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HIV-1C is the most prevalent subtype of HIV-1 and accounts for over
half of HIV-1 infections worldwide. Host genetic influence of HIV infection
has been previously studied in HIV-1B, but little attention has been paid to
the more prevalent subtype C. To understand the role of host genetics in HIV-
1C disease progression, we perform a study to assess the association between
longitudinally collected measures of disease and more than 100,000 genetic
markers located on chromosome 6. The most common approach to analyz-
ing longitudinal data in this context is linear mixed effects models, which
may be overly simplistic in this case. On the other hand, existing flexible and
nonparametric methods either require densely sampled points, restrict atten-
tion to a single SNP, lack testing procedures, or are cumbersome to fit on
the genome-wide scale. We propose a functional principal variance compo-
nent (FPVC) testing framework which captures the nonlinearity in the CD4
and viral load with low degrees of freedom and is fast enough to carry out
thousands or millions of times. The FPVC testing unfolds in two stages. In
the first stage, we summarize the markers of disease progression according to
their major patterns of variation via functional principal components analysis
(FPCA). In the second stage, we employ a simple working model and vari-
ance component testing to examine the association between the summaries of
disease progression and a set of single nucleotide polymorphisms. We supple-
ment this analysis with simulation results which indicate that FPVC testing
can offer large power gains over the standard linear mixed effects model.

1. Introduction. An important goal of large-scale genomic association stud-
ies is to explore susceptibility to complex diseases. These studies have led to iden-
tification of many genomic regions as putatively harboring disease susceptibility
alleles for a wide range of disorders. For patients with a particular disease, associ-
ation studies have also been performed to identify genetic variants associated with
progression of disease. The disease progression is often monitored by longitudi-
nally measured biological markers. Such longitudinal measures allow researchers
to more clearly characterize clinical outcomes that cannot necessarily be captured
in one or even a few measurements.
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We are motivated by a large-scale association study of HIV-1 Subtype-C (HIV-
1C) progression in sub-Saharan African individuals. HIV-1C is the most preva-
lent subtype of HIV-1 and accounts for over half of HIV-1 infections worldwide
[Geretti (2006)]. Sub-Saharan Africa, where HIV-1C dominates, was home to an
estimated 69% of people living with HIV in 2012 [UNAIDS (2012)]. While sev-
eral human leukoucyte antigen (HLA) alleles [e.g., Fellay et al. (2007), van Manen
et al. (2009), Migueles et al. (2000)] and other loci have been identified to be as-
sociated with AIDS progression in European males infected by HIV-1B [Fellay
et al. (2007), O’Brien and Hendrickson (2013)], comparatively little research has
focused on host genetic influence in this African population and subtype.

In this study, we seek to relate the longitudinal progression of these two
markers—log10 CD4 (lCD4) count and log10 viral load (lVL)—to a set of approx-
imately 100,000 single nucleotide polymorphisms (SNPs) located on chromosome
6 in two independent cohorts of treatment-naive individuals in Botswana. We focus
on chromosome 6 because it houses the HLA region of genes, which are known
to impact immune function. Throughout this paper, we will use y = (y1, . . . , yr)

�
to denote the longitudinal outcome (in the context of this study, either lCD4 or
lVL), measured at times t = (t1, . . . , tr )

�. We will furthermore let a set of genetic
markers of interest be denoted z and any potential covariates be x.

The most common approach to analyzing longitudinal data of this kind is to use
linear mixed effects (LME) models [Laird and Ware (1982)], which relate y lin-
early to z, x, and t with both fixed and random effects. However, in the case of HIV
progression measured by lCD4 and lVL (and in many other practical situations),
such a linear relationship is likely to be overly simplistic. To incorporate nonlinear
trajectories, many generalizations of LMEs have been proposed. Typically, meth-
ods assume that y is a noisy realization of a smooth underlying function Y(·).
These methods include nonlinear or nonparametric LMEs using a fixed spline ba-
sis expansion [Guo (2002), Lindstrom and Bates (1990), Rice and Wu (2001)] for t
and adjusting for z. Functional regression methods have been proposed for densely
sampled trajectories [Chiou, Müller and Wang (2003)] for a single z as well as for
irregularly spaced longitudinal data where z is also allowed to change over time
[Yao, Müller and Wang (2005b)]. In these methods, estimation proceeds via ker-
nel smoothing for both the population mean function and the covariance process
of Y(·). Krafty et al. (2008) proposed an iterative procedure for fitting functional
regression models which accounts for within-subject covariance but does not es-
timate random effects. Similarly, Reiss, Huang and Mennes (2010) proposed a
ridge-based estimator for the case when y is measured on a common, fine grid
of points for all subjects, but requires z to be univariate and also ignores random
effects. In a similarly dense setting Morris and Carroll (2006) proposed wavelet-
based mixed effects models, and inference procedures for the random effects were
developed in Antoniadis and Sapatinas (2007).

While some of these methods can be adapted to test for association, none of
them are suitable for our study for the following reasons. First, some require re-
strictive assumptions about the density of measurements [e.g., Morris and Carroll



FPVC TESTING FOR HIV PROGRESSION 1873

(2006)] which are clearly not met here. Further, all of these methods were de-
veloped with estimation and regression in mind. While many of them could in
principle be used to derive testing procedures, the validity of their inference proce-
dures often relies on the model assumptions concerning the distribution of y given
the SNPs and the covariates. Under model mis-specification, the resulting test may
fail to maintain type I error. Additionally, these procedures would require fitting
a complex iterative or smoothing-based model thousands or millions of times for
genome-wide studies and hence become computationally infeasible. We propose
a novel testing procedure which is valid regardless of the true distribution of y, is
fast to fit and has a simple limiting distribution, despite the fact that we account
for nonlinearity in y in a manner akin to previous functional regression methods.
To do this, we first capture the nonlinearity in y using functional principal com-
ponents analysis (FPCA) [Castro, Lawton and Sylvestre (1986), Hall, Müller and
Wang (2006), Krafty et al. (2008), Rice and Silverman (1991), Yao, Müller and
Wang (2005a)]. Using an eigenfunction decomposition of the smoothed covariance
function of Y(·), we approximate each patient’s Y(·) by a weighted average of the
estimated eigenfunctions, with weights corresponding to functional principal com-
ponent loadings or scores. Then borrowing a variance component test framework
and using these scores as pseudo-outcomes, we construct a Functional Principal
Variance Component (FPVC) test that can capture the nonlinear trajectories with-
out requiring a normality assumption or fitting individual functional regression
models. The test statistics can be approximated by a mixture of chi-squares, and
the small number of eigenfunctions needed to approximate the trajectories can re-
sult in a test statistic with low degrees of freedom.

