistics
2018, Vol. 12, No. 4, 2151–2174
https://doi.org/10.1214/18-AOAS1147
© Institute of Mathematical Statistics, 2018

RANK TESTS IN UNMATCHED CLUSTERED RANDOMIZED
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In the Teacher and Leader Performance Evaluation Systems study,
schools were randomly assigned to receive new measures of teacher and prin-
cipal performance. One outcome in the study, measured at the teacher level,
was truncated at zero, and displayed a long tail. Rank-based statistics are one
natural method to apply to such outcomes, since inferences will be robust and
exact, and we can avoid assumptions about the model that generated the data.
We investigate four different possible rank statistics that vary in the form of
weighting applied to clusters. Each test statistic has the correct level but may
vary in terms of the power to detect departures from the null. We conduct
simulations for power comparing to linear mixed models with Normal, t , and
Cauchy errors. We obtain a point estimate and construct confidence inter-
vals by applying the Tobit model of effects, which assumes that treatment
increases the outcome by a constant amount but only if the response under
control would be positive. We also develop a formal randomization-based
method for testing the appropriateness of the Tobit model of effects. In the
data from the study, we find no evidence against the Tobit model of effects.

1. Introduction.

1.1. Clustered experimental designs. In many contexts, it is useful to apply
treatments to groups of individuals rather than to individual subjects. For exam-
ple, a clustered randomized trial was used to evaluate Success For All, a reading
intervention for elementary schools students [Borman et al. (2005)]. In this study,
21 intact schools were assigned to the Success For All reading curriculum, while
20 schools were assigned to the control condition. Alternatively, clustered experi-
mental designs are used to examine the effects at the level of medical practices. In
the POST trial, 52 general practices were randomized to study the effect of mailing
letters to patients to improve follow up care for coronary heart disease [Feder et al.
(1999)]. One advantage of clustered treatment assignment is that treatments can
spillover to units within the same cluster and not bias the estimates of treatment
effects [Imbens and Wooldridge (2008)]. However, clustered treatment assignment
tends to reduce efficiency compared to assigning treatments at the individual level.
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This will be especially true when units in the same cluster tend to have the same
response for reasons unrelated to treatment [Cornfield (1978)].

Clustered randomized trials are commonly analyzed using the linear mixed
model (LMM) assuming additive effects and cluster-level random effects [Song
and Ahn (2002), Murnane and Willett (2010), Hayes and Moulton (2009)]. Criti-
cally, the LMM assumes the data are generated from Normal distributions. Tests
from LMMs may have a substantial loss of power when the data are from heavy-
tailed distributions. Moreover, the inferential properties of the LMM also depend
on modeling assumptions. These modeling assumptions and asymptotic approxi-
mations may be particularly suspect since many clustered randomized trials have
sample sizes of less than 50–75 clusters.

Alternatively, Rosner, Glynn and Lee (2003, 2006), Datta and Satten (2005) and
Dutta and Datta (2016) have used rank-based statistics to test the null hypothesis of
zero treatment effect in settings with clustering. In order to derive asymptotic dis-
tributions for these rank-based tests, they restricted the form of the test statistics,
and they must also implicitly assume that units’ outcomes have the same marginal
distribution under the null hypothesis regardless of whether the units are in the
same cluster or not. Rank statistics of this type are more resistant to violations of
parametric modeling assumptions and heavy-tailed outcomes, but they still require
assumptions about the data generating process and a large number of clusters for
asymptotic approximations. We seek to develop rank-based tests under fewer as-
sumptions. Before introducing these new methods, we describe the Teacher and
Leader Performance Evaluation Systems (TLPES) study, a clustered randomized
trial which motivates the methods we develop.

1.2. The TLPES intervention. Recent research has highlighted the importance
of high quality teaching [Chetty, Friedman and Rockoff (2014)], and the TLPES
was one proposed intervention to increase teacher and principal quality. The
TLPES is a clustered randomized trial designed to examine the effect of imple-
menting new measures of teacher and principal performance. In the trial, there
were 63 treated schools and 64 control schools. The number of teachers in each
school ranges from 2 to 27 [Wayne et al. (2016)]. Figure 1(a) contains box plots
for the number of teachers (units) within schools (clusters) by treatment status.
Cluster sizes are well balanced under treatment and control with p-value = 0.60
from a t-test and p-value = 0.31 from using the Wilcoxon rank sum test.

The goal in the study was to implement higher quality measures of teachers
and principal performance in hopes of improving classroom practice and principal
leadership. In the trial, teachers in treated schools received four rounds of teaching
observation where the new measures of teacher performance were implemented.
The teaching observations were then followed by feedback sessions between the
observer and the teacher. The teacher evaluations were carried out by either the
principal or by a district selected observer. Both principals and district selected
observers received three–four days of training on teacher evaluation methods to
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FIG. 1. Cluster sizes and outcomes for the TLPES study by treatment status.

support the teaching observations and feedback sessions. The intention was that by
clarifying expectations and providing additional feedback, teachers would spend
more time on professional development and high performing teachers would be
encouraged to improve classroom practice. The primary outcomes in TLPES were
measures of teacher classroom practice and student achievement [Wayne et al.
(2016)].

The study also measured whether the intervention changed the behavior of
teachers in the treatment group. One of these measures was the length of the feed-
back session measured in minutes, which was collected for teachers in both the
treatment and control arms of the study. Figure 1(b) contains box plots of the
amount of feedback a teachers received as measured by the number of minutes
in the feedback session by treatment condition collected after the first year. Fig-
ure 2 contains box plots of the outcome by school and treatment condition. Treated
schools tend to have longer feedback sessions but also display greater variability
compared to control schools. In the control arm, while many teachers received
feedback, a large fraction of observations recorded zero minutes of feedback pro-
ducing point masses at zero in the outcome measure. We observe the mass of the
density at zero with other point masses at 30, 60, 90 and 180 minute intervals.
This outcome measure is far from a Normally distributed outcome. In this study,
we focus on the length of the feedback session as a single outcome in the analysis.
If future decisions are based on additional outcomes, then corrections for multiple
testing should be applied. We ignore this issue in the current paper, since we did
not have access to the full set outcomes collected in the study.

