
The Annals of Applied Statistics
2018, Vol. 12, No. 3, 1385–1421
https://doi.org/10.1214/17-AOAS1107
© Institute of Mathematical Statistics, 2018
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Neuron morphology plays a central role in characterizing cognitive
health and functionality of brain structures. The problem of quantifying neu-
ron shapes and capturing statistical variability of shapes is difficult because
neurons differ both in geometry and in topology. This paper develops a math-
ematical representation of neuronal trees, restricting to the trees that con-
sist of: (1) a main branch viewed as a parameterized curve in R

3, and (2)
some number of secondary branches—also parameterized curves in R

3—
which emanate from the main branch at arbitrary points. It imposes a met-
ric on the representation space, in order to compare neuronal shapes, and
to obtain optimal deformations (geodesics) across arbitrary trees. The key
idea is to impose certain equivalence relations that allow trees with differ-
ent geometries and topologies to be compared efficiently. The combinatorial
problem of matching side branches across trees is reduced to a linear assign-
ment with well-known efficient solutions. This framework is then applied to
comparing, clustering, and classifying neurons using fully automated algo-
rithms. The framework is illustrated on three datasets of neuron reconstruc-
tions, specifically showing geodesics paths and cross-validated classification
between experimental groups.

1. Introduction.

1.1. Motivation and problem statement. The human brain is a complex, dy-
namic, and multifaceted system that provides challenges at multiple functional
and observation scales to researchers. Among different scientific objectives asso-
ciated with current brain research, there is a great deal of interest in characterizing
anatomical parts in terms of structures, functions, and their joint roles in cognitive
processes. Since neurons are the basic units of our central nervous system, neu-
ronal morphologies are key to understanding the progression of a pathology or to
identify therapeutic targets. For example, the shapes of axons directly impact the
number of contacts related neurons can have and are, therefore, highly correlated
to the neuron network connectivity and signaling pathways [Cuntz et al. (2008),
Hirokawa, Niwa and Tanaka (2010)]. Alterations in neuron morphology have been
reported not only in normal aging [Kabaso et al. (2009)], but more importantly
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FIG. 1. Top row: Some microscopy images of neurons illustrating the tree structures. Bottom row:
Examples of simple structures taken from NeuroMorpho.org database (in the Wu dataset described
in Section 3). These neurons differ in number and locations of the axon/dendrite branches as well as
the geometries of those branches.

in patients with senile dementia [Chan-Palay and Asan (1989)], Alzheimer’s dis-
ease [Coleman and Flood (1987), West et al. (1994), Whitehouse et al. (1982)],
and Fragile X syndrome [Bassell and Warren (2008)]. Therefore, a comprehensive
geometric and statistical morphological analysis of neurons is crucial in under-
standing brain functionality. While the publicly available databases for studying
neuron morphologies are growing rapidly, the techniques for analysis are lagging
far behind, as noted in Ledderose et al. (2014). Recent years have seen many ad-
vances in imaging and extraction of 3D structures of neurons [Andersson-Engels
et al. (1997), Ntziachristos (2006)], including software packages such as Neu-
rolucida and Neuromantic. The literature also contains methods and softwares for
extracting neuronal networks from image data [see, e.g., the Diadem challenge
(http://diademchallenge.org/)]. The top row of Fig. 1 shows some images of neu-
rons, and the bottom row shows examples of relatively simple neurons taken from
NeuroMorpho.org database. In this paper, we do not focus on the extraction prob-
lem, but instead focus on neuron morphology.

A major focus in any biological study is the comparison of populations. For
better understanding and modeling of genetic differences between organisms,
a widespread technique is gene knockout: an experimentally controlled mutation in
which a single gene is made inoperative. This causes some change in the affected
organism, such as the further initiation of some disease. Comparing the wild type
population to the mutant one allows us to develop an understanding of the effect of
the pathology on the tissues and/or on their evolution [Bassell and Warren (2008),
Engle (2008), Medioni et al. (2014), Wu et al. (2012)]. Although the current sta-
tistical tests or classical metrics permit us to assess the existence of a significant
difference between any two populations, they do not provide a structurally com-
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plete description of this difference. In this context, the challenge is to construct
proper metrics that are both effective and biologically interpretable.

This motivates the following goals:

1. Shape Metric: Given any two neurons, or rather their Euclidean coordinates,
we want to quantify differences in their shapes. This requires defining an appro-
priate shape metric for comparing these structures.

2. Cluster and Classify: Using this shape metric, we want to cluster and classify
neurons, and validate this classification with some covariates such as mutation,
gender, or age.

The problem of comparing neuron structures is challenging because they exhibit
variability in: (1) Geometry, in terms of shapes of individual branches of axons and
dendrites, and (2) Topology, in terms of the structural relationship between those
branches. One consequence of variable topology is that it makes it difficult to reg-
ister parts across neurons. Registration is the process of finding an optimal (in
a certain well-defined mathematical way) correspondence between parts—points,
curves, branches, etc.—across tree-like structures of neurons. It is a difficult prob-
lem to solve when the objects being compared have different topologies and ge-
ometries. For instance, how should one match up branches across two trees where
one tree has three branches and the other has ten?

1.2. Current techniques. Although there is a significant literature on neuron
morphology, we naturally focus on techniques grounded in mathematical princi-
ples. The relevant works can be grouped in three broad categories:

1. Feature Extraction and Analysis: A majority of work in neuron morphology
literature is based on extracting some morphological features of interests and then
analyzing them quantitatively using Euclidean metrics. [See Halavi et al. (2012)
for a broad review of these methods.] For example, Ledderose et al. (2014) use
statistical distributions of basic morphological parameters such as branch length,
tortuosity, branch’s genealogy, and bifurcation angles. As another example, Neu-
rolucida, one of the most commonly used software for structural analysis, extracts
a slightly different set of features: number of dendrites, axons, nodes, synapses,
and spines; the length, width, and volume of dendrites and axons; the area and
volume of the soma. These extractions represent only partial information about
neurons and often do not provide the full picture. In contrast, our interest is in a
representation of axon and dendrite branching structures which allows us to com-
pare those structures directly.

2. Methods Using Tree Topology Alone: Outside of neuromorphology, many re-
searchers investigate the space of tree structures using topological approaches that
ignore or simplify the geometry (shapes) of the branches and focus on comparing
trees according to their branching patterns. In contrast to the methods based on
feature extraction, these approaches compare entire trees to each other according
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to their overall structure. Past work on purely topological tree analysis includes
the famous tree-edit distance (TED) Heuman and Wittum (2009), Selkow (1977),
Tai (1979), Zhang (1996), and its more recent extensions by Wang and Marron
(2007), Aydin et al. (2011, 2009). These methods treat tree structures as abstract
binary trees and focus on the locations of branches in the structural hierarchy.
A path through the space of trees consists of a sequence of insertions and dele-
tions of branches without regard for the geometry (shape) of the branches. Shapes
of branches have important implications in scientific applications, and cannot be
simply discarded in structural comparisons. To take into account both topological
and geometrical variability requires novel mathematical tools.

3. Combined Geometric-Topological Approaches: There are also methods
based on geometric spaces of trees which incorporate variation in tree topology.
Billera, Holmes and Vogtmann (2001) develop a geometric space of phylogenetic
trees based on branch lengths as one-dimensional continuous edge attributes. Trees
with the same topology lie in a section of Euclidean space where the branch lengths
are coordinate values, and each possible tree topology is associated with a copy
of this space. The overall space is formed by gluing together these spaces at their
boundaries.

More recently, this has been extended to trees with vector-valued edge attributes
in a series of papers that includes Feragen, Lauze and Hauberg (2011, 2013a,
2013b, 2015). The authors have used a distance called Quotient Euclidean Dis-
tance (QED) based on geometric comparison between individual branches which
also allows branches to be inserted or removed, thus changing the tree topology.
Each branch is associated with a structural position in tree and a set of features
giving geometric information about the branch—typically a vector of landmark
points. In the spirit of Kendall’s shape analysis, the method starts from a preshape
space in which tree structure is fixed, and the distance is simply the norm of the
vector of Euclidean distances between individual branches that have correspond-
ing positions in the tree structure. Trees of different structures are combined into
a larger shape space by introducing equivalence relations where branches may be
reindexed in geometry-preserving ways. In the ultimate shape space, distances are
minimal geodesic path lengths which may involve branch deformation, insertion,
or deletion. Unlike with TED, the cost to insert or delete a branch has variable
cost in QED, depending on the geometric qualities of the branches. Also unlike
TED, there is a cost associated with matching branches to each other if they have
different shapes.

As far as we know, this last method is the most well developed and sophisticated
kind of geometric tree shape analysis to date. Unfortunately, it suffers from a few
drawbacks:

1. The shape metric used to compare individual branches is somewhat simplis-
tic. To represent open curves, QED uses a vector of landmark coordinates, and
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compares them by Euclidean distance. This implicitly assumes a fixed registration
between the landmarks of different branches.

2. It is computationally expensive. Under QED, computing the distance be-
tween two trees depends on finding an optimal matching between the edges of
the two trees. According to Feragen (2012), this is a NP-complete problem. This
applies not only to QED, but to nongeometric TED as well.

