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Many observational studies of causal effects occur in settings with clus-
tered treatment assignment. In studies of this type, treatment is applied to
entire clusters of units. For example, an educational intervention might be
administered to all the students in a school. We develop a matching algo-
rithm for multilevel data based on a network flow algorithm. Earlier work
on multilevel matching relied on integer programming, which allows for bal-
ance targeting on specific covariates but can be slow with larger data sets.
Although we cannot directly specify minimal levels of balance for individual
covariates, our algorithm is fast and scales easily to larger data sets. We apply
this algorithm to assess a school-based intervention through which students
in treated schools were exposed to a new reading program during summer
school. In one variant of the algorithm, where we match both schools and
students, we change the causal estimand through optimal subset matching
to better maintain common support. In a second variant, we relax the com-
mon support assumption to preserve the causal estimand by only matching
on schools. We find that the summer intervention does not appear to increase
reading test scores. In a sensitivity analysis, however, we determine that an
unobserved confounder could easily mask a larger treatment effect.

1. Introduction.

1.1. Summer learning loss. Summer learning loss, also known as the “sum-
mer slide” or “summer setback,” occurs when students educated on the tradi-
tional school calendar experience a decline in academic skills during the sum-
mer when school is not in session [Borman, Benson and Overman (2005), Cooper
et al. (2000), Entwisle and Alexander (1992)]. Summer learning loss is a well-
documented phenomenon. Estimates of the average summer learning loss range
from roughly one-tenth to one-third of a standard deviation (SD), depending
on methodology, subgroup, and academic subject [Borman and Dowling (2006),
Quinn (2015), Rambo-Hernandez and McCoach (2015), Skibbe et al. (2012),
Zvoch and Stevens (2015)]. Cooper et al. (1996) find that summer loss is par-
ticularly prevalent in math computation and spelling, and estimate an overall loss
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of 0.14 SDs in math and 0.05 SDs in reading. Since the 1950s, summer school
has been a popular strategy to “keep the faucet on” as well as to remediate those
who fall behind during the traditional school year [Cooper et al. (2000)]. Though
more recent estimates are not readily available, approximately 9% of public school
students participated in summer school in 2000 [Wirt et al. (2000)].

This study investigates the effectiveness of a summer school reading interven-
tion in Wake County, North Carolina. North Carolina state legislation required
that students who did not meet district standards at the end of 3rd grade were re-
quired to attend summer reading camps or risk retention. In summer 2013, the
Wake County Public School System (WCPSS) selected myON, a product of Cap-
stone Digital, for implementation at Title I summer school sites in an effort to
boost reading comprehension among the majority low-SES attendees. MyON is a
form of internet-based software designed to serve primarily as an electronic read-
ing device. The software provides students with access to a library of books and
suggests titles to students based on topic interests and reading ability. Students
at myON sites used the program for up to one-half hour during the daily literacy
block and could continue using the program at home if they had a device and in-
ternet connection. The developers of myON claim that students using the software
will improve comprehension through access to more than 10,000 digital books that
include “multimedia supports, real-time reporting, and assessments and embedded
close reading tools” [Corp (2015)].

Not all summer school students in the Wake County school system were given
access to the myON reading program. Summer school sessions were held at des-
ignated sites, such that students from multiple schools attend summer school at
central locations. The myON program was used by teachers at eight of the 19
summer school sites. Summer school sites were selected for myON usage based
on a mix of factors including internet bandwidth, computer access, and regional
distribution. Students from elementary schools in Wake County were assigned to
summer school sites primarily through geographic proximity. Thus all students in
a school close to a myON summer school site used the myON program during
summer school. Overall, students from 20 schools were exposed to the myON
intervention, while students from 29 schools were not exposed to the myON treat-
ment. Principals and schools themselves had no input into program participation.
Given that the intervention was assigned to entire elementary schools, we conduct
a clustered observational study of the effectiveness of the myON program.

1.2. Clustered observational studies. When interventions are randomly as-
signed, differences between treated and control groups can be interpreted as causal
effects, but when subjects select their own treatments, differing outcomes may
reflect initial differences in treated and control groups rather than treatment ef-
fects [Cochran (1965), Rubin (1974)]. Pretreatment differences or selection biases
among subjects come in two forms: those that have been accurately measured,
which are overt biases, and those that are unmeasured but are suspected to exist,



OPTIMAL MULTILEVEL MATCHING 1481

which are hidden biases. In an observational study of treatment effects, analysts
typically use pretreatment covariates and a statistical adjustment strategy to re-
move overt biases, whereas hidden biases can be considered through a sensitivity
analyses, as we show.

Matching estimators are one method of statistical adjustment for the removal of
overt biases designed to mimic a randomized trial by constructing a highly com-
parable set of treated and control units. In many settings, treatments are applied
to clusters of units instead of to single units. Clustered treatments are common in
educational settings as treatments are applied to or withheld from entire schools
rather than individual students or teachers. The myON reading intervention is a
treatment of this type, as the reading program was offered to all students in schools
selected for treatment, and withheld from all students in schools that did not re-
ceive the myON reading intervention. Moreover, students did not select whether
their school participated in the myON program.

When treatment is randomly assignment to clusters, this is often referred to
as a group randomized controlled trial (RCT). In a clustered observational study,
one might attempt to mimic a group RCT by creating comparable pairs of treated
and control clusters, since differences in outcomes might reflect overt bias. When
treatments are clustered, data typically have a multilevel structure with observed
and unobserved covariates at both the cluster and unit levels. For example, in the
myON intervention, we observe student-level covariates such as pretreatment test
scores as well as school-level covariates such as the number of students enrolled.

Thus to remove overt bias in a clustered observational study, researchers may
need to remove treated and control differences in the distributions of covariates at
the cluster level, the unit level, or perhaps both levels. That is, we require a sta-
tistical adjustment strategy that takes into account the multilevel structure of the
data. Standard methods of adjustment for data with multilevel structure include hi-
erarchical regression or propensity score methods [Hong and Raudenbush (2006),
Arpino and Mealli (2011), Li, Zaslavsky and Landrum (2013)]. Recent work de-
veloped a matching algorithm for multilevel data based on integer programming
[Zubizarreta and Keele (2017a)].

Here we extend the method in Zubizarreta and Keele (2017a) by developing
a new matching algorithm based on network flow optimization. Network flow
optimization is frequently used in operations research and in statistics for opti-
mal matching [Rosenbaum (1989)]. Our method is optimal in that it produces the
smallest set of distances between matched clusters and units, here schools and
students. While our method allows less flexibility in requiring specific levels of
balance on individual covariates, it is faster and can be scaled to much larger data
sets than methods based on integer programming. We also modify the basic algo-
rithm to allow treated units to be excluded from the match in an optimal, dynamic
manner, so that researchers can find the matches that are balanced but retain the
largest possible sample size. We then apply our algorithm to the data from Wake
County to evaluate the myON reading program.
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This article is organized as follows. Section 2 describes the causal framework
that we employ and the design of the study. Section 3 reviews matching algorithms
based on integer programming and network flows. In this section, we develop an
optimal multilevel matching algorithm based on network flows and illustrate via
simulation the superiority of our algorithms over a multilevel matching strategy
that would match clusters and then units in a two-step process. We then perform
two matches, one in which we retain all treated units, and another where we op-
timally discard treated units to improve balance. Section 4 shows the resulting
matches and analyzes the comparative effectiveness of the myON program in Wake
County. Section 5 concludes with a summary and a discussion.

