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The rarity of tsunamis impels the scientific community to rely on numer-
ical simulation for planning and risk assessment purposes because of the low
availability of actual data from historic events. Numerical models, also called
simulators, typically produce time series of outputs. Due to the large compu-
tational cost of such simulators, statistical emulation is required to carry out
uncertainty quantification tasks, as emulators efficiently approximate simula-
tors. There is thus a need to create emulators that respect the nature of time
series outputs. We introduce here a novel statistical emulation of the input-
output dependence of these computer models. We employ the Outer Prod-
uct Emulator with two enhancements. Functional registration and Functional
Principal Components techniques improve the predictions of the emulator.
Our phase registration method captures fine variations in amplitude. Smooth-
ness in the time series of outputs is modelled, and we are thus able to se-
lect more representative, and more parsimonious, regression functions than a
fixed basis method such as a Fourier basis. We apply this approach to the high
resolution tsunami wave propagation and coastal inundation for the Cascadia
region in the Pacific Northwest. The coseismic representation in this analy-
sis is novel, and more realistic than in previous studies. With the help of the
emulator, we can carry out sensitivity analysis of the maximum wave eleva-
tion with respect to the source characteristics, and we are able to propagate
uncertainties from the source characteristics to wave heights in order to issue
probabilistic statements about tsunami hazard for Cascadia.

1. Introduction. Tsunami waves are mostly generated by seabed displace-
ments such as underwater earthquakes and submarine landslides. After generation,
the tsunami wave propagates rapidly over the deep ocean, gets amplified when the
water depth decreases, and runs up the coast, provoking potentially severe dam-
age. Recent tsunamis have been particularly devastating, as their characteristics
were somehow unexpected due to a lack of adequate probabilistic investigation
of the source mechanism. Notably, the 2004 Indian Ocean tsunami killed roughly
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225,000 people across the Indian Ocean, especially from vulnerable communi-
ties, and the 2011 Tohoku tsunami killed nearly 20,000 people in Japan. The key
question is thus how to quantify the possible hazard, and its impact on population
and infrastructure, thereby gaining wisdom in the tsunami risk assessment [Okal
(2015)]. This question needs to be examined through a better scientific understand-
ing of the source, propagation, and inundation. However, data from historic events
are scarce. Therefore, advanced numerical simulations have been used over the last
30 years for planning and risk assessment purposes. These tsunami simulators are
very costly to run at high resolution. Hence, an attractive approach is to build and
run statistical surrogates, also called emulators, that approximate the numerical
simulators.

1.1. Emulation of high-dimensional outputs. Many complex computer mod-
els, such as engineering, climate or fluid dynamics models, produce outputs that
are typically time series at various locations in the physical output space. It is ad-
vantageous to replace the simulator by an emulator for various uncertainty quantifi-
cation tasks. Indeed, Monte Carlo approaches typically require thousands of runs
of the simulator and are thus impractical for high accuracy models that are com-
putationally expensive. The intrinsically high-dimensional nature of the outputs
(especially for high frequency time series) increases dramatically the complexity
of building an adequate multivariate emulator. The simplest approach would be to
build separate independent emulators for each output. However, this method has
major drawbacks. It inflates computational costs (though in a linear manner), but
more importantly ignores the correlations between the outputs across time in the
process of building the emulator (though the emulated outputs may turn out be
correlated); it lacks the ability to inherently borrow strength across outputs.

Efficient emulations of simulators with multiple outputs have been proposed
[Rougier (2008), Bilionis et al. (2013)]. Rougier (2008) introduced the Outer Prod-
uct Emulator (OPE) that creates one emulator for all outputs. It simplifies the rep-
resentation of the output functions by using products of functions with respective
arguments, input parameters and time. This means that there is no simultaneous
influence of inputs and time on outputs beyond a multiplicative effect of separate
input and time functions. As a result, the cost of building and running the OPE
emulator is much smaller compared to a general multivariate emulator. The OPE
has the form

(1) fi(r) =
ν∑

j=1

βjgj (r, si) + ε(r, si),

where fi(r) is the ith simulator output at input r , the gj are the regressor func-
tions, the βj are the unknown coefficients and ε is the residual assumed to be
a Gaussian Process (GP), si represents the output domain—for example, time or
space—corresponding to the ith simulator run. In order to build an emulator, ap-
propriate prior distributions for β and ε must be chosen. A convenient choice is
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the Normal Inverse Gamma (NIG) framework that enables the use of conjugacy,
described by

(2) β|τ,B ∼N(m, τV ), ε|τ,B ∼ GP
(
0, τκλ(·)), τ |B ∼ IG(a, d),

where B = {m,V,a, d, κλ(·)} is the set of the hyperparameters, m and V are re-
spectively a mean vector and a covariance matrix of a multivariate Normal dis-
tribution for the coefficients β in the regression, τ is a variance inflation factor,
κλ(·) is the covariance function of the residuals with correlation lengths λ and IG
denotes the Inverse Gamma distribution. Summing up, {β, ε} ∼ NIG(m,V, a, d)

where the hyperparameters a and d denote the degrees of freedom and the scale,
respectively.

Two main characteristics distinguish the OPE from a standard multivariate em-
ulator. The first is that the covariance function of the residuals is separated into
inputs r and outputs s, that is,

(3) κλ

(
r, s, r ′, s′) = κr

λ

(
r, r ′) × κs

λ

(
s, s′).

The second is that the set of the regressor functions, G, is the outer product of the

set of regressors for inputs, Gr def= {gr
j (r)}j=νr

j=1 , with the set of regressors for out-

puts, Gs def= {gs
j (s)}j=νs

j=1 , or in other words, the functions gj are given by products
gj (r, s) = gr

j (r) ⊗ gs
j (s) where ⊗ is the outer product symbol and j = {1, . . . , ν},

where ν = νr × νs . Appropriate choices for the regressor functions are necessary.
Sarri, Guillas and Dias (2012) used the OPE for an idealized tsunami modelling

application, where a simplified landslide generated the wave and an analytical so-
lution was used to compute the wave elevation. Without the emulation of time se-
ries outputs, emulation was also recently used to propagate uncertainties for a real
landslide event 21 ka ago in the Northeast Atlantic [Salmanidou et al. (2017)], and
for the purpose of quantifying the influence of uncertain bathymetry near shore
[Liu and Guillas (2017)]. The present paper provides a significant extension to
a realistic tsunami modelling application, where the tsunami is generated by a
truthful seabed deformation linked to an underwater earthquake and the tsunami
propagation and amplification are obtained by solving numerically the nonlinear
shallow water equations over a complex and large domain. We employ the tsunami
model VOLNA [Dutykh, Poncet and Dias (2011)]. Its numerical solution uses an
unstructured mesh in the fluid domain combined with high resolution bathymetry
and topography. In the present paper, we also use the OPE. However, allowing
for a variation in the duration of the earthquake necessitates an alignment of the
various time series of outputs, that we perform through functional registration.
Finally, the shapes of the waves are now irregular due to the influence of the real-
istic bathymetry on the propagation, so the regression functions are chosen to be
adaptive to the time series of outputs. To do so, we employ a data-driven method
for the representation of the outputs, namely the Functional Principal Components
Analysis (FPCA). As a result, we demonstrate that a novel type of Probabilistic
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Tsunami Hazard Assessment can be potentially achieved for tsunami hazard, as
the full time history can be accounted for, without sacrificing numerical precision
and quantification of uncertainties.

