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COVARIATE MATCHING METHODS FOR TESTING AND
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In the wind industry, engineers perform retrofitting upgrades on in-
service wind turbines for the purpose of improving power production capabil-
ities. Considering how costly an upgrade can be, people often wonder about
the upgrade effect: whether it indeed improves turbine performances, and if
so, how much. One cannot simply compare power outputs for the purpose of
assessing a turbine’s improvement, as wind power generation is affected by
an array of environmental covariates, including wind speed, wind direction,
temperature, pressure as well as other atmosphere dynamics. For a fair com-
parison to discern the upgrade effect, it is critical to have these environmental
effects controlled for while comparing power output differences. Most exist-
ing approaches rely on establishing a power curve model and let the model
account for the environmental effects. In this paper, we propose a different
approach, which is to devise a covariate matching method to ensure the en-
vironmental covariates to have comparable distribution profiles before and
after an action of upgrade. Once the covariates are matched, paired t-tests
can be applied to the power outputs for testing the significance of the upgrade
effect. The relative increase in power production can also be quantified. The
proposed approach is simple to use and relies on fewer assumptions than the
power curve modeling approach.

1. Introduction. Wind power is one of the fastest growing renewable energy
resources [DOE (2015)]. As large wind farms are built, cost considerations are
essential for effective wind farm management [Byon et al. (2013)]. One of the
costly management actions for an in-service turbine fleet is to perform retrofitting
upgrades, so that outdated or malfunctioning wind turbines can restore or even
improve their power generation capability [Khalfallah and Koliub (2007)]. It is,
therefore, not a surprise that operators want to know whether the benefits from an
upgrade outweigh the expenses of doing it, including material and labor cost. This
inquiry motivates researchers to scrutinize turbine performances before and after
an upgrade. It becomes the research question we aim to answer in this paper, and
if an upgrade does indeed improve turbine performances, we also want to quantify
the improvement.
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When it comes to comparing turbine performances between the periods before
and after an upgrade, it is unreasonable to merely compare power outputs of the
two periods because wind power generation is affected by an array of environ-
mental covariates, such as wind speed, wind direction, temperature, air pressure
and other atmosphere dynamics. Each of the environmental covariates observed
before an upgrade may probabilistically distribute differently from the period af-
ter an upgrade. These incomparable input conditions cause different wind power
outputs and could mislead the conclusion: for example, if too many windy days
are there after an upgrade, high power generation might happen due to not only
the upgrade effect but more so due to the high wind speed. For a fair comparison,
therefore, these environmental effects need to be controlled for while comparing
power outputs.

To handle the problem explained above, the dominating approach is to estab-
lish a model estimating wind power outputs conditioned on the observations of
environmental covariates, so that the model can be used to compare the estimated
power outputs between the two periods by setting the same input conditions. Such
a model, if taking wind speed as a single input, is known as a power curve, ex-
plaining the functional relationship between wind power output and wind speed
input [Ackermann and Söder (2005)]; Figure 1 presents an example.

To estimate a power curve using actual wind speed and power observations, the
International Electrotechnical Commission [IEC (2005)] recommended the use of

FIG. 1. Wind power curve. Wind turbine produces higher power as wind speed increases. A turbine
starts power production at the cut-in speed, reaches its full operation at the rated speed, and stops
producing power at and beyond the cut-out speed. Power outputs are normalized by the rated power.
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a binning method, which discretizes wind speed into intervals of, say, 0.5 me-
ters per second (m/s) width and then uses the wind power data and wind speed
records, averaged in respective intervals, to fit a smooth curve. Other curve fitting
methods are also developed for estimating a power curve based on wind speed
[Kusiak, Zheng and Song (2009), Osadciw et al. (2010), Uluyol et al. (2011), Yan
et al. (2009), Albers (2012)], but they may be different from the binning method
in specifics.

A common drawback of the IEC like approaches is that they regard wind speed
too heavily as a factor driving the power production. While it is true that wind
speed is the most significant effect in wind power generation, other environmental
effects cannot be ignored. In an effort to include other environmental factors into
an extended power curve model, the effect of wind direction was incorporated,
in addition to wind speed [Jeon and Taylor (2012), Pinson et al. (2008), Sanchez
(2006), Torben et al. (2002), Wan, Ela and Orwig (2010)]. Most recently, Lee
et al. (2015a) and Lee et al. (2015b) developed one of the first truly multivariate-
dependency wind power models that allows all aforementioned environmental co-
variates to be included. Understandably, such a model, if fitted separately before
and after an upgrade, could be used to compare a turbine’s performance by setting
input conditions at the same values.