This is a fundamental challenge with any method that requires matching be-
tween tree structures. One way to address this is by using prior knowledge of
the application domain to help choose the matching. For example, Feragen et al.
(2013b) apply QED to airway trees, and some of the major branches have anatomi-
cal names. By starting from a partial labeling as determined by experts, they reduce
the problem size and make it computationally tractable. Another way to deal with
the problem is by discarding some parts of the tree structure to keep the problem
size manageable, such as in Feragen et al. (2013a).

3. The correspondence between branches under QED is one-to-one. If a branch
in one tree closely resembles the combined shape of a pair of branches in another
tree, the framework has no way to account for this.

The method that we propose in this paper is mainly an improvement on the first
issue. We use a framework based on elastic shape analysis of continuous curves,
and the next section gives an overview of the previous work we draw from. Regard-
ing the latter two issues, our proposed method makes a different set of trade-offs.
We represent trees in a fundamentally different way which reduces the computa-
tionally complexity. Unfortunately, we achieve this by limiting the kinds of tree
topologies we consider, so QED is more general with regard to tree topology, as
are purely topological methods. The different representation also changes the set
of possible matchings between trees, and neither method is more general than the
other with regard to matching.

1.3. Our solution. The framework we propose relates to shape analysis of ob-
jects under different mathematical representations and metrics. Statistical shape
analysis includes a class of methods that deal with discrete sets of labeled points,
or landmarks, and one uses geometries of such representation spaces to perform
statistical procedures [Dryden and Mardia (1998), Kendall et al. (1999)]. A major
limitation of this approach is that it assumes the registration of landmarks across
shapes is provided with the data, which in practice, is often not possible.

Another class of shape analysis methods deal with continuous representations
(Rn-valued functions on some compact domains) and solve for registration dur-
ing shape comparisons. Examples of shapes usually studied using these methods
include parameterized curves and 2D surfaces. These methods rely on choosing
a shape metric that is invariant to certain shape preserving transformations. For
instance, in shape analysis of curves in Euclidean spaces, it is important to design
a metric that is invariant to rigid motion, global scaling, and reparameterizations
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of curves [Kurtek et al. (2012), Srivastava et al. (2011)]. This has led to creation
of a new area of research where one designs invariant Riemannian metrics, termed
elastic metrics, for comparing geometries of objects with the same topology. In
this approach, one performs registration of points across shapes at the same time
as computation of the shape metric, rather than as a preprocessing step. Conse-
quently, there has been substantial amount of work in elastic shape analysis of
curves in Euclidean spaces [Srivastava and Klassen (2016)].

This idea has also been extended to study annotated curves, where the anal-
ysis relies not only on the geometry of curves, but also on annotations defined
as finite-dimensional functions defined along those curves [Liu, Srivastava and
Klassen (2008)], with applications to protein structure analysis [Liu, Srivastava
and Zhang (2011)]. Duncan et al. (2015) further extends the idea of annotated
curves to infinite-dimensional attributes, where the annotation is itself another
curve.

We propose a framework that can handle both geometrical and topological vari-
ability of neuronal trees, and can quantify differences between neuronal trees based
on the shape, which includes information about the size, location, and number of
branches. It modifies and extends the prior work on shape analysis of curves and
annotated curves to include trees that consist of: (1) a main branch viewed as a
parameterized curve in R

3, and (2) some number of secondary branches—also pa-
rameterized curves in R

3. These secondary branches are side branches of the main
branch, and they begin at some point along the main branch curve. The framework
imposes an elastic metric on the representation space and uses that to compare
shapes of neuronal trees. In the process, it computes optimal registrations and de-
formations (geodesics) between any two trees. The key idea is to impose certain
equivalence relations that allow trees with different geometries and topologies to
be compared efficiently. The combinatorial problem of matching side branches
across trees is reduced to a linear assignment with well-known efficient solutions.
This framework is then applied to perform classification of neurons according to
experimental group.

In the setup described above, we handle bifurcations in a completely different
way than other works on tree spaces. In other tree space methods, such as QED,
a bifurcation is a meeting point of three or more branches: a parent branch ends,
and two or more child branches begin (parent-child). This is consistent with how
trees are thought of as data structures, or as a type of graph where branches are
edges, and bifurcations are vertices. In contrast, our method treats a bifurcation
as a point where two branches meet: a side branch begins, and the main branch
continues before and after the bifurcation (main-side). This is motivated by a type
of branching in axons called collateral formation, which are side branches that
sprout from somewhere along the shaft of a main axon branch. Figure 1 of Gibson
and Ma (2011) illustrates collateral branching in contrast with other patterns of
axon branching.
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FIG. 2. An example pair of trees for which main-side is preferable to parent-child branching.
(a) and (b) are two simple trees that have 0 and 1 bifurcations, respectively. (c) and (d) show two
different ways of breaking up (b) into component branches, depending on how we think of the rela-
tionship between branches at the bifurcation. In (c), the parent branch ends and two child branches
begin. In (d), the main branch continues through the bifurcation and one small child branch begins
there. This main branch is identical to the sole branch of (a), and different from the branches of (c).
A matching between the two trees is more satisfying if we can pair up the identical branches.

Previous work on tree spaces makes effective use of the parent-child concept
of branching, but Figure 2 shows a simple example where the main-side concept
is more appropriate. A more general framework might incorporate both concepts
of branching, but we do not explore that here. One downside to the main-side
approach is that it requires us to choose which branch we consider the main one.
In Section 3, we discuss how we do this for datasets of simple neurons.

2. Mathematical representation and shape space metric. In this section,
we describe mathematical representation and the chosen shape metric for compar-
ing neuronal trees. Our framework treats branches as elastic curves and Section 2.1
gives a brief summary of the shape space of curves as it relates to this paper. Sec-
tion 2.2 defines a tree preshape space where trees have the same number of side
branches, and Section 2.4 extends this to a shape space of the more general case of
having arbitrary number of branches.

2.1. Elastic shape analysis of curves. We use a version of the curve shape
space described in papers such as Joshi et al. (2007), Kurtek et al. (2012), Mio and
Srivastava (2004), Srivastava et al. (2011). Here, we only give an overview which
includes definitions and key facts about this framework. For more details, see those
papers.

Let AC be the set of absolutely continuous parameterized curves from [0,1]
to R

3. We endow AC with a geometry given by an elastic Riemannian metric,
which is a linear combination of two terms that measure bending and stretching of
curves. Under an elastic metric, the distance between two curves can be thought
of as a measure of how much smooth deformation it takes to transform one curve
into the other. There is a convenient special case of such elastic metrics in which
the space of curves can be flattened to infinite-dimensional Euclidean space by
a transformation which we now define. Given β ∈ AC, its Square Root Velocity
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Function (SRVF) is defined as

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

β̇(t)√
‖β̇(t)‖

if β̇(t) exists and is nonzero,

0 otherwise.

(1)

The absolute continuity of β implies that q is square-integrable, so we will
simply refer to the space of all such SRVFs as L

2, shorthand for L2([0,1],R3),
the space of square-integrable functions from the unit interval to R

3. Given an
SRVF, q , one can recover the original curve (up to translation) with the following
integral:

β(t) − β(0) =
∫ t

0
q(r)

∥∥q(r)
∥∥dr.(2)

The standard Euclidean inner product on L
2 exactly corresponds to a Rieman-

nian metric on AC in the elastic family of metrics described above. Thus, geodesics
in AC correspond to straight lines in L

2 and the elastic distance between two
curves, β1, β2 ∈ AC, can be computed by the Euclidean distance between their
SRVFs, q1, q2 ∈ L

2:

dAC(β1, β2) = ‖q1 − q2‖L2 .(3)

For shape analysis of curves, we use L2 as the preshape space, then mod out the
shape-preserving group actions of reparameterization and rigid rotation to form
the curve shape space. The reparameterizations come from the group of increasing,
absolutely continuous bijections of the unit interval to itself:

� = {
γ : [0,1] → [0,1]|γ ∈ AC, γ (0) = 0, γ (1) = 1, γ̇ > 0 a.e.

}
.(4)

This group acts by right composition of the original curve in AC, so in the SRVF
representation, the action is defined by (q, γ ) = √

γ̇ (q ◦ γ ). The rotation action is
left-multiplication by matrices in SO(3) with all points, β(t) ∈ R

3, along the curve,
or equivalently left-multiplication with its SRVF representation. The two actions
commute. For a given pair, (γ,O) ∈ � × SO(3), and SRVF, q ∈ L

2, we can write
the combined action O(q,γ ). The distance (3) is isometric with respect to this
action, that is, for any (γ,O) ∈ � × SO(3):

‖q1 − q2‖L2 = ∥∥O(q1, γ ) − O(q2, γ )
∥∥
L2 .(5)

For the shape space of curves alone, we take the quotient space of closures of
orbits under this combined action:

[q] = cl
({

O(q,γ )|(O,γ ) ∈ � × SO(3)
})

and

S = {[q]|q ∈ L
2}

.
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Elements in this quotient space (equivalence classes in the preshape space) are
individual curve shapes, and the shape space inherits the standard distance pseu-
dometric from the preshape space

dS
([q1], [q2]) = inf

γ,O∈�×SO(n)

∥∥q1 − O(q2, γ )
∥∥
L2 .(6)

The following lemma from Lahiri, Robinson and Klassen (2015) (Lemma 1 in
that paper) establishes positivity for a slightly different quotient metric.