1.2. Using Functional Principal Components in emulation. In the present pa-
per, a novel approach for building a GP emulator when outputs are curves is intro-
duced. Functional Principal Components (FPCs) [Ramsay and Silverman (2005)]
are used in place of the standard choice of either fixed basis functions (e.g., Fourier
basis, wavelets, polynomials) or adaptive multivariate PCs, for the outputs rep-
resentation [Bayarri et al. (2007), Higdon et al. (2008)]. In these previous ap-
proaches, the coefficients, or weights, associated with these basis functions are
individually modelled as GPs. In our approach, we fit constant coefficients in a
regression onto these basis functions, and what is left over is modelled as a sepa-
rable GP. FPCs are similar to the standard multivariate PCs except that time series
are viewed as curves, not just vectors with no order nor continuous features. The
smoothness is acknowledged and employed as a constraint in the modelling so
that the resulting FPCs are smooth (and thus physically more meaningful); this
approach mitigates the curse of dimensionality whenever a few underlying (neces-
sarily smooth due to the physics) modes of variability are inferred.

Multivariate PCs, also called Empirical Orthogonal Functions in geophysical
sciences, have been used in the past to reduce dimension [Higdon et al. (2008),
Kleiber, Katz and Rajagopalan (2013), Chang et al. (2014)] in GP emulation (and
its use in calibration). We propose here to make use of the smoothness of the time
series of wave elevations to define our smooth basis functions as FPCs, with clear
benefits, as shown below. We note that three alternative methods to our approach
have been published. One was developed by Hung, Joseph and Melkote (2015)
who emulated simulators with functional outputs, without the use of data-driven
FPCs like we do, but with a marginal profile approach in the input and functional
output domains to identify the functional form of the mean. The second is using a
Bayesian forward selection procedure implemented in blind kriging [Joseph, Hung
and Sudjianto (2008)]: the mean is chosen from an initial set of functions. The
third [Morris (2012)] models functional inputs and outputs within the correlation
function itself by generalizing the sums in product correlations to integrals.

Wavelets typically fit better curves whose variations are sharper than Fourier
basis functions. However, the adaptive nature of FPCs allows for complex modes
of variations that cannot be accommodated by Fourier modes or wavelets (or com-
binations of the two), unless using a prohibitive number of basis functions; thus
FPCs allow a wider range of adequate representations. Finally, the cost of building
a GP emulator is cubic in terms of data points, since the Cholesky decomposition
is employed to compute the likelihood. However, for the OPE, the complexity is
proportional to the sum of a cubic number of inputs and a cubic number of time
points, thanks to the separability of the GP. This is particularly helpful when a
large number of emulators needs to be constructed; for instance, this would help
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for hazard planning as in Spiller et al., 2014. This also might help when time is
a constraint. Early warning systems could use emulators: the current approach of
looking up tables of pre-computed runs cannot produce a proper uncertainty quan-
tification of the warning. Note that methods that put GP weights on a few basis
functions (e.g., FPCs or Fourier) will be computationally faster than the OPE as
only a few coefficients are fitted as GPs (the complexity in time disappears). How-
ever, such methods force the interaction between input and time to be solely along
these directions, whereas our method still allows for a GP over inputs and time to
describe, in a completely flexible manner, the residual variations not captured by
the main modes of variability.

1.3. Tsunami hazard: Modelling and emulation. Our application to long-term
probabilistic tsunami hazard assessment aims to reduce the risks of loss of life and
building and infrastructure damage from a potentially tsunamigenic earthquake.2

A particular problem for the 2011 Tohoku tsunami was that uncertainties in the
tsunami hazard assessments were underestimated, leading to adoption of mitiga-
tion measures that worked well up to their design hazard intensity limits, but failed
with disastrous consequences in the face of an event larger than anticipated [Okal
(2015), Day and Fearnley (2015)]. Our proposed method requires the formulation
and acknowledgement of the uncertainties in the source, so the analysis is more
complete, and thus helpful to use in tsunami hazard assessments.

Tsunami hazard assessments are heavily dependent upon the use of simulators,
because tsunamis are relatively rare but highly destructive events: data on past
tsunamis are sparse in most regions. To ensure accurate modeling of tsunami wave
physics and provide sufficiently high resolution variations in the hazard due to
local topography and bathymetry, tsunami simulators are computationally expen-
sive. Moreover, the balance between full representation of tsunami wave physics
and model stability is difficult to maintain [Behrens and Dias (2015), Bernard and
Titov (2015)].

The calculation of the uncertainties in predictions is challenging due to the large
number of model evaluations required. We show here how emulators can be used
for such time—and resource—demanding analyses. However, Spiller et al. (2014),
who studied an application similar to ours (volcanic flow hazard), concluded that
a joint space-time modelling, like in for example, Kleiber, Katz and Rajagopalan
(2013), should not be carried out due to the very local nature of such hazards.
We agree with Spiller et al. (2014) that spatial outputs must be treated individ-
ually as site-specific since outputs (here water flows) are heavily dependent on
the surrounding bathymetry and topography. There are also uncertainties in the
bathymetry (less so in the topography) that could be accounted for [Liu and Guil-
las (2017)].

2Strictly speaking a tsunamigenic fault rupture. Indeed, both the seismic shaking and the tsunami
are ultimately consequences of the rapid slip that occurs in the fault rupture; the seismic shaking is
not the direct cause of the tsunami.
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1.4. Outline. In the present paper, we emulate entire time series of wave el-
evation outputs as a function of three major inputs: rupture velocity of the earth-
quake, maximum uplift of the seabed overall and at the trench (where the seabed
deformation can be discontinuous). Indeed, the damage due to the impact of waves
on structures relates to the shape of the train of waves through repeated impacts
and scouring. However, for our sensitivity analysis and uncertainty propagation
study, we only picked the maximum wave elevation to merely illustrate how the
uncertainty analysis can work on a simple output for complex tsunami source. In
the future, we could carry out a sensitivity analysis and a uncertainty propaga-
tion study for the entire history since we emulate it; this would present challenges
in the representations of the resulting uncertainties across time (but provide little
value to the current tsunami engineering models yet unable to fully account for
time history) and thus is beyond the scope of this paper. The tsunami engineer-
ing field is only nascent, but any ambitious risk model for structures on the coast
should include such time series information (ideally jointly with flow velocities).
Obviously, proxies of outputs could be valuable for tsunami engineering [Bricker
and Nakayama (2014)], for example, integrated heights over time (a proxy for ac-
cumulated pressure loading on structures), sum of absolute differences in maxima
and minima (a proxy for flow intensity).

Our work uses the case of Cascadia, the region covering the Pacific North West
of Canada and USA, because of particular challenges of tsunami hazard assess-
ment there, but our emulator approach has wide application to other regions. There
is a pressing need to quantify such risk in detail since Leonard, Rogers and Maz-
zotti (2014) estimate the probability of run-up with significant damage potential
(> 3 m) in Cascadia to be 10–30% in the next 50 years. In Section 2, tsunami-
genic seabed uplifts for Cascadia are presented, followed by Section 3 where the
uncertainties in these uplifts are defined. In Section 4, the functional landmark reg-
istration and Functional Principal Component Analysis (FPCA) are applied to our
tsunami model outputs. Finally, Section 5 describes the functional emulation and
its application to sensitivity and uncertainty analyses, before the conclusion.