1.3. Contribution and structure of the paper. Given the distribution of the out-
come and the relatively small number of clusters, we might wish to avoid the use
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FIG. 2. Within school variability of the outcome, length of feedback session, by treatment condition.

of asymptotic approximations in the analysis of the data from the TLPES inter-
vention. In general, it may be preferable to use tests that have power under a wider
range of distributions. To ensure that the level of the test is correct, we use random-
ization inference. Under randomization inference, we use the actual randomization
to simulate the distribution of the test statistics rather than relying on assumptions
about the process which generated the outcome data [Fisher (1935), Rosenbaum
(2002a), Imbens and Rubin (2015)]. Rank-based tests under randomization infer-
ence are well developed for clustered randomized trials with clusters paired prior
to the assignment of treatment [Small, Ten Have and Rosenbaum (2008), Zhang,
Traskin and Small (2012)], but no such work exists for clustered randomized trials
that are unpaired. Unlike previous robust inference for clustered randomized trials
[Rosner, Glynn and Lee (2003, 2006), Datta and Satten (2005), Dutta and Datta
(2016)], which dealt with only the testing problem, we are also interested in point
and interval estimation of the treatment effect without imposing the LMM assump-
tions. In the randomization inference framework, the test of no effect can be in-
verted to provide distribution-free confidence intervals, and the Hodges–Lehmann
method produces point estimates. See Rosenbaum (2002a), Chapter 2, for details.

Because the control outcomes have a point mass at zero, the usual constant treat-
ment effect model [Rosenbaum (2002a), Ding, Feller and Miratrix (2016)] does
not hold. Instead, we estimate the treatment effect under the Tobit model [Tobin
(1958), Rosenbaum (2002a)], where the control outcomes are truncated at zero.
Moreover, we propose an exact randomization test for the appropriateness of the
Tobit model itself, extending previous work for testing treatment effect heterogene-
ity, that is, the constant treatment effect model [Ding, Feller and Miratrix (2016)].
The formal test for the goodness of fit of the Tobit model is another contribution
to the literature.
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The paper proceeds as follows. Section 2 introduces the potential outcomes no-
tation for clustered randomized experiments and the basis for randomization-based
test. Section 3 proposes several possible choices of test statistics in clustered ran-
domized experiments, and discusses the exact distribution of general test statistics
and the asymptotic distributions of a class of test statistics that can be represented
as summation of cluster-level characteristics. Section 4 uses simulations to study
the powers of the proposed test statistics. Section 5 discusses point estimation,
confidence interval and model checking under the Tobit model. Section 6 applies
the proposed methodology to the TLPES study, obtaining point and interval esti-
mates of the treatment effect under a Tobit model and testing the appropriateness
of the Tobit model itself. Section 7 concludes.

2. Treatments assigned to clusters.

2.1. Notation: Treatment effects for units in schools. We have C clusters, and
cluster i has total number of units ni , i = 1, . . . ,C. We label the units by (i, j),
with i denoting the cluster number and j denoting the number of units within clus-
ter, i = 1, . . . ,C and j = 1, . . . , ni . In the TLPES study, schools are clusters, and
the teachers are the units. The total number of experimental units is N = ∑C

i=1 ni .
Before conducting the experiment, unit (i, j) has unit-level pretreatment covari-
ates Xij , and cluster i has cluster-level pretreatment covariates Wi . In a cluster-
randomized experiment, we randomly assign C1 clusters to receive treatment and
C0 clusters to receive control; within each cluster, all units receive the same treat-
ment level. Let Zi be the treatment indicator for cluster i, with 1 for treatment
and 0 for control. Therefore, Z = (Z1, . . . ,ZC) is the treatment vector for clus-
ters, and its realized value z = (z1, . . . , zC) ∈ {0,1}C must satisfy

∑C
i=1 zi = C1.

A cluster-randomized experiment is a completely randomized experiment at the
cluster level, that is, for all z with C1 under treatment and C0 under control,

(1) P(Z = z) = 1
/(

C

C1

)
.

We use the potential outcomes framework to define causal effects. The poten-
tial outcome Yij (z) is a function of the experimental unit (i, j) and the treatment,
and thus is treated as fixed [Neyman (1923), Rubin (1974)]. It is often reason-
able to assume that there is no interference between units across different clusters,
which simplifies the potential outcome as Yij (zi). That is, since the units available
for treatment are clusters and not teachers, it is unlikely that teachers in different
schools interfere with each other. As such under this notation, we allow within-
cluster interference but rule out between-cluster interference. Thus we rule out the
possibility of interference between units under the usual stable unit treatment value
assumption [Rubin (1986)]. Because all units within the same cluster receive the
same treatment, we can write the potential outcomes of unit (i, j) as Yij (1) and
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Yij (0) if cluster i receives treatment and control, respectively. The observed out-
come Yij is a deterministic function of the potential outcomes and the cluster-level
treatment assignment:

Yij = ZiYij (1) + (1 − Zi)Yij (0).

A primary goal of the experiment is to test whether the treatment affects the out-
come, that is, the following sharp null hypothesis of zero causal effects on each
experimental unit:

H0 : Yij (1) = Yij (0) (i = 1, . . . ,C; j = 1, . . . , ni).

2.2. Exact inference in a clustered randomized trial. Under the sharp null hy-
pothesis, the observed outcomes Yij = Yij (1) = Yij (0) are all fixed, and the only
randomness of the data comes from the treatment assignment Z. Let Y = {Yij : i =
1, . . . ,C; j = 1, . . . , ni} be the collection of observed outcomes, n = (n1, . . . , nC)

be the vector of cluster sizes, X the collection of unit-level covariates, and W the
collection of cluster-level covariates. Ideally, we can use any function of the data,
T (Z,Y,n,X,W), as a test statistic against the sharp null hypothesis; its null dis-
tribution is known and can be either calculated exactly or simulated by repeatedly
drawing the treatment assignment Z from its distribution (1). Of course, in prac-
tice, we must also select a test statistic to measure possible differences in outcomes
caused by the treatment. Below, we review and propose possible test statistics.