Since the data of interest are sampled at irregular time intervals, we use the
best linear unbiased predictor (BLUP) to estimate the scores. The BLUP was also
the basis for FPCA with sparse longitudinal data in the principal analysis via
conditional expectation (PACE) method [Yao, Müller and Wang (2005a)] under
a normality assumption. Here, we use BLUP to motivate our testing procedure
but do not require normality for the validity of the FPVC test. The test statistic
can be derived through the variance component testing framework and viewed as a
summary measure of the overall covariance between the estimated subject-specific
scores, which characterize the person’s trajectory, and the genetic markers. Sim-
ilar variance component tests have previously been proposed for standard linear
and logistic regressions with observed single outcomes [Wu et al. (2011)].

The primary virtues of FPVC testing are threefold. First, we separate the proce-
dure into two stages of distinct complexity to make it feasible at large scale. In the
first stage, we model y flexibly using FPCA and obtain a succinct summary of dis-
ease progression for each patient, once and for all. In the second stage, we perform
a rather simple model at large scale. Thus, we segregate the computationally com-
plex stage (which need occur only once) from the large-scale stage (which could
require the same computation on the order of millions of times in, e.g., genome-
wide association studies). Second, the summary of y that we obtain from FPCA
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is the most succinct summary possible, as the eigenfunctions identified by FPCA
are the functions that explain the most variability in y. Third, our theoretical re-
sults suggest that the null distribution of the FPVC test statistic reduces to a simple
mixture of χ2 distributions. The variability due to estimating the eigenfunctions
does not contribute to the null distribution of the test statistic asymptotically at the
first order [see (11) and the derivation of the asymptotic null distribution].

In Section 2, we describe FPCA and introduce FPVC testing and our main the-
oretical results. In Section 3, we give details about the association study for HIV
progression. In Section 4, we discuss simulation results, and in Section 5 we dis-
cuss further implications of our procedure.

2. Functional principal variance component testing.

2.1. The test statistic. In this section, we propose a testing procedure for
assessing the association between a set of genetic markers z and a longitudi-
nally measured outcome y, adjusting for covariates x. Let the data for analy-
sis consist of n independent random vectors V = {Vi = (y�

i , t�i , z�
i ,x�

i )�}ni=1,
where yi = (yi1, . . . , yiri )

� is a vector of outcome measurements taken at times
ti = (ti1, . . . , tiri )

� ∈ T ri , T is a closed and bounded interval, zi = (zi1, . . . , zip)�
is a vector of genetic markers of interest, and xi = (1, xi1, . . . , xiq)

� is a vector of
additional covariates that are potentially related to the outcome, all measured on
person i. For each i, we take (z�

i ,x�
i )� to be distributed as (z�,x�)�.

Our goal is to test the null hypothesis

(1) H0 : yi ⊥ ziS | xi ,

where ziS = (zij1, . . . , zijs )
� is a set of genetic factors to test, identified by the

index set S = {j1, . . . , js} ⊂ {1, . . . , p}. Special cases include marginal testing,
as in traditional genome-wide association studies, where S = {j} for some j ∈
{1, . . . , p}, or set-based testing where S are the indices of the SNPs in a gene or
some other related set.

To model the longitudinal trajectory, we assume that yir is a noisy sample of a
smooth underlying function Yi(·), evaluated at the point tir ,

yir = Yi(tir ) + εir ,

which following the logic of Yao, Müller and Wang (2005a) can be written as a
linear combination of its population mean E{Y(·)} and a set of K eigenfunctions
{φk(·)}

yir = μ(tir ) +
K∑

k=1

ξikφk(tir ) + εir ,(2)

where ξik is the FPCA score associated with the kth eigenfunction, E(ξik) = 0,
Var(ξik) = λk , and the eigenfunctions are ordered such that the kth explains the
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kth most variance in Y(·). Thus, the relationship between yi and xi and zi must
be captured by the only random quantity in (2), the vector of random coefficients
{ξik}Kk=1. Therefore, testing (1) is equivalent to testing

H0 : {ξik}Kk=1 ⊥ ziS | xi .

However, direct assessment of the association between {ξik}Kk=1 and ziS is difficult
since {ξik}Kk=1 are unobservable and K could be infinity.

Most methods of estimating a function like Yi(·) require an explicit tuning of
the smoothness of the resulting estimator. Here that corresponds to choosing a
(typically small) number K of eigenfunctions as an approximation

Yi(t) ≈ μ(t) +
K∑

k=1

ξikφk(t),

where K < ∞ could be chosen such that the first K directions capture a proportion
of the variation at least as large as ℘ ∈ (0,1]. Our simulation results (see Section 4)
suggest that the performance of FPVC testing is not very sensitive to the choice
of K provided that ℘ is close to 1. Since {ξik}Kk=1 are not observable or generally
estimable due to sparse sampling of measurement times, we instead infer about
the association between Yi(·) and zi based on the best linear unbiased predictor
(BLUP),

ξ̃ik = λkφ
�
ik�

−1
yi

(yi − μi ),(3)

where φik = {φk(ti1), . . . , φk(tiri )}�, μi = {μ(ti1), . . . ,μ(tiri )}�, and �yi
=

Cov(yi ,yi ) such that (�yi
)rl = G(tir , til)+σ 2δrl , Cov{Y (s), Y (t)} = G(s, t), and

δrl = I{r=l}. In the PACE method of Yao, Müller and Wang (2005a), ξ̃ik was ob-
tained as E(ξik|yi ) under the assumption that ξik and εir are jointly normal, but
we don’t require normality here. We simply take ξ̃ik as an observable and reason-
able approximation to ξik even if normality does not hold, as has been argued in
Robinson (1991) and Jiang (1998).