LEMMA 1. Assume q1 and q2 are elements of L
2([0,1],RN). Then

infγ∈� ‖q1 − (q2, γ )‖L2 = 0 if and only if the orbits of q1 and q2 under repa-
rameterization have the same closure in L

2([0,1],RN).

Another result that is useful for our purposes is Theorem 4 in the same paper,
which establishes sufficient conditions for the existence of minimizers.

THEOREM 1. Let q,w ∈ L
2([0,1],RN) such that w is the SRVF of a piece-

wise linear curve. There exist some q̃ ∈ cl(q�) and w̃ ∈ cl(w�) such that
d(q̃, w̃) = infγ∈� ‖q − (w,γ )‖L2 .

Also, note that (6) is expressed in terms of the group action applied to only
one of the curves q2, which is justified by the isometry stated in (5). Finding O,γ

that minimize dL2 is called curve alignment, or registration. Unfortunately, such
a minimizing alignment may not exist, which is why we use closures of orbits to
define the quotient space. In those cases, it is still, by definition, possible to find
O,γ which make dL2 as close to the infimum as possible. Framing the quotient
distance this way sets up the alignment problem in a computationally convenient
way that allows good approximate solutions.

Lahiri, Robinson and Klassen (2015) and Bruveris (2015) give similar construc-
tions of curve shape space in which optimal alignments do generally exist. This is
achieved by allowing reparameterizations to be non-decreasing, rather than strictly
increasing. Consequently, the space of reparameterizations is a semigroup which
includes noninvertible elements, and the alignment is done by simultaneously repa-
rameterizing both curves. Such approaches are more exact, but less computation-
ally tractable.

2.2. Trees with the same number of side branches. We consider simple trees
which consist of a main branch and a finite (possibly empty) set of side branches
that each begin at some arbitrary locations on the main branch. A simple tree of
this type is written β = (β0, {βk}nk=1). Each βk, k = 0,1, . . . , n is an absolutely
continuous curve, βk : [0,1] → R

3. The side branches are constrained to begin at
some point on the interior of the main branch. That is, for each k, there is some
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FIG. 3. Diagram of a simple tree with a main branch and two side branches.

tk ∈ (0,1) such that β0(tk) = βk(0). A labeled diagram of this sort of tree is shown
in Figure 3.

For the purpose of elastic shape analysis, each tree, β is represented by its
square root velocity tree, q, which consists of the collection of SRVFs of the curves
in β , indexed in the same fashion. Since the SRVF representation is only unique
up to translation, our representation should also keep information about the start-
ing location for each side branch. A side branch is represented by the following
ordered pair:

(qk, sk) ∈ L
2([0,1],R3) × (0,1),(7)

where sk ∈ (0,1) is the starting location expressed as the proportion of arc-length
along the main branch

sk =
∫ tk

0 ‖β̇0(t)‖2 dt∫ 1
0 ‖β̇0(t)‖2 dt

=
∫ tk

0 (q0(t))
2 dt

‖q0‖2
L2

.(8)

The main branch is also transformed to its SRVF, which we call q0. Our initial
representation of the entire tree is this q0 along with n side branches:

q = (
q0,

{
(qk, sk)

}n
k=1

)
.

For a given n, let Pn be a product space in which q resides. The qk are all in L
2

and the sk are in (0,1), so the preshape space is

Pn ≡ L
2 × (

L
2 × (0,1)

)n
.

Within this space, we define a distance in terms of distances in their component
spaces. The curves, qk , have L2 distance, and the branch positions, sk ∈ (0,1), have
a Euclidean distance. Given q1,q2 ∈ Pn, we write each as qi = (qi

0, {(qi
k, s

i
k)}nk=1)

and define the square distance between them as a weighted sum of their component
square distances:

dn

(
q1,q2)2 = λm

∥∥q1
0 − q2

0
∥∥2

(9)

+ λs

n∑
k=1

∥∥q1
k − q2

k

∥∥2 + λp

n∑
k=1

(
s1
k − s2

k

)2
.
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The tuning parameters λ = (λm,λs, λp) control the relative costs of deform-
ing the main branch, deforming side branches, and moving the position of side
branches, respectively. Since this distance is a weighted Euclidean norm of L2 dis-
tances and Euclidean distances, the combined space is flat. Thus, geodesics are just
linearly interpolated paths. That is, each component is linearly interpolated: main
branch, side branches, and side branch locations,

α(r) = (1 − r)q1 + rq2, 0 ≤ r ≤ 1.(10)

Here, multiplication of a real number with a tree just means multiplication with
each of its components, and addition of two trees is just addition of their corre-
sponding components. Figure 4(b) illustrates an example geodesic path between
two trees in P4. In their initial representation, the two trees are oriented differ-
ently. To reach the second tree from the first, the path must shrink the features of
the first tree while growing the features of the second. It passes through trees in P4
which do not much resemble the given trees.

2.3. Removing rotation and reparameterization. In the spirit of Srivastava
et al. (2011), we can address this by modding out shape-preserving group actions.
In each Pn, we mod out the nuisance variables rotation and reparameterization.
We apply rotation globally but reparameterize each branch separately, including
the main branch. Let γ = (γ0, {γk}nk=1) ∈ �n+1 be the ordered collection of repa-
rameterizations to apply. Given q ∈ Pn and the pair (O,γ ) ∈ SO(3) × �n+1, the
group action is given by

O(q,γ ) = (
O(q0, γ0),

{
O(qk, γk), sk

}n
k=1

)
.(11)

By design, this action does not affect the sk . Arc-lengths are preserved under ro-
tation and reparameterization, so branches of q and O(q,γ ) have the same spatial
locations relative to the overall shape of the tree.

We treat this as a shape-preserving nuisance action, as we did for the group
actions discussed in the shape space of curves (Section 2.1). We define a quo-
tient space, Qn, on the closures of orbits under this action, which is roughly
Pn/(SO(3) × �n+1). We write [q] ∈ Qn for the closure of the orbit of q . Dis-
tances in Qn are inherited from distances in Pn. Given q1,q2 ∈ Pn, the distance
between their orbits is given by

d ′
n

([
q1]

,
[
q2]) = inf

{
dn

(
q̃1, q̃2) : q̃1 ∈ [

q1]
, q̃2 ∈ [

q2]}
.(12)

The following theorem (proved in the Appendix) gives sufficient conditions to
minimize the preshape distance on the right-hand side of (12).

THEOREM 2. Let q1,q2 ∈ Pn with branches composed of piecewise linear
curves. Then there are q̃1 ∈ [q1] and q̃2 ∈ [q2] such that the prespace distance
achieves the quotient distance: d ′

n([q1], [q2]) = dn(q̃
1, q̃2).
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(a) Two trees q1,q2 ∈P4. Below are three geodesic paths between these trees—each sampled at
five equidistant points along the path and each in a different space. Distances and geodesics are
computed using parameter values λm = 0.01, λs = 0.01, and λp = 1.0 [for use in equation (9)].

(b) Geodesic path between q1,q2 in P4, the initial preshape space. The square distance given in
equation (9) is d4(q1,q2)2 = 1.8641.

(c) Geodesic path between optimally-aligned representatives of [q1], [q2] ∈Q4. The square
distance given in equation (12) is d ′

4([q1], [q2])2 = 0.7723.

(d) Geodesic path between [[q1]], [[q2]] ∈ Q̃. The square distance is the lowest yet, with
d([[q1]], [[q2]])2 = 0.3619.

FIG. 4. Examples of geodesic paths between the same two trees in different preshape and shape
spaces.
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Under the same conditions, this implies positivity of the quotient distance.

COROLLARY 1. Let q1,q2 be as in Theorem 2. If [q1] 
= [q2], then d ′
n([q1],

[q2]) 
= 0.

PROOF. Suppose d ′
n([q1], [q2]) = 0. Then there are q̃1 ∈ [q1] and q̃2 ∈ [q2]

such that dn(q̃
1, q̃2) = 0, which implies q̃1 = q̃2, which implies [q1] = [q2]. �

If we have such minimizing q̃1, q̃2, then we can form a geodesic path in Pn

by linearly interpolation as we did in (10). This path’s length realizes the quotient
distance, d ′

n, and by taking the closed orbit of each point on this path, we form a
corresponding path from [q1] to [q2] in Qn:[

α(r)
] = [

(1 − r)q̃1 + r q̃2]
.(13)

We refer to such minimal paths as geodesic paths in Qn. Figure 4(c) depicts a
geodesic path between trees in Q4 which represent the equivalence classes of the
same trees shown in Figure 4(b). The path from the first tree to the second ap-
pears to require much less deformation and the intermediate trees better resemble
the endpoints. Indeed, the preshape distance between the aligned orbit representa-
tives is much less than the preshape distance between the original unaligned trees:
d ′

4([q1], [q2])2 = 0.7723 whereas d4(q
1,q2)2 = 1.8641.

There is still one more shape-preserving equivalence that we wish to remove.
Notice that in Figure 4(c), the endpoints q̃1 and q̃2 each have one prominent side
branch and three very small ones. Specifically, q̃1

2 and q̃2
3 are much longer than the

rest of the side branches in the two trees. When the trees are rotationally aligned,
these branches protrude from the main branch in similar directions. A more sat-
isfying correspondence between the two trees might be one where these two side
branches are matched to each other. The geodesic path would deform one into the
other, rather than deforming each into a diminutive branch as in Figure 4(c).