2. Notation, definitions, and causal framework. We begin by defining no-
tation and our causal framework. After matching there are S matched pairs of
schools, s = 1, . . . , S, each with two schools, j = 1,2, one treated and one control
for 2S total units. The ordered pair sj thus identifies a unique school. Each school
sj contains nsj > 1 students, i = 1, . . . , nsj . Each pair is matched on a vector
of observed, pretreatment covariates: xsj i . We let xsj represent the matrix whose
rows consist of the xsj i vectors for each student i in the school indexed by sj with
support X ⊂ R. A student i in school sj is described by both observed covariates
and possibly an unobserved covariate usji . Included among the student covariates
may be some covariates common to all other students attending that school, and
we call such covariates school-level covariates. For example, while gender is a
student-level covariate, the proportion of male students in a school is a school-
level covariate which takes the same value for all students in the same school. In
our study, treatment assignment occurs at the school level as whole schools are
assigned to treatment or control. If the j th school in pair s receives the treatment
of myON readers, write Zsj = 1, whereas if this school receives the control and
students are not given myON readers, write Zsj = 0, so Zs1 + Zs2 = 1, for each s

as each pair contains one treated school and one control school. If nsj = 1 for all
sj then the clusters are individuals, and we have unclustered treatment assignment.

We use the potential outcomes framework to define causal effects [Splawa-
Neyman (1990), Rubin (1974)]. In this framework, each student has two potential
responses; one response that is observed under treatment Zsj = 1 and the other
observed under control Zsj = 0. We denote these responses with (yT sji, yCsji),
where yT sji is observed from the ith subject in pair s under Zsj = 1, and yCsji is
observed from this subject under Zsj = 0. Here, yT sji is the reading test score that
student sj i would exhibit if he or she uses the myON software, and yCsji is the
test score this same student would exhibit if he or she does not use the myON soft-
ware. Under this notation, we allow for any arbitrary pattern of interference among
students in the same school but not across schools. In this context, yT sji denotes
the response of student sj i if all students in school sj receive the treatment, while
yCsji denotes the response of student sj i if all students in school sj receive the
control. Therefore, we do not assume that we would observe the same response
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from student sj i if the treatment were assigned to some but not all of the students
in school sj . We let yT sj and yCsj represent the vectors of potential outcomes yT sji

and yCsji respectively for each student i in school sj . We do not observe both po-
tential outcomes, but we do observe responses: Ysji = ZsjyT sji + (1 − Zsj )yCsji .
Under this framework, the observed response Ysji varies with Zsj but the potential
outcomes do not vary with treatment assignment. Write Y = (Y111, . . . , YS2,ns2)

T

for the N = ∑
s,j ns,j dimensional vector of observed responses, and write yc, for

the vector of potential responses under control.
Next, we define the causal estimand. First, it is important to note that the esti-

mand depends on the form of the multilevel match. One approach to the planning
and design of observational studies is to use an analogous randomized experiment
as template [Cochran (1965), Rubin (1974)]. The form of multilevel match will
change depending on the type of experimental design used as a template. In gen-
eral, we would argue there are two experimental designs that we might use as tem-
plates for the matching. The first is the paired clustered randomized controlled trial.
Under this design clusters are first paired on covariates, and then within each pair
one cluster is selected for treatment, and all units within that cluster are treated.
Under this experimental template, we would use the matching algorithm to pair
schools and not students, since in the experimental design only clusters are paired.
As such, under this design template, the causal estimand is the student-level con-
trast yT sji − yCsji caused by group level treatment assignment. Note that if we
were to assume the existence of an appropriate superpopulation, it might be nat-
ural to focus on an average causal effect of the form E[yT sji − yCsji] where the
expectation is taken over the superpopulation. We focus on finite sample inference,
although the methods we use can easily be adapted for superpopulation inference
[Lehmann and Romano (2005)].

However, we might implement a match that pairs both schools and students.
This second design may be of interest if the intervention is assigned at the group
level but is only targeted at a differentially-selected subset of units within each
cluster. For example, Page and Scott-Clayton (2016) conducted a school-level ran-
domized experiment in which they targeted college-intending high school seniors
with information and personalized reminders about the process of applying for fi-
nancial aid. Next, we describe two possible experimental analogues for this type of
match. First, data of this type could result from a clustered randomized trial (CRT)
with non-random unit level selection. That is, clusters are assigned to treatment
and control, but within the cluster some units are targeted for treatment. Despite
randomization at the cluster level, an investigator would need to correct for this
selection bias via modeling. The same is true in an observational study. Matching
on student level covariates as well as school level covariates would allow analysts
to model selection at both the school and unit level.

Alternatively, one could conceive of this design as a double blocked design
where first schools are paired on the basis of baseline covariates. Then, once
schools are paired, the students within those schools are paired. Such blocking
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at the student level would ensure comparability in student level covariate distri-
butions beyond what would be achieved by aggregating student covariates to the
school level. However, while such a design is hypothetically possible, we are un-
aware of any design actually being implemented. In all likelihood, blocking on
student level covariates would result in some of the students being discarded, es-
pecially if the number of students differs across the two schools. Once both stu-
dents and schools are paired via the blocking, the treatment would then be assigned
within school pairs at the school level. Thus, even though treatment assignment is
recorded at the school level, the treatment would only be applied to a subset of the
students within the school. Such a design would ensure maximum comparability
between both schools and students before randomization occurs.

Theoretically, the myOn intervention conforms to this second template. That is,
the myOn intervention was assigned at the school level but was only used by the
subset of students within each school that were required to attend summer school,
and the method of selecting summer school students may differ from school to
school. Therefore we might wish to match both schools and students in our ap-
plication to correct for selection at the student level. Under this second design
template, the causal estimand is a group level contrast for a set of students within
the school who are at risk for the treatment. For this match we define the stu-
dent level covariate space As ⊂ X. Let 1xsj i∈As

be an indicator function for the
event that xsj i is an element of the set As . The causal estimand under this design
is 1xsj i∈As

(yT sji − yCsji) where As ⊂ X is the school-pair-specific portion of the
support X describing students who may be required to attend summer school in
both school s1 and s2. The question of which estimand and associated match is
more appropriate is a question for investigators and varies from application to ap-
plication. As we outline later, our algorithm accommodates both types of matches.
Henceforth, we denote a match that mimics a group RCT and does not pair stu-
dents as Design 1. For a match that pairs both schools and students, we call this
match Design 2.

To identify the causal estimand above, we assume that assignment to Zsj de-
pends on observable covariates only. Formally, we must assume that

Pr(Zsj = 1|yT sj ,yCsj ,xsj ,usj ) = Pr(Zsj = 1|xsj ).

For brevity, represent the probability on the left-hand side of this statement by πsj .
We also assume that all schools have some probability of being treated such that
0 < πsj < 1. The assumption of observable treatment assignment is often referred
to as conditional ignorability or selection on observables [Rosenbaum and Rubin
(1983), Barnow, Cain and Goldberger (1980)]. If this assumption holds, potential
outcomes will be conditionally independent of treatment assignment and the causal
effect of the treatment will be identified. Later, we will probe the plausibility of this
assumption using a sensitivity analysis.

