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BAYESIAN PROPAGATION OF RECORD LINKAGE UNCERTAINTY
INTO POPULATION SIZE ESTIMATION OF HUMAN RIGHTS

VIOLATIONS1

BY MAURICIO SADINLE

University of Washington

Multiple-systems or capture–recapture estimation are common tech-
niques for population size estimation, particularly in the quantitative study
of human rights violations. These methods rely on multiple samples from the
population, along with the information of which individuals appear in which
samples. The goal of record linkage techniques is to identify unique indi-
viduals across samples based on the information collected on them. Linkage
decisions are subject to uncertainty when such information contains errors
and missingness, and when different individuals have very similar character-
istics. Uncertainty in the linkage should be propagated into the stage of pop-
ulation size estimation. We propose an approach called linkage-averaging to
propagate linkage uncertainty, as quantified by some Bayesian record link-
age methodologies, into a subsequent stage of population size estimation.
Linkage-averaging is a two-stage approach in which the results from the
record linkage stage are fed into the population size estimation stage. We
show that under some conditions the results of this approach correspond to
those of a proper Bayesian joint model for both record linkage and popu-
lation size estimation. The two-stage nature of linkage-averaging allows us
to combine different record linkage models with different capture–recapture
models, which facilitates model exploration. We present a case study from the
Salvadoran civil war, where we are interested in estimating the total number
of civilian killings using lists of witnesses’ reports collected by different or-
ganizations. These lists contain duplicates, typographical and spelling errors,
missingness, and other inaccuracies that lead to uncertainty in the linkage. We
show how linkage-averaging can be used for transferring the uncertainty in
the linkage of these lists into different models for population size estimation.

1. Introduction. In the context of armed conflicts, a basic question is how
many human rights violations occurred in a given time and space. While a com-
plete enumeration is not typically feasible, it is common to find multiple organiza-
tions monitoring and collecting reports on those violations. Given that witnesses
or victims may report an event to different organizations, and different witnesses
may report an event to the same organization, the associated record systems often
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end up containing multiple entries referring to the same violations, even within the
same data source. Those reports may contain different degrees of detail and accu-
racy, and typically do not contain unique identifiers of the victims, such as national
identification numbers. Therefore, even the more basic question of how many
unique human rights violations have been reported cannot be easily answered.
Record linkage techniques are required to detect duplicated reports within each
source and to link coreferent reports across data sources. The result of this linkage
stage is often used to derive estimates of the total number of unreported viola-
tions using capture–recapture or multiple-systems estimation. The Human Rights
Data Analysis Group—HRDAG2 has been a leader and a pioneer in using these
methodologies to study human rights violations in several countries [e.g., Lum,
Price and Banks (2013), Price and Ball (2015), Price, Gohdes and Ball (2015)].
Here we revisit a case from El Salvador, where we combine three data sources to
explore the question of how many civilians were killed during the Salvadoran civil
war (1980–1991) in San Salvador.

A limitation in this area of application is that population sizes are estimated
taking a given linkage of the lists as being the correct one. Current practice
therefore understates the overall uncertainty around the population size as it ig-
nores the uncertainty from the linkage. We propose a simple procedure called
linkage-averaging for incorporating the uncertainty from record linkage into sub-
sequent population size estimation using multiple-systems or capture–recapture
models. Linkage-averaging is possible thanks to the advent of Bayesian partition-
ing approaches that provide proper accounts of the uncertainty in the linkage pro-
cess [e.g., Matsakis (2010), Sadinle (2014), Steorts, Hall and Fienberg (2016)].
Linkage-averaging requires two stages. First, we use a Bayesian partitioning ap-
proach to obtain a posterior sample of possible linkages between the lists. Then,
for each of those linkages we obtain a posterior distribution on the population
size using a capture–recapture model. The individual population size posteriors
are combined by taking a simple average. This approach is appealing for being
simple and intuitive, and we show that if the capture–recapture model uses only
functions of the linkage then linkage-averaging is equivalent to a proper Bayesian
approach to joint record linkage and population size estimation. The two-stage na-
ture of linkage-averaging facilitates model exploration as linkage results can be
reused with different capture–recapture models, and it is also well suited for lists
with restricted access due to confidentiality constraints given that the information
used for the linkage does not have to be transferred to the analyst doing population
size estimation. Linkage-averaging has broader applicability since, for example,
census coverage evaluation [e.g., Ericksen, Kadane and Tukey (1989), Anderson
and Fienberg (1999), Hogan (1992, 1993)] and disease prevalence estimation [e.g.,
LaPorte et al. (1993), Madigan and York (1997)] are also carried out by linking
multiple data sources followed by population size estimation.

2Website: https://hrdag.org/.
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We review Bayesian partitioning approaches to record linkage in Section 2,
Bayesian approaches for population size estimation in Section 3, and in Section 4
we show how to combine them using linkage-averaging. Finally, in Section 5 we
apply this approach to the case study from El Salvador mentioned above.

2. Bayesian partitioning record linkage approaches. Let Xk be the kth data
source or list, which contains rk records as its rows, k = 1, . . . ,K . We define
X = (X1, . . . ,XK)T as the concatenated list containing all the r = ∑

k rk records
coming from the K different sources. The total number of different fields available
from the lists is F , and if one of these fields is not recorded in a list then it will
be missing in X for all records coming from that list. With n ≤ r different individ-
uals represented in X, jointly detecting duplicates within lists and linking records
across lists is equivalent to partitioning the rows of X into the n groups of corefer-
ent records. This coreference partition [Matsakis (2010), Sadinle (2014), Steorts,
Hall and Fienberg (2016)] is the parameter of interest in joint duplicate detection
and record linkage.

A computationally simple representation of partitions uses arbitrary labelings of
the partition’s groups. Let Z = (Z1, . . . ,Zr) be a vector of length r representing a
labeling of the records in X, such that two records receive the same label if and only
if they are a match/coreferent. An intuitive way of thinking of Z is as an underlying
unique identifier that we want to recover. Although the labeling given by Z is
arbitrary, any equivalent relabeling leads to the same partition of the records, which
is what we care about. Indeed, two records are a match or coreferent if and only if
Zi = Zj . To fix ideas, the vectors Z = (1,2,1,3,3) and Z = (4,5,4,2,2) are two
labelings of the same partition of five elements, since in both Z1 = Z3 �= Z4 = Z5,
and Z2 gets its own value.

From a Bayesian point of view, one obtains a posterior distribution on Z given
X, and the variability captured by this posterior should ideally reflect the uncer-
tainty in the record linkage and duplicate detection procedure. There exist two
types of approaches to obtain such a posterior on Z: direct modeling approaches
and comparison-based approaches.