Thus, we propose to test (1) by testing

H
†
0 : {̃ξik}Kk=1 ⊥ ziS | xi .

Taking note that the association we seek to test is conditional on x, one may con-
struct a test for H

†
0 by regressing ξ̃ i = (̃ξi1, . . . , ξ̃iK)� onto (xi , ziS). However, this

is only valid if the effect of xi on Yi(·) is captured fully based on the model relat-
ing xi and ξ̃ i , which may not be true in general. To remove the effect of xi without
imposing a strong assumption on how xi affects Yi(·), we instead choose to model
the conditional expectation of zij given xi , μzj

(xi ) = E(zij |xi ), and center ziS as
z∗
iS = (z∗

ij1
, . . . , z∗

ijs
) where for any j

z∗
ij = zij − μzj

(xi ).
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To form the test statistic for H0, we propose to summarize the overall asso-
ciation between Y(·) and zS based on the Frobenius norm of the standardized
covariance between ξ̃ i and z∗

iS

Q0 =
∥∥∥∥∥n− 1

2

n∑
i=1

ξ̃ iz
∗�
iS

∥∥∥∥∥
2

F

.(4)

Though Q0 takes a simple form and can be motivated naturally as an estimated
covariance (and can thus be considered model-free), it can also be viewed as a
variance component score test statistic similar to those considered previously for
other regression models [Commenges and Andersen (1995), Lin (1997)]. Details
on the derivation of the variance component score test statistic are given in Sec-
tion 2.2.

Both ξ̃ i and z∗
iS involve various nuisance parameters that remain to be esti-

mated. First, under mild regularity conditions which are outlined in the Supple-
mentary Material [Agniel et al. (2016)], we can use FPCA to estimate the relevant
quantities via local linear smoothing as in Hall, Müller and Wang (2006) and Yao,
Müller and Wang (2005a). Subsequently, we can estimate ξ̃ik by

ξ̂ik = λ̂kφ̂
�
ik�̂

−1
yi

(yi − μ̂i )(5)

for φ̂ik = {φ̂k(ti1), . . . , φ̂k(tiri )}�, μ̂i = {μ̂(ti1), . . . , μ̂(tiri )}�, and (�̂yi
)rl =

Ĝ(tir , til) + σ̂ 2δrl . To estimate μzj
(xi ), various approaches can be taken depend-

ing on the nature of x. For example, when x is discrete, μzj
(xi ) can be estimated

empirically. With continuous x, we may impose a parametric model with

(6) μzj
(x) = gj (θ j ,x)

and obtain z̄j (x) as gj (̂θ j ,x), where θ̂ j is an estimate of a finite-dimensional pa-
rameter θ j . To take two examples that commonly come up in genomics, if zj takes
values in {0,1}, for example, under the dominant model, then zj can be modeled
using logistic regression, and if zj takes values in {0,1,2}, then we may use a
binomial generalized linear model or a proportional odds model. There are two
reasons to prefer to remove the effect of x from z rather than from ξ : first, it may
in general be easier to specify a model for z rather than ξ because of the limited
range of z, and, second, this formulation facilitates asymptotic analysis without the
need to derive the asymptotic distributions for the estimated FPCA scores. Finally,
based on {̂ξik}Kk=1 and z̄j (xi ), our proposed test statistic is

Q = 1

n

∑
j∈S

K∑
k=1

(
n∑

i=1

ξ̂ikẑ
∗
ij

)2

=
∥∥∥∥∥n− 1

2

n∑
i=1

ξ̂ i ẑ
∗�
iS

∥∥∥∥∥
2

F

,(7)

where ẑ∗
iS = (̂z∗

ij1
, . . . , ẑ∗

ijs
)� and ẑ∗

ij = zij − z̄j (xi ).
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2.2. Connection to mixed effects models. In this section, we demonstrate that
one can arrive at the quantity (4) via a more familiar mixed effects model. Consider
the model

yir = μ(tir ) +
K∑

k=1

ξikφk(tir ) + εir ,(8)

ξ i = (ξi1, . . . , ξiK)� ∼ N
(
Bz∗

iS,�
)
, εir ∼ N

(
0, σ 2)

,(9)

where B is a K × s matrix with (k, j)th entry βkj and � = diag(λ1, . . . , λK).
We can obtain Q0 as the variance component score test statistic for H0 : B = 0.
Specifically, let βkj = ηνkj and we consider a working model such that {νkj } are
independently distributed with E(νkj ) = 0 and Var(νkj ) = λ2

k . Under this working
model, H0 : B = 0 is equivalent to

H0 : η = 0.

This formulation follows the logic of variance component score tests that have
been proposed previously [Wu et al. (2011)] and recalls, for example, the likeli-
hood ratio test proposed in Crainiceanu and Ruppert (2004). To obtain the variance
component test statistic, rewrite the model as

yμi =
K∑

k=1

(∑
j∈S

ηνkj z
∗
ij + eik

)
φik + εi

for centered outcome yμi = {yi1 − μ(ti1), . . . , yiri − μ(tiri )}�, error vector εi =
(εi1, . . . , εiri )

�, and random effects ei = (ei1, . . . , eiK)� ∼ N(0,�). Then

yμi |ν,
{
z∗
iS

}n
i=1 ∼ N

(∑
j∈S

K∑
k=1

ηνkj z
∗
ijφik,�yi

)
,

where �yi
= ∑K

k=1 λkφikφ
�
ik + σ 2Iri and Iri is the ri × ri identity matrix.