The second part of the conditional ignorability assumption is known as the as-
sumption of common support. Common support fails if for any student the true
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probability of being exposed to the myON intervention is zero or one. Very high
or low estimates of the propensity score or high pre-treatment covariate imbalances
for students often signal problems with common support, and in these settings we
must either relax this assumption or remove study units to maintain the assumption.
Trimming to maintain common support changes the causal estimand such that it
only applies to the population of units for which the effect of treatment is marginal:
units that may or may not receive the treatment. As such, we could characterize
the estimand as more local, since it applies to only a subset of the treated units.
Changing the estimand through trimming of treated units may be unproblematic
if the data do not represent a well-defined population [Rosenbaum (2012a)]. See
Crump et al. (2009), Traskin and Small (2011), and Rosenbaum (2012a) for fur-
ther discussion of the common support assumption and methods for dealing with
a lack of overlap. The matching algorithm we develop also includes a form of
optimal subset matching for applications where common support does not hold.

3. Multilevel matching.

3.1. Review: Multilevel matching. The goal with matching methods in an ob-
servational study is to mimic the structure of an experimental design: treated and
control units that are similar in terms of observed covariates. With a multilevel data
structure, such as students and schools, the covariates are observed at both levels
and units are found within clusters. That is, students are nested within school-level
clusters. As such, a matching algorithm for multilevel data must make units similar
on observables at both levels. Of course, even the most successful match provides
us with no confidence about the similarity of unobservables for the matched data.
One method for matching with multilevel data is as follows:

1. Pair clusters using cluster level covariates.
2. Pair units within paired clusters (i.e., match units while requiring exact

matches on cluster-level pair IDs).

Zubizarreta and Keele (2017a) show that such an approach is not optimal with
respect to minimizing covariate distance. They show that the optimal matching
strategy for multilevel data is:

1. Consider each possible combination of one treated cluster and one control
cluster. Using unit level covariates, calculate a unit level distance matrix. Summary
statistics based on this distance matrix can be used to assess the quality of the units
within each possible set of clustered pairs.

2. Pair clusters using cluster level covariates and the score information (based
on unit-level covariates) from step 1.

3. Once clusters are paired, optionally form unit level pairs depending on the
causal estimand of interest. Under Design 1, we would not pair students, under
Design 2 we would pair students.
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Such an approach is optimal since it utilizes unit level information in the clus-
ter pairing, unlike the aforementioned naive approach. Zubizarreta and Keele
(2017a) developed an optimal multilevel match using mixed integer programming
[Zubizarreta (2012)]. The key advantage of integer based matching algorithms is
that they allow the analyst to target explicit levels of balance for mean differences
across treated and control units. For example, these methods allow for the explicit
balancing of statistics such as the Kolmogorov–Smirnov (KS) statistic. The draw-
back to such methods is that the computational time necessary for the match may
be lengthy.

Many matching algorithms use network flows instead of integer programming
to balance covariates by minimizing the total sum of distances between treated and
control units. While network flow algorithms for matching cannot always incorpo-
rate the specific balance goals allowed by integer programming, the algorithms are
fast and can be applied to very large data sets with fewer difficulties. To that end,
we develop an optimal multilevel matching algorithm based on network flows.

3.2. Multilevel matching based on network flows. Next, we outline our match-
ing algorithm in its simplest form. First, we denote the number of matched cluster
pairs as S. For the Design 1 match, we seek to create S matched pairs of schools
such that school-level covariates are balanced across all schools in the matched
sample. Under Design 1, matching school-level covariates may balance student-
level covariates, but it may not. For the Design 2 match, we create S matched pairs
of schools and, for each such pair, ms ≤ min(ns1, ns2) matched pairs of students
(one student from each school) such that school-level covariates are balanced and
student-level covariates are balanced within each school pair.

For either design, the process starts in an identical fashion. First, student-level
matches are conducted for all possible pairings of treated and controlled schools.
If there are N1 treated schools and N2 control schools, the number of such possi-
ble pairings will be N1 × N2. Each of these student-level matches is then scored
based on the balance it achieves on student-level covariates (worse scores are given
to matches with insufficient balance) and on the size of the sample it produces
(worse scores are given to matches with small sample sizes). The scoring system
is inverted, so that the best matches receive low scores and the poorest ones receive
high scores. The scores are then stored in an N1 by N2 matrix. Next, schools are
matched optimally using the score matrix as a distance matrix. Below we outline
a refinement to this step to better balance school-level covariates.

At this point, the investigator can either choose to rematch students such that
schools and students within schools are paired, or stop with paired clusters such
that students are not paired within schools. Importantly, even if the investigator
chooses not to rematch students, student-level information has been used in the
school-level match.

We now describe two important refinements to the basic algorithm. Both are
designed to allow analysts to improve balance in contexts when the simplest form
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of the algorithm produces a match where imbalances on covariates are still deemed
to be too large by the investigator.

3.3. Role of refined balance. Matching on the score matrix alone does not
provide any guarantee of balance on school-level covariates (since scores are com-
puted from student-level covariates only). To allow the investigator to improve
balance over and above that produce by matching on the score matrix, we include
the method of refined covariate balance [Pimentel et al. (2015)] in our multilevel
matching algorithm. Refined covariate balance is an extension of fine or near-fine
balance. Under fine and near-fine balance constraints an optimization routine seeks
the closest individual matched pairs such that the overall match has the closest pos-
sible balance on a prespecified nominal covariate [Rosenbaum (2010), Yang et al.
(2012)]. Refined covariate balance involves matching under multiple nested near-
fine balance constraints that act in order of priority, balancing the first covariate
as closely as possible, the second as closely as possible under the constraint of
the first, and so on. For example, one might match under two levels of near-fine
balance, the first requiring that the match exhibit the best possible balance on Title
I status, and the second requiring that (once Title I status is balanced) the match
achieve the best remaining possible balance on the interaction of Title I status with
an indicator for above-average proportion of new teachers.

Adding refined covariate balance to the matching algorithm has two advantages.
First, it allows investigators to prioritize balance on some school-level covariates
relative to other school-level covariates. If scientific knowledge dictates that some
covariates are of higher priority, balance on those covariates can be targeted for
improvement via refined covariate balance. Second, in multilevel matching ap-
plications, the number of covariates may be large relative to the number of ob-
servations at the cluster level. This is the case in our school-level match, where
only 49 schools are present (20 of them treated) and 11 important school-level
covariates have been identified. In situations of this type, the use of refined covari-
ate balance provides much stronger guarantees of balance than merely including
the covariates in a propensity score formula or a pairwise Mahalanobis distance
[Zubizarreta et al. (2011)]. It is true that in the limit, as sample size approaches
infinity while holding the number of covariates fixed, pair matching on a covariate
distance will adjust for all observed confounding and bring observed covariates
into perfect balance in the matched sample. However, in finite sample situations,
pair matching often struggles to balance all observed variables, especially when
the number of covariates is large relative to the number of observations. Therefore
refined balance, which guarantees optimal finite-sample balance for a given set of
constraints, is a better choice for multilevel data structures where the number of
clusters to match is likely to be small relative to the number of covariates.