2. Realistic representation of coseismic seabed deformation for Cascadia.
The representation of the source characteristics and displacement and its numerical
modeling rely on an improved comprehension of the fault rupture mechanism and
the coseismic sea bottom displacement that constitutes the source of fault rupture-
generated tsunamis, as well as high performance computing for tsunami modeling
[Behrens and Dias (2015)]. Here, we emphasise that the design of the source rep-
resentation must take account of the epistemic uncertainties in the understanding
of tsunami sources in that region, as these differ between regions.

The Cascadia Subduction Zone (CSZ) (see Figure 1) experienced its most re-
cent locally-generated tsunami on 26 January 1700 [Satake et al. (1996)], as a re-
sult of the most recent giant earthquake on the CSZ. Geological evidence [Leonard
et al. (2010), Hawkes et al. (2011), Goldfinger et al. (2012), Wang et al. (2013)]
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FIG. 1. Cascadia Subduction Zone (CSZ): geometry and plate convergence rates.

indicates that this had a rupture length of about 1000 km—the entire length of
the Cascadia subduction zone—and an inferred earthquake moment magnitude of
about 9.0, comparable to the Indian Ocean 2004 earthquake. Historical evidence
for the earthquake itself is limited to oral traditions from the region [Ludwin et al.
(2005)]; the date and time of the earthquake are instead inferred from records of
the arrival of the tsunami in Japan [Satake et al. (1996), Satake, Wang and At-
water (2003)]. Seismic activity on the Cascadia subduction zone itself during the
time period of instrumental seismic records, and indeed since the establishment of
European settlements in the region during the late 18th and early 19th centuries,
has been very limited in comparison to most other subduction zones. Neverthe-
less, abundant evidence for the occurrence of giant earthquakes and the resulting
tsunamis in Cascadia has been generated by a wide range of geological and geo-
physical studies as discussed below.

Given the 3 to 5 cm/year plate convergence accommodated [see. e.g., Mazzotti
et al. (2003)], such giant earthquakes would be expected to occur in Cascadia at an
average rate of one per 400–600 years. This has proved to be the case, with around
20 giant earthquakes and 20 slightly smaller earthquakes rupturing the Cascadia
subduction zone during the past 10,000 years or so [Goldfinger et al. (2012)]. Im-
portantly, the evidence collected to date [e.g., Adams (1990), Wang et al. (1995),
Leonard et al. (2010), Nelson et al. (2008), Goldfinger et al. (2012)] provides only
an incomplete and indirect insight regarding the earthquake moment magnitudes
and other key seismic parameters of the tsunamigenic fault ruptures, but more
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complete and direct evidence regarding the coseismic seabed and coastal displace-
ments and the tsunamis themselves. Indeed, much of the evidence regarding the
source fault ruptures and resulting earthquake shaking is model-based evidence
derived from the interpretation of the geological proxies for surface displacements
and tsunamis in terms of simple models relating the reconstructed surface displace-
ments to the source fault rupture, such as the Okada model [Okada (1992)]. Here
we specify the tsunami sources in terms of a simple representation of their seabed
surface deformation characteristics. This representation is highly simplified com-
pared to the complexity of seabed deformation evidenced in hindcast modeling of
recent well-studied tsunamis such as Tohoku 2011 [Simons et al. (2011)]. In par-
ticular, it does not include an explicit representation of coseismic movements on
splay faults [Moore et al. (2007), Heidarzadeh, Pirooz and Zaker (2009), Witter
et al. (2013)] that, while making a limited contribution to the overall seismic mo-
ment magnitude of the earthquake, can lead to large uplifts of parts of the seabed
above the subduction zone and thus to large tsunami waves as discussed below.
We explain how splay faults are accommodated in our simplified representation
below. We emphasise that our emulation is computationally efficient and can there-
fore be extended to more complex representations of tsunami sources with more
source characteristics being defined (e.g., a more variable location of the seabed
deformation). However, this paper is the first to propose an emulation of the rela-
tionship between source characteristics of a realistic earthquake-generated tsunami
and tsunami wave heights, and thus our aim is to build on this innovation in future
studies with more complex descriptions of the source.

Using publicly available digital elevation models (DEMs) for the initial
bathymetry of the ocean floor and coastal shelf seabed, from the National
Oceanic and Atmospheric Administration and National Geophysical Data Centre
(NOAA/NGDC) website http://www.ngdc.noaa.gov/, different hypothetical sce-
narios of seabed deformation events that can result in a tsunami are generated in
this study by changing three of the source characteristics (see Figure 2): the overall
source maximum uplift zmax chosen to vary between 1 and 5 and multiplied by a
location-dependent inflation factor of up to 2.2 (in the middle of the margin) [see
the North–South and West–East sections in panels (b) and (c)], the ratio zt/zmax
between the uplift coefficient at the trench zt and the maximum uplift coefficient
zmax chosen to vary between 0 and 1 throughout, and the speed of propagation of
the source deformation (mimicking the propagation of the fault rupture along the
underling fault surface). Note that there is an uplift in the West, and subsidence in
the East: Figure 2(b) displays the deformations resulting from the lowest, medium
and largest values of zmax and zt/zmax. Different combinations of these charac-
teristics describe different event cases; see movies in the Supplementary Material
[Guillas et al. (2018)] and one such final seabed deformation in Figure 3.

We use the inflation factor zmax to allow for large, localised uplifts associ-
ated with splay faults as proposed for the central part of the Cascadia subduction
zone (corresponding to areas offshore northern Oregon and Washington states) by

http://www.ngdc.noaa.gov/
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(a) (b)

(c)

FIG. 2. (a) Map (top: North) of the deformation area modelled by 4 columns (defined by 5 nodes)
and 14 rows of polygons (56 in total) matching the fault geometry. (b) West–East sections of the
inflation factors. Three sections are plotted: for the minimum, medium and maximum uplift inflation
factor zmax multiplied by the standard assumed geometric profile across the section. In addition, the
red dashed lines (only near the trench, i.e., between nodes 1 and 2) display two limiting examples
where the inflation factor is modified by multiplying it by the ratio zt /zmax ∈ [0,1] of either 0 and 1 in
these two cases. (c) North–South sections of the factor zmax (fixed) across all series of 14 polygonal
blocks.

Witter et al. (2013). Application of the maximum inflation factor of 2.2 leads to
seabed uplifts in our scenarios of up to 11 m, similar to the seabed uplifts of up to
10.2 m offshore from the modelled study site of Witter et al. (2013). Furthermore,
similar large, localised uplifts have been identified or inferred in other subduction
zones [e.g., the Nankai subduction zone; see Moore et al. (2007)] and in particular
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FIG. 3. Seabed deformation (z-axis) for zmax = 1.52 (i.e., maximum uplift of 3.34 m),
zt /zmax = 0.67. All units in meters.

giant earthquakes where they have contributed to particularly large tsunamis [e.g.,
Tohoku 2011; see Satake et al. (2013)].