3. Test statistics for clustered randomized trials.

3.1. Test statistics based on the original outcome scale. The first class of test
statistics, based on the original scale of the outcome, is often motivated by estima-
tion of the average causal effect for all units in the clustered randomized experi-
ment:

τ =
∑C

i=1
∑ni

j=1{Yij (1) − Yij (0)}∑C
i=1 ni

.

For example, we review some intuitive estimators of τ discussed by Middleton
and Aronow (2015). To facilitate this discussion, we let Yi = ∑ni

j=1 Yij be the total
of the observed outcomes within cluster i. The first estimator is the difference
between the means of the treatment and control units:

τ̂1 =
∑C

i=1 ZiYi∑C
i=1 Zini

−
∑C

i=1(1 − Zi)Yi∑C
i=1(1 − Zi)ni

,

which is unbiased only with equal cluster size, and consistent only if the number of
clusters goes to infinity. With unequal cluster sizes and finite number of clusters, τ̂1
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is biased and inconsistent for τ . The second estimator modifies the denominators
of τ̂1, and yields unbiased estimation for τ regardless of the cluster sizes:

τ̂2 =
∑C

i=1 ZiYi

C1N/C
−

∑C
i=1(1 − Zi)Yi

C0N/C
.

In fact, τ̂2 can be further modified by

τ̂3 =
∑C

i=1 Zi{Yi − k(ni − N/C)}
C1N/C

−
∑C

i=1(1 − Zi){Yi − k(ni − N/C)}
C0N/C

,

where k is some fixed number. Middleton and Aronow (2015) motivate τ̂3 as a
remedy for τ̂2, because τ̂2 is not invariant to location and scale transformations
of the outcome. They essentially treat ni as a pretreatment covariate predictive of
the sum of outcomes Yi for each cluster. Adjustment for this factor reduces vari-
ability in Yi and consequently increase estimation precision. For a predetermined
k, the unbiasedness of τ̂2 is preserved by τ̂3 after adjusted for the same term for
both treatment and control clusters. In practice, k is estimated using the regres-
sion coefficient of Yi on ni . However, under this data-dependent value of k, the
unbiasedness of τ̂3 is no longer guaranteed in general.

Fortunately, for generating valid randomization tests, we do not need to worry
about the unbiasedness or consistency of these estimators, because we simply treat
them as candidate test statistics, that is, special cases of T (Z,Y,n,X,W). For
other discussions on estimation the average treatment or testing the null hypothesis
based on these statistics, see Gail et al. (1992, 1996), Hansen and Bowers (2009),
Schochet (2013), and Aronow, Middleton et al. (2013).

3.2. Test statistics based on ranks. For heavy-tailed outcome distributions, the
behavior of test statistics based on the means in Section 3.1 may be driven by out-
liers. Another popular class of test statistics is based on the ranks of the outcomes.
Let Rij be the rank of Yij among the outcomes for all units, Ri = ∑ni

j=1 Rij be the
total rank of the units within cluster i, and R = (R1, . . . ,RC) be the vector of the
total ranks for all clusters.

In general, we can use

ω =
C∑

i=1

Ziψ(Ri, ni)

as a test statistic where ψ is any general function of both the total ranks and the
sizes of the clusters. Next, we propose intuitive rank-based test statistics as special
cases of ω. Each test statistic weights cluster level information differently. The first
one mimics the classical Wilcoxon rank sum statistic:

ωs =
C∑

i=1

ZiRi,
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with ψ(Ri, ni) = Ri depending only on the summed total of the treated ranks. The
second test statistic is based on average rank of each cluster:

ωa =
C∑

i=1

ZiRi/ni,

with ψ(Ri, ni) = Ri/ni . The third one uses ni as a weight for the total rank Ri :

ωm =
C∑

i=1

ZiRini,

with ψ(Ri, ni) = Rini . The fourth one adjusts the total sum of the cluster ranks by
cluster sizes:

ωn =
C∑

i=1

Zi

{
Ri − k(ni − N/C)

}
,

where k can be the regression coefficient of Ri on ni . Similar to the construction
of τ̂3, we treat ni as a cluster-level pretreatment covariate and use it to reduce the
the variability of the cluster total rank.

Although all of the above test statistics are useful candidates for randomization
tests, the power of each test statistic will largely depend on the generating model of
the outcomes under alternative hypotheses. As such, the power of each test statis-
tic may differ depending on how treatment effects possible vary with cluster size.
For example, if the treatment effects for different clusters increase with cluster
size, then over-weighting Ri by ni , that is, using ωm, will be more likely to yield
increased power than if ωs is used. Alternatively, if the treatment effects for dif-
ferent clusters decrease with cluster sizes, then down-weighting Ri by 1/ni , that
is, using ωa , will tend to yield larger power than using ωs . We explore the these
possibilities using simulations in Section 4.

3.3. Model-assisted test statistics. The test statistics above may ignore impor-
tant covariate information about the sub-units and clusters. Such covariate infor-
mation is easily incorporated in using regression models. Ignoring the clustering
of units, one commonly used model is the linear model

Yij = a + τZi + β ′Wi + γ ′Xij + εij ,

where the εij ’s are independent and identically distributed (IID) with mean zero
and variance σ 2. Alternatively, a LMM may be employed. With a random effect
for the clustering of units, the LMM has the following form:

Yij = a + τZi + β ′Wi + γ ′Xij + ci + εij ,

where the cluster-level random effects ci ’s are IID with mean zero and variance δ2,
the εij ’s are IID with mean zero and variance σ 2, and the ci ’s and εij ’s are inde-
pendent and follows joint Normality. See Middleton (2008) and Schochet (2013)
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for a discussion of the properties and especially the disadvantages of regression
analysis for estimating the average causal effects in clustered randomized trials.

The inferential advantages of randomization tests and linear models or LMMs
are not incompatible [Rosenbaum (2002b)]. In fact, we can use these models to
adjust for covariates, but still preserve the exactness of randomization tests. There
are at least two ways of combining regression models with randomization tests.
The first strategy is straightforward: we simply choose τ̂ , the fitted parameter of
the linear model or LMM, as the test statistic. Usually, practitioners interpret the
model parameter τ as the average causal effect for the finite population of interest,
which may not be justified by randomization. However, we need not assume that
such models hold exactly.

