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A SPATIALLY VARYING STOCHASTIC DIFFERENTIAL EQUATION
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Animal movement exhibits complex behavior which can be influenced
by unobserved environmental conditions. We propose a model which allows
for a spatially varying movement rate and spatially varying drift through a
semiparametric potential surface and a separate motility surface. These sur-
faces are embedded in a stochastic differential equation framework which
allows for complex animal movement patterns in space. The resulting model
is used to analyze the spatially varying behavior of ants to provide insight
into the spatial structure of ant movement in the nest.

1. Introduction. Studying the movement of animals allows scientists to ad-
dress fundamental questions in ecology and epidemiology. It can be used to under-
stand how animals are impacted by their environment; for example, Gibert et al.
(2016) studied the impact of temperature on animal movement to understand po-
tential impacts of climate change and Watkins and Rose (2013) studied the impact
of novel environments on small fish in a simulation-based analysis. Animal move-
ment can give insight into the impact of external stimuli, as studied by Dodge
et al. (2013) and Thiebault and Tremblay (2013). Further, animal movement is
important in understanding the collective behavior of animal societies [Watkins
and Rose (2013)]. Understanding these factors can benefit animal conservation
[Killeen et al. (2014)] and can increase understanding of the impact of migration
on disease dynamics [Altizer, Bartel and Han (2011)].

Improvements in technology have allowed scientists to observe animal move-
ment at a fine temporal resolution over long periods of time [Toledo et al. (2014)].
This fine scale observation enables researchers to observe more complete individ-
ual paths revealing the animal’s behavioral patterns in more detail and allowing for
the fitting of more complex statistical models [Avgar et al. (2015), Bestley et al.
(2015)]. Since animal movement data inherently consist of observations through
time, it is intuitive to describe movement using differential equations, which are
often used to describe dynamic systems. As any deterministic differential equation
is unlikely to capture the movement of a single animal, we propose a stochastic
differential equation (SDE) approach to modeling animal movement.

Received May 2016; revised September 2017.
1Supported by the NSF Grant EEID 1414296.
Key words and phrases. Animal movement, stochastic differential equations, potential surface,

Camponotus pennsylvanicus.

1312

http://www.imstat.org/aoas/
https://doi.org/10.1214/17-AOAS1113
http://www.imstat.org


SPATIAL DYNAMIC MODEL FOR ANIMAL MOVEMENT 1313

In this article, we will focus on the analysis of the movement of ants in a four
chambered nest. As an entire population (colony) can be observed and tracked, ants
provide an ideal system for studying animal movement [Mersch, Crespi and Keller
(2013)], something rarely possible outside of laboratory systems. If the entire pop-
ulation has not been observed, like with any model for animal movement, conclu-
sions should be limited to reflect the fact that the movement behavior of an animal
directly impacts whether it is observed. For this same reason, ants provide an ideal
system for studying the spread of information or of infectious disease in societies.
Despite the fact that they live in close proximity to one another, researchers have
hypothesized a “collective immunity” where collective behavior helps to prevent
the spread of disease [Cremer, Armitage and Schmid-Hempel (2007), Quevillon
et al. (2015)]. Proposed mechanisms, which result in this “collective immunity,”
include the spatial and social segregation of ants in the nest, which minimizes the
number of foraging ants that come into contact with the queen. Ant behavior, how-
ever, can be challenging to model due to this social and spatial segregation within
the nests [Quevillon et al. (2015)]. In this paper, we propose a spatially varying
SDE model to capture ant movement behavior within the nest. Analysis of the ant
movement indicates a tendency to move more quickly in the central chambers of
the nest with ants utilizing the central chambers primarily as corridors for com-
muting. Simulation of new ants entering the nest highlights that the time needed to
pass through sections of the nest varies based on spatial location.

Johnson et al. (2008) uses a continuous time correlated random walk (CTCRW)
model based on integrated Brownian motion to model directional persistence in
movement. Here, directional persistence refers to the tendency of animals to con-
tinue moving in the same direction and at a similar pace at nearby time points;
this can, for instance, induce autocorrelation. However, Johnson et al. (2008) does
not consider the case in which the behavior of an animal is dependent on its po-
sition. Quevillon et al. (2015) analyzes the movement of ants in a nest using the
continuous time discrete space Markov chain model of Hanks, Hooten and All-
dredge (2015). The discrete time specification used in Quevillon et al. (2015) and
Hanks, Hooten and Alldredge (2015) requires the discretization of spatial location
using a grid, analyzing movement by modeling the amount of time spent in each
grid cell and the transition probabilities between cells. Their results reveal spa-
tially varying movement behavior near the queen. However, movement data are
typically observed in continuous space, and discretizing to a gridded space may
introduce hard-to-resolve impacts on statistical inference that could result in er-
rors in our conclusions about movement. In addition, changing the resolution of
the gridded space can lead to changes in the resulting inference, and there is little
guidance on how to choose a grid resolution. In contrast to Hanks, Hooten and All-
dredge (2015), we model movement directly in continuous space using stochastic
differential equations.