In this paper, we advocate a different approach. Its basic idea is as follows. Sup-
pose that one can select a large enough subset of wind turbine data before and
after an upgrade, such that they have comparable distribution profiles of the envi-
ronmental covariates. Then one can simply compare the wind power outputs of the
two periods within that selected subset. The appeal of such a direct comparison
approach is its simplicity. Unlike the model-based approaches (to fit a power curve
is to estimate a model), it relies on fewer assumptions. Additionally, the direct
comparison approach is quick to be carried out in practice, and its working mech-
anism is easy to be understood by engineers. The last point is important because a
method is less likely to have real impact in practice until it is understood, and thus
accepted by practitioners.

Covariate matching methods are rooted in the statistical literature. In stabilizing
the nonexperimental discrepancy between nontreated and treated subjects of obser-
vational data, Rubin (1973) adjusted covariate distributions by selecting nontreated
subjects that have a similar covariate condition as that of treated ones. Through the
process of matching, nontreated and treated groups become only randomly differ-
ent on all background covariates, as if these covariates were designed by experi-
menters. As a result, the outcomes of the matched nontreated and treated groups,
which keep the originally observed values, are comparable under the matched co-
variate conditions. For more discussion on covariate matching methods, please
refer to Stuart (2010).

In this paper, we propose a covariate matching method tailored toward wind ap-
plication, in which records from a turbine before and after an upgrade correspond
to nontreated and treated subjects, respectively. We follow the four key steps for a
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matching method, introduced in Stuart (2010), of which the first three steps rep-
resent the design of a matching method, whereas the fourth step represents the
analysis of the matched outcomes:

1. Define the measure of closeness;
2. Implement a matching method;
3. Diagnose the quality of the resulting matched samples;
4. Analyze the outcome and estimate the treatment effect.

Specifically in our approach, we use the Mahalanobis distance [Mahalanobis
(1936)] in Step 1 to determine whether an individual is a good match to another.
In Step 2, we adopt an idea of the k : 1 nearest neighbor matching method [Rubin
(1973)]. In Step 3, we rely primarily on density plots as our diagnostic tool. As the
last step, we analyze the matched outcomes through paired t-tests and compute the
improvement an upgrade makes.

We want to note that in the field of wind power analysis, there exist analog
techniques, which have a similar idea to the matching methods, in that they search
for and utilize a set of observations that have the most similar weather condition
to the specific time point. Since these analog approaches typically aim at forecast-
ing, they then estimate the probability distribution of the future state of atmosphere
[Delle Monache et al. (2013)]. However, the covariate matching methods discussed
above, including the proposed one, differ from the analog forecasting approaches,
in that the covariate matching methods aim at investigating a treatment effect, or
specifically, an upgrade effect in our context. They also do the investigation with-
out any estimation procedure unlike the other approaches. Another difference is
that the analog methods follow a timeline to find the most similar weather path to
the time of interest, whereas the covariate matching methods break the time order
of nontreated records to construct the counterpart of treated ones.

The remainder of this paper is organized as follows. In Section 2, we describe
the data structure. In Section 3, we propose a matching method for handling wind
turbine data. Section 4 presents an outcome analysis, including the quantification
of the upgrade effect. Section 5 performs a sensitivity analysis to verify our ap-
proach’s capability in estimating the upgrade effect and to compare it with a power
curve modeling approach. We make a few further remarks concerning the proposed
matching method in Section 6. Finally, we summarize the paper in Section 7.

2. Data structure. In this study, we use data obtained from the authors of
Lee et al. (2015b). For this reason, we study the same two upgrade cases as in Lee
et al. (2015b). We would like to explain briefly the setting under which the data
are obtained.

This study involves two pairs of turbines, which are distant apart enough, so
that one pair of turbines does not affect the other pair. Within a pair, one turbine is
called a test turbine on which an upgrade is applied, while the other one is called
a control turbine of which no change is made. We deem the two turbines in a
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FIG. 2. Wind farm layout. This layout shows the relative locations of turbines and masts on a
wind farm. Wind power production is measured at each turbine, and environmental conditions are
measured by sensors at the nearby meteorological mast. An experimental pair includes an actual-
ly-upgraded test turbine (a vortex generator installation) and its control turbine, whereas a mimicry
pair includes an artificially-upgraded test turbine (a pitch angle adjustment) and its control turbine.

pair are identical for practical considerations, as they are of the same type from
the same manufacturer and started their service at the same time. Both turbines
in each pair are also associated with a meteorological mast, which houses sensors
to measure several environmental conditions. Figure 2, similar to Figure 5 in Lee
et al. (2015b), illustrates the layout of the two turbine pairs and their associated
mast.

As in Lee et al. (2015b), we consider two types of upgrade: one is known as
a vortex generator installation [Øye (1995)] and the other one is a pitch angle
adjustment [Wang, Tang and Liu (2012)]; both actions are believed to make the
upgraded turbine to produce more wind power under the same environmental con-
ditions. The vortex generator installation is physically carried out on a test turbine
in a pair and we call this pair the experimental pair, whereas the pitch angle ad-
justment is not physically carried out but simulated on a test turbine; we call the
turbine pair with the simulated upgrade the mimicry pair.