The seabed deformation at the location of the source is added onto the initial
bathymetry. The deformation shape is represented by a set of 56 polygons (into
14 rows of four arbitrary shaped 4-sided polygons; see Figure 2) designed to ef-
ficiently represent the distributions of coseismic seabed uplift and subsidence in-
ferred to occur in Cascadia earthquakes from the incompletely known patterns of
such deformation in past events such as that in 1700 AD [Atwater et al. (1995),
Satake, Wang and Atwater (2003), Nelson et al. (2008), Hawkes et al. (2011),
Wang et al. (2013)] as well as the “mirror image” provided by ongoing interseis-
mic deformation [Wang et al. (1995)]. The polygons are chosen to allow the de-
formation to vary parallel and perpendicular to the trench (strictly, the base of the
continental slope in the case of the CSZ) that marks the oceanward limit of the
subduction zone fault. For the CSZ, the exact location of the landward limit of
deformation is highly uncertain due to the relative lack of information about land-
level movements from past events, although a variety of lines of indirect evidence
can be used to constrain it [Hyndman (2013)]. Therefore, the width of the fault
rupture, which is an important aspect of the rupture geometry, is highly uncertain
[Nelson et al. (2008)]. Quadratic curves represent the deformation shape of the
uplift and subsidence. This is a very flexible set-up with minor assumptions which
avoids discontinuities at the surfaces, except as indicated by the geological and
geophysical evidence. Specifically, the only discontinuity that is introduced in this
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representation is at the trench, which is a realistic discontinuity where the subduc-
tion zone fault cuts the seabed [Goldfinger et al. (2012)]. Note however that the
representation that we adopt allows for cases where the seismogenic fault rupture
does not reach the trench (and so vertical deformation there is close to zero) as
well as cases in which it does.

The middle rows of the deformation have larger uplift and subsidence heights
compared to the upper and lower rows. The surfaces of neighbouring rows are
smoothed to avoid discontinuities in the uplift between the polygons. This rep-
resentation, using uplift and subsidence surfaces, attempts to mimic as close as
possible the real source seabed deformation, and is designed to replicate evidence-
based work on Cascadia [Satake, Wang and Atwater (2003), Wang et al. (2013)]
while using a small number of source characteristics. The largest uncertainty in
the description of the source geometry is the trench uplift and location. In order
to account for this uncertainty, the trench height is allowed to vary a lot. The up-
lift starts from the trench location and goes to the maximum, with the location of
the maximum assumed to be known at node 2; see Figure 2(b). Node 1 at the left
edge is the coseismic trench location. The height at the trench is assumed to take
values between zero and the maximum height (at node 2). The right edge of the
uplift, located at node 3, is equal to the seabed level. The subsidence, at node 4,
is assumed to be equal to 15% of the maximum uplift (located at node 2); it could
vary between 0% and 30%, but 15% is considered realistic enough here.

Accurate bathymetry and topography are then combined with the seabed defor-
mation representation to run the tsunami model VOLNA [Dutykh, Poncet and Dias
(2011)] and obtain wave elevations. We run VOLNA on the GPU cluster Emerald.
Figure 4 shows the dense unstructured triangular mesh comprised of 1,197,384
nodes for 2,392,352 triangles. The NOAA/NGDC bathymetry and topography data
sets were converted to obtain the adaptive mesh that is used by VOLNA. Different
resolutions of DEMs are merged to cover the whole CSZ ranging from 3 arc-sec
to 1 arc-minute. The triangle sizes are smaller in shallow water where the waves
travel more slowly, or where slopes are high, that is, where greater computational
accuracy is required. This reduces computational cost while still providing accu-
racy where it is needed. This cost is still large, despite a huge speed-up provided
by the use of multiple GPUs in the OP2 framework [Giles et al. (2011), Mudalige
et al. (2012, 2013)]: around one hour of wall-clock time for two hours of simula-
tion using 3 GPUs. To avoid reflections of simulated tsunami waves at the West and
South boundaries of the domain interfering with the results produced in the time of
interest for coastal inundations, a synthetic slope in the bathymetry was generated
to slow down the propagation, since the speed of propagation is proportional to√

gh, where g is the acceleration due to gravity and h is the water depth.
Our choice of a motion of the seabed deformation from North to South is largely

arbitrary as there is no data available so far to justify or disprove it. The four poly-
gons of each row move together, leading to a trench parallel rupture propagation
as in Lay et al. (2005) and Simons et al. (2011) for the Indian Ocean 2004 and the
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FIG. 4. Triangular unstructured mesh of the computational domain, composed of 2.3 million trian-
gles, together with elevation in meters (color scale). Note: the small triangles (down to around 100 m
edges) are too dense to be visible.

Tohoku 2011 fault ruptures respectively. The lag between the initiation of motion
in the first row (North) and the last row (South) varies, with the possibility that all
polygons move together simultaneously. This lag is split evenly across consecu-
tive rows. When all the polygons complete their motion, the rupture takes its final
shape. At the beginning of the motion, the polygons 1, 2, 3 and 4 in Figure 2 start
to move simultaneously, followed by the next row of polygons, and so on, with the
last row of polygons, numbers 53, 54, 55 and 56 the last one in motion. The shape
of the seabed displacement can be observed in Figure 2 and in two movies in the
Supplementary Material [Guillas et al. (2018)] for two cases described in the next
section.

3. Hypothetical event cases. The primary uncertainty in tsunami predictions
is induced by the imprecise description of the coseismic seabed deformation. The
source is not deterministic and differs between events. For this reason, different
hypothetical earthquake sources that can create tsunamis are generated by various
combinations of the three source characteristics. VOLNA is run for a set of these
events and the resulting tsunami wave elevation time series are obtained. The maxi-
mum source elevation factor, zmax, takes values between 1 and 5 (it is multiplied by
2.2, corresponding to a physical range of 2.2 m to 11 m), and the ratio zt/zmax be-
tween 0 and 1, as justified by the discussion and references in the previous section
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and in Wells and Coppersmith (1994). The ratio of the whole rupture propagation
duration tp from North to South, to the reference duration tr = 150 s, tp/tr , varies
from 0 to 6, that is, from instantaneous rupture propagation to 900 s. Such range
reflects the rupture propagation times for the Indian Ocean 2004 (> 1000 s, but
mostly in the first 500 s), Chile 2010 (∼ 140 s) and Tohoku 2011 (∼ 200 s) events;
see Lay et al. (2005), Lay et al. (2010) and Simons et al. (2011) respectively for
these three events.

The 40 combinations of the three input characteristics cover the 3D input space
using a maximin Latin Hypercube Design (LHD). Note that other techniques could
be used to generate more efficiently a set of computer experiments, see Beck and
Guillas (2016) for new sequential designs, with an illustration to tsunami mod-
elling; there is little benefit here as we do not need many runs and these are rela-
tively affordable. Each combination corresponds to a different hypothetical seabed
deformation event. VOLNA simulations produce tsunami wave elevation time se-
ries at each of the 2.4 million triangles in the computational domain, a massive out-
put. We have looked at many spatial locations to examine the outputs, but decided
to analyze the wave elevation time series at two gauges only, shown in Figure 5(a):
one near the entrance of the Strait Juan de Fuca, offshore of Vancouver Island, BC,
Canada (gauge 141) and one near shore the city of Victoria, BC, Canada (gauge
32,298). Indeed, these two gauges are in areas that may be affected by a tsunami,
and are emblematic of the types of wave forms that are created over the region.