The second strategy exploits the fact that (Y,X,W) are all fixed under the sharp
null hypothesis. We calculate the residuals, Y r

ij , from

Yij = a + β ′Wi + γ ′Xij + εij

or

Yij = a + β ′Wi + γ ′Xij + ci + εij ,

and treat the Y r
ij ’s as transformed outcomes. Under the sharp null, the (Yij ,Wi,

Xij )’s are all fixed, and so are the transformed outcomes. We can use Y r
ij , or its

rank Rr
ij , to construct test statistics as in Sections 3.1 and 3.2.

Neither of the above strategies rely on modeling assumptions, and in fact we
can fit more flexible models possibly with more complicated functional forms and
random effects structures. As such, the rank based test statistics we proposed in
the previous section can easily incorporate information from baseline covariates.

3.4. Exact and asymptotic null distributions. All the test statistics discussed
thus far have the form T (Z,Y,n,X,W), with Z being the only random compo-
nent under the sharp null hypothesis. Theoretically, we can compute the random-
ization distribution of T (Z,Y,n,X,W) by enumerating all possible values of Z

according to (1); practically, we can approximate the randomization distribution by
taking a simple random sample from all possible values of Z if the total number is
excessively large.

Generally, we can represent the test statistics above as the sum of cluster char-
acteristics, which allows for an asymptotic approximation when the number of
clusters is large. We consider a special case with

(2) T (Z,Y,n,X,W) =
C∑

i=1

Ziψi ≡
C∑

i=1

Ziψ(Oi, ni,Xi,Wi),

where ψ is a function not depending on Z, and Oi may be Yi,Ri, Y
r
i or Rr

i . All the
rank-based test statistics in Section 3.2 are within this class of test statistics with
different choices of the function ψ(·). Define ψ̄ = ∑C

i=1 ψi/C as the mean and
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S2
ψ = ∑C

i=1(ψi − ψ̄)2/(C − 1) as the variance of the ψi ’s for all clusters. Clus-
tered randomization trials are completely randomized trials on the cluster level,
and therefore the clusters under treatment are a simple random sample of the finite
clusters, and the test statistic (2) is the sample total of the ψ’s. According to the
standard calculations in survey sampling [Cochran (1977)], the mean and variance
of (2), over all possible randomizations, are

E
{
T (Z,Y,n,X,W)

} = C1ψ̄, Var
{
T (Z,Y,n,X,W)

} = C1C0S
2
ψ/C.

If the number of clusters is sufficiently large, the null distribution can be well
approximated by a Normal distribution with the above mean and variance due to
the finite population central limit theorem [Li and Ding (2017)].

4. Simulations for type I error and power. The rank statistics we outline in
Section 3.2 are used as randomization tests. The test will reject when the signifi-
cance level is less than or equal to α, and randomization ensures that the test has
type I error α. However, each test statistic uses a set of weights. The choice of
weights does not affect whether the test has the correct type I error, but the choice
of weights does affect the power of the test. Next, we conduct a simulation study
to understand whether the power of the test varies across the different test statistics
under different data generating processes.

In the simulation study, we compare the type I error and the power of each test
statistic based on ranks from data that was generated under a LMM. Specifically,
we generated the data from a LMM of the form

Yij = a + τZi + βni + γZini + ci + εij .

Under this model, Zi = 1 if cluster i was assigned to treatment and Zi = 0 if the
cluster was assigned to control, so τ is a measure of the individual level treatment
effect. In the model, ci is a cluster-level random effect, β is a specific cluster-level
effect that varies with the size of the cluster, and γ allows the treatment effect to
vary by cluster size. When τ = 0, the proportion of rejects of H0 : τ = 0 estimates
the type I error of a test that should have level α. For τ �= 0, the proportion of
rejections estimates power against this alternative. In the simulations, we varied
the distributions of the error terms ci and εij . We allowed the error distributions to
be one of three distributions: a Normal distribution with expectation zero; a Cauchy
distribution centered at zero; or a t-distribution with five degrees of freedom.

The intraclass correlation λ is Var(ci)/{Var(ci)+Var(εij )} when ci and εij have
finite variance. We adjusted the scale of the cluster distribution errors ci , so that we
can vary the value of λ in the simulations. With Cauchy errors, λ does not exist.
Although we cannot measure the intraclass correlation by the variance ratio, we
can measure it by the ratio of the scale parameters of the error terms. For example,
if ci ∼ Vc × Cauchy and εij ∼ Vε × Cauchy, then the generalized intraclass corre-
lation is λ = V 2

c /(V 2
c + V 2

ε ). This definition applies to the errors with or without
finite variances.
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Within this framework, we conduct two sets of simulations. In the first simula-
tion, we study how type I rate changes as the number of clusters increases. In this
simulation, we fix the ICC and do not allow treatment effects to vary with cluster
sizes. In the second simulation, we fix the number of clusters and study type I error
and power, while varying other simulation parameters.

4.1. Simulations of type I error with varying cluster sizes. In the first set of
simulations, we set γ = 0 and β = 0, so that treatment effects do not vary with the
cluster sizes. Here, we set λ = 0.15. We varied the number of clusters using the
following sequence: 8, 10, 20, 30, 50, 80, 100, and 200. We repeated each simula-
tion 1000 times. We allowed the number of units per cluster to vary stochastically
in the simulations. For each of the C clusters, we drew from a uniform distribution
on the interval of 10 to 75. This implies that the number of units per cluster could
be between 10 and 75 with equal probability. This mimics clustered randomized
experiments like TLPES where the clusters are schools and there can be consider-
able variability in cluster sizes. We also included the LMM in all the simulations
to compare the randomization tests against a more commonly-used model-based
approach. For the LMM, we use the t-distribution as the reference distribution for
calculating p-values. While the LMM might perform well, especially when the
errors are Normal, its inferential performance does not depend on random assign-
ment and may be wrong if the model is misspecified. We should also note that
the LMM tests the hypothesis that the treatment is zero on average, unlike the
rank–based tests which test the sharp null. This difference in hypotheses may in-
crease the power of tests from the LMM slightly [Ding (2017)]. In this simulation,
we used the Normal approximations for the randomization-based tests to decrease
the computing time required for the simulations. Thus, the results for these tests
are not exact for small sample sizes. For this set of simulations, we estimated the
typical simulation to simulation variability to be 0.014.