The following data modification is done to the test turbine data in the mimicry
pair. The actual wind turbine data, including both power production data and en-
vironmental measurements, are taken from the actual turbine pair operation. Then
the power production from the designated test turbine on the range of wind speed
over 9 m/s is increased by 5%, namely multiplied by a factor of 1.05; see Figure 3
for an illustration. This simulation of an pitch angle adjustment is motivated by
Wang, Tang and Liu (2012). Including the simulated data set in our study helps us
get a sense of how well a proposed method can detect a power production change
due to an upgrade and how accurately it can quantify the change.
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FIG. 3. The modification in the mimicry test turbine data as if a pitch angle adjustment were ap-
plied. The power on the range of wind speed over 9 m/s is increased by 5%.

We denote the power output of a turbine by P (in kilowatts), so that P ctrl and
P test are associated with a control turbine and a test turbine, respectively. In this
study, power output values are normalized by the rated power, to protect the iden-
tities of the turbine manufacturer and the wind farm operator.

Environmental conditions directly measured at a meteorological mast are: wind
speed, V , wind direction, D, ambient temperature, T , and air pressure, Q. Us-
ing these measurements, the values of additional environmental covariates can be
computed, including air density, A, wind shear, W , and turbulence intensity, I ,
using the following formulas:

• air density, A = Q
R·T (kg/m3), where R = 287 [Joule/(kg·K)] is a gas constant;

• wind shear, W = ln(V2/V1)
ln(g2/g1)

, which represents a vertical variation of wind, where
V1 and V2 are wind speeds measured at heights g1 = 80 m and g2 = 50 m,
respectively;

• turbulence intensity, I = σ̂
V

, where σ̂ is the standard deviation of wind speed in
a 10-minute duration.

The air density A represents the combined effect of temperature and pressure; once
the air density is included to explain wind power outputs, temperature and pressure
are no longer needed. The wind shear W and turbulence intensity I measure certain
aspects of atmospheric dynamics that wind speed itself does not fully represent.

As such, each data set has five explanatory covariates, (V ,D,A,W, I), and
two power outcomes, (P ctrl,P test). Note that wind turbine data are arranged into
10-min blocks, so that the values of (V ,D,A,W) are the averages of the 10-min
intervals and I is the ratio of the standard deviation of wind speed in the 10-min
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blocks over the average wind speed of the same block. This 10-min block data
arrangement is commonly used in the wind industry.

For the experimental pair, we have 14 months worth of data in the nontreated
period (i.e., before the upgrade) and 5 weeks worth of data in the treated period
(i.e., after the upgrade), whereas for the mimicry pair, we have 8 months worth
of data in the nontreated period and 7 weeks in the treated period. Note that it
is preferable to have a much larger set in the nontreated period than the treated.
That is because a sufficiently large candidate pool to match can avoid too many of
repeatedly selected individuals and, therefore, the matched subset of the nontreated
period reflects reality such as varying weather conditions.

3. Matching methods. Our investigation starts off with exploring the dis-
crepancy of the covariate distributions. Figure 4 demonstrates for each covariate
the difference in empirically fitted density functions between the nontreated and
treated periods. The last subplot in both the upper and lower panel is the density
function of the power output of the respective control turbine. For the control tur-
bine, as it is not modified, the distribution of its power output is supposed to be
comparable, should the environmental conditions be maintained the same. But the
data show otherwise, suggesting the existence of environmental influence, which
confounds the upgrade effect in power outputs.

Let us introduce a few notation and terminologies. The environmental covari-
ate vector is denoted by X. In this study, X := (V ,D,A,W, I)T , but it can in-
clude more variables, should their measurements be available. The data pair (X,P )

forms a data record, containing the value of the environmental covariates and its
corresponding power outputs. The data records collected before the upgrade form
the nontreated data group, whereas those collected after the upgrade form the
treated group. Let Sbef and Saft be the index set of the data records in the non-
treated and treated group, respectively. Let YS denote the values of a covariate Y

for data indices in S. For example, VSbef is the vector of all wind speed values that
are observed before the upgrade.

This section presents a matching method to create comparable distribution pro-
files of covariates. Before going through the four-step procedure of developing a
matching method, as mentioned in Section 1, we first describe the preprocessing
steps in Sections 3.1 and 3.2. Then Sections 3.3, 3.4 and 3.5 describe Steps 1, 2
and 3, respectively. Step 4 is discussed in Section 4.

3.1. Hierarchical subgrouping. The first action of preprocessing is to narrow
down the set from which we will perform the data records matching subsequently.
The reason for this preprocessing is to alleviate a computational demand arising
from too many pairwise combinations when comparing two large size data sets.