A smooth, quasi-periodic train of waves is created near the source (gauge 141).
The same tsunami wave train enters the strait and propagates over the complex
bathymetry. It also bounces off the boundaries of the strait and travels around is-
lands. The resulting complex wave (gauge 32,298) differs strongly from the origi-
nal wave since it displays the signature of this propagation: it starts with a trough,
as observed in many past tsunami events very near shore, displays some kinks
and a sharp rise, with a second wave much reduced compared to the first; see
Figure 5. These two locations provide an excellent testbed for our approach: the
gauge 32,298 will showcase the benefits of our approach as it requires complex
data-driven basis functions, with time alignment of the runs, as explained in the
next sections; the gauge 141 only confirms that there is no loss in using our com-
plex method on a simple wave form.

VOLNA uses as inputs the computational mesh, the bathymetry and topography,
and the various dynamic seabed deformations. The comparisons between the dif-
ferent combinations of the three source characteristics at gauges 141 and 32,298
are presented in Figure 5. Obviously, the wave amplitude increases significantly
with zmax. For a similar zmax, the larger zt/zmax, the larger is the wave elevation.
This indicates that when there is a larger discontinuity at the trench, higher wave
amplitudes are obtained. The duration of source propagation does not seem to in-
fluence crucially the tsunami wave amplitude whereas it significantly affects the
wave propagation time, as it moves the location of the maximum elevation (peak)
of the time series. The smaller tp/tr , the faster the wave arrives at the gauge.
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(a)

(b) (c)

FIG. 5. (a) Gauges locations. Simulated wave elevations at two gauges 141 [panel (b)] and 32,298
[panel (c)] with corresponding color and values of the seafloor deformation parameters (zt /zmax,
zmax, tp/tr ) in the legends.

4. Functional representation of the outputs. We introduce here a novel
functional representation for the outputs of computer models. Such approaches
have been pursued before with a fixed basis [Bayarri et al. (2007), Hung, Joseph
and Melkote (2015)]. We specifically introduce the data-driven technique of Func-
tional Principal Components, combined with the functional registration as a pre-
processing step. To our knowledge, this is the first time that FPCA and registration
are used in emulation. Functional data are data objects consisting of functions
varying over a continuum, which is usually time. They are observed as n discrete
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pairs (tj , yj ), j = 1, . . . , n, with yj the function value at time tj . It is assumed that
there exists a smooth (randomly drawn) function f that can produce the observed
data. In that situation, continuity of f implies that pairs of adjacent outputs, yj and
yj+1 are similar to each other; smoothness entails further that these local variations
are small, as typically first and second derivatives are assumed to be themselves
varying slowly.

Our functional modelling proceeds as follows: (1) we apply functional registra-
tion to all curves to eliminate phase variations across curves; (2) we select tradi-
tional cubic splines as basis functions for the representation of each individual time
series of output; (3) FPCA [Ramsay and Silverman (2005), Ramsay, Hooker and
Graves (2009)] is employed to obtain the main modes of variation that describe
the time series. FPCA has been shown to provide more meaningful modes of vari-
ability than multivariate PCA [Ramsay and Silverman (2005)] as the underlying
physics smoothly drives the variability, whereas in large dimensions PCA can yield
numerical instabilities in the analysis for instance due to collinearities and small
gaps between eigenvalues [Castro, Lawton, and Sylvestre (1986), Jolliffe (2002)].

Certain features of the simulated waves, such as peaks, do not occur at the same
time for different durations of the source propagation. As a result, the variations in
amplitude of the wave resulting from changes in the other inputs are obfuscated.
Thus our ability to propagate uncertainties or examine sensitivity of the wave to
these inputs is damaged; we need to rectify this problem by aligning the times at
which curves vary, a technique also called registration. Note that the maximum
wave elevation is a very important measure of impact on structures and people.
Without registration we would clearly underestimate the potential for high values.

Landmark registration [Ramsay and Silverman (2005)] is chosen here since vis-
ible landmarks exist across outputs and are clear. The transformations, using warp-
ing functions, capture and eliminate phase variations of the original data set. To do
so, the first step is the selection of landmarks used to align the curves, by estimat-
ing strictly increasing transformations of time, hi(t) for each i in the LHD. For
a time interval [0, T ], time warping functions must satisfy the general constraints
h(0) = 0 and h(T ) = T . The registered functions are then described with the equa-
tion f ∗

i (t) = fi[h−1
i (t)]. Note that alternative forms of registration exist and can

be even combined with FPCA [Kneip and Ramsay (2008)]. Landmark registration
is rather arbitrary, and cannot be automated to a set of gauges as these are clearly
gauge-dependent. The problem of finding automated forms of registration, espe-
cially when features, such as peaks or crossings, do not repeat across runs (e.g.,
when a wave sometimes reaches a gauge, sometimes not), is beyond the scope of
this paper.

The results after applying landmark registration are satisfactory. Indeed, as seen
later in Leave-One-Out diagnostics for the whole procedure, this choice of registra-
tion leads to an almost perfect match—especially in the finest details of peaks and
kinks—between simulated and emulated outputs. For gauge 141, two landmarks
are selected: the locations of the second and third minima; see Figure 5(b). For
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gauge 32,298, two landmarks are also selected: the locations of the first maximum
and first minimum of the time series; see Figure 5(c). The landmark registration
will provide additional precision in the tsunami amplitudes (especially for gauge
32,298) where variations in wave elevation are sharp.

FPCA is then applied to the registered functional data. The resulting modes of
variation, known as FPCs or harmonics, will then be used as basis functions gs

j for
the outputs in (1): gj (r, s) = gr

j (r) ⊗ gs
j (s). The advantage of FPCA over multi-

variate PCA is that it takes into account the smoothness of the data. Data-driven
(empirical) basis functions are then defined as the FPCs and output functions are
expressed according to their coefficients (or scores) in this basis. In more detail,
using a roughness penalty approach, we first estimate the coefficients of expansion
of the time series f ∗

i (t) into a B-spline basis φk , k = 1, . . . ,K . We obtain a func-
tion that approximates f ∗

i , ξi(t) = ∑K
k=1 cikφk(t), by minimizing the penalized

least squares criterion with a smoothing parameter λ. The smoothing parameter
λ, chosen empirically by generalised cross-validation (GCV) in (4), controls the
level of smoothing since the second derivative measures the roughness of the fitted
curve:

(4)
n∑

j=1

[
f ∗

i (tj ) −
K∑

k=1

cikφk(tj )

]2

+ λ

∫ [
ξ

′′
i (t)

]2
dt.

FPCs are obtained by incorporating a penalty term in the orthonormality con-
straint imposed on the traditional PCs, and hence are smooth. We used the same
B-spline basis to represent the PCs as ζi(t) = ∑K

k=1 zikφk(t), and also measured
roughness by the integrated squared second derivative of the function. After pro-
jecting the PCs onto a B-spline basis, the fitting criterion for the coefficient vectors
zi of the FPCs becomes [Silverman (1996)]:

(5) max
zT
i �T ŶT Ŷ�zi

zT
i (IK + λPT P)zi

,

where Ŷ ∈ R
K×n denotes the matrix consisting of the centered fitted values of

wave elevation from the smoothing splines, and � ∈ R
n×K denotes the B-splines

basis matrix composed of (j, k) entries φk(tj ). PT P is the K × K penalty matrix
with entries

∫
φ′′

m(t)φ′′
l(t) dt , and thus zT

i PT Pzi quantifies the roughness of
each PC. We applied the same smoothing parameter λ to obtain all PCs. Note that
the numerator is the variance between Ŷ and ζi to be maximized, as PCs have that
goal, and the denominator is the orthonormal constraint imposed on the PCs, albeit
with added smoothing penalty here. Once ẑi are estimated from (5) we obtain the
PC by ζ̂i (t) = ∑K

k=1 ẑikφk(t). The R-function pca.fd in FDA library is used to
carry out the estimation.