2.1. Direct-modeling approaches. A number of Bayesian approaches to both
duplicate detection and record linkage have been proposed where one directly
models the information contained in the lists/datafiles [Fortini et al. (2002),
Gutman, Afendulis and Zaslavsky (2013), Matsakis (2010), Steorts, Hall and Fien-
berg (2016), Tancredi and Liseo (2011)], that is, one proposes a model P(X | Z)

for the information observed in the lists, and a posterior on Z is derived as
p(Z | X) ∝ p(Z)P (X | Z), with the help of a prior on partitions p(Z). To write
down P(X | Z) one needs crafting specific models for each type of field in the
lists. The models of Matsakis (2010), Steorts (2015), Steorts, Hall and Fienberg
(2016), Tancredi and Liseo (2011) share the characteristic that given a value of
Z, the clusters of coreferent records are modeled as distortions of some latent
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record containing the true information of a latent individual. These approaches
currently mostly handle categorical fields, with the exceptions of Steorts (2015)
who proposed an empirical Bayes approach to model names, and Liseo and Tan-
credi (2011) who handle continuous fields under normality. In practice, however,
fields that are complicated to model, such as strings, addresses, phone numbers, or
dates, are also important to detect coreferent records. These type of fields are often
subject to typographical and other types of errors, which makes it important to take
into account partial agreements between their values. Existing direct modeling ap-
proaches also currently do not handle missing data, although this extension should
be easy to implement.

2.2. Comparison-based approaches. A number of approaches to record link-
age and duplicate detection rely on the often reasonable assumption that two
records referring to the same entity should be very similar. If this is not the case
in a given application scenario then the task of finding coreferent records might be
hopeless. Comparison vectors are computed for pairs of records from X to sum-
marize evidence of whether they refer to the same entity. For record pair (i, j) we
compare each field f = 1, . . . ,F by computing some similarity measure Sf (i, j),
which depends on the type of information contained by each field. For unordered
categorical fields like sex or race, Sf can simply be a binary comparison check-
ing whether the records agree in that field. For more structured fields, Sf should
be able to capture partial agreements. For example, in the case of strings such as
names or addresses, Sf should correspond to a string metric, such as the Leven-
shtein edit distance, the Jaro–Winkler score, or any other [see Bilenko et al. (2003),
Elmagarmid, Ipeirotis and Verykios (2007)]. Some of these comparisons will be
missing, since if field f is missing for a record i, then Sf (i, j) will be missing
regardless of whether field f is observed for record j .

In principle, we could define the comparison vectors using the original similar-
ity values Sf (i, j), f = 1, . . . ,F , but the direct modeling of the Sf (i, j)’s requires
customized models per type of comparison, because the outputs of these similarity
measures lie in different spaces, depending on the type of field being compared.
Instead, Sadinle (2014) followed Winkler (1990) in dividing the range of each sim-
ilarity measure Sf into Lf +1 intervals If 0, If 1, . . . , If Lf

, that represent different
levels of disagreement. In this construction we associate the interval If 0 with the
highest level of agreement, including no disagreement, and the last interval, If Lf

,
with the highest level of disagreement, which depending on the field may represent
complete or strong disagreement. For records i and j , and field f , we define

γ
f
ij = l if Sf (i, j) ∈ If l.

As the value of γ
f
ij increases, so does the disagreement between records i and

j with respect to field f . The possible values of γ
f
ij simply represent the cat-

egories of an ordinal variable. We then define the comparison vector γ ij =
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(γ 1
ij , . . . , γ

f
ij , . . . , γ F

ij ) for records i and j . Building comparison data as ordinal
categorical variables facilitates modeling since we can use a generic model for any
type of comparison, as long as its values are categorized in a meaningful way.

A number of traditional record linkage and duplicate detection approaches use
pairwise comparisons γ ij , but they output independent pairwise decisions on the
matching/coreference status of pairs of records [Fellegi and Sunter (1969), Jaro
(1989), Larsen and Rubin (2001), Winkler (1988)], which then need to be recon-
ciled in some ad-hoc manner as they may not be compatible with one another.
Sadinle (2014) modified comparison-based approaches to directly target Z rather
than pairwise matching decisions. Letting �(X) denote the comparison data for all
record pairs, the approach of Sadinle (2014) corresponds to a model P(�(X) | Z)

which along with a prior p(Z) allows us to obtain a posterior p(Z | �(X)).
The model for the comparison data �(X) presented by Sadinle (2014) assumes

that γ ij is a realization of a random vector �ij such that:

�ij | Zi = Zj
i.i.d.∼ G1; �ij | Zi �= Zj

i.i.d.∼ G0.

In this model, G1 and G0 represent the distributions of the comparison vectors
among coreferent and non-coreferent pairs, respectively.

Sadinle (2014) parameterized G1 as

(2.1) P1
(
γ obs

ij | �1
) =

F∏
f =1

[Lf −1∏
l=0

(mf l)
I (γ

f
ij =l)

(1 − mf l)
I (γ

f
ij >l)

]Iobs(γ
f
ij )

,

which is obtained under conditional independence of the comparison fields, and
ignorability of the missingness in the comparison vectors. Iobs(γ

f
ij ) indicates

whether γ
f
ij is observed, �1 = (m1, . . . ,mF ), with mf = (mf 0, . . . ,mf,Lf −1),

where mf 0 = P1(�
f
ij = 0), and mf l = P1(�

f
ij = l | �

f
ij > l − 1) for 0 < l < Lf .

A similar expression can be obtained for P0(γ
obs
ij | �0) in terms of parameters

�0 = (u1, . . . ,uF ).
The parameterization in terms of the sequential conditional probabilities mf l

facilitates prior specification. The parameter mf l = P1(�
f
ij = l | �

f
ij > l − 1) rep-

resents the probability of observing disagreement level l in the comparison f ,
among two coreferent records with disagreement larger than level l − 1. Unless
we expect field f in one of these two datafiles to be highly unreliable, we would
a priori expect each mf l to be fairly close to 1. For example, for l = 0 this is sim-

ply mf 0 = P1(�
f
ij = 0), which represents the marginal probability of disagreement

level zero, which encodes full or a high degree of agreement, and so mf 0 should be
high if the field f in these two datafiles does not contain too many errors. For l = 1,
we have mf 1 = P1(�

f
ij = 1 | �f

ij > 0), which represents the probability of observ-
ing disagreement level one in the comparison f , among coreferent record pairs
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with disagreement larger than what is captured by the level zero. If the number of
disagreement levels is greater than two, we can think of level one of disagreement
as a type of mild disagreement, meaning that if we expect the amount of error to
be relatively small, then mf 1 should be concentrated around values close to one.
As we consider other parameters mf l for levels l > 2, it is easy to see that they
should also be close to one, if field f does not contain too many errors. In general,
we can therefore think of using the priors mf l ∼ Uniform[λf l,1], for some prior
truncation points 0 < λf l < 1, such that the less accurate we believe field f is, the
lower the value for λf l . More generally, we could take truncated beta priors, but
here we focus on specifying our prior beliefs through these truncation points λf l .

It is more difficult to incorporate prior information on the probabilities uf l =
P0(�

f
ij = l | �

f
ij > l − 1), since the distribution of the disagreement levels among

non-coreferent record pairs may be quite different depending on the characteristics
of the fields. For example, a categorical field with a highly frequent category will
lead to a high probability of �

f
ij = 0 even for non-coreferent record pairs, but a

field like phone number or address will lead to small probabilities of agreement
among non-coreferent record pairs. For simplicity we therefore take each uf l ∼
Uniform(0,1).