3.4. Optimal subset matching in a multilevel match. For a specific data set we
may find either that there is a lack of overlap in the covariate distributions or that
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balance is poor after the matching is complete. In both cases too much overt bias
remains when the match uses all treated observations. One solution is to trim units
from the treated group to maintain the common support assumption or improve
balance. Methods such as optimal subset matching [Rosenbaum (2012a)] and car-
dinality matching [Zubizarreta, Paredes and Rosenbaum (2014)] are designed to
find the largest subset of the treated group such that covariate overlap or balance is
deemed acceptable. Next, we add a form of optimal subset matching to our multi-
level match to deal with such constraints.

Before we review technical details, we discuss conceptual issues that arise when
using optimal subsetting in a multilevel matching context. A multilevel match
complicates such trimming since one can choose to trim either treated clusters,
units, or both. The type of trimming will depend on the form of the match. If one
pairs both clusters and units, as would be the case under Design 2, some unit level
trimming is almost impossible to avoid. That is, unless the samples of students in
control schools are uniformly substantially larger than the samples in all treated
schools, some of the student-level matches in step 1 will involve treated groups
that are larger or very similar in size to their control groups. In these settings,
under student level pair matching, some treated units will invariably be trimmed
or excluded from the match. Here the trimming is not done to enforce balance
or common support, but is simply a byproduct of the structure of the pair match.
Under Design 2, one might also choose to trim students to improve student-level
covariate balance. Our algorithm allows for either form of trimming. Finally, under
either Design 1 or 2, one may trim treated clusters to maintain common support
and improve covariate balance at the cluster level. This would involve removing
complete treated schools from the match.

Optimal subset matching is a network flow algorithm for pair matching which
allows the match to exclude treated units by paying a penalty for each match ex-
cluded [Rosenbaum (2012a)]. For a given penalty δ̃, optimal subset matching con-
siders only subsets of treated units such that adding any additional treated unit in-
creases the best overall matched cost (distance) by at least δ̃. Among these treated
subsets, it chooses the one for which the overall matched distance can be made
smallest and the matched control group associated with that configuration. The
choice of which individuals to exclude is made concurrently with the choice of
matched pairs. To prevent the exclusion of overly large numbers of treated units,
optimal subset matching may incorporate an additional parameter n which speci-
fies a minimum number of treated units that must be included. When n is equal to
the size of the treated population and there are as many controls as treated, optimal
subset matching is equivalent to ordinary optimal pair matching.

In addition to offering a formal definition and an applied example of matching
with refined covariate balance, Pimentel et al. (2015) provide a network flow algo-
rithm to solve such matching problems, although it does not allow treated units to
be excluded. We use an adaptation of this algorithm that also allows exclusion of
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treated units. Specifically, the familiar penalty parameter δ̃ is used to represent the
cost of excluding a treated individual from the match. For sufficiently large values
of δ̃, the match does not exclude anyone and the algorithm behaves exactly as in
the original paper; as δ̃ is decreased, more and more treated units will be excluded.
For any given value of δ̃ and given set of balance constraints, the algorithm guar-
antees that the match produced has optimal refined balance among matches with
the same number of treated units excluded. For a characterization of the optimal-
ity of matches produced by this modified algorithm and a technical description of
the alterations it requires in the original algorithm of Pimentel et al. (2015), see
Pimentel and Kelz (2017).

If it is necessary to trim either treated schools or students then the causal esti-
mand has been changed due to the match. For example, if we trim at the school
level only, we would exclude schools with covariates outside set A, a subset of
school-level covariates. Here we denote 1xsj∈A is an indicator function for the
event that xsj is an element of the set A. The estimand is now 1xsj∈A(yT sji −yCsji),
a subsample treatment effect defined by the school-level covariates in A, as the es-
timand now depends on school-level covariates. If we trim students, our causal
estimand is now the subsample treatment effect defined by the student-level co-
variates in As . This estimand is identical in form to the one defined for Design 2:
1xsj i∈As

(yT sji −yCsji). In our example, this would be the set of students for whom
there is some probability that they attend summer school. If it is necessary to trim
both students and schools, then our causal estimand focuses on the population of
schools and students for whom the intervention is marginal. Alternatively, it is the
subsample treatment effect defined by the school and student-level covariates in A

and As , respectively. As outlined above, this may be a reasonable decision in an
observational study when interest is in a marginal population who might or might
not receive the treatment of interest rather than a known, a priori well-defined pop-
ulation. This applies to the myON treatment in that the treated schools are those
that happen to be located near a summer school site with the technical capacity for
the intervention.

3.5. A general algorithm. Next, we precisely define our approach to multi-
level matching with network flows. We outline two different algorithms depending
on the design chosen by the investigator. First, we might wish to match under De-
sign 1, where we intend to preserve the causal estimand as a school level effect.
We do this by pairing schools, but not pairing students within schools. We define
this form of match under Algorithm 1:

1. Create a distance matrix M for all students in the dataset, using student co-
variates only. For each possible combination of one treated school i and one control
school j :

• Match the students in school i to the students in school j on the appropriate
submatrix of M .
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• Assign a score �ij to this match using a pre-specified scoring rule which de-
pends on the size of the matched samples and the balance achieved on student
covariates, and store it in a matrix.

2. The score matrix produced by the pairwise school matches now gives dis-
tances between all pairwise treated-control school combinations. If desired, this
score matrix may be combined with a distance matrix computed from school-level
covariates. Use this matrix to match schools, with (optional) refined covariate bal-
ance constraints on school covariates via fine balance. Optionally, the analyst may
use an optimal subset match with subset penalty δ̃2 to further improve balance.
The student-level matched samples consists of all students in any school that was
selected in the school match.

Under Algorithm 1, we still use student-level information in the pairing of
schools, but we do not pair the students directly after schools are matched.

Next, we define Algorithm 2, which matches both schools and students.

1. Create a distance matrix M for all students in the dataset, using student co-
variates only. For each possible combination of one treated school i and one control
school j :

• Match the students in school i to the students in school j on the appropriate
submatrix of M using optimal subset matching with penalty δ̃1 and minimum
sample size nij .

• Assign a score �ij to this match using a pre-specified scoring rule which de-
pends on the size of the matched samples and the balance achieved on student
covariates, and store it in a matrix.

2. Using the score matrix produced by the pairwise school matches (or if de-
sired, the score matrix and a school-level distance matrix computed from school
covariates may be combined), match schools using an optimal subset match with
refined covariate balance constraints on school covariates, with subset penalty δ̃2.

3. Combine the student matches computed in step 2 with the school pairs com-
puted in step 3 to produce an overall matched sample of students.

Application of Algorithm 2 results in a set of matched schools with students
within those schools that are also paired. The algorithm may trim either treated
schools, treated students, or both in order to balance covariates and maintain the
common support assumption.

3.6. Choosing appropriate penalty parameters. Notice that besides requiring
the researcher to specify relevant student and school covariates and a set of balance
constraints (for school covariates), Algorithm 2 relies on tuning parameters δ̃1, δ̃2,
and (for each choice of i and j ) nij . Algorithm 1 relies only on δ̃2. How should
these parameters be chosen effectively?
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When excluding treated students, we recommend setting the values nij as a
fixed, relatively large proportion (perhaps 80%) of the smaller of the two sample
sizes in schools i and j . This ensures that even when students are excluded, most
students will be retained and limits the degree to which a matched sample selected
in a school pair can differ from the full samples in both schools. Following the
recommendation in Rosenbaum (2012b), δ̃1 can be set as a fixed, small percentile
of the pairwise Mahalanobis distances among all students in the dataset, perhaps
the fifth or the tenth percentile.