For both gauges, the first two PCs are enough to describe the variations; see
Figures 6, 7 for registered data. Since the principal components represent vari-
ations around the mean, the mean curve is plotted along with the +’s and −’s
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FIG. 6. First two PCs, registered gauge 141. Solid line: mean wave elevation, ± lines: variability
along the PC directions. These indicate how much and in which direction the wave form varies when
the PC loading is increased.

that correspond to the consequences of adding and subtracting an amount of one
standard error in the direction of each principal component. Note that if FPCA is
carried out on the unregistered data, the first principal components account for a
lower percentage of variation, immediately demonstrating the benefit of using reg-
istration. For gauge 141, the first PC displays large variations at the maxima and

FIG. 7. First two PCs, registered gauge 32,298. Solid line: mean wave elevation, ± lines: variability
along the PC directions. These indicate how much and in which direction the wave form varies when
the PC loading is increased.
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minima. Despite the registration, the second PC for gauge 141 still shows phase
variations after 1500 s (note that the first PC does not show phase variations). It
is likely that registration did not perform well in this time window for the second
PC, possibly because of the large amount, and complexity, of phase variations. It is
also likely the the variations in amplitude are mostly taken into account by the first
PC so phase variations left over are greater than any other amplitude variations:
here the signal is rather difficult to understand physically. The first two PCs cap-
ture 94.3% of the variations; the second PC accounts for a significant percentage
of the variations (27.7%). For gauge 32,298, the first PC accounts for 97.6% of the
variability, and shows a very small variability initially up to time 3000 s. This is
expected as the first incoming wave arrives after 3000 s. There are large variations
near the peaks. The second PC represents only 1% of the variation and is not in-
formative, unlike for gauge 141, as almost all the variability is captured by the first
PC, since the wave elevation variations across runs is not influenced anymore by
the ratio at the trench (zt/zmax) after traveling some distance from the source.

5. Statistical emulation of the tsunami model. The uncertainties in tsunami
sources make Probabilistic Tsunami Hazard Analysis (PTHA) necessary [Gonzá-
lez et al. (2009)]. However, PTHA requires ideally a large number of high-
resolution simulations (e.g., using VOLNA). To make this feasible, two typical
approaches are pursued. One uses a large number of runs of a simplistic model,
often at low resolution. The other one uses only a small number of high-resolution
runs. A statistical emulator is built to overcome the computational problem of gen-
erating a large number of runs and obtain fast predictions used for the final step
of PTHA. Specifically, an Outer Product Emulator is used here with four choices
of basis functions for the outputs of tsunami wave elevation time series: Fourier
[Sarri, Guillas and Dias (2012)] or FPCs are used for the output regression func-
tions, both with or without registration. It illustrates the benefit of using registered
FPCs as proposed in the previous section.

5.1. Building an emulator. Model evaluations are available for 40 combina-
tions of the three source characteristics r = (zt/zmax, zmax, tp/tr ), with each one
representing a hypothetical fault rupture that generates a tsunami. These 40 points
are chosen to cover the three-dimensional input space using a maximin LHD,
within the following domain: zt

zmax
∈ [0,1], zmax ∈ [1,5] and tp

tr
∈ [0,6] (we nor-

malize the input intervals over [0,1]).
For the emulation, appropriate choices of regression and covariance functions

for inputs r and output argument s, where s is time, are made. The set of in-

put regression functions, Gr def= {gr
1, . . . , g

r
νr

}, where νr is the number of input
regressors, contains polynomials for each of the three input parameters. We em-
ploy seven input regressors: constant, linear and quadratic polynomials. These re-
gressors are orthogonal Legendre polynomials, shifted into the unit integral [0,1];
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see (22) in Sarri, Guillas and Dias (2012). The main modes of variability in the
input-output relationship are mostly captured by the regression function and the
covariance structure is flexible enough to model the rest, in case the nonlinearity
is more complex than quadratic. Note that these modes turned out to be simple:
the influence of parameters, as seen eventually in the sensitivity analysis below
(for the maximum elevation only though), is actually mostly linear. The regres-
sors in inputs are always the same for all types of output representation (Fourier
or FPCs). Tensor products of Legendre polynomials for emulation have also been
used successfully in another emulation context [Kaufman et al. (2011)] using com-
pactly supported correlation functions (reducing dramatically computing costs) to
model small-scale variability, and regression functions in the mean of the GP to
model large-scale variability (up to fifth order Legendre polynomials as a result
of a restricted family of correlation functions). As we did not restrict ourselves to
compactly supported correlations functions, our choice of second order Legendre
polynomials constitute a reasonable trade-off in our setting.

For the output regression functions, we define Gs def= {gs
1, . . . , g

s
νs

}, where νs is
the number of output regressors. We consider two choices of regressors: (1) Fourier
terms in addition to a constant term; (2) functional PCs as explained above. We
now justify the choice of Fourier terms. On the one hand, we want to represent the
time series with Fourier terms whose frequencies reflect the possible time series
of outputs. On the other hand, having too many frequencies leads to an increase in
computational costs and noisy variations, especially with high frequencies. Hence
the frequencies are different for each gauge as they oscillate differently. We in-
spected the frequencies of each wave time series for the different inputs and fitted
these outputs using several sets of Fourier modes. After trial-and-error investiga-
tions, a set of frequencies that leads to good emulated predictions is selected for
each gauge. Specifically, for gauge 141 the set of frequencies ω is

� =
{

1

1600
,

1

1400
,

1

1200
,

1

1000
,

1

800
,

1

600
,

1

400

}
.

Hence, the set of output regression functions is

Gs = {
1, sin(2πT/ω), cos(2πT/ω)

}
, ω ∈ �.

The set of frequencies for gauge 32,298 is

� =
{

1

6400
,

1

5800
,

1

5200
,

1

4600
,

1

4000
,

1

3400
,

1

2800
,

1

2200
,

1

1600
,

1

1000
,

1

400

}
.

Indeed, as seen in Figure 5, the time series for gauge 32,298 clearly displays high
frequency variations that require the use of a different set of frequencies from
gauge 141. The frequencies are the same for registered and nonregistered data as
registration changes infinitesimally the frequencies of oscillations in the curves.
The number of selected Fourier basis functions can become large in order to cap-
ture various types of oscillations. FPCs as time input regression functions should
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give better results due to their ability to directly pick the right modes of variation
across curves.