The approach of Sadinle (2014) heavily relies on being able to reduce the set of
candidate coreferent record pairs on which vectors of comparisons are computed.
By using simple rules that can efficiently identify non-coreferent pairs we seek to
avoid comparing all the r(r −1)/2 record pairs when r is large. For example, if the
datafiles contain a categorical field deemed to be error-free, one can simply take
records disagreeing on that field as being non-coreferent. This simple approach is
known as blocking. Unfortunately, in many applications all fields may be subject
to error, and therefore we need to devise other ways of filtering non-coreferent
records. An alternative is to exploit prior knowledge on the kinds of errors that
would be unlikely for a certain field, thereby declaring as non-coreferent any
record pair that disagrees more than a predefined amount in that field. There also
exist other more sophisticated techniques to detect sets of non-coreferent pairs,
which are extensively surveyed by Christen (2012).

After this initial filtering step, the set P comprises the remaining candidate
coreferent record pairs, on which we compute comparison vectors. Using these
comparison vectors we define additional rules to fix record pairs as non-coreferent.
For instance, strong disagreements in both given and family names, or in other
combination of fields may be a robust indication of the pair being non-coreferent.
The final set of candidate coreferent pairs is C ⊆ P .

The possible coreference partitions are finally constrained to the set Z = {Z :
Zi �= Zj ,∀(i, j) /∈ C}, that is, any partition that puts together record pairs already
declared as non-coreferent is unfeasible. The approach of Sadinle (2014) relies
on Z being much smaller than the set of all possible partitions, which is why we
heavily rely on being able to obtain a small set of candidate pairs C. The compari-
son vectors of the pairs in P \ C are used in the model but fixed as non-coreferent
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pairs, that is, they never get assigned the same label in Z. The prior distribution
on Z used by Sadinle (2014) was derived from a uniform distribution on partitions
constrained to partitions consistent with Z . A simple way to obtain the flat prior
on partitions from a prior for Z is by assigning equal probability to each of the
r!/(r −n)! labelings of a partition with n groups, which leads to the prior on parti-
tion labelings p(Z) ∝ [(r −n(Z))!/r!]I (Z ∈ Z), where n(Z) measures the number
of different labels in labeling Z.

Finally, Sadinle (2014) developed a Gibbs sampler to obtain draws from the
posterior distribution of Z.

2.3. A practical comparison of Bayesian partitioning record linkage ap-
proaches. Both direct-modeling and comparison-based approaches have advan-
tages and disadvantages when compared to one another. One can argue that direct-
modeling approaches are more principled, as they directly model the records in the
datafiles/lists. Instead, comparison-based approaches merely model comparisons
between pairs of records. This advantage of direct-modeling approaches can also
be seen as a disadvantage, as the lists X may contain some combination of fields
that are difficult to directly model like family and given names, dates, addresses,
phone numbers, etc. Writing P(X | Z) requires proposing models for such fields,
which requires modeling how such information gets corrupted. Comparison-based
approaches have an advantage here, because any type of field can be used to con-
struct the comparison data, as long as the comparisons are meaningful for the fields
at hand. Therefore, models P(�(X) | Z) will often be much simpler than models
P(X | Z).

In this article we will use the comparison-based approach of Sadinle (2014),
which is better suited to the data from El Salvador. Direct-modeling approaches
currently do not handle missing data and need computational speed-ups. For exam-
ple, the approach of Steorts (2015) as implemented in the R package blink takes
8.4 hours to compute 30,000 MCMC iterations with a file of size 500 included in
the blink package, and requires around 10,000 iterations to reach convergence.
By contrast, the approach of Sadinle (2014) can take advantage of fixing obvious
non-coreferent record pairs as non-coreferent, which leads to a much faster Gibbs
sampler. With the file of size 500 included in the blink package, after fixing
record pairs with high Levenshtein distance in first or last name as non-coreferent,
we obtain 15,052 candidate coreferent pairs. 30,000 iterations of the Gibbs sam-
pler of Sadinle (2014) run in one hour, but convergence is achieved in less than
10 iterations. This comparison was done on a laptop with a processor Intel Core
i7-4900MQ.

Regardless of what approach one uses, the critical requirement needed in this ar-
ticle is that the record linkage approach provides a set of draws Z(1),Z(2), . . . ,Z(d)

from a posterior p(Z | �(X)), �(X) being the comparison data in the case of
comparison-based approaches, or from p(Z | X) in the case of direct-modeling
approaches.
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3. Population size estimation. To estimate the total number of units or indi-
viduals in a closed population, a number of techniques rely on the availability of K

incomplete lists/samples drawn from the population. The name capture–recapture
comes from applications in population ecology where the goal is to estimate ani-
mal abundance. In that context the technique consists in drawing K samples from
the population in a sequential manner while keeping track of the individuals’ in-
clusion patterns, that is, which individuals have been included in which samples
[see, e.g., Pollock (2000)]. In the context of estimating the size of human popu-
lations, the K samples often come from record systems which are not necessarily
collected in a sequential manner, but are represented by datafiles or lists contain-
ing (partially) identifying information on the individuals. In that context the term
multiple-systems estimation is often preferred [see, e.g., Bird and King (2018)].
The discussion in this article applies to capture–recapture or multiple-systems es-
timation models with sufficient statistics that depend only on the inclusion patterns
of the different individuals [e.g., Bishop, Fienberg and Holland (1975), Castledine
(1981), Fienberg (1972), Fienberg, Johnson and Junker (1999), George and Robert
(1992), Madigan and York (1997), Manrique-Vallier (2016)].

Let an inclusion pattern be represented by a vector h = (h1, . . . , hK) in {0,1}K ,
where hk = 1 indicates inclusion in the record-system k. Let nh represent the num-
ber of individuals with inclusion pattern h. The inclusion patterns’ frequencies can
be organized in a contingency table n∗ = {nh}h∈{0,1}K . Notice that we do not ob-
serve the number of individuals missed by all record-systems, that is, n00...0 is
missing, and so we let n = {nh}h∈{0,1}K\{0}K represent the observed counts. For
example, with three record-systems we denote the observed frequencies of the
different inclusion patterns as n = {n111, n011, n101, n001, n110, n010, n100}, where,
for example, n101 represents the number of individuals included in record-systems
one and three but not in record-system two.

For a given individual we can think of their inclusion pattern h as a realization of
a K-variate binary vector such that P(h | θ) = θh, with the vector θ = {θh}h∈{0,1}K
providing the probability of each inclusion pattern. Let θ(m) denote the capture
probabilities as dictated by a model m. Given that there are N = ∑

h∈{0,1}K nh

individuals in the population, under the assumption that their inclusion patterns
are independent and identically distributed, we have that the joint distribution of
the contingency table n∗ is multinomial with probability mass function

(3.1) P
(
n∗ | N, θ(m),m

) = N ! ∏
h∈{0,1}K

θh(m)nh

nh! .

Notice that since for given N and n we can obtain n00...0 = N −∑
h∈{0,1}K\{0}K nh,

we can write P(n | N, θ(m),m) = P(n∗ | N, θ(m),m).
Given a model m and a prior on the population size p(N), we are interested in

obtaining a posterior distribution

(3.2) P(N | n,m) = P(n | N,m)p(N)∑
N P (n | N,m)p(N)

,
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where

P(n | N,m) =
∫
θ(m)

P
(
n | N, θ(m),m

)
p

(
θ(m) | m)

dθ(m),(3.3)

for a prior on the model parameters p(θ(m) | m), assuming that N and θ(m) are
independent a priori.