Stochastic differential equations have also been used for the movement of ob-
jects on a sphere [Brillinger (2012)]. This is essential for modeling movement
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of animals such as elephant seals [Brillinger and Stewart (1998)] over large dis-
tances of the globe. Brillinger et al. (2001) and Preisler et al. (2004) propose an
SDE-based model for movement on a potential surface which captures spatially
varying drift in movement patterns across space. Potential functions are defined
as functions of spatial location, and the negative gradient of this function deter-
mines the directional tendencies of an animal’s movement at a specified location.
These potential surface methods are also described in Brillinger et al. (2002) and in
Brillinger et al. (2012). Potential surfaces have been used to analyze the movement
of monk seals [Brillinger, Stewart and Littnan (2008)] and even the flow of play in
soccer [Brillinger (2007)]. Potential functions have also been used to model con-
strained movement [Brillinger (2003)] and pairwise interactions in the movement
of particles [Brillinger, Preisler and Wisdom (2011)].

Existing potential surface methods allow for flexible modeling of directional
bias in movement. Using these models for movement with variation in the absolute
speed of movement when there is no directional bias, however, is not straightfor-
ward as faster movement in a potential surface requires a steep surface which must
correspond to a strong directional bias in movement. Variation in movement rate
is important in ant systems, as ant nests typically contain “corridors” that connect
important chambers in the nest. Ant movement through these corridors shows high
velocity and directional persistence (correlated random walk movement), but little
directional bias in these specific regions of the nest. Since some ants are moving
in one direction while other ants are moving in the other, similar to movement of
humans in a hallway, there may be no systematic directional drift. Existing models
allow for directional persistence or spatially varying drift. For example, Preisler
and Akers (1995) analyzes the movement of beetles and captures directional per-
sistence using an autoregressive model for the turning angles of individuals. We
propose an SDE approach to model movement behavior with all three features:
(1) correlated movement patterns, (2) spatially varying drift through a potential
surface and (3) spatial variation in movement rates through the inclusion of a spa-
tially varying motility surface. We define a motility surface as a function of spatial
location that determines the average overall movement rate at a specified spatial
location.

The remainder of the paper is organized as follows. In Section 2, we introduce
the carpenter ant system in detail. In Section 3, we discuss our proposed model
for the ant movement data that incorporates autocorrelation, spatially varying drift
and spatially varying absolute movement rate. In Section 4, we describe a discrete
approximation of the model and our Bayesian inferential approach. The results of
the application of our approach to ant movement data are presented in Section 5.
We conclude, in Section 6, with a discussion and potential directions for future
work.

2. Carpenter ant movement. We begin with a description of the ant move-
ment data and describe an exploratory data analysis that motivates our modeling
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FIG. 1. Movement paths of three sample ants.

approach. We analyze the movement of the ants in a nest constructed to mimic
natural conditions, as closely as possible, in a lab setting. We used the common
black carpenter ant, Camponotus pennsylvanicus, which nests in wood in temper-
ate forests in the Eastern USA. We collected colonies between May and June 2015.
The ants were placed in a nest structure consisting of four distinct chambers. Each
chamber is divided into two sections by an internal barrier, creating a small pas-
sageway 12 mm across between the upper and lower halves of the chamber. Each
of the four chambers measures 65 mm by 40 mm resulting in a total nest size of
65 mm by 160 mm. Each doorway between chambers is 6 mm across. There is
an exit from the nest in chamber IV, leading to an area with food and water. The
queen resides primarily in chamber I, far from the nest exit.

A plot containing three examples of individual ant movement paths, using linear
interpolation between observed locations at each second, is given in Figure 1. The
nest exit is marked with an “X” below chamber IV in each plot. The movement
paths indicate that ant behavior is different within different chambers of the nest
with faster and more directed movement happening in chambers II and III. This
type of spatially varying behavior would be difficult to capture using the poten-
tial surface SDE approach [e.g., Brillinger et al. (2002) and Preisler et al. (2004)]
as the ants move quickly in some regions of the nest but do not show consistent
drift. To capture this type of behavior using potential surfaces alone would require
estimation of potential surfaces that differ over time, which would complicate in-
ference and increase the computational burden. Alternatively, our approach allows
for the estimation of an additional motility surface that captures differences in the
average movement rate of ants throughout the nest.

The data consist of the two-dimensional location coordinates (xti ,j , yti ,j ), a time
index ti , which ranges from 1 to 3600 for the one hour observation period. In this
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case the observations are made at evenly spaced intervals; however, this is often
not the case in movement data. Additionally, there is a unique ant identifier j for
each of 32 ants. One camera was positioned over each chamber of the nest. Ants
were filmed under infrared lighting with GoPro Hero3 and Hero3+ cameras with
modified infrared filters (RageCams, Sparta, MI) to simulate natural lighting con-
ditions. Each ant was individually tagged with a unique identifier allowing a human
observer to record their position. Observations were recorded at every second by
clicking on the location of the ant using a custom software package. Measurement
error is small, and there are no missing observations as the recorded videos al-
low for careful location selection and, if necessary, review of the movements of
each individual. Locations were recorded for the entire hour for all ants that enter
chamber IV at any time during the observation window. The dimensions of the nest
were recorded by clicking on predetermined corners in the nest at the beginning of
the observation period. Each camera records a separate section of the nest, so that
there are four separate sets of observation for each ant. The observations in each of
the four chambers can then be combined, using a common time index, to represent
movement across the four chambers.