Setting δ̃2 in order to exclude entire treated schools can be done by taking quan-
tiles of the values in the school distance matrix (analogous to the strategy for set-
ting δ̃1), especially when no balance constraints on school covariates are used.
When balance constraints are present, appropriate values of δ̃2 are more difficult
to derive a priori and to interpret, since balance constraints are implemented in-
ternally by imposing additional penalties not reflected in the pairwise distances.
Because of the difficulty of setting δ̃2 in this context, the R package match-
Multi, which implements both algorithms, offers users the option to supply a
desired number of schools to retain, and conducts a binary search in the penalty
space (essentially, repeating step 2 of the algorithm over many values of δ̃2 until it
finds a penalty inducing the desired sample size).

As a general rule, we recommend excluding as few units as possible; that is, the
initial match may be run with nij values set at 100% of the smaller sample size in
the pair i, j (excluding as few students as possible) and instructing the algorithm
to set δ̃2 so all treated schools are retained. If balance on student covariates is poor,
values for nij and δ̃1 can be decreased gradually, to encourage exclusion of more
students, until balance is achieved; similarly, if school balance is poor, the desired
number of schools retained can be decreased in increments of 1. Note, however,
that the analysts may wish to first impose refined balance constraints on school-
level covariates via fine balance before using penalties to remove treated schools.
The fine balance constraints can be a very effective way to improve balance with-
out discarding schools. Importantly, since outcome data is not examined until after
a final match has been chosen, the validity of statistical tests is not affected by this
iterative processes checking balance and rematching.

3.7. Simulation study. Next, we evaluate our proposed matching method
through a simulation. In the simulation, we compare our multilevel matching algo-
rithm to a match that first matches schools without reference to student covariates.
Hereafter, we denote the match that only uses school-level covariate information
in the first stage as the “naive” match. Before proceeding to the simulation, we
review some relevant analytic results. Zubizarreta and Keele (2017b) considered
the optimality of a multilevel matching algorithm based on integer programming.
While our algorithm is based on network flows, the proof in Zubizarreta and Keele
(2017b) extends to our algorithm. Therefore, we should never expect the naive
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match to perform better than our optimal approach. However, in a specific appli-
cation, the naive match may perform as well as the optimal method we propose.
Thus a simulation will help us understand whether our optimal approach is clearly
superior or whether a naive approach will tend to produce similar results in data
like that in the myON evaluation.

To bolster the realism of the simulations, we generated the simulated data from
the myON data. However, in the simulated data, we increased the imbalance in
the covariates that measure student and school level test scores in both reading
and mathematics. We increased the imbalance by increasing the treated means and
by adding a random draw from a normal distribution with a mean of four and
a standard deviation of one. Thus we systematically increased the imbalance in
these four covariates, but also introduced stochastic variability in the imbalance
across the simulations. Finally, for the two treated schools with the largest multi-
variate distances from the controls, we increased the imbalance on test scores by
additional two-tenths of a standard deviation at both the student and school-level
for one school and for the other school by a quarter of a standard deviation. To
generate outcomes in the simulated data, we first generated an outcome model by
regressing the test score outcome in the myON data on the baseline covariates. We
then generated simulated outcomes via a linear model based on the simulated data,
the coefficients from the outcome model, a treatment effect of two-tenths of a stan-
dard deviation, and normally distributed errors with a mean and standard deviation
of one.

We repeated the simulation 1000 times. For each simulation, we applied our
multilevel match algorithm twice. First, we did not allow for optimal subsetting,
and for the second run of the multilevel match, we allowed optimal subsetting.
We also applied the naive matching method that matched directly on school level
covariates. For both matches, we matched under Design 1 and did not match stu-
dents. We did this for one specific reason. In the simulated data, we increased
the imbalance on student level test scores. The multilevel match incorporates stu-
dent level information into the school match, while the naive method only does
so through aggregated test scores. Thus in the simulation, we should be able to
observe whether our matching algorithm can reduce imbalance in student level
covariates while preserving the structure of a clustered randomized trial.

For the naive match, we used the optimal matching algorithm in the R package
optmatch. While there are many different matching algorithms that we could
have used, we selected this matching algorithm for a specific reason. Our multi-
level match also relies on the basic algorithm in the optmatch library. The key
difference is that our algorithm alters the order of the match by first matching
students and then using that information to match schools. A naive implementa-
tion of optmatch matches schools first without fully incorporating student level
information into the match. Therefore, by implementing the naive method using
optmatch, we reduce the comparison between the matching algorithms to the
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order of the match. We did not apply a caliper to any of the matches. For the mul-
tilevel matches, we prioritized balanced on test score covariates in the simulation.
Prioritizing balance on a subset of covariates will tend to make balance worse on
other covariates. Thus, we seek to observe whether we can improve balance on
these covariates while maintaining acceptable balance on the other covariates.

For each simulation, we record measures of both balance and bias in the treat-
ment effect estimates. First, for each test score covariate, we calculated the percent-
age change in bias reduction. We calculated this by taking the percentage change
from before and after matching in the absolute standardized difference for each test
score covariate. Second, we recorded the average absolute standardized difference
after matching for all the covariates included in the match. Third, we record bias
as the average difference between the estimated effect and the true treatment ef-
fect. Finally, we calculated a relative measure of bias using the percentage change
between the unadjusted estimate of the treatment effect and the adjusted estimate
of the treatment effect after matching.

Table 1 contains the results from the simulation. Column 1 of the table contains
the results from the naive match. The naive match produces an average standard-
ized difference of 0.30 while reducing test score imbalance by 2.4% to 10%. The
multilevel match without optimal subsetting produces superior imbalance reduc-
tion on the test score covariates. The multilevel match reduces bias by at least 11%
and in one case by as much as 44%. In particular, it is worth noting the imbalance
reduction in the student level covariates. The multilevel match produces greater

TABLE 1
Simulation results

ML match w/
Naive match ML match optimal subset

% Imbalance Reductiona - Math Scores -
School Level

2.5 39 50

% Imbalance Reduction - Reading Scores -
School Level

4 44 60

% Imbalance Reduction - Math Scores -
Student Level

5.2 11 15

% Imbalance Reduction - Reading Scores -
Student Level

10 22 39

Average Std. Diff. 0.30 0.21 0.18
Bias −4.92 −4.56 −3.70
% Bias Reductionb 4.54 6.60 11.5

aImbalance reduction records the percentage change in the absolute standardized difference from the
unmatched sample to the matched sample.
bBias reduction records the difference between the estimated treatment effect after matching and the
unadjusted treatment effect.
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imbalance reduction for the student level data, since the imbalance in student level
covariates is accounted for in the school-level match. Moreover, the overall level
of balance is improved under the multilevel match as the average standardized dif-
ference is 0.21. Column 3 of Table 1 contains the results from the multilevel match
where the algorithm performed optimal subsetting by removing two schools from
the match. The multilevel match with optimal subsetting produces the best results
as the amount of bias reduction is now between 15% to 60%, with an average stan-
dardized difference of 0.18. Reducing imbalance also translates into reduced bias
in the estimated treatment effect. The naive match reduced bias by 4.5% relative
to the unadjusted estimate, while the multilevel match reduced bias by 6.6% and
11.5% when optimal subsetting is applied.