This objective is fulfilled via a procedure we label as hierarchical subgrouping.
The idea goes as follows:
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FIG. 4. Overlapped density functions of unmatched covariates and power output of control turbine;
solid line = before upgrade (nontreated), dashed line = after upgrade (treated).
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1. Locate a data record in the treated group, Saft, and label it by the index j .
2. Select one of the covariates, for instance, wind speed, V , and designate it as

the variable on which we measure similarity between two data records.
3. Go through the data records in the nontreated group, Sbef, by selecting the

subset of data records such that the difference, in terms of the designated covariate,
between the data record j in Saft and any one of the records in Sbef is smaller than
a pre-specified threshold. When V is in fact the one designated in Step 2, the
resulting subset is then labeled by placing V as a subscript to S, namely SV .

4. Next, designate another covariate and use it to prune SV in the same way as
one prunes Sbef into SV in Step 3. This produces a smaller subset nested within
SV . Then continue with another covariate until all covariates are used.

The order of the covariates in the above hierarchical subgrouping procedure is
based on the importance of them in affecting wind power outputs; according to
Lee et al. (2015a), it is V , D, A, W and I , from the most important to the least
important. We will discuss more about the matching order of covariates in Sec-
tion 6.1. Also note that wind direction D is a circular variable and an absolute
difference between two angular degrees is between 0 and π ; we then adopt a cir-
cular variable formula from Jammalamadaka and Sengupta (2001) to calculate the
difference between two D values.

The above process can also be written in set representation. For a data record j

in Saft, we define subsets of data records in Sbef, hierarchically chosen, as

SV := {
i ∈ Sbef : |Vi − Vj | < αV σ(VSbef)

};
SD := {

i ∈ SV : π − ∣∣π − |Di − Dj |
∣∣ < αDσ(DSV

)
};

SA := {
i ∈ SD : |Ai − Aj | < αAσ(ASD

)
};

SW := {
i ∈ SA : |Wi − Wj | < αWσ(WSA

)
};

SI := {
i ∈ SW : |Ii − Ij | < αIσ(ISW

)
}
,

where σ(Y ) is the standard deviation of Y and αY is a thresholding coefficient. We
discuss how to determine these α’s in Section 3.5. This hierarchical subgrouping
establishes the subsets nested as such: SI ⊂ SW ⊂ SA ⊂ SD ⊂ SV ⊂ Sbef. Conse-
quently, the data records in the last hierarchical set SI have the closest environ-
mental conditions as compared with the data record j in Saft.

This hierarchical subgrouping procedure shares certain similarity with the
coarsened exact matching (CEM) approach [Iacus, King and Porro (2012)], in that
it performs the data records matching on broader ranges of covariates and builds
factor-sized strata. Unlike CEM, however, the strata from our procedure have a
hierarchical and nested structure that CEM does not have.

3.2. Unmeasured factors. There could be other environmental conditions, in
addition to V , D, A, W and I , which may affect wind power production while
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not measured. For instance, humidity is one variable that was shown to have an
appreciable impact on wind power production for offshore wind turbines [Lee et al.
(2015a)] but for the wind farm data we worked with, humidity was not measured.

The possible existence of unmeasured environmental factors presents the risk
of causing a distortion in comparison, even when the aforementioned measured
environmental factors are matched between the treated and nontreated groups. In
order to alleviate this risk, we make use of the power output of the control turbine
in each turbine pair, P ctrl. What we propose is to further narrow down from the
most nested subset produced in Section 3.1, SI , by taking the following action—
we select records from SI whose P ctrl values are comparable to the P ctrl value
of a data record j in Saft. Specifically, this amounts to continuing the hierarchical
subgrouping action in Section 3.1, producing a SP , a subset of SI , based on P ctrl,
such that

SP := {
i ∈ SI : ∣∣P ctrl

i − P ctrl
j

∣∣ < αP σ
(
P ctrl

SI

)}
.

We perform this procedure for all data records in the treated group so that each
record j in Saft has its matched set SP,j . In the case that SP,j is an empty set, we
then discard the respective index j from Saft. Because of this, Saft may shrink after
the subgrouping steps.

What we do in this subsection is essentially to use the control turbine to cali-
brate the conditions affecting the test turbine. A similar idea was tried by Albers
(2012), but his approach is different from ours. Albers used a power curve based
approach, in which the author fitted a relative power curve between the control and
test turbines and hoped using that can calibrate the conditions for the test turbine.
The rationale behind Albers’s relative power curve is not as transparent as our
subgrouping procedure and that approach is still model-based rather than direct
comparison; in fact, it involved several modeling steps in its analysis.

3.3. Mahalanobis distance. Denote SP,j as a set of candidate matches of data
records in the nontreated group to a data record j in the treated group. Our next
goal is to choose a data record in SP,j that is the closest to a data record j . For
this purpose, we need to define a dissimilarity measure to quantify the closeness
between two data records.