But under the framework so far, we only compare side branches which have the
same given index. This was a choice of convenience which allowed us to focus on
constructing the preshape spaces from the geometries of the trees’ branches. The
next section introduces an additional equivalence relation, which will give us our
final shape space of trees.

2.4. Trees with different numbers of side branches. Since we wish to consider
trees with an arbitrary number of side branches, we need a way to compare trees
with different numbers of side branches. Such trees lie in different Pn, and their
shape classes are in different Qn. We define combined spaces by the following
disjoint unions:

P ≡
∞⊔

n=0

Pn, Q ≡
∞⊔

n=0

Qn.
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FIG. 5. Geodesic path between two very similar trees. The similarity is best understood if we can
swap the order of branches when comparing them.

Each Pn,Qn has distances and geodesics defined above in equations (9) to (13).
P and Q, however, are explicitly not connected and we cannot define distances be-
tween trees with different numbers of side branches since they lie in different com-
ponents of P and Q. To get around this, we define an equivalence relation which
glues these components together. In other words, the equivalence classes contain
trees with different numbers of branches. Before explicitly stating the definition,
we motivate it by describing two ways trees can be distinct in Q, but occupy the
same set of points in R

3.
One way for trees to have the same shape but different representations in Q

is the presence of zero-length branches. Our framework allows for side branches
which are constant and do not emanate from the main branch. That is, a tree may
have a side branch such that ∀t ∈ [0,1], βk(t) = β0(tk) which is equivalent to
∀t, qk(t) = 0. Practically speaking, one may intuitively view such a “branch” as
a location where no branch exists and we call these null branches.

Another way for same-shaped trees to differ in Q is differences in branch index
order. That is, two trees may have collections of branches which are identical in
shape and location, but are indexed in a different order. Intuitively, a pair of trees
like this have the same shape, but our framework so far represents them differently
and they have nonzero distance equations (9) and (12). An obvious way we could
avoid this representational redundancy would be to add a constraint requiring side
branches to be indexed in a pre-specified order (e.g., sorted by branch location
parameter). We choose not to add such a constraint because it would preclude the
existence of paths in tree-space where side branch base locations pass through each
other and change order. Figure 5 illustrates a case where it may be preferable to
include such paths in the space of trees.

Null branches and side branch order redundancy are dealt with by the following
equivalence relation on P .

DEFINITION 1. Given two SRVF trees, q1 ∈ Pn1 and q2 ∈ Pn2 , we say they
are branch-equivalent (denoted q1 ∼ q2) if there are q̃1 ∈ [q1], q̃2 ∈ [q2] such
that:

1. Their main branches are the same: q̃1
0 = q̃2

0 .
2. Nonnull side branches have the same shape and location (but not necessarily the

same order): There exists σ ∈ Sn, a finite permutation of order n ≥ max{n1, n2},
such that
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FIG. 6. Example of a set of branch-equivalent trees. This figure is best viewed in color. Branches
with the same index in their respective tree are drawn in the same color. The two leftmost trees have
two branches each, which are identical, but with swapped index order. The two rightmost have the
same nonnull branches, and have some null branches inserted at various places.

(a) (q̃1
k , s̃1

k ) = (q̃2
σ−1(k)

, s̃2
σ−1(k)

) for any k where q̃1
k 
= 0;

(b) (q̃2
k , s̃2

k ) = (q̃1
σ(k), s̃

1
σ(k)) for any k where q̃2

k 
= 0.

Given q ∈ Pn (for some n), we denote its equivalence class under ∼ by [[q]],
and we denote the quotient space Q̃ =P/∼.

It is obvious that [q] ⊂ [[q]] for any q ∈ P . In other words, Q̃ is a strictly coarser
partition than Q.

This definition allows us to insert and remove an arbitrary number of null
branches into a SRVF tree while maintaining branch-equivalence. Hence an equiv-
alence class in Q̃ has representatives in Pn for infinitely many n. More specifically,
if q ∈ P and q has exactly K nonnull side branches, then [[q]] intersects Pn for
all n ≥ K . In such a case, we say K is the order of [[q]]. If K is the order of [[q]]
and q̃ ∈ PK ∩ [[q]]—in other words q̃ has no null side branches—then we say q̃
is minimal. We carry these definitions back to the original trees: β1 and β2 are
branch-equivalent if and only if their SRVF representations q1 ∼ q2 are branch-
equivalent; the order of tree β is the order of its SRVF representation; β is minimal
if and only if its SRVF representation is minimal.

Figure 6 shows a set of branch-equivalent trees of order 2. From left to right,
call them β1, β2, β3, and β4. The original tree, β1, is a real axonal tree, taken
directly from the IBV dataset (described in Section 3) and the others are generated
from β1 by permuting the indices of side branches and/or inserting null branches.
Like β1, β2 is minimal and is formed by swapping the indices of the original:
β2

1 = β1
2 and β2

2 = β2
2 . Next, β3 has the same β1, β2 as β1 and has an additional

null-branch, β3
3 , which appears as a red dot. The rightmost tree, β4, has three

additional null branches compared to the original tree, and the indices are permuted
so that β4

2 = β1
1 and β4

3 = β1
1 while β4

1 , β4
4 , and β4

5 are the null branches. These four
trees all belong to the same branch-equivalence class because the set of nonnull
side-branches is the same.

The quotient distance under ∼ is

d
([[

q1]]
,
[[
q2]]) = inf

{
d ′
n

([
q̃1]

,
[
q̃2]) : [

q̃1] ⊂ [[
q1]]

,
[
q̃2] ⊂ [[

q2]]}
.(14)
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In the right-hand side of equation (14), a candidate pair of representatives
q̃1 ∈ [[q1]] and q̃2 ∈ [[q2]] is called a matching. If q̃1, q̃2 minimize the distance,
d ′
n([q̃1], [q̃2]), then we call it an optimal matching between [[q1]] and [[q2]] (or

between q1 and q2). Implicit in the definition of this distance is that the represen-
tatives which form a matching must be in the same Pn. If q̃1, q̃2 are an optimal
matching, then the (straight line) geodesic between them in P has length equal to
the quotient distance. Taking the equivalence class of each point on this path, we
get a path from [[q1]] to [[q2]], that we call a geodesic path in Q̃:[[

α(r)
]] = [[

(1 − r)q̃1 + r q̃2]]
.(15)

Figure 4(d) is the satisfying result for the example studied in Figure 4. The large
side branches are deformed into one another and the tiny side branches are shrunk
to null. Compared to the previous two geodesics, the path in Figure 4(d) looks
more natural and leads to a sharp reduction in square distance between the two
tree shapes.

Building on Theorem 2, the existence of an optimal matching can be guaran-
teed under some mild assumptions about the curves that make the branches. The
following theorem is proved in the Appendix.

THEOREM 3. Let q1 ∈ Pn1 and q2 ∈ Pn2 with branches composed of piece-
wise linear curves. Then there are q̃1 ∈ [[q1]] and q̃2 ∈ [[q2]] such that the pres-
pace distance achieves the quotient distance: d([[q1]], [[q2]]) = dn(q̃

1, q̃2). Fur-
thermore, such q̃1 and q̃2 exist in Pn for some n ≤ n1 + n2.

The first part (existence) implies positivity of the distance between distinct
shape classes.

COROLLARY 2. Let q1,q2 be as in Theorem 3. If [[q1]] 
= [[q2]], then
d([[q1]], [[q2]]) 
= 0.

PROOF. Suppose d([[q1]], [[q2]]) = 0. Then there are q̃1 ∈ [[q1]] and q̃2 ∈
[[q2]] such that dn(q̃

1, q̃2) = 0, which implies q̃1 = q̃2, which implies [[q1]] =
[[q2]]. �

Computing such an optimal matching (or its approximation) is the subject of
the next section.

2.5. Computing an optimal matching between two trees. The second part of
Theorem 3 helps us narrow our search for an optimal matching. Given q1 ∈ Pn1

and q2 ∈ Pn2 , we need only consider branch-equivalent trees with N = n1 + n2
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branches. We can formulate the distance between [[q1]] and [[q2]] [equation (14)]
in a more computationally-motivated way:

d
([[

q1]]
,
[[
q2]])2

(16)
= inf

O∈SO(3)

γ∈�N+1

σ∈SN

{
dN

(
q̃1,O

(
q̃2

σ ,γ
))2 : q̃1 ∈ Q1

N, q̃2 ∈ Q2
N

}
,

where

Qi
N = {

q̃ i ∈ [[
q i]] ∩PN : (

q̃i
k, s̃

i
k

) = (
qi
k, s

i
k

)
for k = 1, . . . , ni

}
,

qσ = (
q0, {qσ(k), sσ(k)}).

In words, Qi
N is the set of trees we can construct by starting with qi ∈Pni

, and
inserting N −ni null branches, q̃i

k , at arbitrary locations, sk , for k = ni + 1, . . . ,N .
The subscript σ denotes a permutation of the side branch indices. To construct the
matching using this setup, we add null branches to the two trees to get q̃1, q̃2, then
transform q̃2 by applying some O ∈ SO(3), γ ∈ �n+1, and σ ∈ SN . When we add
null branches to form q̃1, q̃2, the new sk are the only additional information, and
it turns out the best sk are determined by the choice of permutation. The challenge
here is to optimize over all these transformation spaces simultaneously. Ideally, we
would like to find O,γ , σ that achieve the infimum, and thus give us an optimal
matching. It may not be possible to find the optimal matching this way for reasons
mentioned in Section 2.1. However, we can use this approach to find a matching
so that the distance, dN , in the right-hand side of equation (16) is arbitrarily close
to the infimum.