As mentioned before, a number of approaches for population size estimation fit
into this description, but for simplicity we only describe the approach based on
decomposable graphical models of Madigan and York (1997) and the approach
based on mixture models of Manrique-Vallier (2016).

3.1. Approaches based on graphical models. It is especially convenient to
work with models and priors that allow a closed form for P(n | N,m) in (3.3).
Madigan and York (1997) present one class of graphical models that have this
characteristic. Probabilistic graphical models [see, e.g., Edwards (2000), Lauritzen
(1996)] provide a way of encoding the set of conditional independencies of a mul-
tivariate distribution into a graph. In a graphical model, each random variable is
represented by a node in a graph, and two nodes are joined by an edge if the vari-
ables are conditionally dependent given a set of other variables. In the context of
this article a graphical model captures conditional independencies between the bi-
nary variables that indicate inclusion of the individuals into the lists X1, . . . ,XK .
A graphical model m will depend on a set of parameters θ(m) that satisfy cer-
tain constraints dictated by the independencies in the graph. Madigan and York
(1997) further restrict their attention to the class of decomposable graphical mod-
els, which are characterized by their independence graph being chordal (triangu-
lated). The first two columns of Table 5 present all non-saturated graphical models
for three samples/lists, in which case all happen to be decomposable. Dawid and
Lauritzen (1993) introduced the hyper-Dirichlet distributions, which can be used
as priors for the parameters θ(m) in such models, and lead to closed formulae for
P(n | N,m). For the sake of this article, it is enough to say that the parameters of a
hyper-Dirichlet prior can be specified from thinking on a table α = {αh}h∈{0,1}K of
“prior counts” of the same size as n∗. In this document we will think of all the en-
tries of α being a constant α, in particular α = 1. Given a hyper-Dirichlet prior for
the model parameters θ(m), and if N and θ(m) are independent a priori, Madigan
and York (1997) show that

P(n | N,m) =
∫
θ(m)

P
(
n | N, θ(m),m

)
p

(
θ(m) | m)

dθ(m)

= N !∏
h∈{0,1}K nh!

�m(α + n∗)
�m(α)

,

(3.4)

where

(3.5) �m(α) =
∏L

l=1
∏

hCl
�(αhCl

)

�(
∑

h∈{0,1}K αh)Q
∏L

l=2
∏

hSl
�(αhSl

)
.
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In this expression {Cl}Ll=1 represents the set of (maximal) cliques, {Sl}Ll=2 the set
of separators (including multiplicities), and Q the number of connected com-
ponents of the independence graph of model m. For a given subset of nodes
A, hA represents an inclusion pattern constrained to the variables in A. Finally,
αhA

= ∑
h′:h′

A=hA
αh′ . [Notice that equation (3.5) appears with Q = 1 in Madigan

and York (1997), but if we do not take the number of connected components into
account then P(n | N,m) does not add up to 1.]

With the methodology of Madigan and York (1997) we can also take into ac-
count the uncertainty on the model for population size estimation as

(3.6) P(N | n) = p(N)
∑

m P (n | N,m)p(m)∑
N p(N)

∑
m P (n | N,m)p(m)

,

for a prior p(m) on a finite number of models. In this article we take p(m) to
be uniform over the class of models. For three lists, there are seven non-saturated
decomposable graphical models, and so p(m) = 1/7.

3.2. Approaches based on mixture models. An alternative model m for the
probabilities of the inclusion patterns P(h | θ(m)) = θh(m) is obtained by assum-
ing the existence of strata s = 1, . . . , S, such that inside each of them the inclu-
sion indicators are independent of each other, that is, P(h | s, θ s) = ∏K

k=1 θ
hk

sk (1 −
θsk)

1−hk , where P(hk = 1 | s, θ s) = θsk is the probability of an individual being
included in list k given that it belongs to stratum s. Each stratum has a probabil-
ity πs ,

∑S
s=1 πs = 1. The probability of the inclusion patterns under this mixture

model approach is therefore θh(m) = ∑S
s=1 πs

∏K
k=1 θ

hk

sk (1 − θsk)
1−hk , which can

then be plugged into (3.1).
Manrique-Vallier (2016) used the priors θsk ∼ Beta(1,1), and expressed each

πs = Vs

∏
t<s(1 − Vt) where each Vt ∼ Beta(1, α), t = 1, . . . , S − 1, VS = 1, and

α ∼ Gamma(0.25,0.25). This construction is known as a finite-dimensional stick-
breaking prior [Ishwaran and James (2001)] and it encourages most of the mass
to be concentrated in the initial πs ’s, which consequently makes the choice of S

irrelevant as long as it is relatively large. These priors would in principle allows us
to integrate θ(m) as in (3.3), and then obtain (3.2), but in this case these integrals
are not easily computable, which is why Manrique-Vallier (2016) developed an
MCMC algorithm to obtain posterior samples from (3.2) under this mixture model
approach. For further details on this approach see Manrique-Vallier (2016).

4. Linkage-averaged population size estimation.

4.1. Derivation of inclusion patterns. We start by explaining how to compute
the incomplete contingency table n from a given coreference partition labeling
Z. Let n be the number of different labels in Z, that is, n represents the number
of different individuals that are included in the K datafiles/lists according to the
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coreference partition represented by Z. Without loss of generality we can think of
the labels in Z to be 1, . . . , n. If this is not the case we can simply obtain an equiv-
alent labeling that uses those labels. Now, for each different label z = 1, . . . , n,
let

hzk =
{

1, if there exists a record i ∈ Xk such that Zi = z;

0, otherwise.

The vector Hk = (h1k, . . . , hnk) contains the indicators of whether each of the
n individuals is included in the kth datafile. The contingency table n is simply
obtained as a cross-classification of these K inclusion vectors. We write n(Z) to
emphasize that the contingency table n is a function of a coreference partition
represented by Z.

4.2. Linkage-averaged population size estimation. The output that we use
from the record linkage and duplicate detection stage is a posterior sample
Z(1), . . . ,Z(d) from a posterior p(Z | X) or p(Z | �(X)), as exemplified in Fig-
ure 1.

For each of these draws, we can compute the implied contingency tables con-
taining the frequencies of the inclusion patterns n(Z(1)), . . . ,n(Z(d)). For each of

FIG. 1. Illustration of posterior draws Z(1), . . . ,Z(d) obtained from a Bayesian partitioning
methodology for record linkage and duplicate detection. The draws Z(1), . . . ,Z(d) can be informally
interpreted as “plausible unique identifiers” for the individuals in the lists.
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these contingency tables, we can obtain a posterior distribution on the population
size using one of the capture–recapture models in Section 3, that is, we can obtain
p(N | n(Z(1))), . . . , p(N | n(Z(d))), or a Monte Carlo approximation of these. The
linkage-averaged posterior of N , pLA(N), defined formally in the next section, is
approximated as

(4.1) pLA(N) ≈ 1

d

d∑
t=1

p
(
N | n(

Z(t))),
when each p(N | n(Z(t))) is available in closed form, as with the methodology
of Madigan and York (1997). When this is not the case, as with the approach
of Manrique-Vallier (2016), we use a random sample N(1,t), . . . ,N(b,t) ∼ p(N |
n(Z(t))), for each t = 1, . . . , d , and use the approximation

(4.2) pLA(N) ≈ 1

db

d∑
t=1

b∑
v=1

I
(
N = N(v,t)).