We decide to use the Mahalanobis distance [Mahalanobis (1936)] as our dis-
similarity measure, which is popularly used in the context of multivariate anal-
ysis. It reweighs the Euclidean distance between two covariate vectors with the
reciprocal of a variance–covariance matrix. Before presenting the definition of the
Mahalanobis distance between two wind turbine data records, we first introduce a
transformed covariate vector, denoted by X∗, such that

X∗ := (V cosD,V sinD,A,W, I)T .

Using X∗ makes it easier to deal with the circular wind direction variable D. The
Mahalanobis distance (MDij ) between a data record j in Saft and a data record i in
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SP,j is defined as

MDij :=
√(

X∗
i − X∗

j

)T
�−1

(
X∗

i − X∗
j

)
,

where � = Cov(X∗
Sbef

). Obviously, the larger an MD value, the more dissimilar two
data records.

Alternatively, the propensity score can be used as a dissimilarity measure
[Rosenbaum and Rubin (1983)]. The propensity score has an advantage for a large
number of covariates, whereas the Mahalanobis distance works quite well when
there are fewer than eight continuous covariates [Zhao (2004)]. Moreover, since
the Mahalanobis distance can reflect the interaction among covariates, which in-
deed exists in our data as described in Section 6.1, we choose the Mahalanobis
distance rather than the propensity score.

3.4. One-to-one matching. As the simplest form of the k : 1 nearest neighbor
matching, introduced by Rubin (1973), we perform the 1 : 1 matching; it selects,
for each treated record j , the nontreated record with the smallest distance from j .
As the size of the matching candidates for each treated subject is reduced while
undertaking the subgrouping step, there is no need to search in the entire nontreated
group but simply within the resulting subgroup.

In a set representation, given SP,j and MDij from Sections 3.2 and 3.3, respec-
tively, we select the data record ij in SP,j that has the smallest Mahalanobis dis-
tance as the best match to data record j in Saft. That is, the data record ij is found
such that

ij = arg min
i∈SP,j

MDij ,

for each j in Saft. In case that two or more are tied for the smallest value, we choose
one of them randomly. After this step, each data record j in the treated group has
one nontreated counterpart ij , with the exception of those already discarded during
the subgrouping step. We define the index set of the matched data records from the
nontreated group as

S∗
bef := {ij ∈ Sbef | j ∈ Saft}.

As such, the data records in Saft are now individually paired to those in S∗
bef.

It should be noted that we allow replacement in our matching procedure. In
other words, ij is not eliminated from the candidate set SP , even though it has
matched to j once. When the next data record j + 1 is selected from Saft, the same
nontreated data i is thus possible to be matched again. We believe that allowing
replacement helps achieve a fair matching because the data records in Saft have
no presumed order to be paired in advance. We will provide further discussions
related to the matching with replacement in Section 6.2.
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3.5. Diagnostic. After performing the matching procedure, it is crucial to di-
agnose how much the discrepancy of the covariate distributions has been removed,
as compared to the original (unmatched) data set. Only after the diagnostics signi-
fies a sufficient improvement, an outcome analysis is then ready to perform in the
next step.

We measure the discrepancy of distributions in two ways, numerically and
graphically. For the numerical diagnostics, the standardized difference of means
(SDM) is used as a measure of dissimilarity of a covariate between the treated and
nontreated groups [Rosenbaum and Rubin (1985)];

SDM := YSaft − YSbef

σ(YSaft)
,

where Y is one of the covariates, and YS denotes the average of Y in the set of S.
The SDM decreases if the matching procedure indeed reduces the discrepancy be-
tween the two groups. As shown in Table 1, SDM decreases significantly for all
covariates. A previous study [Rubin (2001)] found that SDM should be less than
0.25 to render the two distributions in question comparable. Otherwise, the dif-
ferences between the distributions of covariates in the two groups are regarded as
substantial.

For the graphical diagnostics, we overlap the empirical density function of each
covariate as well as that of the control turbine power, associated with the treated
group and the matched subset of the nontreated group. We can visually inspect the
discrepancy between the two density functions and see if they are similar enough.
An example is shown in Figure 5, in which we observe the well-matched distri-
butions of covariates after the matching process. The improvements in term of
distribution similarity are clearer when compared to Figure 4, which demonstrates
the dissimilarity in covariate distributions of the unmatched original set.

Either the numerical or the graphical diagnostics may fail to provide credible
evidence to perform an outcome analysis; for example, SDM increases, rather than

TABLE 1
Numerical diagnostics. See the decrease of SDM after the matching. The matching procedure indeed

reduces the discrepancy between the two periods

V D A W I P ctrl

(a) Experimental data

Unmatched 0.6685 0.0803 3.2715 0.2312 0.1382 0.8132
Matched 0.0142 0.0026 0.0589 0.0721 0.0003 0.0083

(b) Mimicry data

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0077 0.0029 0.0263 0.0158 0.0111 0.0036
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FIG. 5. Overlapped density functions of matched covariates as well as that of power output of
control turbine; solid line = before upgrade (nontreated), dashed line = after upgrade (treated).
Compare this figure to Figure 4 and notice the improvement in agreement between the pairs of density
plots.
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decreases, or some nonoverlapped bumps are observed in the density plots. If this
happens, we adjust the thresholding coefficients α’s and repeat the procedures of
Sections 3.1 and 3.2 until a well-matched set is obtained. It should also be noted
that, if the size of Saft after the matching loses too many data records, and this can
happen when too small α’s are applied, we suggest to enlarge the size of Saft prior
to the matching process, so that we can secure a sufficient amount of representative
weather conditions in the matched Saft.