Several challenges arise in combining the data from the four cameras. At some
time points (0.02% of observations) an ant is positioned at the door between two
chambers and is observed by two cameras in two chambers at the same time. This
could be due to different segments of the ants being visible in different chambers
at the same time point. Further complications arise when the ants are not observed
for a span of time. This can happen when the ant has exited the nest structure
(5.46% of observations) or when the ant is situated in chamber doorways (1.08%
of observations). When the ant has exited the nest structure, no cameras capture
its movement. In what follows, we assume that when the ant re-enters the nest
its movement is independent from prior in-nest movements. If the ant is between
chambers and not visible on any camera, the ant’s locations are linearly interpo-
lated from the observations before and after the ant is in the entryway.

To explore the spatial movement behavior of the ants, a kernel density estimate
for all observed ant locations and kernel density estimates of all observed empir-
ical velocities in each of the nest chambers are plotted in Figure 2. In both cases,
the kernel density estimates are calculated using the density function of the base
stats package in R [Ihaka and Gentleman (1996)] using a Gaussian kernel and the
default bandwidth. From Figure 2(a), we can see that the ants spend most of their
time on the right-hand side of chamber IV; this indicates that there are certain pre-
ferred regions of the nest that ants tend to move toward, hinting at spatially varying
drift. Figure 2(b) indicates that the average velocities in chambers I and IV tend
to be less than the average velocities in chambers II and III. These exploratory
results indicate that both the drift and the absolute ant velocity may vary spatially
and suggest that the center chambers are primarily used for higher-velocity transit.
To explore the temporal autocorrelation in movement, an autoregressive model of
order 1 was fit to the empirical velocities of a randomly selected ant. The resulting
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FIG. 2. Exploratory data analysis for carpenter ant movement.

estimated autoregressive parameter, 0.81 (standard error 0.015), indicates the need
to model directional persistence. Our exploratory data analysis suggests that an ap-
propriate model for these data should include temporal autocorrelation, spatially
varying drift and a spatially varying movement rate. We develop a model which
allows for this type of behavior in Section 3.

3. Spatially varying SDE model. In this section, we propose an SDE model
for animal movement that captures:

1. directional persistence via a continuous time correlated random walk
(CTCRW),

2. spatial variation in drift through a potential surface,
3. spatial variation in overall movement rate using a motility surface.

These three features have not, to our knowledge, been jointly utilized in any pre-
vious continuous space models. In previous work, potential surfaces have been
used to model spatially varying movement [Brillinger et al. (2012), Preisler et al.
(2004)]. When estimating potential surfaces, temporal autocorrelation has often
been ignored to simplify the model and improve computational feasibility. We ex-
tend these methods by modeling directional persistence through a CTCRW, and
expand the model to allow for variability in movement rate. This model will be
used to analyze within-nest ant movement, where an individual’s location at time
t is denoted (x(t), y(t)) and its velocity is denoted (vx(t), vy(t)). We will begin
by describing the movement of one individual, and in Section 4 we will generalize
for multiple independent ants.
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3.1. Continuous time correlated random walk. Animal movement is often au-
tocorrelated through time, resulting in smooth movement paths. The CTCRW
model presented by Johnson et al. (2008) provides one method for modeling
dependence through time. The CTCRW model specifies an Ornstein–Uhlenbeck
(O–U) process on an animal’s velocity with directional drift μ. The O–U pro-
cess is defined as a stochastic process that is stationary (the joint density remains
the same for uniform shifts in time), Gaussian, Markovian and has continuous
paths [Klebaner (2005)]. Alternatively, the O–U process can be derived using lin-
ear stochastic differential equations [Gardiner (1986)].

We consider a process that describes the movement of a particle in two di-
mensions. The movement in each dimension is assumed to follow an independent
CTCRW. This is a reasonable assumption for animal movement since positive cor-
relation in the x-dimension and y-dimension would result in bias toward move-
ment in the North–East or South–West directions. The CTCRW model to describe
the velocities vx(t), vy(t) and the locations x(t), y(t) is defined as

dvx(t) = β
(
μx − vx(t)

)
dt + σ dWvy (t),

dvy(t) = β
(
μy − vy(t)

)
dt + σ dWvx (t),

dx(t) = vx(t) dt + κ dWx(t),

dy(t) = vy(t) dt + κ dWy(t).

