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ON THE USE OF BOOTSTRAP WITH VARIATIONAL INFERENCE:
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University of Washington

Variational inference is a general approach for approximating complex
density functions, such as those arising in latent variable models, popular in
machine learning. It has been applied to approximate the maximum likeli-
hood estimator and to carry out Bayesian inference, however, quantification
of uncertainty with variational inference remains challenging from both the-
oretical and practical perspectives. This paper is concerned with developing
uncertainty measures for variational inference by using bootstrap procedures.
We first develop two general bootstrap approaches for assessing the uncer-
tainty of a variational estimate and the study the underlying bootstrap the-
ory in both fixed- and increasing-dimension settings. We then use the boot-
strap approach and our theoretical results in the context of mixed membership
modeling with multivariate binary data on functional disability from the Na-
tional Long Term Care Survey. We carry out a two-sample approach to test
for changes in the repeated measures of functional disability for the subset of
individuals present in 1989 and 1994 waves.

1. Introduction. Variational inference [Jordan et al. (1999), Wainright and
Jordan (2008)] is a method to approximate complex density functions [Blei, Ku-
cukelbir and McAuliffe (2017)] which has been applied to various statistical mod-
els such as factor analysis [Ghahramani and Beal (2000), Khan et al. (2010),
Klami et al. (2015)], stochastic block models [Celisse, Daudin and Pierre (2012),
Latouche, Birmelé and Ambroise (2012), Bickel et al. (2013)], latent Dirichlet
allocation [Blei and Jordan (2006), Blei, Ng and Jordan (2003)], and Gaussian
processes [Damianou, Titsias and Lawrence (2011, 2016)].

Variational inference can be used to approximate a posterior distribution as an
alternative to Markov Chain Monte Carlo (MCMC), when a sampling procedure
would be prohibitively slow or require immense human effort to tune, or to ap-
proximate a maximum likelihood estimator (MLE), when computation with the
specified likelihood is intractable. In particular, when the model involves a latent
structure such as a mixed membership model [Airoldi et al. (2005, 2008), Wang,
Matsueda and Erosheva (2017)] or a mixed effect model [Hall, Ormerod and Wand
(2011a), Westling and McCormick (2015)], finding the MLE may be very chal-
lenging and variational inference provides a fast way to obtain an estimate of the
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parameter. The estimator from variational inference is called the variational esti-
mator.

Recently, the asymptotic distribution of point estimates resulting from vari-
ational inference was investigated in Bickel et al. (2013), Hall et al. (2011b),
Westling and McCormick (2015) and Wang and Blei (2017) analyze variational
inference under a Bayesian framework. When a consistent estimator of the asymp-
totic variance is available, practitioners can analyze the uncertainty of the varia-
tional estimate and draw scientific conclusions by constructing confidence inter-
vals (CI) for the parameters of interest [Hall et al. (2011b), Westling and Mc-
Cormick (2015)].

However, constructing a CI using the asymptotic distribution fails if we do not
have a consistent estimator of the variance of the variational estimator. To over-
come this problem, we consider using bootstrap methods implemented in Bickel
et al. (2013) and Wang, Matsueda and Erosheva (2017). The bootstrap approach
does not require a consistent variance estimator to be available, and, in some cases,
leads to a CI with a higher-order coverage [Hall (1992)]. Despite the fact that the
bootstrap method has already been used with variational estimation [Wang, Mat-
sueda and Erosheva (2017)], the underlying bootstrap theory for variational infer-
ence does not exist.

In this paper, we investigate the validity of using a bootstrap approach where
variational inference is used to approximate an MLE. We construct a confidence
interval (CI) in the usual fixed dimensional case, where both the dimensionality
of the parameter and the number of latent variables are fixed, as well as in the
increasing dimensional case. An example of the latter situation may come from an
item response theory model where the latent dimensionality may increase when the
number of questions per individual is increasing. Haberman (1977) and Douglas
(1997) have analyzed a situation where the number of questions (dimension) and
the number of participants (sample size) increase jointly.