The log-likelihood for yμi can then be written

logL(η) = −1

2

n∑
i=1

{
log |�yi

|

+
(

yμi − η
∑
j∈S

K∑
k=1

νkj z
∗
ijφik

)�
�−1

yi

(
yμi − η

∑
j∈S

K∑
k=1

νkj z
∗
ijφik

)}
.

Because the target of inference is η, we marginalize over the nuisance param-
eter ν conditional on the observed data to obtain L∗(η) = E{L(η)|V} where
the expectation is taken over the distribution of ν. We follow the argument in
Commenges and Andersen (1995) and note that the score at the null value is 0:
limη→0 ∂ logL∗(η)/∂η = E(

∑n
i=1 y�

μi�
−1
yi

∑
j∈S

∑K
k=1 νkj z

∗
ijφik | V) = 0. So we
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instead consider the score with respect to η2, limη→0 ∂ logL∗(η)/∂(η2), and we
show in the Supplementary Material [Agniel et al. (2016)] that this score can be
written

E

{
∂ logL(η)

∂η

∣∣∣∣
η=0

∣∣∣ V}2
+ E

{
∂2 logL(η)

∂η2

∣∣∣∣
η=0

∣∣∣ V}

= E

(
n∑

i=1

y�
μi�

−1
yi

∑
j∈S

K∑
k=1

νkj z
∗
ijφik

∣∣∣ V)2

− E

(
n∑

i=1

∑
j,j ′∈S

K∑
k,k′=1

νkj z
∗
ijφ

�
ik�

−1
yi

νk′j ′z∗
ij ′φik′

∣∣∣ V)

= ∑
j∈S

K∑
k=1

(
n∑

i=1

y�
μi�

−1
yi

φikλkz
∗
ij

)2

− ∑
j∈S

K∑
k=1

{
n∑

i=1

(
λkz

∗
ij

)2
φ�

ik�
−1
yi

φik

}

up to a scaling constant.
To obtain finally Q0, we standardize by n−1 and drop the second term because

it converges to a constant, yielding the score statistic

n−1
∑
j∈S

K∑
k=1

(
n∑

i=1

y�
μi�

−1
yi

φikλkz
∗
ij

)2

= n−1
∑
j∈S

K∑
k=1

(
n∑

i=1

ξ̃ikz
∗
ij

)2

= Q0,

taking note of the form of ξ̃ik from (3). Thus, our proposed test statistic can be
obtained as a variance component test under a normal mixed model framework.
We can also view Q0 as a simple summary of the overall covariance between the
scores of the FPCA and the genetic markers. We next derive the null distribution
of the FPVC test statistic without requiring the normal mixed model to hold.

2.3. Estimating the null distribution of the test statistic. To obtain p-values for
FPVC testing, we must identify the null distribution of Q. To this end, we show in
Agniel et al. (2016) that the key quantity in Q

qkj = n− 1
2

n∑
i=1

ξ̂ikẑ
∗
ij

is asymptotically equivalent to

q̃kj = n− 1
2

n∑
i=1

ξ̃ikẑ
∗
ij

under H0, that is, qkj − q̃kj = op(1) for each j and k. The key idea for deriving the
null distribution of qkj is that, since ẑ∗

ij is approximately mean 0 conditional on xi ,

the variability due to approximating ξ̃ik by ξ̂ik does not contribute any additional
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noise to qkj (compared to q̃kj ) at the first order under H0. Thus, we can obtain the
limiting distribution of Q by analyzing the quantity Q̃ = ∑

j∈S
∑K

k=1 q̃2
kj .

To characterize the null distribution of Q̃, we need to account for the variability
in the estimated model parameters for μzj

(xi ) = gj (θ j ,xi ) in ẑ∗
ij . Without loss of

generality, we assume that for each j

(10) n
1
2 (̂θ j − θ j ) = n− 1

2

n∑
i=1

Uj (xi )z
∗
ij + op(1),

where U(·) is some (q + 1)-dimensional function of xi with E{U(xi )
2} < ∞. It

follows that

qkj = q̃kj + op(1) = n− 1
2

n∑
i=1

Qikj + op(1),(11)

where Qikj = {̃ξik − AkjU(xi )}z∗
ij , Akj = E{̃ξikġj (θ j ,xi)

�}, and ġj (θ j ,xi) =
∂gj (θ j ,xi)/∂θ j . We show in Agniel et al. (2016) that the limiting null distribution
of Q is a mixture of χ2

1 random variables, Q ∼ ∑sK
l=1 alχ

2
1 , with mixing coeffi-

cients determined by the eigenvalues of the covariance matrix of {Qikj }j∈S,1≤k≤K .
So finally we obtain a p-value for the association between the set zS and Y(·) as
P(

∑sK
l=1 âlχ

2
1 > Q |V), where âl is an empirical estimate of al .

By a similar argument, one could construct an asymptotically equivalent test
statistic by estimating ξ̃ i in two stages. Instead of obtaining an estimator di-
rectly from FPCA via equation (5), FPCA can be used to estimate only μ(·) and
{φk(·)}Kk=1. By plugging the estimated μ̂(·) and {φ̂k(·)}Kk=1 into the mixed model
(8), one can obtain what we will call the re-fitted test statistic

Q̄ = n−1
∑
j∈S

K∑
k=1

[
n∑

i=1

ξ̄ikẑ
∗
ij

]2

,(12)

where ξ̄ i = (ξ̄i1, . . . , ξ̄iK)� is the BLUP from the model yir − μ̂(tir ) =∑K
k=1 ξikφ̂k(tir ) + εir with Cov(ξ i ) = D, for some unspecified positive definite

matrix D. By the same argument above, estimation of ξ̃ik by ξ̄ik contributes no
additional variability to the test statistic at the first order. It follows that

q
†
kj = n− 1

2

n∑
i=1

ξ̄ikẑ
∗
ij = q̃kj + op(1),

and hence Q̄ has the same limiting null distribution as Q. Not surprisingly, simu-
lation results suggest that the performance of Q̄ is quite similar to the performance
of Q. This equivalence indicates that effectively our proposed testing procedure
uses FPCA to estimate potentially nonlinear bases and assesses the effect of ge-
netic markers by fitting a mixed model with these basis functions. The test statistics
also can be viewed as a simple summary of covariances, and—since we estimate
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the null distribution without relying on the normality assumption required by the
mixed models—our testing procedure remains valid regardless of the adequacy of
the mixed model.