The formal justification for this linkage-averaged posterior is given next.

4.3. Bayesian justification of linkage-averaging. Our strategy for incorporat-
ing linkage uncertainty into population size estimation can be derived from a
proper Bayesian analysis under two reasonable conditions.

CONDITION 1. Our beliefs on Z are represented by the posterior distribu-
tion pL(Z | X), coming from a model for record linkage and duplicate detection,
composed by a likelihood function LL(Z | X) and a prior p(Z).

For our discussion, the linkage model can be one of the ones presented in Sec-
tion 2, but we only require it to provide a proper posterior distribution on coref-
erence partitions. For simplicity we use the notation pL(Z | X) and LL(Z | X) to
represent models that either directly model the fields in the lists X or that use com-
parison data, although for the latter the notation pL(Z | �(X)) and LL(Z | �(X))

would be more appropriate, with �(X) representing the comparison data built from
the records in X.

CONDITION 2. If we knew the true value of Z, our beliefs on the population
size N would be represented by the posterior distribution pC(N | n(Z)), obtained
from a capture–recapture model composed by a likelihood function LC(N | n(Z))

and a prior p(N).

This condition simply indicates how we would obtain inferences on N if we
knew which records were coreferent. Note that the likelihood function LC(N |
n(Z)) should come from a capture–recapture model that has the frequencies of the
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inclusion patterns n(Z), or a function of them, as sufficient statistics, such as those
discussed in Section 3. In particular, notice that the capture–recapture model could
involve only a subset of the K datafiles being linked, that is, it could depend on
inclusion patterns only for a subset of the K datafiles. This scenario could arise in
cases where some of the datafiles being linked arise from collection mechanisms
that make the assumptions of the capture–recapture model seem implausible, such
as lists that target members of the population with a distinctive trait and therefore
lead to zero probability of inclusion for individuals without the trait.

Given the setup of Conditions 1 and 2, it seems natural to compute

pLA(N) ≡ EZ|X
[
pC

(
N | n(Z)

)] = ∑
Z

pC

(
N | n(Z)

)
pL(Z | X),

as a way of propagating the linkage uncertainty into population size estimation. We
refer to pLA(N) as the linkage-averaged population size posterior. Here, pLA(N)

corresponds to the expected posterior distribution of the population size, averaging
with respect to the posterior distribution of the coreference partition. This proce-
dure is intuitively appealing, pLA(N) has a clear interpretation, and we now show
that pLA(N) also corresponds to a proper posterior distribution.

In principle, if we want to draw inferences jointly on N and Z given X, we need
to specify a joint prior p(N,Z). From Condition 2, we have that the distribution
pC(N | n(Z)) would contain our belief on the population size if Z was known. Sim-
ilarly, from Condition 1 we have that the prior p(Z) contains our prior beliefs on Z.
Therefore, Conditions 1 and 2 imply the joint prior p(N,Z) = pC(N | n(Z))p(Z).

THEOREM 4.1 (Bayesian propriety of linkage-averaged population size poste-
rior). pLA(N) is the marginal posterior distribution of N under the likelihood of
the linkage model LL(Z | X) and the joint prior pC(N | n(Z))p(Z).

PROOF. The joint posterior of N and Z is p(N,Z | X) ∝ LL(Z | X)pC(N |
n(Z))p(Z), where the inverse of the proportionality constant is

∑
Z

∑
N LL(Z |

X)pC(N | n(Z))p(Z) = ∑
Z LL(Z | X)p(Z), since

∑
N pC(N | n(Z)) = 1. Given

that pL(Z | X) ∝ LL(Z | X)p(Z) with the inverse of the proportionality con-
stant being

∑
Z LL(Z | X)p(Z), we can therefore write p(N,Z | X) = pC(N |

n(Z))pL(Z | X). Then, p(N | X) = ∑
Z p(N,Z | X) = ∑

Z pC(N | n(Z))pL(Z |
X) = pLA(N). �

Furthermore, the total variability represented by pLA(N) can be decomposed as

Var(N | X) =VarZ|X
[
E(N | Z)

] + EZ|X
[
Var(N | Z)

]
,(4.3)

where the first term on the right hand side can be seen as the contribution of the
linkage uncertainty on the population size variability, and the second term summa-
rizes the variability that is intrinsic to Bayesian approaches for estimating N .

In practice, we generally will have to approximate pLA(N) and the variance
components in (4.3) using posterior draws from pL(Z | X), as explained in Sec-
tion 4.2 and equations (4.1) and (4.2).
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4.4. Linkage and capture–recapture model uncertainty. The capture–recap-
ture model used above could be, for example, an individual decomposable graphi-
cal model, as presented in Section 3.1, but it could also be the average of them as in
Madigan and York (1997), in which case pC(N | n(Z)) would be given by (3.6). In
fact, in Section 5 we present an application of our linkage-averaging strategy using
the model of Madigan and York (1997) and the Bayesian partitioning approach of
Sadinle (2014). In fact, under the methodology of Madigan and York (1997) we
can actually write the linkage-averaged posterior of N as

(4.4) pLA(N) = ∑
Z

∑
m

pC

(
N | n(Z),m

)
pC

(
m | n(Z)

)
pL(Z | X),

where m ranges over the non-saturated decomposable graphical models for the
contingency table, and

pC

(
m | n(Z)

) = p(m)
∑

N Lm(N | n(Z))p(N)∑
m

∑
N Lm(N | n(Z))p(N)p(m)

,

with Lm(N | n(Z)) = P(n(Z) | N,m) as given by (3.4). Expression (4.4) explic-
itly shows the contribution of coreference uncertainty and capture–recapture model
uncertainty on the overall population size posterior. In fact, we can decompose the
overall posterior variance as follows

Var(N | X) =VarZ|X
[
E(N | Z)

] + EZ|X
{
Varm|Z

[
E(N | Z,m)

]}
+ EZ|X

{
Em|Z

[
Var(N | Z,m)

]}
,

(4.5)

where the first term of the sum can be directly attributed to linkage uncertainty, the
second term to model uncertainty in the population size estimation stage, and the
remaining variability is intrinsic from Bayesian approaches to estimate N .

We note that in principle we could also average the models of Madigan and
York (1997) with that of Manrique-Vallier (2016), or with any other that satisfies
the conditions discussed in Section 3, but we do not pursue that here.

4.5. Implications for model exploration and data confidentiality protection.
The strategy presented here allows the linkage and the population size estima-
tion to be carried out in two separate stages, while still leading to proper Bayesian
inferences. This has important practical implications, as the linkage can be per-
formed as if it was the final goal, the population size estimation is standard given
each coreference partition, and the combination of the two stages through linkage-
averaging is simple.