To optimize over this daunting list of spaces—SO(3),�n+1, and SN —we use
an alternating optimization approach. We repeatedly optimize with respect to:

(1) O ∈ SO(3) (with fixed parameterizations and permutation), then
(2) γ ∈ �N+1 and σ ∈ SN (with fixed rotation).

Finding an optimal O ∈ SO(3) is easy—it is the Procrustes rotation problem. The
novel part is step (2): the simultaneous optimization over reparameterization and
permutation. Most of the rest of this section describes how we accomplish this
second task, and the process is given more explicitly in Algorithm 2. The top-level
alternating optimization procedure is given in Algorithm 1.

One part of the reparameterization-rotation can be separated from the rest,
namely γ0. In the expression for the pre-space distance [equation (9)], reparame-
terization of the main branch will only affect the first term—the main branch shape
term. Likewise, reparameterization of side branches only affects the second term,
which measures side branch shape distance. Permutation of side branches affects
both the last two terms, which measure shape difference due to side branch shape
and side branch position. Thus, we can optimize for γ0 ∈ � separately from σ ∈ SN
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Algorithm 1 Top-level optimization over branch-equivalence
Input:

q1 ∈ Pn1,q
2 ∈ Pn2—trees to be aligned

λ = (λm,λs, λp)—prespace distance weight parameter vector
Imax—Number of iterations.

Output:
q̃1 ∈ Q1

n, q̃
2 ∈ Q2

n—same as q1,q2 but with additional null branches
O ∈ SO(3)—optimal rotation matrix
γ ∈ �n+1—optimal set of curve reparameterizations
σ ∈ Sn—optimal permutation of n side branches

1: procedure ALIGNFULL

2: q̃1, q̃2,γ , σ ← REPARAMPERMUTE(Oid,q
1,q2,λ)

3: for Imax iterations do
4: O ← PROCRUSTES(q̃1, (q̃2

σ ,γ ),λ)
5: q̃1, q̃2,γ , σ ← REPARAMPERMUTE(O, q̃1, q̃2,λ)
6: end for
7: end procedure

and {γ1, . . . , γN } ∈ �N . But the latter two are still entangled with each other—the
choice of side reparameterizations depends on which branches are matched to each
other; the choice of permutation depends on knowing the shape distance between
side branches, which requires them to be optimally aligned.

To compute this combined optimization, we frame it in terms of the linear as-
signment problem. We build an N × N matrix, E, of matching costs between the
side branches of q1 and q2. That is, if σ is chosen so that σ(i) = j , then the ith
branch of q1 is matched to the j th branch of q2. This matched pair will make
some contribution to the squared preshape distance in the right-hand side of equa-
tion (16) and this contribution is stored in entry Eij of the cost matrix. Further-
more, these contributions are additive over the set of matched pairs and the matrix
is constructed in a way so that a given choice of σ determines the optimal side
reparameterizations, γ1, . . . , γN . Thus, the side branch shape and location terms of
the preshape distance in equation (16) are completely determined by

∑
i Ei,σ (i).

Once this matrix E is formed, we can find the optimal permutation by minimizing
this sum. This is known as the linear assignment problem—a well-studied compu-
tational task which we can solve with fast off-the-shelf methods with worst-case
time complexity O(N3). We use an implementation of the method proposed in
Jonker and Volgenant (1987), which we refer to as LAPJV.

The dimensions of E exceed the number of branches in q1 and q2, so entry
Eij corresponds to a matching between nonnull branches if and only if i ≤ n1 and
j ≤ n2. Higher indices indicate matchings that involve the null branches added
to form q̃1 and q̃2. With this distinction in mind, we divide the cost matrix into
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Algorithm 2 Simultaneous optimization dN with respect to γ ∈ �N+1, σ ∈ SN

Input:
O ∈ SO(3)—iven rotation matrix
q1 ∈Pn1 ,q

2 ∈ Pn2 —trees to be aligned
λ = (λm,λs, λp)—pre-space distance weight parameter vector

Output:
q̃1 ∈ Q1

n, q̃
2 ∈ Q2

n—same as q1,q2 but with additional null branches
γ ∈ �n+1—optimal set of curve reparameterizations
σ ∈ Sn—optimal permutation of N side branches
Ematch—energy (square distance) for optimal γ , σ

1: procedure REPARAMPERMUTE

2: N ← n1 + n2
3: q2 ← Õq2

4: for i from 1 to n1 do
5: for j from 1 to n2 do
6: γ̃ij ← DYNAMICPROGRAMMINGQ(q1

i , q2
j )

7: Eij ← λm‖q1
i − (q2

j , γ̃ij )‖2 + λp(s1
i − s2

j )2

8: end for
9: Eij ← λs‖q1

i ‖2 for n2 < j ≤ N

10: end for
11: for j from 1 to n2 do
12: Eij = λs‖q2

j ‖2 for n1 < i ≤ N

13: end for
14: Eij ← 0 for n1 < i ≤ N and n2 < j ≤ N

15: σ,Esides ← LAPJV(E)

16: I ← {i|1 ≤ i ≤ n1 or 1 ≤ σ(i) ≤ n2} � Discard null-to-null matches
17: σ ← σ |I � σ is now in Sn for some n

18: n ← |I | � s.t. max{n1, n2} ≤ n ≤ n1 + n2
19: γ0 ← DYNAMICPROGRAMMINGQ(q1

0 , q2
0 )

20: for i from 1 to n1 do
21: if 1 ≤ σ(i) ≤ n2 then
22: γi = γ̃i,σ (i)

23: else
24: γi = γid

25: end if
26: end for
27: γi ← γid for n1 < i ≤ n

28: Ematch ← λm‖q1
0 − (q2

0 , γ0)‖2 + Esides

29: q2 ← O−1q2

30: q̃1 ← q1

31: (q̃1
i , s̃1

i ) ← (0, s2
σ(i)) for n1 < i ≤ n

32: q̃2 ← q2

33: (q̃2
j , s̃2

j ) ← (0, s1
σ−1(j)

) for n2 < j ≤ n

34: end procedure
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named submatrices as follows:

E =
[

M U1

U2 0

]
.(17)

In the upper left is the n1 × n2 matrix of costs to match nonnull branches to each
other, which we call M . Upper right is the n1 × n1 matrix, U1, of costs to kill
the side branches of q1 (i.e., match them to newly-added null branches of q̃2).
Similarly, lower left is the n2 × n2 matrix, U2, of costs to kill the side branches of
q2. Lower right is an n2 × n1 matrix of zeros. Since the entries of M and the U j

correspond to qualitatively different kinds of matching, we compute the costs in
different ways.

First, we describe the submatrices involving null branches. U1 sits in the first
n1 rows and last n1 columns of E. Element U1

ij is the cost of creating a null

branch, q̃2
n2+j , and matching it to q1

i . Since we can insert the null branch at an
arbitrary location, we can choose its location to have the same relative arc-length
on the main branch: s2

n2+j = s1
i . That way, this matched pair contributes nothing

to the position term of dN (any other choice would have a positive cost), so the
only possible contribution remaining is to the side branch shape term. The null
branch SRVF is identically zero, so the contribution is U1

ij = λs‖q̃1
i ‖2. Similarly,

if we create a null q̃1
n1+i and match it to nonnull q2

j , the cost is U2
ij = λs‖q2

j ‖2. In
both cases, the square norm the SRVF is invariant to reparameterization. Thus, if
LAPJV chooses any Ei,σ (i) from U1 or U2, then any γi ∈ � gives the same cost.
For simplicity, we use γi = γid in this case.

Note that the entries of U1 do not depend on j , which means each of its n1 rows
is the same value repeated n1 times, and its columns are identical to each other.
Similarly, the columns of U2 consist of repeated values and its rows are identical.
This may seem redundant, but it is necessary for the linear assignment problem to
be set up correctly. Each row can only be matched to one column and vice versa
because the permutation, σ , is bijective. For a given pair of trees, it may be that
the optimal matching has all n1 side branches of q1 matched to null branches and
the same for all n2 side branches of q2. In this most extreme case, LAPJV will
choose σ so that every Ei,σ (i) is in U1 and U2. To accommodate this, both of
these submatrices must be square, which is precisely how we construct E.

These extra entries create an empty space in the lower right n2 × n1 subma-
trix of E, where the entries correspond to no branches on either tree. For any
such matching, the branches are null, and we can choose s1

i = s2
j , so the match-

ing contribute no cost to dN , and thus, the whole submatrix is filled with zeros.
In the case that those entries are chosen by the linear assignment solver, we just
discard them afterward, and ultimately get a matching in Pn for some n such that
max{n1, n2} ≤ n ≤ N .

Finally, we come to the upper left n1 × n2 submatrix M , in which element M ij

is the cost of matching q1
i to q2

j [i.e., the cost of setting σ(i) = j ]. This choice of
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matching contributes to the last two terms of dN , so its cost is a weighted sum of
the shape distance between the SRVFs, and the sliding cost due to difference in
relative location:

M ij = λm

∥∥q1
i − (

q2
j , γ̃ij

)∥∥2 + λp

(
s1
i − s2

j

)2
.(18)

Here, γ̃ij is the optimal reparameterization between the two SRVFs: γ̃ij =
argminγ∈� ‖q1

i − (q2
j , γ )‖2. This means we must find an optimal reparameteri-

zation between two curves for each element of M , which we compute using the
same dynamic programming algorithm, as in Srivastava et al. (2011). So in addi-
tion to constructing M , we are constructing a n1 ×n2 matrix of reparameterization
functions, γ̃ij . Then, for any matching that includes M i,σ (i), the corresponding
reparameterization is γi = γ̃i,σ (i).