2.4. Combining multiple sources of outcome information. In the HIV progres-
sion study, we seek to test the overall association between SNPs and both lCD4
and lVL simultaneously because more and distinct information about HIV pro-
gression is captured in both measures than in either one alone. FPVC testing, as
outlined above, can be easily adapted to perform a test for the overall association
between zS and all outcomes of interest. To use information in multiple outcomes,
{y(m)}Mm=1, we simply perform FPCA separately on each y(m) and obtain FPCA

scores for each person and each outcome. Subject i’s scores for y(m)
i would be

ξ̂
(m)

i = (̂ξ
(m)
i1 , . . . , ξ̂

(m)
iKm

)�, as in (5), and the full set of scores for person i would be

ξ̂ i = (̂ξ
(1)�
i , . . . , ξ̂

(m)�
i )�. Then we simply proceed by testing

H0 : {
y(m)}M

m=1 ⊥ zS | x

as before based on

Q =
∥∥∥∥∥n− 1

2

n∑
i=1

ξ̂ i ẑ
∗�
iS

∥∥∥∥∥
2

F

=
M∑

m=1

∥∥∥∥∥n− 1
2

n∑
i=1

ξ̂
(m)

i ẑ∗�
iS

∥∥∥∥∥
2

F

.(13)

Since each outcome may be measured on a different scale, one may use scaling
or weighting to allow scores from each outcome to contribute similarly to the test
statistic. See Section 5 for further discussion of scaling/weighting.

3. Association study for HIV progression. In this study, two independent
cohorts were recruited in Botswana to detect sets of SNPs related to HIV disease
progression as measured by lCD4 and lVL. The first cohort, which we will denote
BHP010, was a natural history observational prospective cohort study recruited
from clinics in Gaborone. This cohort included HIV-1C-infected individuals with
CD4 cell counts above 400 cells per μl and not yet qualified for the Botswana
highly active antiretroviral treatment (HAART) program. Patients were not en-
rolled if they were younger than 18, had an active AIDS-defining illness requiring
the initiation of HAART, presented with an AIDS-related malignancy, or previ-
ously had been exposed to HAART during pregnancy or breast feeding.

Follow-up visits occurred at approximately three-month intervals with an addi-
tional visit one month after enrollment. VL was generally collected at six-month
intervals, and most patients in this cohort do not have VL measurements after two
years of follow-up. Follow-up began in 2005 and lasted for up to 255 weeks. The
mean follow-up time was 41 months. At least two CD4 measurements were re-
quired for measuring disease progression, and 449 patients satisfied this criterion.
Of these, 366 were women, and the median age at baseline was 34 years old with
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an interquartile range (IQR) of (28, 39). In 2008, 143 patients were genotyped on
an Illumina LCG BeadChip, the chip used in the second cohort. After exclusions
for quality control—call rate greater than 0.99, genotype-derived gender matching
listed gender—137 individuals were included in the association study.

The second cohort we will denote BHP011. This cohort came from a random-
ized, multifactorial, double-blind placebo-controlled trial conducted between De-
cember 2004 and July 2009 [Baum et al. (2013)]. The purpose of the trial was to
determine the efficacy of micronutrient supplementation (supplementation of mul-
tivitamin, selenium, or both) in improving immune function in HIV-1C-infected
individuals. It was composed of 878 treatment-naive patients with CD4 higher
than 350 cells/μl, as well as body mass index (BMI) greater than 18 for women
and 18.5 for men (calculated as weight in kilograms divided by height in meters
squared), age of 18 years or older, no current AIDS-defining conditions or history
of AIDS-defining conditions, and no history of endocrine or psychiatric disorders.

Patients were followed up for a maximum of 169 weeks. They returned to clinics
approximately every three months to measure CD4 and approximately every six
months to measure VL. The mean follow-up time was 696 days. Of these, 838 had
at least two CD4 measurements, and 613 were women. The median age at baseline
was 33 years old with an interquartile range (IQR) of (28, 39). In this cohort, 326
individuals were genotyped on Illumina LCG BeadChips, with 320 entered into
the association study after quality control exclusions.

FPCA was performed on each cohort separately for both lCD4 and lVL. Patients
who were not genotyped were included for the estimation of FPCA. Three eigen-
functions were chosen for lCD4 and two for lVL in each cohort, which corresponds
to 99% of proportion of variance explained for each. The form of the eigenfunc-
tions look similar for both lCD4 and lVL in each cohort and lend themselves to
reasonable interpretations [see Agniel et al. (2016) for plotted eigenfunctions]. The
first eigenfunction tends to serve as a mean shift or an intercept; the second eigen-
function acts something like a slope; and the third eigenfunction behaves approxi-
mately as a quadratic term. The vector of estimated “re-fitted” scores [refer to (12)]
for each individual to be used in testing can be written ξ̂ i = (̂ξ