In the velocity equations, μx represents the mean drift in the x direction, μy repre-
sents the mean drift in the y direction, β controls the autocorrelation in movement,
σ is related to the variability in velocity and Wvx (t), Wvy (t) represent indepen-
dent Brownian motion processes with unit variance. In the equation for location,
κ is related to the additional variability in location (i.e., measurement error, which
relates to the error in “clicking location” when recording the locations of the ant
from the recorded videos) and Wx(t), Wy(t) are again Brownian motion with unit
variance. The case where κ = 0 gives intuition on the position of the object over
time

xt = x0 +
∫ t

0
vx(s) ds.(1)

The CTCRW process results in a model where the conditional mean of the dis-
cretized velocity is a weighted average of the previous velocity and the directional
drift term μ. Several R packages have been developed due to the popularity of
the CTCRW model for animal movement. For example, Albertsen et al. (2015)
introduces the Template Model Builder (TMB) package which incorporates non-
Gaussian error in a computationally efficient manner through Laplace approxi-
mation. Other examples of R packages to fit the CTCRW model include crawl
[Johnson (2013)] and bsam [Jonsen (2015)]. Examples of the use of this model
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include Baylis et al. (2015), which analyzes the decline in population of southern
sea lions, Northrup, Anderson and Wittemyer (2015), which studies the impact of
habitat loss on the movement of mule deer and Rode et al. (2015), which analyzes
the movement of polar bears in reaction to the decrease in sea ice habitat. The
CTCRW model, however, assumes that the movement behavior is homogeneous
in space. This assumption can be relaxed by allowing the drift term for the indi-
vidual’s velocity to be a function of the individual’s location (x(t), y(t)). Doing so
unifies the CTCRW model with the potential function models of Brillinger et al.
(2002) and Preisler et al. (2004).

3.2. Potential surfaces. Potential surfaces are described in relation to animal
movement modeling by Brillinger et al. (2002) and Preisler, Ager and Wisdom
(2013). There are several examples of analyses using potential surfaces in move-
ment modeling, including Preisler et al. (2004), which studies the influence of
roads on the movement of elk, and Brillinger et al. (2012), which analyzes the
movement of elk in a fenced-in experimental forest. In a potential function ap-
proach, the individuals, or ants in our case, are considered to be moving around on
a surface with regions of attraction and repulsion.

First consider a potential surface, H(x,y), that is only a function of the current
two-dimensional location of the object (x, y). This function can be thought of as
a topological surface where objects are drawn to lower regions—similar to a mar-
ble moving on a curved surface. The mean direction of movement is, therefore,
down the slope of the surface, or equivalently in the direction of the negative gra-
dient of the potential surface. Using this analogy, the expectations of the x and y

components of velocity, denoted vx(t) and vy(t) respectively, of an individual can
each be calculated by taking the negative of the x and y derivatives of H(x,y)

respectively:

E
(
vx(t)

) = −dH(x(t), y(t))

dx
,

E
(
vy(t)

) = −dH(x(t), y(t))

dy
.

This spatially varying drift in movement is incorporated in the CTCRW model
from Section 3.1 by defining the mean drift μ as the negative gradient of H(x,y).
The result is a system of stochastic differential equations for correlated velocity
with spatially varying movement bias defined by the potential surface H(x,y)

(2)

dvx(t) = β

(
−dH(x(t), y(t))

dx
− vx(t)

)
dt + σ dWvx (t),

dvy(t) = β

(
−dH(x(t), y(t))

dy
− vy(t)

)
dt + σ dWvy (t).
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The SDE model for velocity (2) jointly models spatially varying drift through the
potential function H(x,y) and temporal autocorrelation through the finite autore-
gressive parameter β . In previous work [e.g. Brillinger et al. (2002) and Preisler
et al. (2004)], only the over-damped case is considered, where β → ∞. Taking the
limit as β → ∞ eliminates directional persistence in movement, as it puts all of the
importance on the gradient of the potential surface and eliminates the dependence
on the animal’s current velocity in (2). This simplifies estimation of the potential
surface but fails to model the temporal autocorrelation, which is normally present
in animal movement.

We model the potential surface using B-spline basis functions [de Boor (1978)].
Parametric models of the potential surface are also possible [Hanks, Hooten and
Alldredge (2015), Quevillon et al. (2015)], but our goal in this analysis is to use
the potential surface to flexibly model spatially varying directional drift within the
nest. We thus assume the potential surface is given by

H(x,y) = ∑
k,l

γklφ
(M)
k (x)ψ

(M)
l (y),(3)

where φ
(M)
k (x) and ψ

(M)
l (y) are B-spline basis functions of order M , with K ba-

sis functions in the x-direction and L basis functions in the y-direction so that
k ∈ {1, . . . ,K} and l ∈ {1, . . . ,L}. We chose to set M = 4, so that the potential
surface H(x,y) has two continuous derivatives. As a result, the gradient of the po-
tential surface (3) also has a continuous derivative, meaning it is relatively smooth.
The potential surface H(x,y) only impacts movement through its gradient. Thus,
only contrasts of the B-spline coefficients {γkl} are identifiable, and we elect to
subject them to the constraint

∑
k,l γkl = 0. Rather than using tuning to select the

number of knots directly, the number of basis functions is set to 560, selected
to keep the scale in the dimensions (65 mm by 160 mm) approximately equal
(K = 16, L = 35) and penalized [Eilers and Marx (1996)] by using a zero mean
multivariate normal prior on the coefficients {γkl}. Details of this prior will be
given in Section 4.