4. Outcome analysis. This section describes the outcome analysis, Step 4 of
a matching method as outlined in Section 1. It fulfills the research goal of testing
the significance of the upgrade effect and quantifying its improvement in terms of
extra power production under comparable environmental conditions.

4.1. Paired t-tests. From the matching procedure, we have the paired data
records of the two groups, (ij , j) where ij ∈ S∗

bef and j ∈ Saft. Using these paired
indices, we can retrieve the paired test power outputs, (P test

ij
, P test

j ). The power
output pair can be interpreted as repeated measurements under comparable envi-
ronmental conditions, which makes the power outputs also comparable.

As such, we apply a t-test to analyze the difference of the two paired test out-
comes, Dj = P test

j − P test
ij

. The assumption of independence is met; this will be
reviewed in Section 6.2. It tests the null hypothesis that the expected mean of
the difference is zero, that is, H0 : E(D) = 0, where D is the sample mean of
{Dj : j ∈ Saft}. Accordingly, the test statistic t is

t := D

s/
√

n
,

where s and n are the sample standard deviation and the sample size of {Dj : j ∈
Saft}, respectively. If the test concludes a significant positive mean difference, the
upgrade on the test turbine is then concluded as effective.

In Table 2, the first and second cells show the results from a paired t-test. In
both datasets, the tests show a significant upgrade effect at the 0.05 level.

4.2. Quantification. Reporting a percentage value representing the relative in-
crease in power production is a typical way to quantify an improvement of a

TABLE 2
Outcome analysis. The results of paired t-tests and upgrade quantification

(a) Experimental data

t-stat p-value UPG
3.015 0.003 1.13%

(b) Mimicry data

t-stat p-value UPG
7.447 <0.0001 3.16%
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turbine’s performance after an upgrade. As such, we quantify the upgrade effect
(UPG) in percentage terms by computing

UPG :=
∑

j∈Saft
(P test

j − P test
ij

)∑
j∈Saft

P test
ij

× 100,

where ij ∈ S∗
bef is the counterpart of j ∈ Saft.

The quantification results are shown in the third cell of Table 2. Recall that we
have increased the test turbine power in the mimicry pair by 5% for wind speed
9 m/s and above, which translates to a 3.11% increase for the whole wind spec-
trum. Our quantification shows an improvement of 3.16% overall, which appears
to present a fair agreement with the simulated amount. If the quantification amount
is to be trusted, the vortex generator installation enables a turbine to produce 1.13%
more wind power than without the upgrade.

4.3. Mean comparison. In Figure 6(a), we present the boxplot of P test data for
the both datasets under the unmatched conditions (i.e., the original data) and the
matched conditions (i.e., the matched subset of the original data). We noticed that
the unmatched data of the experimental set show a higher mean power before the
upgrade than after. This mean power pattern is, however, reversed on the matched
data, as expected. The interpretation of the mean power pattern of the unmatched
data is obvious; the difference in the environmental covariates causes the wind
turbine to produce more wind power in the period before the upgrade, so the up-
grade effect is overwhelmed and not detectable. Even though the unmatched data
seemingly shows an improvement in power production like the mimicry data in
Figure 6(b), the imbalanced profile of weather conditions should be noticed, and
so the matching is required to stabilize their discrepancy. This analysis demon-
strates the benefit of executing this matching procedure before comparing the test
power outputs and quantifying its net effect.

5. Sensitivity analysis. Recall that the mimicry pair is analyzed for the pur-
pose of getting a sense of how well a proposed method can estimate a power pro-
duction change, owing to a turbine upgrade. While only the 5% simulated improve-
ment is used when illustrating the methodology in Sections 3 and 4, this section
reperforms the matching on various degrees of improvement. There are two rea-
sons for this practice: (a) to see how sensitive the proposed method is in terms
of estimating the power production change when the change magnitude varies (in
Section 5.1), and (b) to compare the proposed matching method to the kernel plus
method proposed by Lee et al. (2015b) (in Section 5.2).