(m)
ik )k=1,2,3;m=1,2

where ξ̂
(m)
ik is the estimated score corresponding to the kth estimated eigenfunc-

tion of lCD4 when m = 1 and lVL when m = 2.
A total of 155,007 SNPs on chromosome 6 were genotyped. After requiring

less than 5% missingness and at least five individuals with any minor alleles in
each cohort, p = 108,665 SNPs, zi = (zi1, . . . , zip) remained for association test-
ing, where the ordering in zi corresponds to position on the chromosome. The
dominant model was used for analysis such that zij = 1 if any minor alleles are
present and zij = 0 if none are present. Missing values were imputed as the mi-
nor allele frequency for that SNP. To gain power by pooling information in nearby
SNPs, sets of 10 contiguous SNPs were constructed as ziSj

= (zij , . . . , zij+9) for
j = 1, . . . ,108,656. Here the choice of 10 merely serves as example for illus-
tration and sets could in principle be constructed with more SNPs, but due to
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the small sample size in each cohort, we kept the size of the sets modest. Tests
were performed on each cohort separately, and p-values were combined using the
Fisher method. The false discovery rate was controlled at 0.1 using the Benjamini–
Hochberg procedure [Benjamini and Hochberg (1995)], which is expected to re-
main valid since although the moving window construction of sets induces high
correlations for nearby regions, SNP sets in distant regions are not expected to be
correlated [Storey, Taylor and Siegmund (2004)].

Tests were adjusted for age and gender to remove any possible confounding, so
that we are testing for the effect of SNP sets on disease progression conditional on
age and gender. Logistic regression was used to remove their effects. The method
appears to be robust to this specification, as results were not markedly changed
either when no adjustment was made or by specifying a probit model (results not
shown).

The Manhattan plot for the 108,656 tests is given in Figure 1. In all, 126 tests
passed the FDR threshold, corresponding to four broad regions of the chromo-
some. Six contiguous tests rejected in the region between positions 6,784,416 and
6,793,116 (region 1), which fall between the LY86 and BTF3P7 genes; 117 tests

FIG. 1. Manhattan plot for set-based testing on chromosome 6. Position on x-axis for each test is
determined by the middle SNP (5th of 10) in the set. The dotted line corresponds to the threshold for
rejection at FDR 0.1.
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rejected between positions 31,022,266 and 31,080,899 (region 2), including SNPs
on the HCG22 and C6orf15 genes; two tests rejected between 122,990,817 and
123,014,708 (region 3) on the PKIB gene; and one test rejected representing SNPs
in the region between 162,250,522 and 162,254,546 (region 4) including SNPs on
the PARK2 gene. Notably, the C6orf15 gene has been reported to be associated
with susceptibility to follicular lymphoma [Skibola et al. (2009)], and genes in
linkage disequilibrium with HCG22 and C6orf15 have demonstrated associations
to total white blood cell counts [Nalls et al. (2011)] and multiple myeloma [Chubb
et al. (2013)].

Furthermore, regions 1, 3, and 4—whose − log10 p-values are depicted in Fig-
ure 2(a), (c), and (d), respectively—only have strong signals in one of the two
cohorts. Region 1 demonstrates association largely in BHP010, as can be seen in
the figure where the large triangles in the figure (representing the set-based p-value

(a) (b)

(c) (d)

FIG. 2. P -values in significant regions on the − log10 scale. Large symbols correspond to set-based
tests, and for illustration small symbols correspond to tests for individual SNPs. Triangles repre-
sent p-values computed in BHP010, and diamonds BHP011. Circles represent combined set-based
p-values, which are of primary interest and are connected by lines. Combined p-values that are
below the FDR threshold are in color, as are their corresponding component p-values.



1884 AGNIEL, XIE, ESSEX AND CAI

in BHP010) tend to lie above the large dots (representing the combined set-based
p-value), while the diamonds for BHP011 tend to be very low. Conversely, in re-
gions 3 and 4 the association is apparent only in BHP011. Whereas in region 2,
associations tend to be strong in both cohorts, and the combined p-values tend to
be lower (higher in the figure) than either of the component p-values.

To better understand the outcome of the test, we looked at average disease pro-
gression within groups of patients with similar minor allele burden. To do this, we
identified the SNP set with the smallest p-value, which lay in the HCG22 portion
of region 2 and included the following SNPs: rs2535308, rs2535307, rs2535306,
rs2535305, rs3130955, rs2535304, rs12527394, rs2535303, kgp9442190, and
rs3130959. Patients were grouped according to the number of loci among these
10 at which they had any minor alleles. Within these groups, we averaged the esti-
mated mean lCD4 and lVL in each cohort over time Ŷ (·) = μ̂(·) + ∑K

k=1 ξ̂ikφ̂k(·).
As a demonstration, the results for those with 2, 3, 8, and 9 loci with minor alleles
are depicted in Figure 3. We selected these groups to demonstrate burden extremes
(very few individuals had 0 or 1 loci affected, so they were not shown).

The healthiest group included those with only 2 and 3 affected loci, who had
higher and more stable CD4 and lower and gently increasing VL throughout the
study period in each cohort. Those with 3 affected loci tended to have a more
negative CD4 slope and higher and increasing VL over the study period. Those
with 9 affected loci in general had the worst progression: low and declining CD4
counts in both cohorts, and high and relatively stable VL in both cohorts. Those
with 8 affected loci tend to fall in the middle. Smoothing the raw data directly
in each of these groups yielded similar results and nearly identical conclusions
(results not shown).