The movement of the ants in our analysis is restricted by the locations of the
walls in the ant chambers (Figure 1). Various models that account for restricted
animal movement have been proposed [Brillinger (2003), Brost et al. (2015)]. In
this case, we restrict ant movement near walls by augmenting the spatially smooth
potential function (3) with an additive exponential potential R(x, y)

R(x, y, r, r1) = exp
{−r1

(
x − rx

l

)} + exp
{
r1

(
x − rx

u

)}
+ exp

{−r1
(
y − r

y
l

)} + exp
{
r1

(
y − ry

u

)}
,

where r = (rx
u , rx

l , r
y
u , r

y
l ); rx

u and rx
l represent the upper and lower wall bound-

aries in the x-dimension; and r
y
u and r

y
l represent the upper and lower wall bound-
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aries in the y-dimension. The parameter r1 controls the rate of decay of the wall
repulsion function. Other formulations for this basis are possible, but estimation
using more flexible wall basis functions may require observations with a higher
temporal frequency near the boundaries. The combined potential surface we con-
sider is

H(x,y) = ∑
k,l

γklφ
(M)
k (x)ψ

(M)
l (y) + R(x, y, r, r1).(4)

3.3. Motility surface. In previous studies of the movement of ants in a nest,
researchers have found that ants tend to move at different speeds in different ar-
eas of their nest [Quevillon et al. (2015)]. To incorporate this behavior in our SDE
model, we propose a spatially varying motility surface M(x(t), y(t)), which scales
the overall rate of movement in different parts of the nest. The motility surface
scales the absolute movement rate in different spatial locations, allowing for flex-
ible modeling of animal movement in which velocities can depend on the indi-
vidual’s environment. This results in the following stochastic differential equation
model, where the location equation from the CTCRW model of Johnson et al.
(2008) in each dimension has been adjusted to account for the spatially varying
motility

(5)
dx(t) = M

(
x(t), y(t)

)
vx(t) dt + κ dWx(t),

dy(t) = M
(
x(t), y(t)

)
vy(t) dt + κ dWy(t).

When κ = 0, we get the physical interpretation of velocity scaled by the motility
surface x(t) = ∫ t

0 M(x(s), y(s))vx(s) ds, and when M(x,y) = 1, we get back (1).
For an example of movement behavior induced by the motility surface, con-

sider a habitat separated into two distinct regions—one in which ants move fast
and another in which ants move more slowly. If M(·) = 2 in the fast region, and
M(·) = 1 in the slow region, the ants will move approximately twice as fast in the
fast region as they will in the slow region. Equations (2) and (5) together define a
continuous time two-dimensional stochastic movement process. Note that the vx

and vy can no longer be interpreted directly as velocity since they must be mul-
tiplied by the motility surface M(x,y) to obtain the overall velocity of the ant at
that specific location. The actual velocities are a scaled version of vx and vy ; at
(x(t), y(t)) the animal’s mean movement rate vector ignoring autocorrelation is
(M(x, y) · vx(t),M(x, y) · vy(t)).

For the motility surface M(x(t), y(t)), we again utilize penalized B-spline basis
functions,

M(x,y) = ∑
q,r

αqrζ
(P )
q (x)ξ (P )

r (y),(6)

where ζ
(N)
q (x) and ξ

(N)
r (y) are B-spline basis functions of order P , with Q basis

functions in the x-direction and R basis functions in the y-direction so that q ∈
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{1, . . . ,Q} and r ∈ {1, . . . ,R}. To facilitate computation, we set P = 4, Q = K

and R = L so that the motility surface and the potential surface share the same
basis functions.

3.4. Identifiability. Without imposing constraints, there are multiple (in-
finitely many) combinations of parameters, which will yield an identical formula
for the model defined by equations (2) and (5). First, the potential surface H(x,y)

only enters the model through its gradient. Therefore, adding some constant c1 to
the surface results in an equivalent model [H ∗(x, y) = H(x,y)+c1]. As discussed
in Section 3.2, the constant c1 is fixed to 0 by constraining the sum of the basis
coefficients {γkl} to equal 0.

Second, the motility surface and velocity terms are only identifiable up to a
multiplicative constant c2. Multiplying the motility surface by c2 and the velocities
by 1

c2
yields an equivalent model since the following pairs of stochastic differential

equations yield identical distributions for the observed locations of the ants

1

c2
dvx(t) = β

(
− 1

c2

dH(x(t), y(t))

dx
− 1

c2
vx(t)

)
dt + 1

c2
σ dWvx (t),

1

c2
dvy(t) = β

(
− 1

c2

dH(x(t), y(t))

dy
− 1

c2
vy(t)

)
dt + 1

c2
σ dWvy (t),

dx(t) = c2M
(
x(t), y(t)

) 1

c2
vx(t) dt + κ dWx(t),

dy(t) = c2M
(
x(t), y(t)

) 1

c2
vy(t) dt + κ dWy(t).