The dynamic programming algorithm mentioned above has quadratic time com-
plexity with respect to the number of points in the curve discretization. We invoke
this algorithm n1n2 times to construct M . If each branch is discretized using T

points, then constructing M takes O(n1n2T
2) time. In practice, this is the most

computationally expensive part of Algorithm 2, although in principle, LAPJV has
worst case time complexity O(N3), which could take longer for large enough
n1, n2 and small enough T .

2.6. Example alignments. Figure 7 gives example geodesic paths between two
trees which each have one side branch. The two geodesics illustrate the effect of
varying the tuning parameters. For this simple case, there are two choices of side
branch matching: they can be matched to each other or they can each be matched to
a null branch. For relatively high values of the sliding parameter and low values of
the side branch shape parameter, it is too expensive to slide them to meet each other
and little cost is saved by matching them to each other instead of shrinking/growing
them. The branches go unmatched for such parameters. Conversely, if side branch
shape is influential and side branch position is not, then the branches get matched
by the algorithm.

Figure 8 shows a slightly more complex case. It shows a tree with one branch
and a tree with two. The side branch of the one-branch tree has better shape simi-
larity to the branch farthest from it on the other tree. As the ratio λs/λp decreases,
the single branch gets matched to the farther branch, then the nearer branch, then
to nothing.

Figure 9 shows an example where several branches in one tree are matched to
several branches in the other. Moderate parameter values were chosen so some
branches get matched and some do not. Figure 10 shows two more examples with
more complex branching structures.

3. Distance-based classification. In order to demonstrate that the proposed
shape metric captures differences in neuron shape that correspond to biological
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(a) Two trees to be aligned—each with only one branch.

(b) Equidistant samples on a geodesic path between the two trees using λm = 0.01, λs = 0.01, and
λp = 2.0.

(c) Equidistant samples on a geodesic path between the two trees using λm = 0.01, λs = 0.02, and
λp = 1.0.

FIG. 7. Two simple trees and geodesics between them. In the first geodesic, the distance has higher
weight on the side branch position (λp) and lower weight on the side branch shape (λp).

differences, we perform cross-validated classification on several real datasets. In
each case, we compute the full pairwise distance matrix on the dataset and perform
classifications based on those distances. We use the following three datasets.

IBV: 91 axonal trees extracted from confocal microscope images collected by
biologists at Institute Of Biology Valrose (IBV). The axons belong to neurons
in the mushroom bodies of Drosophila Melanogaster (fruit flies). The dataset is
divided into three groups—wild type (control group) and two mutant types. In
mutant type 1 flies, the gene which encodes imp is inactive and in mutant type
2, the gene which encodes profilin is inactive. In the dataset, there are 45 type 1
mutants, 15 type 2 mutants, and 31 wild type flies.

Wu: 41 apical dendrites taken from the CA1 region of the hippocampus in mice.
We obtained these neuron reconstructions from NeuroMorpho.org [Suo et al.
(2012)]. (We refer to it as the Wu dataset.) Similar to the IBV dataset, these
neurons are divided into groups according to experimentally-controlled genetic
type: 21 are taken from wild type mice, and 20 are from mice with a cluster of
protocadherin genes knocked out.

http://NeuroMorpho.org
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(a) Two trees to be aligned—one with two branches and the other with only one branch.

(b) Equidistant samples on a geodesic path between the two trees using λm = 0.01, λs = 0.01, and
λp = 5.0. The distance has high weight on the side branch position (λp) and low weight on the side

branch shape (λs ). Thus, it is relatively expensive to match branches at different positions on the
main branch and relatively inexpensive to shrink/grow branches to/from the null branch.

(c) Equidistant samples on a geodesic path between the two trees using λm = 0.01, λs = 0.03, and
λp = 1.0. Compared to 8(b), this version of the distance has higher weight on side branch shape

(λs ) and lower weight on side branch position (λp). Under these parameters, a smaller distance is
achieved by matching similarly-shaped side branches—even if they are in very different positions

on the main branch.

(d) Equidistant samples on a geodesic path between the two trees using λm = 0.01, λs = 0.01, and
λp = 1.0. This set of parameters represents a compromise between 8(b) and 8(c)—neither branch

shape or position is given excess importance.

FIG. 8. Two simple trees and geodesics between them under three different sets of the parameter
values, λm, λs , and λp .

Chen: 99 apical dendrites of pyramidal neurons taken from both the CA1 region
of the hippocampus and layer V of the sensorimotor cortex in rats. These recon-
structions are also from NeuroMorpho.org and are studied in Chen et al. (2014).
This dataset has three experimental groups: (1) a group subjected to bile duct
ligation (BDL), (2) a group subjected to bile duct ligation and fed a diet con-
taining ammonia acetate (abbreviated BDLHD in the paper), and (3) a control
group.

The IBV data was supplied to us in the format required by our method:
a main branch with side branches protruding from it. We chose the two datasets

http://NeuroMorpho.org
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FIG. 9. Two trees from the IBV dataset with many side branches. Upper left is a tree with 11 side
branches and upper right is a tree with 9. Below is a geodesic path between them using λm = 0.01,
λs = 0.01, and λp = 1.0.

from Neuromorpho.org because the apical dendrites of those neurons appeared to
mostly fit the topological requirements of our method. Neuromorpho.org does not
label its data with our main-side distinction, so we have to have a way of choosing
the main branch. To do so, we simply take the terminal point with the longest arc-
length from the start of the tree and call that the main branch. For each bifurcation
along the main branch, we take the longest path to a terminal point and call that a
side branch. Any further branching is discarded. We chose the Wu and Chen data
specifically because they contain trees for which little (and sometimes none) of

FIG. 10. Additional geodesic path examples. Top row is between two aligned trees from the
Wu dataset using λ = (0.02,1.0,1.0). Bottom row is between two from the Chen dataset using
λ = (0.01,0.01,1.0).

http://Neuromorpho.org
http://Neuromorpho.org
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FIG. 11. Example topological simplifications of apical dendrites from the Wu dataset. In each pair,
the neuron depicted on the left is the simplified structure required by our method. The one on the right
shows the full branching structure contained in the Neuromorpho.org data. In the top two examples,
the simplification causes no change and we do not have to discard any branches. In each of the
bottom two examples, we only have to discard one or two small branches, and most of the branching
structure is left intact.

the structure would be discarded this way. Figure 11 gives examples from the Wu
dataset that illustrate the effect of this simplification.

There are many ways to perform classification based on a distance alone. Since
the methodological focus of this paper is the construction of the distance itself, we
simply use a common method: a SVM classifier with a Gaussian radial basis func-
tion (RBF) kernel. Using the distance defined in equation (14), the kernel function
of two prespace trees is

K(q1,q2) = exp
(−γ · d([[

q1]]
,
[[
q2]])2)

.(19)

A potential downside to this choice of classifier is that Gaussian kernels are not
necessarily positive definite (PD) in non-Euclidean spaces. Feragen, Lauze and
Hauberg (2015) shows that in geodesic metric spaces, Gaussian kernels are PD
for all γ > 0 if and only if the space is Euclidean. Similarly, the classical result
of Schoenberg (1938) shows that for general metric spaces, Gaussian kernels are
PD for all γ > 0 if and only if the space can be isometrically mapped to an inner

http://Neuromorpho.org
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FIG. 12. Left: Distance matrix of the 91 Drosophila axons in the IBV dataset, using
λ = (0.001,0.001,5.0). Indices 1 to 45 are mutant type 1, indices 46 to 60 are mutant type 2, and
indices 61 to 91 are wild type. Right: Grid search of RBF/SVM parameters, γ and C, for CV success.

product space. The former result does not directly apply because our metric is not
a geodesic metric. It is not obvious whether we can apply the latter result—there
is no obvious choice of inner product space that would preserve our quotient met-
ric. We suspect the Gaussian kernel is not generally PD in our space, but as the
examples in this section demonstrate, we are still able to get some good classifica-
tion results using it. We leave the exploration of kernel methods in this space as a
possible future direction of research.

3.1. IBV dataset classification. First, we perform stratified 5-fold cross-
validated classification on the IBV dataset with the two mutation types combined
as a single category, so the group sizes are n = 60 for the mutation group and
n = 31 for the wild type group. Figure 12 shows the distance matrix for a particu-
lar choice of λ and the grid search of the kernel/SVM tuning parameters. For the
best choice of parameters, this had a successful classification rate of 0.901 (82 of
91 correct).

3.2. Wu dataset classification. We do the same for the Wu dataset, but with a
more exhaustive search over choices of λ. With λp = 1.0 fixed, we vary λm and
λs over an approximately-evenly-spaced grid of values on a log scale, as shown
in Figure 13(a). For each choice of λ, we compute the pairwise distance matrix
then perform the grid search over RBF/SVM parameters to find the best strati-
fied 5-fold CV success. The pairwise distance matrix for that best λ is shown in
Figure 13. The highest-achieved success rate is 0.805 (33 of 41 correct), using
λ = (0.02,1.0,1.0).