4. Simulation results. We have performed simulation studies to assess the fi-
nite sample performance of our proposed testing procedure and compare its power
to the standard linear-mixed-model-based procedures. For simplicity, we focused
on a single marker z in the absence of covariates and two potential functional out-
comes generated from

y
(m)
ir = Y

(m)
i (tir ) + ε

(m)
ir

= sin(tir ) + (−1)m−1γ
{
sin(tir/3) + cos(tir )

}
+ (1 − γ )

{
bi0 + 0.5b

(m)
i1 cos(tir/4)

}
+ βzi

{
α

(
cos(tir ) + cos(tir/10) − sin(3tir )

)
+ (1 − α)tir/7

} + ε
(m)
ir , m = 1,2,

where b
(m)
ij ∼ N(0,0.25), j = 0,1 are independent and identically distributed

(i.i.d.) random effects and ε
(m)
ir ∼ N(0,0.25) are i.i.d. errors, for m = 1,2. For
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(a) (b)

(c) (d)

FIG. 3. Disease progression by minor allele burden in most significant SNP set. Estimated lCD4
and lVL are grouped by number of loci in SNP set with any minor alleles and averaged. For clarity,
just those individuals with 2, 3, 8, and 9 loci are included. Lines correspond to estimates of the
conditional mean based on FPCA.

each subject i, we generate the number of observations from a Poisson distribu-
tion ri ∼ Poisson(λ) + 2, and we generate tir uniformly over the time interval
(0,2π). The parameter β controls the magnitude of the genetic effect. The pa-
rameter α controls the linearity of the genetic effect—when α = 0 the genetic
effect is entirely linear, and when α = 1 the effect is entirely nonlinear. The pa-
rameter γ controls the complexity of the mean process and the amount of inter-
subject variability: when γ = 0, the mean process is relatively simple but the inter-
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subject variability is high, and when γ = 1 the mean process is complex and the
inter-subject variability is low. The genetic factor zi is generated according to a
binomial(2,0.1), with 0.1 the minor allele frequency.

We examined the performance of the FPVC test statistic Q [defined in (13), here
denoted by “FPCA”] and its asymptotically equivalent counterpart Q̄ [defined in
the context of a single outcome in (12), here denoted “Re-fitted”]. For the purposes
of comparison, we also examined the performance of a similar test statistic that
does not use FPVC but instead employs a pre-specified basis. Consider the test
statistic Qlin = 1

n

∑2
m=1

∑2
k=1[

∑n
i=1 ξ

(m)†
ik ẑ∗

i ]2, where ξ
(m)†
ik is the BLUP from the

linear mixed model yir = β0 +β1tir +ξi1 +ξi2tir +εir . In the following, we denote
results for Qlin by “Linear”.

The number of FPCA scores for the mth outcome, Km, was selected as the
smallest K such that the fraction of variation explained (FVE),

∑K
k=1 λ̂k/(

∑
k λ̂k),

was at least ℘ = 0.99. To ensure that the scores for each outcome contributed
comparably to the test statistics, we centered and scaled each outcome as
y

∗(m)
ir = (y

(m)
ir − ȳ(m))/σ̂

(m)
y , prior to obtaining ξ̂

(m)
ik and ξ

(m)†
ik , where σ̂

(m)
y =√

(n − 1)−1 ∑
i,r (y

(m)
ir − ȳ(m))2 and ȳ(m) = n−1 ∑

i,r y
(m)
ir .

In the following we report power as the proportion of 1000 simulations for
which the testing procedure produced a p-value below 0.05 to demonstrate the rel-
ative performance of the various testing procedures. To ensure that the asymptotic
null distribution of the test statistic yields a valid testing procedure, we evaluate the
entire distribution of p-values under the null hypothesis, including at levels much
lower than 0.05.

4.1. Type I error. In the following we take λ = 6. The empirical type I error
rates for testing at the 0.05 level ranged from 0.040 (γ = 0.25) to 0.048 (γ = 0)
for Q; from 0.036 (γ = 1) to 0.047 (γ = 0) for Q̄; and from 0.040 (γ = 0.75)
to 0.059 (γ = 1) for Qlin. However, levels much smaller than 0.05 are necessary
to control error rates in large-scale testing. Thus, to establish the validity of our
testing procedure for performing many tests, we establish that the resulting p-
values are approximately uniform under the null hypothesis. We performed 106

simulations under the null, with n = 200, γ = 1, and α = 0, and we obtained the
type I error of FPVC testing at each of the following levels: 1 × 10−6, . . . ,9 ×
10−6,1 × 10−5, . . . ,9 × 10−5,1 × 10−4, . . . ,9 × 10−4,1 × 10−3, . . . ,9 × 10−3.
Results are depicted in Figure 4. The Figure shows that the level is preserved at
all levels of testing. Further simulations would provide better approximations of
type I error rates at smaller levels, but these results suggest that the asymptotic
null distribution fits quite well in small samples.

4.2. Power. In Figure 5, we display results for n = 100 and all levels of γ

and α. There, the figure demonstrates that, despite the fact that the true effect was
linear when α = 0, both FPC-based tests dominate the linear-based tests, and the
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FIG. 4. Empirical type I error rates for tests performed at various levels, based on 106 simulations.

advantage of using FPVC, in terms of power, did not disappear, even when the true
effect was linear. Notably, as γ varied, we saw power gains by using the FPVC-
based Q and Q̄, with the gains increasing as γ approached 1 and the functional
form of Y

(m)
i (·) became more complex, and the need to flexibly model it increased.

In all of our simulations, the FPVC methods dominated the linear method in
terms of power while maintaining desirable type I error rates. We wanted to en-
sure that the improvement we were seeing was not simply due to the fact that the
linear model used only two scores, a random intercept ξ

(m)†
i1 and a random slope

ξ
(m)†
i2 , for each outcome whereas the FPVC-based methods used Km scores, where

Km was often selected larger than 2. Thus, we also considered the performance
of scores based on fixed-basis expansions of t, using either polynomial or spline
bases.

Specifically, we fit models with K = 2,3, . . . ,6 degrees of freedom. For the
polynomial setting we used bases corresponding to the model yir = ∑K

k=1(βk +
ξik)̃t

k−1
ir + εir for t̃ir a centered and scaled version of tir . For the spline basis, we

used cubic B-splines constructed with the specified degrees of freedom with the bs
function in the splines R package. Because, in some sense, FPCA does model
selection by choosing the basis that explains the most variability in y, we also
perform model selection on the pre-specified bases to ensure a fair comparison.
We select the model with the lowest AIC and use the ξ̂iks from that model in the
testing procedure. We will call the test statistic based on B-splines QB and the
model based on polynomial bases Qp .