(7)

To obtain identifiability, the model is constrained by setting c2 = σ 2, or, equiva-
lently, fixing σ 2 = 1.

4. Inference. There is no clear method to analytically solve the nonlinear
SDEs given by equations (2) and (5); so, instead, we consider approximate so-
lutions using the Euler–Maruyama method [Kloeden and Platen (1992)], which
is based on a first-order Taylor expansion. We approximate the continuous time
processes (2) and (5) at a set of observed (or simulated) discrete times ti , i =
1,2, . . . ,Nsim, where Nsim is the number of points in the path (observed or sim-
ulated). Higher-order Euler–Maruyama approximations could be used to improve
accuracy, and these higher-order methods may be interesting directions for future
research—both in the context of simulation and inference. Higher-order approxi-
mations are not necessary in this case due to the high temporal frequency of dis-
crete observations—every second for the ants. An analysis of the impact of the
time discretization in the Euler–Maruyama method is presented in the Appendix
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[Russell et al. (2018)]. The Euler–Maruyama method results in the following dis-
crete approximations for equations (2) and (5)

(8)

vx
ti+1

= vx
ti

+ β
(−∇H(xti , yti ) − vx

ti

)
�t + σε2x,

v
y
ti+1

= v
y
ti

+ β
(−∇H(xti , yti ) − v

y
ti

)
�t + σε2y,

xti+1 = xti + M(xti , yti )v
x
ti
�t + κε1x,

yti+1 = yti + M(xti , yti )v
y
ti
�t + κε1y,

where �t is the time step of the discretized solver and ε1x, ε1y, ε2x, ε2y are in-
dependent Gaussian random variables with mean 0 and variance �t . These dis-
crete Euler–Maruyama approximations will be used for inference. This is simi-
lar to Wikle and Hooten (2010), which uses a second-order Taylor expansion to
approximate nonlinear dynamics in statistical models with differential equations.
A two-dimensional simulation generated using the Euler–Maruyama method is
presented in the Appendix [Russell et al. (2018)] to illustrate the range of behavior
possible under our SDE model.

We use Bayesian inference to estimate the model parameters. The Euler–
Maruyama approximations of the SDEs are used to provide an approximation for
the likelihood function in the posterior distribution. Markov chain Monte Carlo
is used to draw samples from this approximate posterior distribution. Vague priors
are used for the the location variability parameter κ2 ∼ Gamma(0.001,0.001), and

for the autocorrelation parameter fβ(β) ∝ exp(
−(β−1)2

20,000 )I (β > 0), a normal distri-
bution truncated to be positive. To test sensitivity to prior specification, inference
was performed again using priors with twice the variance, and there was no signif-
icant difference in the results. For identifiability σ 2 is fixed at 1. To induce spatial
smoothness in the potential and motility surfaces, a proper CAR covariance struc-
ture [Banerjee, Carlin and Gelfand (2014), Chapter 3] is used for the coefficients
of both of the B-spline expansions in (9) and (6). The model was also fit with an
uncorrelated prior on all of the spatial surface parameters, and the resulting surface
estimates were very jagged and indicated overfitting (results not shown). Thus, for
the potential surface coefficients, the prior selected is

γ ∼ N
(
0,

(
τγ (D − ργ Q)

)−1)
,

where (D)jj = {number of neighbors of j}; (D)ij = 0 if i 	= j ; (Q)jj = 0 and
Qij = I (i, j are neighbors). For the smoothness parameter we use the prior ργ ∼
Uniform(0.01,0.99). The parameter τγ is a tuning parameter that determines the
scale of the potential surface. The prior distribution for τγ is set to be an exponen-
tial distribution τγ ∼ exp(μ2

α) so that the observed data will inform the level of
tuning, and the distribution of the potential surface will scale with the level of the
motility surface through μα . As discussed in Section 3.4, only contrasts of the B-
spline coefficients {γkl} are identifiable, so we utilize the constraint

∑
k,l γkl = 0.
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This is done through a linear transformation of a set of unconstrained basis func-
tion coefficients γ̃ [Gelfand et al. (2010), Chapter 12]

γ = γ̃ − �1t (1�1t )−1
(1γ̃ − 0),(9)

where � represents the covariance matrix of the unconstrained coefficients.
Similarly, the coefficients of the B-spline basis functions for the motility surface

were assigned a CAR prior

α ∼ N
(
μα1,μ2

α

(
τα(D − ραQ)

)−1)
.