5.1. Sensitivity of estimating changes. Considering how the mimicry pair is
created, it is unreasonable to use the nominal power increase rate, denoted by r ,
to represent the power change magnitude over the entire spectrum of wind power.
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FIG. 6. Boxplots of the normalized test power values; x points, referred to by the label in percentage
above it, are the mean of the respective normalized P test. The upgrade effect is revealed in the
matched test powers while confounded in the unmatched test power.
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TABLE 3
r = nominal power improvement rate; r ′ = effective power improvement rate; UPG and DIFF*

estimate r ′ through the matching method and the kernel plus method, respectively

r 2% 3% 4% 5% 6% 7% 8% 9%
r ′ 1.25% 1.87% 2.49% 3.11% 3.74% 4.36% 4.98% 5.60%

UPG 1.74% 2.21% 2.68% 3.16% 3.63% 4.11% 4.58% 5.05%
UPG/r ′ 1.4 1.2 1.1 1.0 1.0 0.9 0.9 0.9

DIFF* 1.97% 2.56% 3.15% 3.73% 4.30% 4.86% 5.42% 5.97%
DIFF*/r ′ 1.6 1.4 1.3 1.2 1.1 1.1 1.1 1.1

This is because the nominal power increase rate is applied only to the partial range
of wind power corresponding to wind speed higher than 9 m/s. Therefore, when it
comes to verifying the estimation quality in the mimicry case, we should compute
the effective power increase rate, denoted by r ′, such as

r ′ :=
∑

j∈Saft
P test

j {1 + r · I(V test
j > 9)} − ∑

j∈Saft
P test

j∑
j∈Saft

P test
j

,

where I is an indicator function.
As shown in Table 3, as r changes from 2% to 9%, r ′ changes from 1.25% to

5.6%. This range of the power improvements is considered practical for the detec-
tion purpose. If an improvement is smaller than 1%, it is going to be considerably
hard for detection, and given the amount of noises in wind and power measure-
ments, no known method can do an adequate job. On the other hand, when an
improvement is greater than 6%, it becomes a bit unrealistic due to technology
limitations, and if indeed so, the detection becomes easier—it is possible that even
the standard IEC binning method can detect this level of change. That is why we
choose this specific range to test the sensitivity of our method.

The middle two rows in Table 3 compare UPG to r ′. We notice that UPG con-
siderably overestimates r ′ when r ′ is small (smaller than 2%); the overestimation
is as much as 40% for the smallest change at 1.25%. But the estimation quality of
UPG gets stabilized as r ′ increases. In fact, for the last six cases, the differences
between UPG and r ′ are within 10%. This result reflects the reality that the smaller
degree of turbine upgrade is indeed difficult to estimate and demonstrates the merit
of the proposed matching method.

5.2. Comparison between the matching method and the kernel plus method.
The best benchmark method for upgrade quantification is the kernel plus method
presented in Lee et al. (2015b). In this section, we compare the covariate matching
method with the kernel plus method.

The metric quantifying a turbine’s improvement used by Lee et al. (2015b) is
labeled as DIFF, which indicates a percentage value measuring the power produc-
tion difference before and after the turbine upgrade. Although DIFF has a similar
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concept to UPG in this paper, there is a subtle difference that needs to be addressed.
In Lee et al. (2015b), DIFF values are computed for the test and control turbine
separately, which are denoted by DIFFtest and DIFFctrl, respectively. However,
UPG uses the control turbine’s record as a baseline reference during the match-
ing process, so deals solely with and represents the net effect. For that reason,
the metric from the kernel plus method, to be fairly compared with UPG, should
be DIFF* := DIFFtest − DIFFctrl, which also adjusts the test turbine outcomes
using the control turbine as a baseline.

This adjusted metric DIFF* is then estimated for each r and compared to r ′ in
the last two rows of Table 3. As we notice here, the kernel plus method also con-
siderably overestimates the small r ′ values and does better as r ′ gets bigger. The
degree of overestimation of DIFF* is severer than that of UPG; while DIFF*/r ′s
have 10% or more values over all of r values, UPG/r ′s are mostly within 10% and
even make almost correct estimations at r = 5% and 6%. Therefore, the covariate
matching method outperforms the kernel plus method for the practical range of
improvement rate, from r = 2% to 9%.

If applied to the experimental turbine pair, our analysis in Section 4.2 shows
UPG = 1.13%. On the other hand, DIFF* from the kernel plus method is 1.48%.
This result is anticipated, in that the kernel plus method tends to overestimate a
little more, and both methods are in fact less accurate when estimating a small
improvement such as 1% or less.

Please note that DIFF* values reported here are different from those reported
in Lee et al. (2015b). This discrepancy is due to the different use of data; while
Lee et al. (2015b) use 2-week-after-upgrade worth of data in their analysis, we
use in this study 7-week-after-upgrade worth of data for the mimicry turbine pair
and 5-week-after-upgrade worth of data for the experimental pair, as our covariate
matching requires a longer duration to ensure a sufficient amount of data.