Results are found in Figure 6. We found that there were some situations when
using the pre-specified B-spline basis could outperform the FPVC tests, particu-
larly when γ was near 0 (low mean complexity) and α was near 1 (linear genetic
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FIG. 5. Power to detect β using Q (FPVC), Q̄ (FPVC Re-fitted), and Qlin (Linear). β values are
listed on the x-axis.

effect). However, the polynomial basis never outperformed FPVC. Further, as the
complexity of the trajectory γ increased, the desirability of FPVC testing always
increased, suggesting that in simple problems, using a pre-specified basis may be
preferable, but for complex effects and complex trajectories, FPVC will likely be
preferred. In general, if the complexity of the trajectory is unknown, FPVC test-
ing offers a generally powerful method for all settings that is insensitive to tuning
parameter selection.

5. Discussion. We have proposed functional principal variance component
testing, a FPCA-based testing procedure for assessing the association between a
set of genetic variants zS and a complexly varying longitudinal outcome y that
is feasible on the genome-wide scale, allowing adjustment for other covariates.
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FIG. 6. Power to detect β using Q (FPVC), QB (B-splines), and Qp (Polynomial). β values are
listed on the x-axis.

Unlike the standard mixed-model-based approaches, we do not model the trajec-
tories {Yi(·)}ni=1 parametrically but use the data to identify the most parsimonious
summaries of the trajectory patterns via FPCA. We subsequently test the asso-
ciation between the random coefficients ξ i and the markers of interest using a
test statistic motivated by variance component testing. Our procedure could po-
tentially be much more powerful than procedures based on pre-specified bases,
which might suffer power loss due to either high degrees of freedom or inability to
capture the complexity in the trajectories. Furthermore, our FPVC testing is com-
putationally efficient as we are able to perform thousands or even millions of tests
quickly by separating the time-intensive FPCA from the testing. This makes our
method feasible on the genome-wide scale where millions of marginal tests may
be necessary. As an example, computing test statistics and p-values for FPVC
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testing typically takes less than 0.1 seconds for a set of 10 SNPs and both lCD4
and lVL combined on a Macbook Pro. Conversely, fitting a single linear mixed
effects model for only lCD4 with a random effect for a small pre-specified B-
spline basis takes more than two seconds. At the genome-wide scale we would
observe a speed-up on the order of hours. Code for FPVC testing is available at
https://github.com/denisagniel/fpvc.

It is important to note that while we make mild assumptions on the longitudinal
outcome y to obtain the form of our proposed test statistic, the validity of FPVC
testing requires no assumption about the relationship between y and zS . FPVC
testing remains valid even if the working mixed model (8) fails to hold. Addition-
ally, while one can motivate the quantity ξ̃ik as the conditional expectation of ξik

under a normality assumption on ξik and εir , testing based on Q remains valid even
when this normality fails to hold since the estimated eigenvalues and eigenfunc-
tions from functional PCA converge uniformly to their limits [Hall, Müller and
Wang (2006)]. In fact, one can consider FPVC model-free in that the test statistic
Q could be motivated simply as an estimated covariance. Furthermore, we assume
that the errors εir are i.i.d. with mean 0 and variance σ 2, but some relaxation of
this assumption is possible for some “degree of weak dependence and in cases of
nonidentical distribution” [Hall, Müller and Wang (2006)], while still maintaining
the validity of our procedure.

FPVC testing can also simultaneously consider multiple sources of outcome
information to better characterize complex phenotypes. With multiple longitudinal
outcomes, one might wish to ensure that scores for all outcomes are roughly on the
same scale, so that each outcome contributes comparably to the test statistic. To
this end, one may consider a weighted version of (13) as

Q =
M∑

m=1

ωm

∥∥∥∥∥n− 1
2

n∑
i=1

ξ̂ i ẑ
∗
iS

∥∥∥∥∥
2

F

,

where ωm are nonnegative outcome-specific weights that can be pre-specified or
data-adaptive. Alternatively, in the absence of relevant weights, one can simply

scale each y(m) so that the magnitude of ξ̂
(m)

i is comparable across different values

of m. Let y
∗(m)
ir = y

(m)
ir /σ̂

(m)
y where σ̂

(m)
y =

√
(n − 1)−1 ∑

i,r (y
(m)
ir − ȳ(m))2 and

ȳ(m) = n−1 ∑
i,r y

(m)
ir . Then obtain ξ̂

∗(m)

i via FPCA on {y∗(m)
i }ni=1 and construct

the test statistic
∑M

m=1 ‖n− 1
2
∑n

i=1 ξ̂
∗(m)

i ẑ∗
iS‖2

F . Such a strategy appears to work
well in simulation studies.

While we use FPCA to summarize the longitudinal trajectories for the purpose
of testing with low degrees of freedom, in principle another suitably parsimonious
nonparametric method could be used instead. For example, if observations were
measured on a common, fine grid of points, then one could imagine using the
methods in Morris and Carroll (2006) to first regress y on t, obtain the random ef-
fects estimates (similar to the ξ i employed here), and use these estimates in testing.

https://github.com/denisagniel/fpvc
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However, no available approaches are as widely applicable as our FPCA-based ap-
proach, which can be used even when data are sparsely observed; other approaches
may not have as small effective degrees of freedom as an FPCA-based method, and
the resulting testing procedure may be more sensitive to correct tuning.

SUPPLEMENTARY MATERIAL

Supplementary proofs and plots (DOI: 10.1214/18-AOAS1135SUPP; .pdf).
We provide the derivation of the form of the score statistic, proof of its null dis-
tribution, and supporting assumptions. And we include the form of the eigenfunc-
tions for the HIV data analysis.
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