Figure 3 contains the results as the number of clusters increases when the er-
rors are Normal. When the number of clusters is at the minimum of eight, all the
randomization-based tests reach the nominal 0.05 level, at least within simulation
variability. Note that this does not represent a failure of our test statistics, but in-
stead is a result of a dearth of information in a clustered randomized experiment
with such a small number of units. For example, if 4 of the 8 clusters are assigned
to treatment, then the minimum p-value that we can obtain from exact randomiza-
tion test is 1/

(8
4

) = 0.014. This minimum p-value is close to the 0.05 threshold.
When we use the LMM, the rejection rates do not fall within expected levels

of simulation variation until the number of clusters is 30. This is not surprising.
The LMM depends on an asymptotic approximation and requires a larger number
of clusters for the rejection rates to converge to the correct rate. When the errors
are t-distributed, results for all methods mirror those under Normal errors. Results
based on the LMM converge to the nominal 0.05 level as the number of clusters
increase. Due to this similarity, we omit the figure for t-distributed errors.
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FIG. 3. Type I error for rank based randomization tests versus linear mixed model (LMM) as the
number of clusters increases with Normal errors. Dotted lines represent within simulation variability.

Figure 4 contains the results when the errors are Cauchy. All the rank-based test
statistics have nearly identical performance. Rejection rates are lower than 0.05
when there are less than 10 clusters in the clustered randomized experiments, but
for larger sample sizes the level is close to the nominal 0.05 level for all randomiza-
tion based tests. The LMM, however, does not reach the 0.05 level for any cluster
size, even when the cluster sizes are greater than 100. In additional simulations,
we increased the number of clusters to 500, 750 and 1000. Even for these larger
sample sizes, the LMM did not reach the 0.05 level.

4.2. Simulations of type I error and power with treatment effect heterogeneity.
In the second set of simulations, we fixed the number of clusters at 30, but varied a
much wider set of simulation parameters. Like in the first simulation, we varied the
error distributions, again using Normal, Cauchy and t-distributed errors. We also
varied the intraclass correlation and whether the treatment effect varies with cluster
size. In this simulation, we set γ = −0.01, 0, or 0.01 with β = 0.01. This allows
the treatment effect to have a negative, positive or zero association with the size
of each cluster. We also varied λ to be consistent with values from clustered ran-
domized experiments in education. Hedges and Hedberg (2007) report the range
of estimated intraclass correlation from 41 clustered randomized experiments in
education. They find that the λ’s range from 0.07 to 0.31, with an average value of
0.17. Note that these values of λ are large relative to those typical in public health
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FIG. 4. Type I error for rank based randomization tests versus linear mixed model (LMM) as the
number of clusters increases with Cauchy errors. Dotted lines represent within simulation variability.

clustered randomized experiments. Small, Ten Have and Rosenbaum (2008) con-
duct a similar simulation using values of λ in the range of 0.002 to 0.03 which are
more typical in public health interventions that target clusters such as hospitals,
clinics or villages. As a result, in this set of simulations, we use three different
values for λ: 0.05, 0.15 and 0.25.

Table 1 contains the results when τ = 0. The results in this simulation mir-
ror those when we varied the number of clusters. When errors are Normal or t-
distributed, all the methods reach the nominal 0.05 level. Variation in the intraclass
correlation or an association between the treatment effect and cluster size do not
affect the results. When errors are Cauchy, the LMM fails to reach the nominal
0.05 level. We do note that when λ = 0.05, the LMM rejection rates are at their
lowest level.

Table 2 contains the results when for when τ = 1. First, a few broad patterns.
The test statistics ωs and ωm, the sum of the ranks and the weighted average ranks
respectively, perform poorly across most of these scenarios. More specifically,
when there is a negative association between the treatment effect and the size of
the clusters, these tests have low power. The LMM has reasonable power unless
the errors are Cauchy. Here, the LMM has little power. Overall, ωn, which adjusts
directly for cluster sizes, and ωa , which is based on average ranks, both perform
well across all the simulation scenarios. In fact, their performance is nearly iden-
tical in the simulations. Overall, we find that adjusting for the sizes of the clusters
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TABLE 1
Type I error rates for rank-based randomization tests and LMM based on simulation when τ = 0

Summed Average Weighted Cluster
λ γ Errors Ranks Ranks Ranks Size Adj. LMM

0.050 −0.010 t,DF = 5 0.055 0.038 0.048 0.030 0.029
0.150 −0.010 t,DF = 5 0.055 0.066 0.053 0.060 0.064
0.250 −0.010 t,DF = 5 0.065 0.051 0.050 0.045 0.054
0.050 0.000 t,DF = 5 0.058 0.067 0.054 0.059 0.072
0.150 0.000 t,DF = 5 0.060 0.047 0.051 0.045 0.051
0.250 0.000 t,DF = 5 0.048 0.046 0.057 0.048 0.048
0.050 0.010 t,DF = 5 0.062 0.051 0.057 0.046 0.053
0.150 0.010 t,DF = 5 0.062 0.050 0.060 0.055 0.052
0.250 0.010 t,DF = 5 0.052 0.071 0.055 0.064 0.068
0.050 −0.010 Normal 0.050 0.043 0.051 0.047 0.046
0.150 −0.010 Normal 0.042 0.047 0.033 0.044 0.051
0.250 −0.010 Normal 0.046 0.043 0.055 0.046 0.049
0.050 0.000 Normal 0.045 0.055 0.044 0.055 0.058
0.150 0.000 Normal 0.060 0.065 0.057 0.048 0.068
0.250 0.000 Normal 0.041 0.051 0.041 0.049 0.054
0.050 0.010 Normal 0.055 0.063 0.063 0.051 0.065
0.150 0.010 Normal 0.059 0.049 0.050 0.047 0.051
0.250 0.010 Normal 0.047 0.040 0.051 0.032 0.046
0.050 −0.010 Cauchy 0.050 0.054 0.044 0.043 0.018
0.150 −0.010 Cauchy 0.049 0.047 0.050 0.046 0.018
0.250 −0.010 Cauchy 0.055 0.047 0.054 0.048 0.017
0.050 0.000 Cauchy 0.061 0.056 0.066 0.043 0.015
0.150 0.000 Cauchy 0.035 0.058 0.038 0.057 0.024
0.250 0.000 Cauchy 0.045 0.040 0.044 0.049 0.024
0.050 0.010 Cauchy 0.054 0.046 0.051 0.044 0.014
0.150 0.010 Cauchy 0.052 0.041 0.049 0.053 0.013
0.250 0.010 Cauchy 0.059 0.053 0.055 0.048 0.017