3.3. Chen dataset classification. The Chen dataset is the largest one we look
at and it also has the most categories. There are three experimental conditions and
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FIG. 13. Classification experiment on the 41 mouse dendrites in the Wu dataset. (a) Grid search
over distance tuning weights. CV classification accuracy is depicted both by brightness and circle
size. Best accuracy is 0.805, achieved with λ = (0.02,1.0,1.0). (b) Pairwise distance matrix using
the best λ. By index, the first 20 are in the knockout group and the remaining 21 are wild type.
(c) MDS plot for the same distances.

two brain regions, and the dataset contains all six combinations with similarly-
sized groups in each category (Table 1 gives the exact counts). We attempt to clas-
sify the neurons according to region only (2-class), experimental condition only
(3-class), and the combination of both factors (6-class). In each case, we perform a
procedure similar to what we did with Wu: we use a log-scale grid of choices of λm

and λs (with λp = 1.0 fixed), and for each λ, we tune the RBF/SVM parameters
for best classification success in stratified 5-fold cross-validation.

First, we present the most difficult task—the 6-category classification. Fig-
ure 14(a) shows the success rate on a grid of λ values. The best classification
we achieve is 0.546 (54 of 99) with λ = (0.03,0.03,1.0). For that λ, Figure 14(b)
shows the pairwise distance matrix. In the distance matrix, the pattern of group-
ing is visually evident—there are small within-group distances compared to some
of the between-group differences. Specifically, the subgroups appear to be further
from each other for different brain regions but not for different experimental condi-
tions. This partial separation also appears in the MDS plot shown in Figure 14(c),
and in the confusion matrix given in Table 2.

TABLE 1
Sample size of each subgroup of the Chen dataset

Hippocampus CA1 Neocortex Layer V Total

BDL 15 16 31
BDLHD 15 15 30
Control 18 20 38

Total 48 51
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FIG. 14. Combined classification of experimental group and region on the 99 rat dendrites in
the Chen dataset. (a) Grid search over distance tuning weights. CV classification accuracy is de-
picted both by brightness and circle size. Best accuracy is 0.546, achieved with λ = (0.03,0.03,1.0).
(b) Pairwise distance matrix using the best λ. Each class is in a range of consecutive indices: the first
31 are BDL, the next 30 are BDLHD, and the last 38 are control. Within each experimental group,
the Hippocampus CA1 neurons are the first part of the range and the Neocortex Layer V neurons are
the latter part. (c) MDS plot from the distances in (b). In the legend, Hippocampus and Neocortex
are abbreviated as “H” and “N,” respectively. Control, BDL, and BDLHD are abbreviated as “C,”
“B1,” and “B2,” respectively.

Next, we try to classify the Chen dataset by brain region only. In the 6-category
classification, these two groups appeared to separate, so we expect to get good re-
sults when we specifically tune for it. Figure 15(a) shows the CV accuracy over the
λ grid. The classification success is high for all the λ we tried, and even reaches
perfect classification in some cases. Figure 15(b) shows the pairwise distance ma-
trix for one of these [λ = (0.0003,0.0003,1.0)], and the grouping is clearer than it
is in Figure 14(b). The MDS plot in Figure 15(c) shows a clean and unambiguous
separation between the two groups.

TABLE 2
Confusion matrix of 6-category classification attempt on the Chen dataset using the proposed

method. Columns correspond to predicted class labels in the same order as the rows correspond to
predicted labels. Most misclassifications (all but one) are between neurons in the same regions but

different experimental group

True Class Label Predicted class label

CA1 Control 16 1 1 0 0 0
BDL 5 4 5 0 1 0

BDLHD 8 3 4 0 0 0
Layer V Control 0 0 0 14 3 3

BDL 0 0 0 4 10 2
BDLHD 0 0 0 8 1 6
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FIG. 15. Classification of brain region on the 99 rat dendrites in the Chen dataset. (a) Grid
search over distance tuning weights. CV classification accuracy is depicted both by brightness and
circle size. Perfect classification is achieved for several choices of λ shown here. One of these,
λ = (0.0003,0.0003,1.0), is used for the (b)–(c). (b) Pairwise distance matrix using the chosen λ.
The index order is the same as in Figure 14(b). (c) MDS plot using the distances in (b).

When tuning the classifier according to all 6 categories or only brain region, we
do not see much separation between the three experimental groups. Can we sep-
arate them better by explicitly tuning for it? It seems not—we actually do worse.
Figure 16(a) shows accuracy over the λ grid and the best accuracy is 0.535 (53
of 99), achieved at λ = (0.03,0.03,1.0). The corresponding distance matrix and
MDS plots are shown in Figure 16(b) and (c), respectively.

3.4. Baseline comparison. For comparison, we attempt the same classification
tasks using two other methods: (1) feature extraction and (2) topology-only tree
edit distance. The first is a common type of method in neuromorphology. One

FIG. 16. Classification of brain experimental condition on the 99 rat dendrites in the Chen dataset.
(a) Grid search over distance tuning weights. CV classification accuracy is depicted both by bright-
ness and circle size. Best accuracy is 0.535, achieved with λ = (0.03,0.03,1.0). (b) Pairwise dis-
tance matrix using the best λ. The index order is the same as in Figure 14(b). (c) MDS plot from the
distances in (b).
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TABLE 3
Summary comparison of classification accuracy with Gaussian RBF SVM in Euclidean feature

space, topology-only TED metric space, and the proposed metric space of tree shapes

Wu Chen Chen Chen
(6-class) (region) (exp. grp.)

Feature Vector 0.707 0.566 1.000 0.505
TED (topology only) 0.756 0.384 0.859 0.455
Proposed Metric 0.805 0.546 1.000 0.535

constructs a feature vector using high-level morphological measurements of each
neuron, and uses those features as input to some standard statistical or machine
learning method. This is a somewhat open-ended task because it requires us to
choose which features to use and which classifier to apply.

For features, we use data provided directly by NeuroMorpho.org. The site’s
listing for each neuron reconstruction includes a list of 21 measurements that sum-
marize its morphological characteristics, for example, soma surface area, number
of bifurcations, total length, etc. (the full list can be seen on the website). We ob-
tained the Wu and Chen datasets from that site, so these features are a natural
choice since they are already computed and they were presumably chosen by the
neuromorphology experts who run the site.

Before considering classification results, we mention an inherent trade-off be-
tween our distance and any method that uses this set of features. Our method uses
a more complete structure of one neurite tree (for these two datasets we apply it
to the apical dendrite), but only that tree. The feature vector includes information
from every part of the neuron that is available in the reconstruction, and these
two datasets include information from the soma and basal dendrite trees. Thus,
the trade-off is that our method is more narrow in scope but more detailed in the
information it uses to compare trees.

For the classifier, we use SVM classification with a (Euclidean) Gaussian RBF
kernel since that is most analogous to what we used with our proposed shape met-
ric. We standardize the feature data and do a grid search over the RBF/SVM pa-
rameters and report the best classification accuracy for the same stratified 5-fold
cross-validation. For the tree edit distance, we also use a Gaussian RBF for the
same reason. Table 3 lists the accuracy scores for each method on each classifica-
tion task. Classifying the Chen set by brain region was easiest—both the feature
vector and the proposed metric obtained perfect classification. The feature vector
method outperformed the proposed metric at 6-category classification on the Chen
set, but the proposed method performed best on the remaining two tasks, and by
larger margins.

4. Summary. This paper describes a mathematical framework for comparing
shapes of neuronal trees. It is based on a metric that is a combination of terms

http://NeuroMorpho.org
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involving shapes of the main branch, the side branches, and the locations of the
side branches. The key idea is to impose an equivalence relation, and a permutation
of side branches, that together allow trees with different number of branches to be
compared and deformed into each other. This framework is then used to classify
trees according to experimental groups, and the results demonstrate the success of
this framework using the real datasets.

APPENDIX

Theorem 1 applies to reparameterization of curves. It is a trivial extension to
extend this to reparameterization of the indexed collection of curves that make up
a tree.

COROLLARY 3 (of Theorem 1). Let q1,q2 ∈ Pn where each q2
k (for k =

0, . . . , n) is the SRVF of a piecewise linear curve. There are q̃1 ∈ cl(q1�n+1) and
q̃2 ∈ cl(q2�n+1) such that dn(q̃

1, q̃2) attains the minimum distance between ele-
ments of cl(q1�n+1) and cl(q2�n+1).

For Theorem 2, we need to extend this to include rotation as well. To make this
clean, we use the following lemma and corollary which give us an intuitive way to
write an optimal matching in Qn that separates rotation from the closure operator.

LEMMA 2. Given q ∈ Pn, for any q̃ ∈ [q], we can write it as q̃ = Õq ′ for
some Õ ∈ SO(3) and q ′ ∈ cl(q�n+1). That is,⋃

O∈SO(3)

O · cl
(
q�n+1) = cl

( ⋃
O∈SO(3)

Oq�n+1
)

≡ [q].(20)

In words, the closure of the orbit under the combined action only interacts with the
reparameterization component and not the rotation.

PROOF. In terms of inclusion, the set of interest [LHS of equation (20)] is
obviously between the orbit and its closure:⋃

O∈SO(3)

Oq�n+1 ⊆ ⋃
O∈SO(3)

O · cl
(
q�n+1) ⊆ cl

( ⋃
O∈SO(3)

Oq�n+1
)
.