In the simulations we find that a multilevel match algorithm, which considers
balance at both student and school-level, performs better than a naive match that
breaks the match into sequential steps. Moreover, the simulation clearly demon-
strates that optimal subsetting can be a useful strategy for reducing bias. Of course
this comes at the cost of altering the causal estimand, since the estimand no longer
applies to the entire treated population of schools.

3.8. Two matched comparisons. The data from the myON study contain 3434
summer school students from 49 schools, of which students from 20 schools (con-
taining a total of 1371 summer school students) received the myON interven-
tion. Since treatment status was defined through proximity to summer school sites
with the technical capacity to support the myON intervention, we judge that our
study population does not represent any natural larger population. Moreover, as
we noted, within each school the intervention only applies to the subset of stu-
dents who must attend summer school. Thus Design 2 may be the most appropri-
ate for the myOn application. Therefore, we created one matched sample using
Algorithm 2, pairing both schools and students within schools. We allow in our
match for the removal of both treated schools and students to maintain overlap in
the treated and control distributions. Therefore, our study population will not be
representative of the larger population of students for whom the myON interven-
tion is not marginal. It also implies that our causal estimand, which is defined at
the school-level, only applies to a set of marginal students, not the entire set of
students that receive the school-level myON treatment. For purposes of compari-
son, we also include one additional match under Design 1. This match will at least
maintain the status of our group level causal estimand. However, this may come at
the cost of higher levels of overt bias. We created this matched sample using Algo-
rithm 1, which paired schools using student-level balance information but retained
all students within the matched schools.

For the match based on Design 2, we first created a robust Mahalanobis dis-
tance matrix [Rosenbaum (2010), Section 8.3] among all students in the data based
on individual pre-treatment reading and math test scores, Hispanic and African
American indicator variables, sex, and indicators for participation in the special



OPTIMAL MULTILEVEL MATCHING 1495

education program. The δ̃1 parameter was set as the 75th percentile of the costs in
the overall robust Mahalanobis matrix, meaning the match will prefer to exclude
treated units rather than form pairs with distances from the largest quantile of pos-
sible pair distances, and the nij parameter was set to min{0.8Ti,Cj } where Ti is
the number of students from treated school i and Cj is the number of students from
control school j . This ensured that wherever possible at least 80% of the treated
students in each school were retained.

Once student-level matches were computed, they were scored as follows:

1. Initialize score to a large value L.
2. Subtract the number of matched samples formed.
3. Check post-match balance on the following student-level covariates: indi-

vidual pre-treatment reading and math test scores, Hispanic and African American
indicator variables, sex, and indicators for participation in special education. For
each absolute standardized difference (see Section 4.1) above 0.2, add a penalty of
10L.

This scoring strategy prioritizes large matches over small matches (since large
matches have lower scores after Step 2), but the large penalties in Step 3 ensure
that adequate balance is the primary criterion in assigning scores.

Next, schools were paired following Step 2 of the algorithm. Two layers of
refined covariate balance constraints were added, each layer an interaction of cat-
egorical school covariates (e.g., Title 1 status) and appropriate coarsenings of con-
tinuous school covariates (i.e., indicators for whether individual values of the pro-
portion of new teachers, proportion of English-proficient students, etc. exceed cer-
tain quantiles of their distributions). After examining larger matches and finding
them insufficiently balanced, we ultimately excluded four treated schools for a
final matched sample of 16 school pairs (this result was obtained by setting δ̃2
to 107). Combining the first-stage school-to-school matches corresponding to the
matched school pairs, we obtained an overall matched sample of 1532 students,
766 from schools with the myON intervention and 766 without (meaning a total
of 605 treated students were trimmed from the treated sample).

For the second match under Design 1, we used a scoring function similar to the
one used in Step 1:

1. Initialize score to a large value L.
2. Subtract the harmonic mean of the number of treated students and the num-

ber of control students.
3. Check balance on the following student-level covariates: individual pre-

treatment reading and math test scores, Hispanic and African American indica-
tor variables, sex, and indicators for participation in special education. For each
absolute standardized difference above 0.2, add a penalty of 10L.

The school match in Step 2 was very similar to the one conducted as part of
Algorithm 2: the same set of refined covariate balance constraints was used. The
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new match also excluded the same number of treated schools (4) for better com-
parability of the two matches (this corresponded to reducing the δ̃2 parameter to
106). The resulting matched sample had 16 sets of paired schools (although these
were not the same schools as those selected by Algorithm 1). Combining the full
student samples from each school in the paired samples, we obtained a student
sample size of 2284, 1106 from schools with the myON intervention and 1178
from schools without (meaning a total of 265 treated students were excluded).
However, in this match, treated students were excluded only because we trimmed
four treated schools. We did not trim any students from treated schools that were
retained and paired to control students.

4. Analysis of the myON intervention.

4.1. Balance across the two matches. First, we report balance results for the
two matches compared to the unmatched data. To assess the quality of the match
we used the standardized difference, which, for a given variable, is computed by
taking the mean difference between matched schools or students and dividing by
the pooled standard deviation before matching [Silber et al. (2001), Rosenbaum
and Rubin (1985), Cochran and Rubin (1973)]. We attempted to make all stan-
dardized differences less than one-tenth of a standard deviation, which is often
considered an acceptable discrepancy, since we might expect discrepancies of this
size from a randomized experiment [Silber et al. (2001), Rosenbaum and Rubin
(1985), Cochran and Rubin (1973), Rosenbaum (2010)].

Table 2 contains the results for balance on school-level covariates. First, while
there are clear differences between treated and control schools in the unmatched
data, those discrepancies are not extreme as none of the standardized differences
exceed 0.30, however, most of the standardized differences exceed 0.20. In gen-
eral, treated schools tend to have higher test scores, lower staff turnover, and a
lower percentage of nonwhite teachers. Next, balance on school level covariates
after matching is identical for both matches, since our matching algorithm under
Design 1 and 2 does not differ at the school level and thus produces identical
balance results. While the unmatched standard differences are not large, reducing
them further proved difficult. We were unable to lower all the standardized dif-
ferences below the 0.10 benchmark, even after we discarded 4 treated schools in
the match. However, overall balance is markedly improved compared to the un-
matched data. Figure 1 provides a visual summary of the overall improvement in
balance.