For the motility surface the prior for the smoothing parameter is again set to
ρα ∼ Uniform(0.01,0.99). For identifiability, as discussed in Section 3.4, the tun-
ing parameter τα is set to 9 so that 99.8% of the prior mass is positive. The param-
eter μα adds flexibility to the model as it scales the motility surface. The inclusion
of μα allows for approximating c2 in equation (7), and, therefore, it can be used
to approximate σ2 if the identifiability constant in equation (7) had instead been
fixed at 1. Additionally, μα alters the smoothing such that the penalization on vari-
ability by the multivariate Gaussian prior in the motility surface coefficients is
less in regions of greater relative motility. A Gaussian prior is used for the scal-
ing parameter μα ∼ N(1,1). A lognormal distribution is used for the prior on the
wall repulsion parameter r1 ∼ logNorm(10,1). The analysis was rerun with sparse
priors (the variability of each prior distribution was doubled), and there was no sig-
nificant change in the posterior means or credible intervals for all parameters. The
full conditional distributions for most parameters are amenable to Gibbs sampling
and are presented in the Appendix [Russell et al. (2018)].

Block update MCMC is used to sample from the posterior distributions of model
parameters. When available, the updates are drawn from full conditional distribu-
tions (a Gibbs sampler). The coefficients of the potential and motility surfaces,
γ and α, are each updated as a separate block. 105 samples are drawn from the pos-
terior distribution and convergence of the Markov chains is determined by monitor-
ing Monte Carlo standard errors using the batch means procedures [Flegal, Haran
and Jones (2008), Jones et al. (2006)]. The initial 20,000 values of the chain are
discarded as burn in—as the initial estimates for the potential surface and motility
surface are difficult to select—resulting in inaccurate parameter estimates at the
beginning of the chain. Multiple chains with different starting values were run to
ensure estimates are robust across initial values.

Inference here is computationally taxing, as it takes approximately six days to
generate 105 samples from the posterior distribution on a single core of a 2.7 GHz
Intel Xeon Processor with code written in R. The computing time scales at a lin-
ear rate with increases in observations. Reducing the computation time needed for
inference is one of the primary goals of ongoing research. In this case, the compu-
tational complexity of the model is driven by the large number of latent variables
(213,534 velocities v

(x)
t,j and v

(y)
t,j ), and the number of basis functions used for the
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potential and motility surfaces. Simulations under various settings show that de-
veloping a method to accurately approximate latent velocities and reducing the
number of basis functions for the surfaces greatly improves computational effi-
ciency. Bayesian implementation allows for straightforward estimation of tuning
parameters for the smoothness of our B-spline surfaces, and avoids the additional
difficulties of selecting the number of basis functions using other methods such as
generalized cross validation. Improving the computational efficiency of inference
is an important direction for future work, especially due to the availability of data
sets with more individuals and observation over longer time periods.

5. Results. Posterior sample means and 95% credible intervals for the model
parameters are presented in Table 1. There is significant autocorrelation in the ant’s
velocity as the credible interval for β does not include 1, but the autocorrelation
is not strong. Note that in a continuous time framework (where � → 0) no auto-
correlation corresponds to β → ∞, but in the discrete approximation with � = 1,
no autocorrelation in velocity corresponds to β = 1. This is reasonable for ant
movement, as the ant paths are not smooth since the ants tend to change direction
suddenly inside the nest. The estimate for κ is small, which indicates that there is
not much additional location variability after conditioning on latent velocity. Our
estimate for r1 indicates that there is a repulsion behavior from the wall, but the
size of the effect is relatively small.

Estimates of the posterior mean potential surface and motility surface are con-
structed by taking the pointwise posterior mean of each coefficient and plotting
the resulting surfaces over a fine grid. Estimating the variability in the potential
surface is complicated by the fact that we are only interested in the relative height.
Shifting the level of the entire surface by a constant has no impact on movement
since the potential surface only impacts behavior through its gradient. The poten-
tial surface, plotted in Figure 3(a), reveals a tendency to move away from the walls
on the left and right sides of the nest, particularly in the center chambers (II and
III). This is consistent with ants that turn as they approach the walls while traveling
between chambers.

The motility surface, plotted in Figure 3(b), reveals a tendency to move faster in
the center of the nest—in chambers II and III. In chambers I and IV, where the ants

TABLE 1
Ant results

Parameter Posterior mean Credible interval

β 0.872 (0.866,0.877)

κ 0.00133 (0.00131,0.00134)

r1 0.078 (0.044,0.114)

Parameter estimates for ant movement data.
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FIG. 3. Ant posterior mean surfaces.

spend most of their time, the movement rate is slower. This suggests that the cen-
tral chambers (II and III) are mainly used by the ants for commuting between the
entrance chamber (IV) and the deepest chamber (I) of the nest. Additionally, there
is low relative motility in each of the doorways between chambers. The combined
gradient field, which is estimated by multiplying the gradient of the estimated po-
tential surface by the magnitude of the estimated motility surface over a spatial
grid, plotted in Figure 3(c), reveals both the tendency to move away from walls
and the tendency to move faster in the central chambers.