is important for analyzing clustered randomized trials, which conforms to previ-
ous discussions for clustered data analysis under various settings [Cochran (1977),
Williamson, Datta and Satten (2003), Rosner, Glynn and Lee (2003), Datta and
Satten (2005), Dutta and Datta (2016)]. However, the form of those adjustments
can be quite simple in form of averaging ranks within each cluster.

In sum, in many scenarios, ranked-based methods and the LMM performed
similarly. The LMM had clear deficiencies when the number of clusters was small
or the error distributions were heavy tailed. Across all scenarios, a test based on
ωn or ωa , which adjusts for the number of units within each cluster, had good
performance. In general, these test statistics appeared to be unaffected by the level
of λ and performed well in small sample sizes.
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TABLE 2
Power for rank-based randomization tests versus LMM based on simulations when τ = 1

Summed Average Weighted Cluster
λ γ Errors Ranks Ranks Ranks Size Adj. LMM

0.050 −0.010 t,DF = 5 0.225 0.979 0.098 0.913 0.955
0.150 −0.010 t,DF = 5 0.180 0.725 0.085 0.545 0.667
0.250 −0.010 t,DF = 5 0.145 0.474 0.080 0.318 0.440
0.050 0.000 t,DF = 5 0.615 1.000 0.276 1.000 1.000
0.150 0.000 t,DF = 5 0.502 0.993 0.247 0.983 0.985
0.250 0.000 t,DF = 5 0.407 0.908 0.196 0.863 0.884
0.050 0.010 t,DF = 5 0.910 1.000 0.526 1.000 1.000
0.150 0.010 t,DF = 5 0.797 1.000 0.451 1.000 1.000
0.250 0.010 t,DF = 5 0.716 0.999 0.419 0.998 0.994
0.050 −0.010 Normal 0.279 1.000 0.113 0.980 0.999
0.150 −0.010 Normal 0.219 0.877 0.100 0.718 0.875
0.250 −0.010 Normal 0.178 0.649 0.091 0.472 0.637
0.050 0.000 Normal 0.736 1.000 0.339 1.000 1.000
0.150 0.000 Normal 0.640 1.000 0.321 1.000 1.000
0.250 0.000 Normal 0.536 0.985 0.260 0.967 0.985
0.050 0.010 Normal 0.950 1.000 0.646 1.000 1.000
0.150 0.010 Normal 0.924 1.000 0.609 1.000 1.000
0.250 0.010 Normal 0.837 0.998 0.535 0.998 0.998
0.050 −0.010 Cauchy 0.098 0.331 0.067 0.244 0.025
0.150 −0.010 Cauchy 0.079 0.184 0.062 0.141 0.018
0.250 −0.010 Cauchy 0.068 0.142 0.054 0.116 0.019
0.050 0.000 Cauchy 0.235 0.700 0.118 0.644 0.032
0.150 0.000 Cauchy 0.164 0.411 0.108 0.387 0.026
0.250 0.000 Cauchy 0.133 0.320 0.088 0.299 0.019
0.050 0.010 Cauchy 0.398 0.940 0.184 0.914 0.044
0.150 0.010 Cauchy 0.315 0.708 0.176 0.702 0.034
0.250 0.010 Cauchy 0.280 0.557 0.170 0.541 0.034

5. Point and interval estimation under the Tobit model. Testing the hy-
pothesis of no effect is often one part of an analysis of a clustered randomized
experiment. Typically, we also want to draw inferences about the magnitude of the
treatment effect. Braun and Feng (2001) use a generalized linear mixed model with
permutations of model test statistics as one method for obtaining confidence inter-
vals and point estimates for data from a clustered randomized trial. This is a valid
approach, but it is no longer strictly within the randomization inference framework,
since it depends on the validity of the model. Instead, we invert each of our ran-
domization tests to obtain a confidence interval for τ . We form a Hodges–Lehmann
point estimate by equating each test statistic to its null expectation and solving for
the value of τ̂ . Such methods require an assumption about how units respond to
treatment. Rosenbaum (2002a) refers to this assumption as a model of effects. One
common model of effects assumes the response to treatment is constant and addi-
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tive: Yij (1) = Yij (0) + τ0, where τ0 is the individual treatment effect. Since, the
length of a feedback session cannot be less than zero, a more plausible model of
effects is the Tobit model [Tobin (1958), Rosenbaum (2002a)]. The hypothesis of
a Tobit effect asserts

(3) H0(τ0) : Yij (0) = max
{
Yij (1) − τ0,0

}
for all (i, j).

If this hypothesis is true and τ0 is known, then the adjusted outcome has the form
max{Yij − τ0Zi,0} = Yij (0) and is a fixed quantity unaffected by the treatment.
The Tobit model of effects is more appropriate for a response that can equal zero
but cannot be negative. Under a Tobit model, the TLPES intervention raises the
length of the feedback session by the same constant τ0, but the teacher has a posi-
tive length of time in the feedback session only if the length of time in the feedback
session is positive. The Tobit hypothesis may be tested by adjusting the observed
responses using the Tobit model of effects, and then applying one of the test statis-
tics outlined in Section 3.2. See Rosenbaum (2010), Chapter 2, for more details on
Tobit effects. In particular, for rank-based statistics we use the following steps to
test H0(τ0):

1. Compute adjusted outcomes under the tobit model of effects: max{Yij −
τ0Zi,0} for all (i, j) using the data and value for τ0 under the null;

2. Obtain the ranks of the adjusted outcomes, denoted by Rij ;
3. Calculate the total ranks of the units within clusters Ri = ∑ni

j=1 Ri ; note that
the Ri ’s are all fixed numbers unaffected by the treatment assignment;

4. Apply one of the rank statistics defined in Section 3.2 ω;
5. Simulate the treatment assignment (Z1, . . . ,ZC), obtain the null distribution

of ω and calculate the p-value.