6. Remarks. This section presents further discussion of a few issues arising
in our research undertaking. Section 6.1 reviews in more details about the priority
order and the interaction effect of the environmental covariates as well as how the
right order can benefit the analyses. Section 6.2 discusses the issue of replacement
while matching data records and affirms that the independence assumption of a
t-test is approximately satisfied.

6.1. The priority order and interaction of covariates. The priority order of
the environmental covariates used in the hierarchical subgrouping procedure in
Section 3.1 is as the following: wind speed, wind direction, air density, wind shear
and turbulence intensity.

The importance of wind speed V is obvious and it is universally agreed to be
the most important factor affecting wind power production. Wind direction D also
matters a great deal even though wind turbines have a yaw control mechanism that
is supposedly to track wind direction and point the turbine toward the direction
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from which the wind blows. Nonetheless, a score of studies showed that this track-
ing is not perfect, and consequently, including wind direction as one covariate can
significantly reduce the prediction error of wind power [Jeon and Taylor (2012),
Lee et al. (2015a), Wan, Ela and Orwig (2010)].

The effects of the next tier of factors, namely air density A, wind shear W and
turbulence intensity I , come more in the form of interacting with the two main
effects, wind speed and wind direction. Lee et al. (2015a) illustrated, in Figure 4
of their paper, the existence of interaction effects between these second-tier factors
and the wind speed/direction.

We believe the nested structure of our hierarchical subgrouping helps handle the
priority of the main and interacting covariates. The variance–covariance matrix in
the Mahalanobis distance (Section 3.3) also captures the interaction effects through
the covariance terms and incorporates them in the calculation of the dissimilarity
measure.

If a priority order is poorly defined, the quality of matching may not be as sat-
isfactory as compared to a well-defined order. To show some numerical evidence
of this argument, we conducted the matching on the mimicry set with a reversed
order, P ctrl, I , W , A, D, V ; their numerical diagnostics are shown in Table 4.
Comparing this result to Table 1(b), the SDMs of D, A, W and P ctrl with the re-
versed order are greater than those with the proper order. It should be noted that
the thresholding degrees in Table 4 are the same as those in Table 1 for a fair
comparison. However, as long as those SDMs are acceptable to perform an out-
come analysis, the significance and quantification of turbine improvement does
not change dramatically. The analysis using the reversed order leads to a UPG =
3.33% with p-value < 0.0001, which is similar to that with the well-defined order
(UPG = 3.16%, while true value = 3.11%).

Still, although an outcome analysis appears to show a certain degree of robust-
ness under acceptable SDMs, one might as well make use of the priority informa-
tion, if known, since it helps find the acceptable matched set much more efficiently.
If a priority order of covariates is unknown, it is recommended to perform some
statistical analysis using, for example, random forests [Breiman (2001)], which
can measure the importance of covariates, before applying the matching method.

TABLE 4
Numerical diagnostics when matching with a reversed priority order, P ctrl, I , W , A, D, V ; notice
less decreased SDMs of D, A, W and P ctrl than those of Table 1(b), which implies that a poorly

defined order may lead to an unsatisfactory quality of matching

V D A W I P ctrl

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0022 0.0036 0.0377 0.0208 0.0055 0.0085
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6.2. Matching with replacement and assumption of independence. Recall
from Section 3.4 that we allow replacement when carrying out the matching pro-
cedure. Because of this, a data record in the nontreated dataset Sbef could possibly
be paired with two or more data records in the treated dataset Saft.

A potential problem of allowing replacement is that the replication of the same
data records may cause a violation of independence of outcome variables. In or-
der to settle this issue, information about frequency weights, such as the relative
number of replications, may need to be taken into account [Stuart (2010)].

In our application, however, replacement does not seem to cause too much of a
problem, for the following reasons: (a) such replication happens rather rarely by
starting with the much larger set of nontreated period than the treated; (b) we in
fact analyze the differences between the treated period (not replicated, so inde-
pendent) and the nontreated period (possibly replicated, so dependent), and taking
differences further reduces the dependence caused by replication.

7. Summary. We are interested in statistical inference about the upgrade ef-
fect on wind turbine performance. It is a challenging issue because the upgrade
effect on wind power production could be biased and confounded by unmanage-
able environmental conditions. Some of these conditions are measured on a wind
farm, while others are unknown or not measured. We propose a covariate match-
ing method, allowing for a fair and direct comparison of power outcomes without
establishing power curve models.

Compared to the current studies on wind power analysis, our matching method
entertains several advantages: (a) it does not compare the estimated power out-
puts from the fitted power curve models, but compares the observed power out-
puts directly; (b) by using the control turbine power output as a benchmark, our
method takes into account both measured and unmeasured environmental condi-
tions; (c) when future technology innovations allow additional environmental co-
variates to be measured, their inclusion in our matching method is straightforward
and it does not complicate the subsequent analysis steps. By testing on both ex-
perimental data and simulated data, the proposed matching method appears to be
sensitive to detecting small to moderate changes resulting from an upgrade on a
wind turbine.
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