Next, we report the balance for the student-level covariates in Table 3. Again,
the differences in the unmatched data are all quite small. We now observe differ-
ences in the balance statistics, since in one match we did not pair students, and in
the other, each student within a matched school is paired with a student. In this
data, matching schools only (Design 1) improves student balance modestly. Here,
matching students as well as schools (Design 2) produces very similar levels of
balance to Design 1.
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TABLE 2
Balance at the school level for unmatched data and two matched comparisons. Both means and

standardized differences are weighted by the number of students in each school. St-diff is the
standardized difference

School only School & student
Unmatched match match

–St-diff– –St-diff– –St-diff–

Composite Test Score 0.21 0.04 0.04
Percent Proficient Reading 0.11 0.07 0.07
Percent Proficient Math 0.20 0.06 0.06
Percentage Student With Free Lunch −0.10 0.10 0.10
Percentage LEP −0.29 0.06 0.06
Average Daily Attendance 0.03 0.13 0.13
Percentage of Teachers Beginners 0.28 0.18 0.18
Percentage of Staff Turnover −0.28 0.17 0.17
Percentage of Nonwhite Teachers −0.26 0.07 0.07
Title 1 School −0.11 0.00 0.00
Title 1 Focus School 0.02 0.14 0.14

FIG. 1. Boxplots of the distribution of absolute standardized differences for school-level covariates.
The first boxplot is for the unmatched data, the second for a match that pairs schools only, and the
third for a match that pairs both students and schools.
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TABLE 3
Balance on student level covariates. St-diff is the standardized difference

School only School & student
Unmatched match match

–St-diff– –St-diff– –St-diff–

Reading Pretest Score −0.02 −0.06 −0.02
Math Pretest Score −0.02 −0.07 −0.07
Male 0/1 −0.09 −0.08 −0.09
Special Education 0/1 0.09 0.13 0.09
Hispanic 0/1 0.02 −0.03 −0.01
African-American 0/1 −0.00 −0.08 −0.06

4.2. Randomization inference in clustered designs. In our analysis we assume
that, after matching, treatment assignment is as-if randomly assigned to schools.
That is, after matching, it is as if the toss of a fair coin was used to allocate the
myON reading program within matched school pairs. The set � contains the 2S

treatment assignments for all 2S clusters: Z = (Z11,Z12, . . . ,ZS2)
T . Under our

identification strategy, we assume that the probability of receiving treatment is
equal for both schools in each matched pair. If true, the conditional distribution of
Z, given that there is exactly one treated unit in each pair, equals the randomization
distribution and Pr(Zsj = 1) = 1/2 for each unit j in pair s [see Rosenbaum (2002)
for details]. However, in an observational study, Pr(Zsj = 1) = 1/2 may not hold
for each unit j in pair s due to the presence of an unobserved covariate usji . We
explore this possibility through the sensitivity analysis in Section 4.5.

To test Fisher’s sharp null hypothesis of no treatment effect, we define a test
statistic T = t (Z,R). If the sharp null hypothesis holds, then R = yc and T =
t (Z,yc). We choose T to be a test statistic from Hansen, Rosenbaum and Small
(2014). Specifically let qsji be a score or rank given to Ysji , so that under the null
hypothesis, the qsji are functions of the yCsji and xsj i , and they do not vary with
Zsk . The test statistic T is a weighted sum of the mean ranks in the treated school
minus the mean ranks in the control school. Formally the test statistic is

T =
S∑

s=1

BsQs,

where

Bs = 2Zs1 − 1 = ±1, Qs = ws

ns1

ns1∑
i=1

qs1i − ws

ns2

ns2∑
i=1

qs2i

and where ws are weights which are a function of nsj . Hansen, Rosenbaum and
Small (2014) show that T is the sum of S independent random variables each
taking the value ±Qs with probability 1/2, so E(T ) = 0 and var(T ) = ∑S

s=1 Q2
s .
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The central limit theorem implies that as S → ∞, then T/
√

var(T ) converges in
distribution to the standard Normal distribution. Note the framework of Hansen,
Rosenbaum and Small (2014) applies directly to either Design 1 or Design 2, since
under both designs we assume treatment is applied at the cluster level.

We use two different sets of weights. The first set of weights, ws ∝ 1, weight
each set of matched pairs equally. The second set of weights are proportional
to the total number of students in a matched cluster pair: ws ∝ ns1 + ns2 or
ws = (ns1 + ns2)/

∑S
l=1(n11 + n12). These weights allow the treatment effect to

vary with cluster size. This would be true if, for example, the effect of the myON
reading intervention was perhaps larger in smaller schools. Below we discuss how
we incorporate the different weights into the sensitivity analysis.

If we test the hypothesis of a shift effect instead of the hypothesis of no effect,
we can apply the method of Hodges and Lehmann (1963) to estimate the effect
of being offered the myON reading program. The Hodges and Lehmann (HL)
estimate of τ is the value of τ0 that when subtracted from Ysji makes T as close
as possible to its null expectation. Intuitively, the point estimate τ̂ is the value of
τ0 such that T equals 0 when Tτ0 is computed from Ysji − Zsj τ0. If the treatment
has a constant additive effect, Ysji = yCsji + τ then a 95% confidence interval for
the additive treatment effect is formed by testing a series of hypotheses H0: τ = τ0
and retaining the set of values of τ0 not rejected at the 5% level. Using constant
effects is convenient, but this assumption can be relaxed; see Rosenbaum (2003).

4.3. The effectiveness of the myON intervention. Next, we report the results on
the effectiveness of the myON intervention for both matches. The causal estimand
for each match is slightly different. For the match that paired both students and
schools (Design 2), the estimand pertains to the set of schools and students for
whom treatment is marginal. As such, the causal estimand does not apply to all
treated students. The school-only match represents a true group-level estimand,
as such it represents the effect of the myON intervention on the population that
attended a marginal treated school.

Hansen, Rosenbaum and Small (2014) suggest adjusting for baseline student co-
variates by applying a regression model to the matched data and using the ranks of
the residuals when Ysji is regressed on the student-level covariates. We regressed
the outcome, reading test scores recorded after summer school, on student level
test scores recorded prior to summer school. We performed the regression analysis
via Huber’s method of m-estimation. To allow our analysis to be fully transpar-
ent, we report results for both matches with and without regression adjustment for
baseline student-level test scores.

We first test the sharp null hypothesis that the myON intervention is without ef-
fect. For the Design 1 match, without regression adjustment with constant weights
ws ∝ 1, the approximate one-sided p-value is 0.415. Using weights proportional
to cluster size, the approximate one-sided p-value is 0.456. The p-values after ad-
justment are 0.315 and 0.343 respectively. Thus we are unable to reject the null
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TABLE 4
Outcome estimates and confidence intervals for both matches. Estimates

reported both with regression adjustment for baseline test scores and
without adjustment

Design 1: School only match

Unadjusted Regression adjusted

Point Estimate 4.74 1.81
95% Confidence Interval [-5.8, 20.5] [-4.22, 9.42]

Design 2: School & student match

Unadjusted Regression adjusted

Point Estimate 0.745 1.5
95% Confidence Interval [-5, 8] [-4.24, 9.42]

that the myON intervention is completely without effect. For the Design 2 match,
if we do not apply regression adjustment and use constant weights ws ∝ 1, the
approximate one-sided p-value is 0.205. If we use weights proportional to cluster
size, the approximate one-sided p-value is 0.338. The p-values for the test of the
sharp null for the regression adjusted data are very similar at 0.288 and 0.269 re-
spectively. Again, we are unable to reject the null that the myON intervention is
completely without effect.

Next, we report confidence intervals and point estimates. Table 4 contains both
point estimates and 95% confidence intervals for both the Design 1 and Design 2
matches, with and without regression adjustment. In the absence of bias from
hidden confounders, under Design 1, without adjustment, the point estimate is
τ̂ = 4.7 with a 95% confidence interval of [−5.8,20.5], and 1.81 with a 95% con-
fidence interval of [−4.2,9.4], with adjustment. For Design 2, the point estimate
is τ̂ = 0.745 with a 95% confidence interval of [−5,8] without regression adjust-
ment, and τ̂ = 1.5 with a 95% confidence interval of [−4.2,9.4] with regression
adjustment. Under Design 1, the role of adjustment via regression is clear as the
confidence interval is much narrower. However, under Design 2, matching on stu-
dents appears to serve a similar role. We next explore the likelihood that bias from
a hidden confounder masks a treatment effect.