Regarding model exploration, in principle an analyst would have to obtain a
new posterior p(N,Z | X) for each different capture–recapture model being con-
sidered. For example, the approaches of Tancredi and Liseo (2011) and Liseo and
Tancredi (2011) rely on a specific capture–recapture model in the case of two lists.
Under our approach, however, we can reuse the results from the linkage step to
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obtain different linkage-averaged estimates for each different capture–recapture
model. Theorem 4.1 implies that each such linkage-averaged posterior corresponds
to a proper posterior distribution. Not having to re-do the linkage for each different
capture–recapture model is certainly an important practical advantage.

Our two-stage strategy also indicates that the linkage and the population size es-
timation can be done by different analysts. This is relevant in contexts where one
needs to protect the confidentiality of the lists and the privacy of the individuals,
given that the linkage can be carried out by a small trusted team, and then the link-
age results, in the form of draws from pL(Z | X), can be transferred to subsequent
analysts without having to reveal personally identifiable information used for the
linkage.

5. Estimating mortality levels in the Salvadoran civil war. A common goal
in quantitative human rights research is to estimate the total number of civilian ca-
sualties that occurred during a war. For this purpose, multiple-systems estimation
is frequently used after different lists of casualties are combined via record linkage
techniques, but typically the linkage uncertainty is ignored. Lum, Price and Banks
(2013) provide a comprehensive review of such applications. In this section we
study a case from the civil war that the Central American republic of El Salvador
endured between 1980 and 1991. Our goal is to combine three data sources on
civilian killings that were collected by three different organizations, and then use
those results to obtain different multiple-systems estimates of the total number of
civilian killings. We focus on the region (departamento) of the capital city, San
Salvador.

5.1. Description of the datafiles. The first two datafiles that we consider con-
tain reports on civilian killings collected during the civil war. The first data source
was put in electronic form by the Los Angeles-based nongovernmental organiza-
tion El Rescate, from reports that had been published periodically during the civil
war by the project Tutela Legal of the Archdiocese of San Salvador [Howland
(2008)]. We refer to this source as El Rescate / Tutela Legal (ER-TL, 1364 records
from San Salvador). The second data source comes from the Salvadoran Human
Rights Commission (Comisión de Derechos Humanos de El Salvador—CDHES,
285 records from San Salvador), which directly collected testimonials on human
rights violations between 1979 and 1991 [Ball (2000)]. For both datafiles, the char-
acteristics of their collection make us believe that they should contain only small
amounts of duplication, if any [Sadinle (2017)].

The third datafile was collected by the United Nations Truth Commission for
El Salvador (UNTC, 440 records from San Salvador), between 1992 and 1993,
after the civil war ended [Commission on the Truth for El Salvador (1993)]. Given
that most of the reports to the UNTC refer to killings that occurred several years
before 1992, it is reasonable to expect the information in this datafile to be less
reliable compared with ER-TL and CDHES, since individuals reporting casualties
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TABLE 1
Construction of levels of disagreement for lists from El Salvador

Levels of disagreement

Field Similarity measure 0 1 2 3

Given name Normalized Levenshteina 0 (0,0.25] (0.25,0.5] (0.5,1]
Family name Normalized Levenshteina 0 (0,0.25] (0.25,0.5] (0.5,1]
Year of death Absolute difference 0 1 2–3 4+
Month of death Absolute difference 0 1 2–3 4+
Day of death Absolute difference 0 1–2 3–7 8+
Place of death Binary comparison Agree Disagree

aModification of Sadinle (2014) to account for Hispanic naming conventions.

might not have had accurate recollections of the time and place of the events.
Nontrivial duplicates arise in this datafile from reports of multiple family members
and acquaintances of a single victim.

5.2. Record linkage and duplicate detection.

5.2.1. Datafile standardization, filtering non-coreferent pairs, and comparison
data. The three datafiles used in this section have the following fields in common:
given and family names, date and place/municipality of death. Our standardization
of names and construction of comparison data are as described in the application
of Sadinle (2014). Table 1 summarizes the construction of levels of disagreement.
Since the datafiles are small enough, we computed comparison data for all

(2089
2

) =
2,180,916 record pairs (the set P). We then formed the set C of candidate coref-
erent pairs by fixing as non-coreferent all the pairs that have disagreement level
three in either given name or family name. This leads to only |C| = 699 candidate
pairs, which involve only 775 records.

5.2.2. Prior specification. We followed the general guidelines presented in
Section 2.2 and used uniform priors on [0,1] for all the uf l parameters. For the
mf l parameters, we used flat priors in the intervals [λf l,1] for the truncation points
given in Table 2. These priors indicate our belief that coreferent pairs are very
likely to have exact agreements, although we still expect a considerable amount of
error in the fields. Finally, the prior for the field day of death has low truncation
points in general, since we believe this field to be unreliable.

5.2.3. Gibbs sampler implementation. We ran 10,000 iterations of the Gibbs
sampler of Sadinle (2014). The runtime using an implementation in R with parts
written in C language was of 35 seconds on a laptop with a processor Intel Core
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TABLE 2
Prior truncation points λf l for the mf l parameters in the joint duplicate detection and record

linkage for three datafiles from El Salvador

Name Date of death

l Given Family Year Month Day Municipality

0 0.95 0.95 0.90 0.80 0.70 0.80
1 0.99 0.99 0.95 0.90 0.70 –
2 0.99 0.99 0.99 0.99 0.70 –

i7-4900MQ. Convergence of the chain was checked using functions of the par-
titions. We found the number of killings reported 1, 2, and 3 times according to
each partition in the chain. The traceplots of these chains (not shown here) in-
dicate that they seem to have converged rather quickly, and their autocorrelation
functions indicate that there are not large autocorrelations in the chain. Similar
results were obtained when we explored the number of different killings in the
datafiles according to the partitions in the chain. Based on these diagnostics we
discarded the first 1000 iterations and kept one draw each five iterations. After this
thinning, the autocorrelation plots (not shown here) did not suggest the existence
of remaining autocorrelations of any order. For each of the previously explored
chains we also computed Geweke’s convergence diagnostic as implemented in the
R package coda [Plummer et al. (2006)]. The Geweke’s Z-scores indicated that
it is reasonable to treat these chains as drawn from their stationary distributions.
We also explored the marginal probabilities that pairs of records are coreferent for
the pairs in the set C of candidate pairs. For each pair in C, and for each partition
in the chain, we checked whether the pair appeared together in the partition. For
each of these binary chains we computed Geweke’s convergence diagnostic, and
we found that all the Z-scores range around the usual values of a standard normal
random variable, which indicates that it is reasonable to assume that these chains
were obtained from their stationary distributions.

5.3. Linkage-averaged posterior estimates of the total number of killings. The
draws from the posterior of the coreference partition can be directly used to obtain
inferences on different quantities of interest. For example, computing the size of
each partition gives us posterior draws of the number of different reported killings,
which in this case lead to a 99% credible interval of [1892, 1906], and a posterior
mean of 1900. This can be seen as an estimated lower bound on the total number of
killings. In Table 3 we also present the marginal posterior distribution of number
of killings following each of the different inclusion patterns, n111, . . . , n100. The
remainder of the section is devoted to using the posterior draws of the coreference
partition to derive estimates of the total number of killings using different capture–
recapture models.
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TABLE 3
Marginal posterior distributions of the frequencies of inclusion patterns

In UNTC Out UNTC

ER-TL In CDHES Out CDHES In CDHES Out CDHES

In

Out −

5.3.1. Two-sample estimates. In Section 4 we mentioned that the subsequent
capture–recapture model does not necessarily have to use all the lists combined in
the linkage step. For example, the linkage step may have included datafiles whose
collection make the assumptions in the capture–recapture model implausible. An
example in the context of our application would be a list of the victims that be-
longed to a given organization; in that case, nonmembers of the organization would
have zero probability of being included in the list, by definition.