The input and output residuals covariance functions, κr and κs , are chosen to
be the widely used power exponential functions:

κr = exp
(
−

( | zt

zmax
− zt

zmax

′|
λ1

)3/2)
× exp

(
−

( |zmax − z′
max|

λ2

)3/2)
(6)

× exp
(
−

( | tp
tr

− tp
tr

′|
λ3

)3/2)
,

κs = exp
(
−

( |t − t ′|
λt

)3/2)
,(7)

where λ1, λ2, λ3 are the correlation lengths for the inputs and λt for the out-
puts. The 3/2 power constitutes a good trade-off between no differentiability of
a GP equipped with a correlation above with a power equal to 1 (though still not
differentiable with power equal to 3/2 but not as rough in practice) and infinite
differentiability for a value of 2. It was also selected by Kaufman et al. (2011) af-
ter careful investigation of these choices of power and their effects but in another
context (practitioners often use 1.9 or 2). The influence of the smoothing parame-
ter is relatively small between 1.5 and 2 and cannot explain the predicted interval
widths seen in Figures 8 and 9. These widths, for registered functional data (a nec-
essary step for these data) are fine, as even a slightly reduced width would result in
much more than 5% of the data outside these intervals (when recasting the problem
pointwise empirically, not exactly the case here but an informative view neverthe-
less). For gauge 141, when the best modelling steps are followed (registration and
PCs), the empirical pointwise coverage is probably slightly above 95%, but would
reduce by a large amount with even a slightly narrower width. Clearly predictions
at the peak would lie outside these intervals for gauge 32,298.

The correlation lengths, after initial exploration of a reasonable range, were
selected using a simple trial and error method, using different combinations of
λ1 = λ2 = λ3 = 0.1,0.5,0.9,1,2 (as little gain is obtained in using different ones)
and λt = 0.1,0.5,0.9 for all four cases (Fourier or FPCs, unregistered or regis-
tered) and all gauges. The resulting emulator’s predictions are validated and com-
pared using the total mean CI length and RMSE. We estimate a set of correlation
lengths and use these values everywhere for all techniques. The selection of the
correlation lengths could be performed in a more refined manner using marginal
likelihood, as in our previous work [Sarri, Guillas and Dias (2012)]. However, this
entails more computations, for little additional benefit. Indeed, the subsequent pre-
dictions below using these correlation lengths are very good. Besides, the depen-
dence to correlation length is weak and thus will not yield a significant improve-
ment; see Rougier et al. (2009) for a sensitivity analysis of the OPE to correlation
lengths. The final selection is λ1 = λ2 = λ3 = 1 and λt = 0.5.
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(a) Fourier OPE; unregistered (b) Fourier OPE; registered

(c) FPCs as OPE; unregistered (d) FPCs as OPE; registered

FIG. 8. LOO diagnostics plots, gauge 141. Units: elevation in meters and time in seconds. Source
zmax = 4.78 m, zt /zmax = 0.95 and tp/tr = 0.33 (LHD point 5). Simulated wave in blue, mean
emulated wave in red; 95% credible intervals display the 95% most likely emulated wave forms.

The last step is the choice of hyperparameters {m,V,a, d}, done here as in Sarri,
Guillas and Dias (2012). With this selection of parameters, the prior emulator is
constructed and combined with the model evaluations. The resulting OPEs are able
to give quick probabilistic predictions of the wave elevation for any combination
of the three source characteristics. A Leave-One-Out (LOO) validation is used to
assess accuracy of the emulation. 40 LOO diagnostic plots are obtained for each
gauge in the four cases. For most of the cases, the LOO diagnostics show that the
emulator predictions are satisfactory, with both the shape and the peaks accurately
predicted. The 95% credible intervals capture well the simulations. We noticed that
the set of 40 curves used in LOO lie almost entirely within these bands, showing
that the 95% coverage probability is seemingly correct in all cases, but that the the
CIs might be all too generous. The mean credible interval length (MCIL) and the
root-mean-square error (RMSE) between the observed and the predicted values for
each of the 40 inputs are calculated and used to assess the predictions.

LOO diagnostic plots at the same LHD point (05) are displayed in Figure 8 for
gauge 141 and in Figure 9 for gauge 32,298. For gauge 141, the use of FPCs in
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(a) Fourier OPE; unregistered (b) Fourier OPE; registered

(c) PCs as OPE; unregistered (d) PCs as OPE; registered

FIG. 9. LOO diagnostics plots, gauge 32,298. Units: elevation in meters and time in seconds.
Source zmax = 4.78 m, zt /zmax = 0.95 and tp/tr = 0.33 (LHD point 5). Simulated wave in blue,
mean emulated wave in red; 95% credible intervals display the 95% most likely emulated wave
forms.

place of Fourier basis functions improves the predictions for both unregistered and
registered cases, since the wave elevation oscillations at gauge 141 are smooth,
without sharp fluctuations. The complex shape makes the emulator’s job relatively
hard for gauge 32,298. This gives the opportunity to observe significant differences
between the predictions of the four emulations. The specific LHD point has a ratio
of the trench height to the middle maximum height, zt/zmax, close to 1. This indi-
cates a large discontinuity at the trench. Also, zmax is close to the upper limit of the
range. Hence, the resulting tsunami waves have large amplitudes and variations,
which makes the emulator’s job even more difficult. Using Fourier basis functions,
the emulator predictions cannot escape from oscillating even at locations where the
wave elevation is almost flat, which is the case for the initial 3000 s. However, the
emulator performs rather well even with the unregistered data and the selection of
Fourier basis functions. The Fourier approach yields variations at the frequencies
required, as seen in the similar kinks occurring at around 3500 s in the registered
case (one is actually captured, the other not, but both are in the FPC case). From
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(a) Mean CI length (b) RMSE

(c) Mean CI length (d) RMSE

FIG. 10. Total Mean Credible Interval length and RMSEs for OPEs, gauges 141 (upper panels) &
32,298 (lower panels). R: registered; U: unregistered.

Figure 9 it is obvious that the use of FPCs does not display spurious oscillations,
as opposed to Fourier terms. Note that in the case of the unregistered data, the use
of FPCs is unable to catch the details in the shape as well as for registered FPCs.

Figure 10 displays the comparisons of pointwise mean CI lengths and RMSE
statistics across the four cases, computed using the 40 LOO diagnostics. What is
a coverage probability for random curves is not yet possible to answer formally
or even numerically. Indeed, the notion of a curve being (not necessarily entirely)
within a credible interval is not clear (as opposed to a pointwise case), but may
be in the future using either joint prediction intervals or Functional Data Analysis
notions of data depth for instance [López-Pintado and Romo (2009)]. Overall, the
use of landmark registration together with FPCs mainly improves the CI lengths,
with limited improvements in the RMSEs. Indeed, the meaningful errors, as seen
in LOO diagnostic plots, are at the peaks, but these reductions are tiny in terms of
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RMSEs as these are computed over the whole time series; see, for instance, panels
(c) and (d) in Figure 9 where the improvement in terms of the peak estimation
(over the small interval 3800–4000 s) by the registration is offset by a lack of fit
over the longer period 4500–5500 s. In conclusion, the use of landmark registration
together with FPCs is the best method overall. Importantly, the FPC-based OPE
captures better the peaks of the waves, a critical value to evaluate potential impact
of tsunamis.

5.2. Sensitivity analysis. A sensitivity analysis would be extremely expensive
using a Monte Carlo approach without the help of an emulator. Measures of sen-
sitivity have been developed in the past. Oakley and O’Hagan (2004) for instance
provide graphical representations of posterior expectations of the individual con-
ditional expectations of the response with respect to each input. Our graphical
outputs are very similar, but instead of computing the posterior expectation to cap-
ture an overall effect, we break down the response by the value of the other two
coefficients, as we can afford this computation in our 3D case.