This paper has been motivated by the general need—as opposed to one specific
substantive problem or a specific application area—to provide statisticians, com-
puter scientists, and data scientists with the theory and tools for using the boot-
strap for variational inference. We use two sets of functional disability measures
obtained five years apart from the National Long Term Care Survey (NLTCS) to
illustrate the bootstrap approach on a two-sample test, a setting where we find the
variational inference to be particularly appropriate. However, a complete develop-
ment of a substantive application is beyond the scope of this paper.

Outline. We briefly review variational inference in Section 2. In Section 3,
we discuss how to apply the bootstrap to variational inference. We then develop
asymptotic normality and bootstrap theory in Section 4. In Section 5, we illustrate
the bootstrap approach with a two-sample test using functional disability data from
the NLTCS. Finally, we discuss related topics and the link to Stephen E. Fienberg
in Section 6.
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2. Variational inference. We consider the variational inference in the con-
text of a latent variable model. Assume our data consists of n individuals and J

variables (e.g., survey questions or test problems) and forms a random sample of
X1, . . . ,Xn ∈ RJ that are IID from a distribution function P0. We assume that there
exists K latent features for each individual that are denoted as Z1, . . . ,Zn ∈ RK .
This setup is quite general—in a mixed membership model, Zi is the vector of
mixed membership indicator; in a random effect model, Zi is the random effect; in
a stochastic block model, Zi is the community indicator (and Xi = {0,1}n denotes
the edge connected to the ith observation).

We assume a parametric model on the distribution function P0 such that the joint
distribution of (Xi,Zi) has a parametric form P(x, z; θ), where θ ∈ � ⊂ Rd is the
parameter of interest. When the latent feature vector Zi is known, the likelihood
of ith observation is

L(θ |Xi,Zi) = P(Xi,Zi; θ).

Analogously to Neyman and Scott (1948), we regard the latent feature vectors
Z1, . . . ,Zn as incidental parameters and the population parameter θ as structural
parameters.

In reality, we do not know the latent vectors so the observed log-likelihood
function is

(1) �(θ |X ) = logL(θ |Xi) = log
∫

P(Xi,Zi; θ) dZi.

Often, we are interested in using the maximum likelihood estimator

θ̂MLE = arg max
θ

n∑
i=1

�(θ |Xi).

However, maximizing or even calculating the marginal likelihood can often be
computationally intractable. Thus, variational estimators provide an alternative,
computationally feasible estimator to the MLE. The variational estimator is con-
structed as follows. We first pick a family of distributions —the variational distri-
bution family—for the latent variable Zi . Let Q(z;ω) be the variational distribu-
tion family indexed by the variational parameter ω ∈ � ⊂ Rs , which is a nuisance
parameter in our model. Note that we allow each Zi has its own variational pa-
rameter; namely, ω = ωi . Using Jensen’s inequality, the log-likelihood function
satisfies

�(θ |Xi) = log
∫

P(Xi,Zi; θ) dZi

= log
∫

P(Xi,Zi; θ)

Q(Zi;ωi)
Q(Zi;ωi) dZi

= logEZi∼Q

(
P(Xi,Zi; θ)

Q(Zi;ωi)

∣∣∣Xi

)
(2)
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≥ EZi∼Q

(
logP(Xi,Zi; θ)|Xi

) −EZi∼Q

(
logQ(Zi;ωi)

)
= ELBO(θ,ωi |Xi),

where EZi∼Qi
means that the expectation is taken over variable Zi and the under-

lying distribution is Q(·;ωi). We call the expression on the right hand side of the
inequality the evidence lower bound (ELBO).

Instead of maximizing the log-likelihood function, the variational framework
maximizes the ELBO, leading to

(3) θ̂ELBO, ω̂ELBO,1, . . . , ω̂ELBO,n = arg max
θ,ω1,...,ωn

n∑
i=1

ELBO(θ,ωi |Xi).

Because ωi in the above maximizing criterion is only involved in ELBO(θ,ωi |Xi)

when θ is fixed, the first element θ̂ELBO is equivalent to the maximizer of the
following criterion:

(4)

θ̂ELBO = arg max
θ

n∑
i=1

ELBO
(
θ,ωmax

(
θ |Xi

)|Xi

)

= arg max
θ

n∑
i=1

E(θ |Xi),

where ωmax(θ |Xi) = arg maxωi
ELBO(θ,ωi |Xi). The quantity θ̂ELBO, is called the

ELBO estimator or the variational estimator.
Because the ELBO estimator comes from optimizing

∑n
i=1 E(θ |Xi), it is an

estimator of

(5) θELBO = arg max
θ

E
(
E(θ |X1)

)
.