In this section, we use the results of the linkage step to derive estimates of
the population size based only on the inclusion patterns for pairs of lists. For ex-
ample, using only the first two data sources to estimate the population size, we
need to compute n11+(Z) = n110(Z) + n111(Z), n10+(Z) = n100(Z) + n101(Z),
and n01+(Z) = n010(Z)+ n011(Z), for each coreference partition labeling Z in the
posterior sample from the linkage step, and use these as sufficient statistics for the
capture–recapture model. This modeling approach does not take advantage of the
additional piece of information n001(Z). With only two sources, we are limited
to the capture–recapture model that assumes independence of the inclusion of the
victims in the data sources, as the counts n11+, n10+, and n01+ do not contain
enough information to estimate this dependence. A possible alternative would be
to pre-specify a degree of dependence between the sources, for example as dis-
cussed in Ericksen, Kadane and Tukey (1989), but we do not pursue that avenue
here. In the model of independence, the modeling approach of Madigan and York
(1997) corresponds to the approach of Castledine (1981).

In Table 4 we present summaries of each linkage-averaged posterior of N ob-
tained using the different possible pairs of datafiles for the estimation of the pop-
ulation size N . The fifth column in that table shows the percentage contribution
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TABLE 4
Linkage-averaging for two-sample estimates of N . N̂ : expected value computed from pLA(N). CI:

credible interval. The plots in the second column have the same horizontal and vertical scales

Linkage-averaging

Lists pLA(N) N̂ 99% CI Linkage var.

ER-TL, CDHES 7852 [5613, 11,367] 5.06%

ER-TL, UNTC 15,082 [10,156, 23,218] 6.68%

CDHES, UNTC 5253 [3212, 9113] 2.74%

of the linkage variability towards the overall posterior variability of the population
size, derived from (4.3). For some of the models this contribution can be quite
small, meaning that in such cases obtaining a posterior estimate of the inclusion
patterns’ frequencies and fixing those to estimate N would lead to similar infer-
ences compared with those from linkage-averaging. However, we only obtain this
information after we compute the variance decomposition in (4.3).

5.3.2. Three-sample estimates from individual graphical models. We now ob-
tain estimates of N based on each of the individual graphical models presented in
Section 3.1. Fixing one such model to estimate N could arise in a context where
one can conjecture the dependence graph based on domain knowledge, such as
knowledge of collaboration, affinity, or antagonism between institutions collecting
the data.

We summarize the linkage-averaged posteriors obtained using each individual
graphical model in Table 5. Similarly as for the two-sample estimates, we can see
that the relative contribution of the linkage uncertainty towards the posterior un-
certainty around N can be quite small, meaning that the importance of accounting
for linkage uncertainty ends up depending on the specific model. Unfortunately,
there does not seem to be a way to tell in advance if the linkage uncertainty is
going to have a big impact on the estimation of N .

5.3.3. Three-sample estimates from Madigan and York (1997). We now use
the Bayesian model averaging approach of Madigan and York (1997) to esti-
mate N . For each coreference partition Z(1), . . . ,Z(d), we can compute the joint
posterior probability of the graphical model m and the population size N , p(m,N |
X,Z(t)), which we can use to derive p(N | X,Z(t)). The gray lines in the first
panel of Figure 2 represent each p(N | X,Z(t)) for t = 1, . . . ,100, and the black
line represents the linkage-averaged posterior of N . The posteriors of the number
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TABLE 5
Summaries of linkage-averaging for three-sample population size estimates using individual

graphical models. N̂ : expected value computed from pLA(N). CI: credible interval. The plots in the
third column have the same horizontal and vertical scales. The data sources are 1: ER-TL, 2:

CDHES, 3: UNTC

Graphical model Linkage-averaging

Notation Graph pLA(N) N̂ 99% CI Linkage var.

[1][2][3] 1 2

3
10,041 [7967, 12,847] 4.84%

[1,2][3] 1 2

3
11,986 [8743, 16881] 5.02%

[1,3][2] 1 2

3
7331 [5588, 9881] 3.53%

[1][2,3] 1 2

3
11,339 [8702, 15061] 5.45%

[1,2][1,3] 1 2

3
6637 [4319, 11512] 3.75%

[1,2][2,3] 1 2

3
16,466 [10800, 26043] 7.09%

[1,3][2,3] 1 2

3
8380 [5989, 12233] 4.07%

of killings derived from the individual draws Z(1), . . . ,Z(100) are somewhat sim-
ilar to each other, which indicates a small contribution of the linkage uncertainty
towards the overall posterior variability of N . According to the variance decom-
position in (4.5), in this case 12% of the posterior variability is due to uncertainty
in duplicate detection and record linkage.

The second panel in Figure 2 shows the linkage-averaged posterior of N along
with pLA(m,N | X), obtained from averaging p(m,N | X,Z(t)) over the posterior
draws Z(1), . . . ,Z(100), for the three models m that have linkage-averaged posterior
probabilities pLA(m | X) > 0.05. Denoting 1: ER-TL, 2: CDHES, and 3: UNTC,
we find that the posteriors of N under the models [1, 3][2], [1, 2][2, 3], and [1,
3][2, 3] are concentrated around different values of N , which greatly increases
the posterior variability of N . In fact, the variance decomposition in (4.5) tells us
that in this case 77% of the posterior variability of N is due to uncertainty on the
graphical model for population size estimation. This seems to indicate that as long
as we have a good estimate of the contingency table of inclusion patterns, ignoring
the linkage uncertainty in the population size estimation would not be too harmful,
at least for this application. The linkage-averaging approach leads to a posterior
mean of 13,432, and a 99% credible interval of [5627, 25,404].

5.3.4. Three-sample estimates from Manrique-Vallier (2016). Linkage-avera-
ging for population size estimation can be used with any Bayesian partitioning ap-
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FIG. 2. Posterior of the number of civilian killings averaging over the seven graphical models for
population size estimation and over the uncertainty from record linkage and duplicate detection. The
data sources are 1: ER-TL, 2: CDHES, 3: UNTC.

proach to record linkage and duplicate detection, and any model for population size
estimation that depends only on the capture histories’ frequencies of the individ-
uals in the lists. We now use the linkage results described in Section 5.2 obtained
from the approach of Sadinle (2014), along with the population size methodology
of Manrique-Vallier (2016).

For each of 100 draws Z(1), . . . ,Z(100), we obtained an MCMC sample
N(1,t), . . . ,N(20,000,t) ∼ p(N | n(Z(t))), t = 1, . . . ,100, from the posterior ob-
tained under the model of Manrique-Vallier (2016) using the MCMC implemen-
tation of the R package LCMCR. We then used the approximation (4.2) of the
linkage-averaged posterior of N . Figure 3 presents an approximation of each of
p(N | n(Z(t))), t = 1, . . . ,100, and the approximate linkage-averaged posterior of
N , pLA(N | X). Under this approach we obtain a posterior 99% credible interval
of [4922, 31,429] and a posterior mean of 13,924. The contribution of the linkage
uncertainty to the overall posterior variability is estimated at only 6.3%.