The 95% point wise credible intervals for the motility surface estimated from
the ant movement observations, along with a black line denoting the movement
path of an arbitrarily selected ant, are plotted in Figure 4. The upper limits in most
regions in chambers I and IV are below the lower limits in parts of chambers II and
III, indicating that the difference in movement rates in the different areas of the nest
are statistically significant. Additionally, the regions with low relative motility in
the doorways are apparent, particularly in the doorway connecting the chambers I
and II and in the doorway connecting chambers II and III. This might be due to the
linear interpolation procedure described in Section 2, or it could reveal a tendency
to move slower in the doorways between these chambers. A simpler model for
animal movement would not be able to capture this variation, nor would it model
the statistically significant autocorrelation presented in Table 1.

To assess model fit, the one step ahead mean prediction error for the ant loca-
tions is calculated. At each time step, the next location (x̂ti ,j , ŷti ,j ) (for all 106,767
observations of ants in the nest) is predicted using the model by drawing predicted
locations at each iteration of the Markov chain. The average prediction error, which
is the distance between the predicted location and the observed location for each
of the 106,767 observations, at each MCMC iteration is calculated using

1

106,767

∑
i

∑
j

√
(x̂ti ,j − xti ,j )

2 + ŷti ,j − yti ,j )
2.
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FIG. 4. Ant posterior motility surface.

The result is then averaged over all draws from the Markov chain. The prediction
error was estimated for three models—the full model (described above), a model
with a constant potential surface [H(x, y) ≡ 0] and a model with a constant motil-
ity surface [M(x,y) ≡ 1]. The mean prediction error for each of the models is,
respectively 0.09 mm, 0.11 mm and 0.64 mm. This indicates that in this case the
model that estimates both motility and potential surfaces is the best of the three at
predicting animal movements. Further, the model with a constant motility surface
performs the worst of the three models that we considered. This reflects the impor-
tance of incorporating variability in movement rate in different spatial locations
within the nest.

6. Discussion. The SDE-based model we have developed allows for autocor-
related movement and flexible spatially varying drift and velocity. Ant movement
observed every second within a nest for an hour is investigated, and the transit
behavior of ants between different chambers is captured. The motility surface im-
pacts the rate at which ants spread through the nest. Modeling this is important as
the spatially varying rate of movement has important implications for the spread of
resources, pathogens and pesticides within the nest. The spatially varying model
presented is used here for experimental data. The applicability of this model to
observational data should be considered on a case-by-case basis.

This model is flexible, allowing for temporal autocorrelation and movement,
which is dependent on an animal’s environment. The environmental dependency
can be based on covariates, such as resources in the area; it can be nonparametric,
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using a variety of basis functions, or it can be a semiparametric structure com-
bining both environmental features and the additional spatially varying behavior.
For example, our results for the movement of ants indicate that the motility sur-
face plotted in Figure 3(b) could be effectively modeled using dummy covariates
for each “chamber.” As it is often impossible to observe all environmental co-
variates when analyzing animal movement over large areas, the ability to estimate
the surface using nonparametric methods is important. Thus, this model provides
a flexible framework to model movement to help understand a variety of pro-
cesses. Examples include resource selection, impacts of environmental changes
and the spread of agents—such as pathogens or nutrients—through animal soci-
eties.

Some parts of the model are only identifiable up to a multiplicative constant.
Therefore, interpretation of the estimated surfaces should be limited on the scale
of the motility and potential surfaces. Further, computation becomes more bur-
densome as the number of basis functions and observations increase. Thus, more
efficient methods for inference would be necessary to estimate surfaces with high
resolution features, such as walls or fences, in very large regions. The model re-
quires a high temporal rate of observation of animal locations due to the Euler–
Maruyama approximation to the SDEs. To correct this issue, locations between
observation times can be imputed from the model, however, this may become
computationally taxing since the motility and potential surface estimates require
using B-spline basis representation for these imputed observations. Updating the
basis representation of these imputed locations at every iteration in a Metropolis–
Hastings algorithm is often slow. Alternatively, higher-order approximations to the
SDEs can be used, which may provide more accurate numerical approximations
of the underlying SDE models (2) and (5).

In future work, temporally varying behavior will be considered. Distinct poten-
tial surfaces at different time points may capture the movement behavior of ants
without the need for a motility surface. A state-space model with distinct potential
surfaces and movement parameters in different states could be utilized, however,
these states may be difficult to identify if the behavior in different states is simi-
lar [Beyer et al. (2013)]. This could also allow for the interaction of ants through
combining a latent interaction network model [Scharf et al. (2016)] with potential
surfaces consisting of directed movement toward specific neighboring ants.

SUPPLEMENTARY MATERIAL

Supplement to “A spatially varying stochastic differential equation model
for animal movement” (DOI: 10.1214/17-AOAS1113SUPP; .pdf). We provide
additional information including prior distribution specification, full conditional
distributions, analysis of the discretization error, an application to simulated data
and an application to the spread of pathogens.

https://doi.org/10.1214/17-AOAS1113SUPP
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