Under the equivalence of confidence intervals and hypothesis tests, a 1 − α

confidence interval for a Tobit effect is formed by testing a series of hypothesis
for τ0 and retaining the values not rejected at level α as the confidence interval.
A point estimate of τ0 is obtained from the tests using the method of Hodges and
Lehmann (1963). The point estimate is the value of τ0 such that the test statistic is
equal to its null expectation.

5.1. Model checking. Models are approximations, and they can sometimes be
tested by the observed data. Under the Tobit model (3), we know that the adjusted
outcome max{Yij − τ0Zi,0} is unaffected by the treatment assignment. Therefore,
over all randomizations, the distribution of max{Yij − τ0Zi,0} in the treated and
control clusters are the same on average. Thus one form of model checking for
the Tobit model of effects is to plot max{0, Yi − (1 − Zi)τ̂ } under treatment and
control arms for each test statistic. If the Tobit model of effects were correct, in
an infinite sample without bias, these residuals should be identical across treated
and control groups. However, this heuristic exercise ignores the uncertainty in the
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Hodges–Lehmann point estimators and provides no formal test of the model. Next,
we propose a formal statistical test.

We develop a formal test by extending the methods in Ding, Feller and Mira-
trix (2016) to test whether the treatment effect model is Tobit, that is, to test the
following null hypothesis:

H0(Tobit) : Yij (0) = max
{
Yij (1) − τ,0

}
for some τ, for all units (i, j).

Note that H0(Tobit) is different from the null hypothesis in (3) where τ0 is a known
value. If τ is known in H0(Tobit), then under the null hypothesis H0(τ ) defined in
(3), the control potential outcomes max{Yij − τZi,0} = Yij (0) are all known. To
assess the difference between the empirical distributions of the control potential
outcomes across the two treatment groups, we use a Kolmogorov–Smirnov-type
statistic of the form

tKS(τ ) = max
y

∣∣F̂1(y; τ) − F̂0(y)
∣∣,

where

F̂1(y; τ) =
∑C

i=1 Zi

∑ni

j=1 I {Yij (0) ≤ y}∑C
i=1 Zini

=
∑C

i=1 Zi

∑ni

j=1 I {max(Yij − τ,0) ≤ y}∑C
i=1 Zini

and

F̂0(y) =
∑C

i=1(1 − Zi)
∑ni

j=1 I {Yij (0) ≤ y}∑C
i=1(1 − Zi)ni

=
∑C

i=1(1 − Zi)
∑ni

j=1 I {Yij ≤ y}.∑C
i=1(1 − Zi)ni

Under H0(τ ), because the adjusted outcomes are all fixed, the only random compo-
nent in F̂1(y; τ) and F̂0(y) is the treatment assignment. Therefore, we can simulate
the distribution of tKS(τ ), and then compute the p-value p(τ).

Even if τ is unknown, we can obtain a valid p-value by maximizing p(τ) over
a confidence region of τ with some adjustment. To be more specific, we use the
following steps:

1. Construct a 1 − δ confidence region for τ0, denoted by CRδ , with δ � α.
2. Compute the p-values over this confidence region {p(τ) : τ ∈ CRδ}.
3. Obtain the final p-value for H0(Tobit) using

pδ = max
τ∈CRδ

p(τ ) + δ.
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This p-value, pδ , is valid according to Berger and Boos (1994), and was used
by Nolen and Hudgens (2011) and Ding, Feller and Miratrix (2016) in randomiza-
tion inference. Importantly, the randomization test for the validity of the constant
treatment effect model requires that all missing potential outcomes can be deter-
mined by the observed data and the value of the treatment effect τ0 [Ding, Feller
and Miratrix (2016)]. Under the Tobit model, however, even with a known value
of τ0, we cannot impute all the missing potential outcomes under treatment based
on the observed data. However, if we follow the strategy of Rosenbaum (2002a)
using the adjusted outcomes max{0, Yij − (1 − Zi)τ }, we do not need to know all
the values of the Yij (1)’s, but only the values of the Yij (0)’s.

6. Application to the TLPES.

6.1. Tests of the sharp null. Next, we apply our methods to the data from the
TLPES clustered randomized experiment. We first test the sharp null hypothesis of
no effect. The sharp null asserts that the outcome for each teacher is unchanged by
treatment such that Yij (1) = Yij (0) for all i and j . If the sharp null is true, random-
ization would label a teachers’ school as either treated or control, but the length
of their feedback sessions would be unchanged. We apply all four test statistics to
the TLPES data. With all four test statistics, we are able to reject the sharp null
hypothesis. Moreover, all four test statistics easily reject the sharp null. That is,
with all four tests, the p-values are all smaller than 0.0001. Thus we have strong
evidence that the TLPES intervention increased the length of feedback session for
teachers in treated schools. That is, with statistical significance level 0.001, the ad-
ditional teacher observations required by the TLPES intervention caused teachers
to engage in longer feedback sessions with their principals.

6.2. Tobit model: Estimates of the treatment effect. We estimated point esti-
mates and confidence intervals using all four test statistics. For the Tobit effect,
if we use the summed rank test statistic, the 95% confidence interval for τ is
[65,106], and the Hodges–Lehmann point estimate is τ̂ = 86 minutes. These re-
sults suggest that the training instituted under the TLPES intervention increased
the time teachers spent in feedback sessions by as little as an hour or as much
as over an hour and a half. Using the test statistic based on average ranks within
treated clusters, the 95% confidence interval is [90,114] and the Hodges–Lehmann
point estimate is τ̂ = 100 minutes. If we adjust for cluster size via weights, using
ωm, the 95% confidence interval is [21,124], and the Hodges–Lehmann point esti-
mate is τ̂ = 79 minutes. Finally, if we adjust directly for cluster size, the 95% con-
fidence interval is [80,104], and the Hodges–Lehmann point estimate is τ̂ = 90
minutes.2

2Wayne et al. (2016) report the estimated increase in feedback time due to treatment was 86 min-
utes using a constant-additive model of effects.
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For the sake of comparison, we also used a random-effects linear mixed model
to estimate the TLPES treatment effect and 95% confidence intervals. Using the
LMM, the 95% confidence interval is [78,106] and the point estimate is 92 min-
utes. Thus all the methods are largely in agreement. While the point estimates are
all of similar magnitude, the length of the confidence intervals vary considerably.
Can we draw any conclusions from this variation?