5.3.5. Estimates using mixture-model approach to record linkage. We finally
present the results obtained using a more traditional mixture model approach
to record linkage [e.g., Elmagarmid, Ipeirotis and Verykios (2007), Fellegi and
Sunter (1969), Herzog, Scheuren and Winkler (2009), Jaro (1989), Larsen and
Rubin (2001), Winkler (1988)]. Such models output independent pairwise corefer-
ence decisions. We implemented a mixture model version of the model of Sadinle
(2014) as presented in Section 5.2. This approach classifies the record pairs in C
into coreferent and non-coreferent pairs. The mixture model is obtained by ignor-
ing that the match status of a record pair is given by Mij = I (Zi = Zj), and simply
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FIG. 3. Black line: linkage-averaged posterior of the number of civilian killings in the region of
San Salvador using the population size estimation methodology of Manrique Manrique16. Gray
lines: individual posteriors of the number of killings given each coreference partition labeling Z(t),
t = 1, . . . ,100.

taking Mij | p
i.i.d.∼ Bernoulli(p), i < j . We used Bayesian estimation of this mix-

ture model employing the same priors for the mf l and uf l parameters as in the
application to the Salvadoran lists, and p ∼ Uniform(0,1). From running a Gibbs
sampler for 10,000 iterations, we obtained a posterior sample of {Mij }(i,j)∈C .

To obtain groups of coreferent records we used transitive closure. In the mixture
model explained above, for each iteration of the Gibbs sampler we obtain a draw
of {Mij }(i,j)∈C . For each of these iterations we apply transitive closure by setting
Mjj ′ = 1 if Mij = Mij ′ = 1 for any record i. The number of nontransitive triplets
(i, j, j ′), where only two of Mij , Mij ′ , Mjj ′ equal to 1, varies between 84 and 156
across the Gibbs iterations, which is not surprising given that this model treats the
Mij ’s as independent. Using transitive closure we obtain an ad-hoc constructed
distribution of partitions of the records which we can use to implement an ad-hoc
version of the linkage-averaged estimate of N . We then proceeded to compute
a linkage-averaged posterior using the models of Madigan and York (1997) and
Manrique-Vallier (2016), which lead to posterior means of 15,636 and 14,999, and
99% credible intervals of [6389, 25,532] and [5806, 35,326], respectively. In this
case the ad-hoc mixture model for record linkage leads to similar results as those
obtained using the method of Sadinle (2014). This can be explained from the fact
that both models are essentially the same, with the exception that one samples
pairwise matching statuses and the other samples coreference partitions. Also, the
graph induced by the set of candidate coreferent pairs C is quite sparse and broken
into many small connected components, which constrains the clustering effect of
transitive closure. Transitive closure can only group records in the same connected
component obtained from C.
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5.4. Discussion. We presented linkage-averaged estimates under individual
graphical models, and linkage-averaged two-sample estimates under independence
of the list inclusion indicators. These approaches lead to widely different estimates,
but we simply presented them to illustrate the possibilities of linkage-averaging.
The linkage-averaged estimates obtained under the models of Madigan and York
(1997) and Manrique-Vallier (2016) are more plausible, as they each take into ac-
count the uncertainty on the correct model for population size estimation.

While the same linkage results, in the form of posterior draws of the coreference
partition, were used for obtaining all linkage-averaged estimates, the percentage
contribution of the linkage uncertainty on the overall uncertainty of N varies with
the capture–recapture model. For some of these approaches the contribution from
the linkage is rather small, but we can only measure this after we have computed
the linkage-averaged estimates.

The linkage-averaged posteriors using the models of Madigan and York (1997)
and Manrique-Vallier (2016) lead to roughly the same point estimates: 13,432 and
13,924 civilian killings, respectively, in the region of San Salvador during the Sal-
vadoran civil war. The linkage-averaged posteriors themselves, however, disagree
in the tails. The disagreement on the right tail can be explained to some extent
when we consider that the prior for N used with the approach of Madigan and
York (1997) was truncated at 30,000, whereas we did not use this truncation with
the approach of Manrique-Vallier (2016) as the implementation of the R package
LCMCR does not allow it. The results using Madigan and York (1997) can therefore
be seen as somewhat conservative.

6. Conclusions. We presented a linkage-averaging approach to incorporate
linkage uncertainty into models for population size estimation. We used Bayesian
partitioning approaches for record linkage which provide posterior distributions
on the coreference partition of the records coming from all the data sources. The
models for population size estimation covered by our approach are those whose
sufficient statistics are functions of the coreference partition alone. Under these
conditions, linkage-averaging is proper in the sense that it can be derived from a
proper Bayesian analysis that combines the record linkage and population size es-
timation models. It is important to note, however, that the success of this approach
is determined by the success of its components. For example, if the record linkage
model over-links or under-links, then the population size estimates will be lower or
higher, respectively, with respect to what we would obtain under the correct link-
age. Similarly, if the model for population size estimation is wrong, our estimates
will be deficient regardless of the amount of uncertainty from the linkage stage.

The class of capture–recapture models considered here is somewhat restrictive
given that, for example, they do not allow us to incorporate information on co-
variates that may influence capture probabilities. Traditionally, a simple way of
dealing with heterogeneous inclusion probabilities in multiple-systems estimation
is to stratify by characteristics that influence the inclusion probabilities, such as
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space and/or time. To use linkage-averaging to produce population size estimates
per stratum (say, year × region) we would have to assume that the stratifying vari-
ables are recorded without error, which might be unreasonable in the context of
the datafiles from El Salvador. For example, suppose two records that disagree in
the stratum where they belong are coreferent according to a coreference partition.
Our current methodology does not offer a way of allocating this individual to a
unique stratum, nor a way to deal with the uncertainty on where it should be allo-
cated. However, if the stratifying variables can also be used as blocking variables
in the linkage step, then the linkage-averaging approach enjoys Bayesian propri-
ety within each stratum. In this sense, approaches such as those of Steorts, Hall
and Fienberg (2016), Tancredi and Liseo (2011), and Liseo and Tancredi (2011)
that directly model the information in the datafiles seem promising, given that they
explicitly allow us to estimate the latent true values of the individuals in the files.

We also presented an application to the combination of three lists on civilian
killings from the civil war of El Salvador. In this case, the intrinsic variability
of Bayesian population size estimation is much larger than the uncertainty com-
ing from the linkage stage, but this might be different in other applications. Our
analyses of the lists from El Salvador indicate that the number of civilian killings
during the Salvadoran civil war in the region of San Salvador is most likely to be
around 13,000–14,000, but the variability in these estimates is quite large, leading
to a posterior 99% credible interval of [4922, 31,429], according to the linkage-
averaged estimates obtained using the methodology of Manrique-Vallier (2016).
Unfortunately, we do not have a way of validating these results, as there does not
even exist ground truth for validating the linkage of these datafiles.
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