[Note the first inclusion implicitly assumes O · cl(q�n+1) = cl(Oq�n+1),
which is true due to isometry of action by SO(3).] To show equality in equation
(20), we need only show that this middle set is closed. Since SO(3) is compact, its
action � : SO(3) ×Pn → Pn is a closed map. Thus, the image

�
(
SO(3) × cl

(
q�n+1)) = ⋃

O∈SO(3)

O · cl
(
q�n+1)

is a closed set, and this completes the proof. �
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COROLLARY 4. An optimal matching exists between [q1], [q2] ∈ Qn if and
only if dn(q̃

1, Õq̃2) is minimal with respect to q̃1 ∈ cl(q1�n+1), q̃2 ∈ cl(q2�n+1),
and Õ ∈ SO(3). This q̃1 ∈ [q1] and Õq̃2 ∈ [q2] is an optimal matching.

Now we are set up to make a clean, concise proof, in which we show the exis-
tence of optimal matching in the form given in Corollary 4.

PROOF OF THEOREM 2 (EXISTENCE OF OPTIMAL MATCHING IN Qn). Let
q1,q2 ∈ Pn such that q2

k (for k = 0, . . . , n) is the SRVF of a piecewise linear curve.
Let C = cl(q1�n+1) × cl(q2�n+1). Define g : SO(3) × C →R by (O,w1,w2) �→
dn(w

1,Ow2).
By Corollary 4, we need only show that g achieves a minimum value on its

domain. By Corollary 3, g does achieve a minimum when restricted to a fixed
O ∈ SO(3). Let m : SO(3) →R be defined by

m(O) = min
(w1,w2)∈C

g
(
O,w1,w2)

.(21)

We claim m is continuous. For arbitrary O ∈ SO(3) and ε ∈ R
+, let B be the

open ball, (m(O) − ε,m(O) + ε). To show m is continuous, it is sufficient to find
an open neighborhood, U , of O , such that m(U) ⊂ B .

For any fixed (q̃1, q̃2) ∈ [q1] × [q2], let gq̃1,q̃2 : SO(3) →R be defined by

O �→ g(O, q̃1, q̃2). Since the action of SO(3) is continuous and dn is continuous,
g is clearly continuous, as is gq̃1,q̃2 .

For the given O , choose (w1,w2) so that m(O) = dn(w
1,Ow2), and let D =

g−1
w1,w2(B). Since gw1,w2(O) = m(O) ∈ B , and gw1,w2 is continuous, D is an open

neighborhood of O . Also, for any Õ ∈ D, we have gw1,w2(Õ) ∈ B , which means
m(Õ) ≤ g(Õ,w1,w2) = gw1,w2(Õ) < m(O) + ε.

Now let E = g−1
Ow2,w2((−ε,+ε)), which is clearly another open neighbor-

hood of O . Let Õ ∈ E be arbitrary, and choose (w̃1, w̃2) ∈ C such that
m(Õ) = dn(w̃

1, Õw̃2). Due to the isometric action of �n+1, we have dn(Ow̃2,

Õw̃2) = dn(Ow2, Õw2) = gOw2,w2(Õ) < ε. Then we have

m(Õ) + ε > m(Õ) + dn

(
Ow̃2, Õw̃2)

= dn

(
w̃1, Õw̃2) + dn

(
Ow̃2, Õw̃2)

≥ dn

(
w̃1,Ow̃2)

(tri. ineq.)

≥ m(O) (def. of m),

or m(Õ) > m(O) − ε

Now let U = D ∩ E, which is another open neighborhood of O . If Õ ∈ U ,
then m(O) − ε < m(Õ) < m(O) + ε, so m(U) ⊂ B , as needed and, therefore, m

is continuous.
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Since m is a continuous function on a compact domain, it attains a minimum
value, and thus g also attains a minimum. Therefore, there exist q̃1 ∈ [q1] and
q̃2 ∈ [q2] that attain the minimum distance between the two closed orbits. �

LEMMA 3. Let q1 ∈ Pn1 and q2 ∈ Pn2 with branches composed of piecewise
linear curves, and let w̃1, w̃2 ∈ Pñ be some matching between [[q1]] and [[q2]].
Then there exists a matching, w1,w2 ∈ Pn, such that n ≤ ñ and dn(w

1,w2)2 ≤
dñ(w̃

1, w̃2)2. Furthermore, w1,w2 satisfy the following three properties:

(P1) There are no null branches matched to each other. For each k = 1, . . . , n,
at most one of w1

k ,w
2
k is null.

(P2) Null branches do not contribute to the third term of dn. If w
j
k is null (for

some j ∈ {1,2}, k ∈ {1, . . . , n}), then s1
k = s2

k .

PROOF OF LEMMA 3. Let w̃1, w̃2 ∈ Pñ be a matching between [[q1]] and
[[q2]]. Let n ≤ ñ be the number of indices for which at least one of w̃1

ik
, w̃2

ik
is

nonnull. Let i1, i2, . . . , in be those indices.
We construct a matching w1,w2 ∈Pn from the pieces of w̃1, w̃2. First, we keep

the same main branches: w
j
0 = w̃

j
0 for j = 1,2. Then for each k = 1, . . . , n and

j = 1,2, we define the side branch shapes by w
j
k ← w̃

j
ik

. This, with the choice

of the ik , ensures we satisfy (P1). For the side branch locations, we set s
j
k ← s̃

j
ik

if w
j
k is nonnull. Then we set s1

k ← s2
k if w1

k is null, and likewise set s2
k ← s1

k

if w2
k is null. This ensures we satisfy (P2). The only thing left to show is that

dn(w
1,w2) ≤ dñ(w̃

1, w̃2).
In the above construction, every nonnull branch in each tree keeps its shape

and location from the initial tree, so wj ∼ w̃j . Thus, w1,w2 is another matching
between [[q1]] and [[q2]]. Also, for each k, the branch shapes w1

k ,w
2
k are taken from

corresponding branches w̃1
ik
, w̃2

ik
, so the first two terms of the squared preshape

distance are unchanged:

λm

∥∥w1
0 − w2

0
∥∥2 + λs

n∑
k=1

∥∥w1
k − w2

k

∥∥2 = λm

∥∥w̃1
0 − w̃2

0
∥∥2 + λs

ñ∑
i=1

∥∥w̃1
i − w̃2

i

∥∥2
.

Thus, any change in preshape distance is entirely in the third term. Let in+1, . . . , iñ
be the indices for which w̃1

ik
and w̃2

ik
are both null. Then the change in squared

preshape distance is

dn

(
w1,w2)2 − dñ

(
w̃1, w̃2)2

= λp

n∑
k=1

(
s1
k − s2

k

)2 − λp

ñ∑
i=1

(
s̃1
i − s̃2

i

)2
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= λp

(
n∑

k=1

(
s1
k − s2

k

)2 −
ñ∑

i=1

(
s̃1
i − s̃2

i

)2

)

= λp

(
n∑

k=1

(
s1
k − s2

k

)2 −
n∑

k=1

(
s̃1
ik

− s̃2
ik

)2 −
ñ∑

k=n+1

(
s̃1
ik

− s̃2
ik

)2

)

= −λp

(
n∑

k=1

[(
s̃1
ik

− s̃2
ik

)2 − (
s1
k − s2

k

)2] +
ñ∑

k=n+1

(
s̃1
ik

− s̃2
ik

)2

)
.

In the last expression, the terms of the second sum are obviously non-negative.
We claim the terms of the first sum are also nonnegative. Let ak = (s̃1

ik
− s̃2

ik
)2 −

(s1
k −s2

k )2. This kth term corresponds to a pair of branches in the original matching,
w̃1

ik
, w̃2

ik
, where at least least one of them is non-null. If both are nonnull, then

s
j
k = s̃

j
ik

for j = 1,2, so ak = 0. If only one of the branches is nonnull, then s1
k = s2

k ,
and ak ≥ 0.

Therefore, dn(w
1,w2) ≤ dñ(w̃

1, w̃2), and this completes the proof. �

PROOF OF THEOREM 3 (EXISTENCE OF OPTIMAL MATCHING IN Q̃). Let
q1 ∈ Pn1 and q2 ∈ Pn2 such that q2

k (for k = 0, . . . , n2) is the SRVF of a piecewise
linear curve.

When considering possible matchings as candidates for an optimal matching,
we can restrict our attention to cases which have the properties (P1) and (P2) from
Lemma 3. Let M ⊂ [[q1]] × [[q2]] be the set of matchings that have those prop-
erties. For any such matching, w1,w2 ∈ Pn, there are w̃1 ∈ [w1] and w̃2 ∈ [w2]
such that the w̃j can be obtained from the qj by reordering their branch indices
in a way consistent with (P1) and (P2). Let W be the set of such pairs, (w̃1, w̃2),
obtained by branch reordering alone. Then

M = ⋃
(w̃1,w̃2)∈W

(
w1,w2) ∈ [

w̃1] × [
w̃2]

.

For each (w1,w2) ∈ W , there is an optimal matching between [w̃1] and [w̃2] (by
Theorem 2). W is clearly finite, so there is some (w1,w2) ∈ M that minimizes the
preshape distance, and that minimizing pair is an optimal matching between [[q1]]
and [[q2]]. �
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