4.4. Test of equivalence and sensitivity analysis. Next, we apply a test of
equivalence to test the hypothesis that τ̂ is less than an educationally meaning-
ful effect size. This will allow us to probe the possibility that bias from a hidden
confounder is masking an actual treatment effect leaving the analyst to conclude
there is no effect when in fact such an effect exists. We can explore this possibility
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by combining a test of equivalence with a sensitivity analysis [Rosenbaum (2008),
Rosenbaum and Silber (2009), Rosenbaum (2010)].

Under a test of equivalence, the null hypothesis asserts H
(ι)

= : |τ | > ι for some

specified ι > 0. Rejecting H
(ι)

= provides a basis for asserting with confidence that

|τ | < ι. H
(ι)

= is the union of two exclusive hypotheses:

←−
H

(ι)
0 : τ ≤ −ι and

−→
H

(ι)
0 :

τ ≥ ι, and H
(ι)

= is rejected if both

←−
H

(ι)
0 and

−→
H

(ι)
0 are rejected [Rosenbaum and

Silber (2009)]. We can apply the two tests without correction for multiple testing
since we test two mutually exclusive hypotheses. Thus we can test whether the
estimate from our study is different from other possible treatment effects which are
represented by ι. With a test of equivalence, it is not possible to demonstrate a total
absence of effect, but in the absence of unobserved confounders we may hope to
demonstrate that our estimated effect does not exceed ι, by rejecting H

(ι)

= : |τ | > ι.

Next, we use a sensitivity analysis to quantify the degree to which a key assump-
tion must be violated in order for our inference to be reversed. We use a model of
sensitivity analysis discussed in Rosenbaum [2002, Chapter 4], which we describe
below. In our study, matching on observed covariates xsj i made schools more simi-
lar in their chances of being exposed to the treatment. However, we may have failed
to match on an important unobserved covariate usji such that xsj = xsj ′ ∀s, j, j ′′,
but possibly usj 
= usj ′ . If true, the probability of being exposed to treatment may
not be constant within matched school pairs (and hence within matched student
pairs). To explore this possibility, we use a sensitivity analysis which imagines
that, before matching, school j in pair s had a probability, πsj , of being exposed to
the myON intervention. For two matched schools in pair s, say j and j ′, because
they have the same observed covariates xsj = xsj ′ it may be true that πsj = πsj ′ .
However, if these two schools differ in their unobserved covariates, usj 
= usj ′ ,
then these two schools may differ in their odds of being exposed to the myON
intervention by at most a factor of � ≥ 1 such that

(1)
1

�
≤ πsj /(1 − πsj ′)

πsj ′/(1 − πsj )
≤ � ∀s, j, j ′,with xsj = xsj ′ .

If � = 1, then πs = πs′ , and the randomization distribution for T is valid. If
� > 1, then quantities such as p-values and point estimates are unknown but are
bounded by a known interval. Under a test of equivalence, we may be able to reject
H

(ι)

= : |τ | > ι if the p-value from the test is less than some threshold, typically

0.05. Rejecting this null allows us to infer that the estimated treatment effect is
not as large as ι. We then apply the sensitivity analysis to understand whether
this inference is sensitive to biases from nonrandom treatment assignment. In the
analysis, we observe at what value of � the upper-bound on the p-value exceeds
the conventional 0.05 threshold for each test. If this � value is relatively large,
we can be confident that the test of equivalence is not sensitive to hidden bias
from nonrandom treatment assignment. The derivation for a sensitivity analysis
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appropriate for test statistic T can be found in Hansen, Rosenbaum and Small
(2014).

Sensitivity to hidden bias may vary with the choice of weights ws [Hansen,
Rosenbaum and Small (2014)]. To understand whether different weights lead to
different sensitivities with a hidden confounder, we can conduct a different sensi-
tivity analysis for each set of weights and correct these tests using a Bonferroni
correction. However, Rosenbaum (2012b) shows that the Bonferroni correction is
overly conservative and develops an alternative multiple testing correction based
on correlations among the test statistics. We use this correction for multiple testing
correction which produces a single corrected p-value for each value of �.

4.5. How much bias would need to be present to mask an educationally signif-
icant effect? First, we set ι to 0.20 of a standard deviation, which is considered
to be an educationally significant effect size in the relevant literature. We do not
present results for the test of equivalence for all four point estimates. We only ap-
ply the test of equivalence to the unadjusted point estimates. These are the largest
and smallest estimates across both designs, thus the results we report will bracket
the tests of equivalence for the adjusted point estimates.

First, we present the results for the unadjusted point estimate in Design 1, which
is the largest of the four point estimates. If we assume that there is no hidden bias
such that � = 1, and test

←−
H

(ι)
0 , we find that the one-sided p-value from this test is

0.033. We then test
−→
H

(ι)
0 , and we find that the one-sided p-value is 0.11. Therefore,

we are unable to reject the null that the treatment effect we observe in this study is
educationally significant. Next, we apply the test of equivalence to the unadjusted
point estimate in Design 2, which is the smallest of the four point estimates. We
first assume that there is no hidden bias such that � = 1, and we test

←−
H

(ι)
0 and

find that the one-sided p-value from this test is 0.025. We then test
−→
H

(ι)
0 , and we

find that the one-sided p-value is 0.034. Therefore, we are able to reject the null
that the treatment effect we observe in this study is educationally significant. Is
this inference sensitive to bias from a confounder? We find that when � is as small
as 1.2 the p-value for the test of equivalence is 0.049. Thus, if students differed
by as much as 20% in the odds of being treated, that could explain our inference.
As such, our study’s findings are fairly sensitive to possible bias from a hidden
confounder.

5. Summary and discussion. Here we developed a new matching algorithm
for hierarchical or multilevel data structures. Building on previous work, we follow
the strategy of first matching individuals and then, considering these optimal indi-
vidual level matches, match clusters. However, we use a more standard matching
framework based on network flows as opposed to integer programming. Although
we cannot target all balance constraints as directly as previous methods did, our
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algorithm is much faster and can be more easily scaled up to large matching prob-
lems without the use of specialized computing techniques such as parallel pro-
cessing of the matches. We also develop two versions of the algorithm. The first is
designed to closely follow the template of a group RCT and does not pair students
within schools. The second algorithm pairs both students and schools. We think
it is most applicable in contexts like the myON intervention where the treatment
is only applied to a subset of students within treated schools. Under both algo-
rithms, analysts can choose to trim treated units to improve balance or maintain
the common support assumption.

Our application highlights some clear limitations that can arise in clustered ob-
servational studies. Here the pool of controls is fairly small, and as a result, we are
unable to produce a match where satisfactory balance is achieved on all covari-
ates. When this occurs, optimal subsetting of the treated group is often the only
way to reduce imbalances. When trimming the sample, investigators should take
care to communicate to readers how the sample has changed and the population
that defines the causal estimand. Finally, we highlight how clustered observational
studies often require design choices that are absent when treatment assignment is
not clustered. Critically, the choice between either Design 1 or Design 2 alters the
estimand, since pairing students will invariably trim the treated sample. Moreover,
these design choices should be made blind to outcomes. Ideally, outcome measures
would be merged with the data after the matching is complete [Rubin (2008)].
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