Figure 11 shows the sensitivity of gauge 141 outputs to individual inputs. For
zmax, emulator predictions are obtained at combinations of 0.01 increments of
the parameter zmax (zmax = [1,1.01,1.02, . . . ,5]) and for the maximum, middle
and minimum values of the range of the two other parameters, zt/zmax and tp/tr .
This amounts to 3609 different combinations. Similarly, we run 909 combinations
of 0.1 steps for zt/zmax and the maximum/middle/minimum values of zmax and
tp/tr . We also run 5409 combinations to examine the sensitivity to tp/tr for some
choices of the two other parameters (tp/tr = [0,0.01,0.02, . . . ,6], zmax = [1,3,5]
and zt/zmax = [0,0.5,1]). Figure 11 identifies, as expected, a strong positive cor-
relation between the maximum wave elevation and zmax. Also, there is a slight
increase in the wave elevation, when the trench height zt increases closer zmax.
No significant dependency on the rupture propagation time is observed.3 Similar
dependencies are valid for the gauge 32,298 (not shown). In a sensitivity analysis
to combinations of two inputs using the emulator (not shown), we found a small
two-way interaction. The lack of sensitivity and low sensitivity, respectively to
time and trench height, cannot be assumed to be true for all possible gauges (e.g.,
a gauge over the trench would show a clearer sensitivity to trench height).

5.3. Uncertainty analysis. The uncertainty analysis propagates the uncer-
tainty in the input characteristics zmax, zt/zmax and tp/tr to the maximum wave
elevation. Using expert judgement about the most probable values for these in-
puts, a distribution is assigned to each of these: 2000 random input combinations
are drawn, and the emulator readily provides maximum wave elevations for these

3The variation in rupture propagation time that we used is small compared to the tsunami wave
period (i.e., rupture propagation is fast compared to tsunami propagation, as observed in fault rupture-
sourced events but landslides may be a different matter).
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(a) (b)

(c)

FIG. 11. Sensitivity of the maximum wave elevation (in meters), gauge 141, to (a) zmax inflation
factor, (b) zt /zmax and (c) tp/tr .

2000 cases. The first parameter zmax is assumed to have a Beta distribution Be(2,3)

over [2,5], not over [1,5] as we expect a maximum seabed deformation of at least
2.2 × 2 = 4.4 m when a fault rupture occurs in this hazard assessment. Indeed, the
parameter zmax relates closely to the seismic magnitude, and to the coastal sub-
sidence as Goldfinger et al. (2012) argue that the coseismic uplift relates to the
proxy of turbidite volume. Leonard et al. (2010) describe the distribution of the
coastal subsidence and hence help define the distribution of zmax. The dependency
of zmax to the coastal subsidence is particularly valid for cases where the ratio of
the maximum uplift to the maximum subsidence is considered constant, which is
the case here. For the whole margin rupture case, the values of zmax are considered
to be more likely between 2 and 4, and less likely between 4 and 5; see Figure 12.
This range of values for zmax is supported by Wells and Coppersmith (1994), who
observe that there is a range of slips associated with a fixed fault rupture length
that does not go to zero.

We assume that zt/zmax follows a truncated Normal distribution, with underly-
ing Normal mean 1 and variance 0.09, truncated over [0,1]; see Figure 12. Indeed,
zt/zmax is assumed to be in the range [0,1]. Note that a ratio larger than 1 would be
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FIG. 12. 2000 draws from the distributions of (dimensionless) parameters zmax, zt /zmax, tp/tr .

conceivable. However, since for our analysis the whole rupture propagation case
is investigated, we are not considering that this ratio can take values larger than 1
all along the margin, and thus we restrict ourselves to [0,1]. There is support for
the fact that zt/zmax should be close to 1 [Masterlark and Hughes (2008)], which
is assumed here. For the last input, the limited knowledge about the duration (and
even direction) of propagation leads to the selection of Uniform distribution be-
tween 0 and 6. 2000 random samples are drawn from the three distributions; see
Figure 12. Note that physically, if the uplift size zmax is large, then the disconti-
nuity at the trench zt/zmax is likely to be large [Wells and Coppersmith (1994)].
We create a sample of non-Gaussian variables that respects this fact, by sorting
the values of these two parameters alongside and by merely associating large val-
ues of one to large values of the other. These combinations are combined with
the values of tp/tr in random order to generate 2000 different coseismic source
deformation events. Emulation is employed for these 2000 different input combi-
nations. For each gauge, the maximum elevation and the mean predictive Credible
Interval (CI) length have been estimated for each combination of the input param-
eters. The variations are quantified using quantiles; see Table 1. The distributions
of the resulting maximum wave elevations are shown in Figure 13. This analysis
can be repeated for any location to assess risk over entire regions. The total time

TABLE 1
Maximum predicted wave elevation and mean predictive Credible Intervals (CI) length

percentiles for gauge 141 (first two rows) and gauge 32,298 (last two rows),
resulting from the uncertainties drawn in Figure 12

0.1% 1% 5% 25% 50% 75% 95% 99% 99.9%

Max elevation 1.42 1.48 1.66 2.12 2.52 2.93 3.50 3.82 4.14
Mean CI length 0.22 0.31 0.39 0.55 0.64 0.71 0.77 0.79 0.80

Max Elevation 0.82 0.92 1.07 1.35 1.59 1.80 2.02 2.15 2.42
Mean CI length 0.10 0.13 0.17 0.24 0.27 0.31 0.33 0.34 0.34
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(a) Gauge 141 (b) Gauge 32,298

FIG. 13. Maximum wave elevation predictions distribution for (a) gauge 141 and (b) gauge 32,298,
resulting from the uncertainties drawn in Figure 12.

required was of the order one minute (on a standard desktop) for 2000 emulator
predictions. This highlights one more time the importance of replacing expensive
computer models with accurate statistical surrogate models.

6. Conclusion. Our functional emulator efficiently and parsimoniously ap-
proximates tsunami wave forms, making use of landmark registration and Func-
tional Principal Component Analysis. It outperforms previously used functional
emulators employing a fixed basis. The emulation allows the investigation of sen-
sitivity to input parameters describing realistic features, as well as the propagation
of uncertainties for high resolution tsunami risk assessments. As we produce entire
time series of uncertain tsunami waves, other summaries than the maximum eleva-
tion presented here could be obtained: for instance an integrated index of impact,
to measure scouring on buildings by multiple waves in order to better appraise
potential damages to buildings. Furthermore, early warning systems based on pre-
computed solutions, for example, Gusman et al. (2014), could be substantially up-
graded using such an approach. The use of the fast emulator could help issue more
precise warnings, accompanied by uncertainties arising from the large uncertain
initial conditions inferred from early estimates of the earthquake characteristics.
Further work includes a better description of the earthquake characteristics, with
more parameters. Such advances will present further computational and geophys-
ical challenges in order to adequately quantify uncertainties in tsunami risk for
the Cascadia region. Our approach could also be utilized in other tsunami-prone
regions of the world.
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SUPPLEMENTARY MATERIAL

Supplement A: Two movies of seabed deformations (DOI: 10.1214/18-
AOAS1142SUPP; .zip). These two seabed deformations correspond to cases 5 and
13 in the Latin Hypercube Design of 40 combinations of the three input character-
istics.
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