First, it appears that weighting the ranks by cluster sizes gives a wide interval
estimate, which is coherent with the low powers of test statistic ωm in a wide range
of data generating processes in simulation. Second, using cluster size information
in ωn returns a confidence interval very similar to that from a LMM which suggests
that both methods utilize information about cluster sizes in a similar manner.

6.3. Tobit model: Model checking. We conduct a goodness-of-fit test of the
Tobit model using the exact test in Section 5.1. First, we use the more informal
graphic method. Figure 5 checks the fit of the Tobit model of effects using resid-
uals, where we plot max{0, Yi − (1 − Zi)τ̂ } under treatment and control arms for
each test statistic. If the Tobit model of effects were correct, in an infinite sample
without bias, the residuals should be identical across treated and control groups.
With the exception of several large outliers in the control groups, the boxplots are
similar for all the test statistics. The data do not seem to clearly reject the Tobit
model of effects as an inappropriate.

Next, we apply the formal test proposed above. With δ = 0.001, the final p-
value for testing the Tobit model itself is 0.111. This p-value does not depend on
the test statistic we use in constructing the confidence region. The dotted line of
Figure 6 shows the curve of p(τ). In sum, there is little statistical evidence against
the Tobit model for fitting the TLPES data, which implies that the point and in-
terval estimation under the Tobit model of effects is reasonable. It is possible, of
course, that our test is under-powered. One alternative would be methods that ex-
plicitly relax the assumption of constant effects [Rosenbaum (2001, 2007)], though
that is beyond the scope of the present analysis.

6.4. Practical implications. Finally, we conclude with a discussion of the
practical implications of our study. One might conclude that methods we propose
are of little relevance for applied data analysis given that the LMM and the rank
based methods led to similar inferences in the TLPES study. That is, despite the
fact that the outcomes were skewed and had point masses at zero, the LMM re-
sults are similar to the more robust rank based methods. We would argue that there
are two feature of the data that favor the LMM. First, the sample sizes in TPLES
are relatively large for a clustered randomized trial. In the TPLES study, there are
more than 60 schools per arm. In the simulations, except in the case of the Cauchy
distribution, the LMM performed well with sample sizes that large. Second, the
treatment effect is quite large. Larger treatment effects will tend to be detectable
irrespective of analytic method.
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FIG. 5. Residual plots from the Tobit model of effects. Each boxplot displays
max{0, Yi − (1 − Zi)τ0} for τ0 = τ̂ for each test statistic. In an infinite sample, the boxplots
should be identical if the Tobit model of effects fits at the respective τ̂ .

As such, the simulation evidence is the more relevant guide for applied prac-
tice. That is, applied analysts should not solely rely on evidence from an LMM
when sample sizes are below 30 schools per treatment arm, even when outcomes
appear normally distributed. Moreover, if outcomes have heavy tails, results from
the LMM should always be compared against a rank based alternative, since the
LMM may be wrong regardless of the sample size. Thus, we recommend the use
of rank based methods, at the very least, as a diagnostic, whenever investigators



CLUSTERED RANK TESTS 2171

FIG. 6. Plot for model checking test which contains p-values and confidence interval for τ0. The
grey line shows the p-values for inverting randomization tests using ωn to construct a confidence
interval (within two vertical dotted lines) for τ0 under the Tobit model. The dotted lines shows the
p-values for testing the Tobit model itself using tKS .

suspect the assumptions of the LMM might be in doubt. Alternatively when LMM
assumptions are clearly suspect, rank based methods should be the primary mode
of analysis.

7. Summary. In a clustered randomized trial for teaching training, we used
the randomization of schools as the basis for inferences about treatment effects
on teachers in schools. Our inferences do not depend on assumptions about the
distributional properties of a model. We also tested for hypothesized Tobit effects,
and extended previous work to allow for a formal test of whether the Tobit model is
appropriate. While we did not perform covariance adjustments, we demonstrated
how such adjustments could be performed without the need for the correct model
of adjustment.

We found evidence that the additional training provided by the TLPES interven-
tion increased the time teachers spent in feedback sessions with their supervisors.
Based on a test statistic that used average ranks, the 95% confidence interval sug-
gest that the new teacher training system increased the time spent with supervisors
by at least 90 minutes. We were unable to reject the null hypothesis of a constant



2172 P. DING AND L. KEELE

treatment effect under the Tobit model, which suggests that the effect of the TLPES
intervention varies little from teacher to teacher and school to school.

An advantage of randomization inference is its flexibility with respect to differ-
ent types of experimental designs. For instance, we can extend the current analysis
to clustered randomized experiments with blocking. As part of the study design,
the 127 participating schools were randomly assigned within 37 blocks defined
by baseline covariates [Wayne et al. (2016)]. We do not account for this blocking
in our analysis, since we found that blocking did little to alter the results of the
study for the outcome we examine. Moreover, in multi-site trials the treatment is
randomly assigned to teachers within schools, which is essentially a randomized
block design or stratified experiment and can be analyzed using existing methods
[Imbens and Rubin (2015)]. As long as the investigator understand how treatment
assignments were generated, exact tests are possible [Rosenbaum (2002a), Imbens
and Rubin (2015), Ding, Feller and Miratrix (2016)].

Finally, the length of the feedback sessions were self-reported, and it appears
that many of these outcome measurements were rounded to the nearest half or
full hour, suggesting that a model for the measurement error process would be
desirable. Although Neyman (1935)’s early analysis of experiments incorporated
additive “technical errors” in the potential outcomes, they have been viewed as
nuisances in randomization-based causal inference and have often been ignored
[Rosenbaum (2010), Imbens and Rubin (2015)]. The data in this application sug-
gest a more complete exploration of such measurement error, but we leave this to
future research.
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