Note that the expectation in the above expression is for the random variable X1 and
is taken with respect to the data-generating distribution P0. The quantity θELBO
defines the population quantity that the variational inference (ELBO estimator)
is estimating. Note that θELBO depends on the variational distribution Q and is
often different from the population version of θMLE = arg maxθE(�(θ |X1)). Thus,
variational inference can be thought of as an intentional model misspecification
even if the original parametric model is correctly specified. We will argue in the
next section that despite the misspecification, variational inference is still a useful
procedure for making statistical inference.

REMARK 1. When the parametric model is correctly specified (i.e., there ex-
ists θ0 ∈ � such that P0 = Pθ0 ), the variational estimator may recover the correct
model with θELBO = θ0 in some special cases. For concrete examples, we refer
the readers to Hall et al. (2011b) and Bickel et al. (2013) where they illustrated
this possibility in a single predictor Poisson mixed model and a stochastic block
model.
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2.1. Further considerations for using variational inference in practice. As de-
scribed in the previous section, the distribution based on the variational estimator
P

θ̂ELBO
may not converge to the true data-generating distribution function even

when the model is correctly specified. Despite this drawback, variational inference
can be a useful procedure for inference for the following reasons.

• Likelihood formulation as a working model. As George Box has said “Essen-
tially, all models are wrong, but some are useful” [Box (1976)]. A proposed
model is almost always misspecified. When using a parametric model to ana-
lyze the data, we do not claim that the parametric model describes the actual
data-generating distribution. Instead, a working model and parameter estimates
help us to learn various aspects about the data at hand. To carry this reasoning
further, the ML procedure and the variational inference procedure are just differ-
ent principles of fitting parameters to the data. When the model is misspecified,
both the MLE and the variational estimator are best approximation estimators
under different criteria of measuring the quality of approximation. Figure 1 pro-
vides a diagram illustrating the case where the likelihood model does not include
the true data-generating distribution.

• Two-sample test. The variational inference procedure is a useful procedure for
two-sample test. Given two sets of data X1, . . . ,Xn ∼ PX and Y1, . . . , Ym ∼ PY ,
the goal of a two-sample test is to test

H0 : PX = PY .

Using the equation (5), H0 implies that

θELBO,X = θELBO,Y ,

FIG. 1. An illustration for the relations of P0, PθMLE , and PθELBO when a latent variable model
is used and the model is not correctly specified. In this case, the distribution corresponding to the
population MLE is just the distribution in the parametric family that minimizes the KL-divergence to
the true distribution function. So PθMLE can be viewed as a projection from P0 onto the parametric
family. However, if the MLE is computationally intractable, we can still specify a tractable varia-
tional estimator and the corresponding variational distribution, PθELBO , can be viewed as another
projection from P0.
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where θELBO,X and θELBO,Y are the maximizer of equation (5) assuming the ex-
pectation is taken over PX and PY . Thus, when applied to a two-sample test,
variational inference is as valid of an approach as ML inference. In a sense, one
can interpret the tests following either approach, variational or ML, as infer-
ences based on different projections of the distributions PX , PY onto the same
parameter space.

3. Bootstrapping the variational estimator. We use the bootstrap [Efron
(1982a, 1982b)] to evaluate the uncertainty of the variational estimator and con-
struct CIs. We focus on the empirical bootstrap—also known as classical, non-
parametric, or Efron’s bootstrap—where one samples with replacement from the
original dataset, recomputes the ELBO estimator for each bootstrap sample, and
uses the distribution of these bootstrapped ELBO estimators to derive uncertainty
measures. We illustrate estimation of the error of θ̂ELBO and construction of the CIs
using the bootstrap. There are many bootstrap CIs [see, e.g., Hall (1992)]. Here,
we will focus on two common approaches: the percentile method and the (studen-
tized) pivotal method. Note that constructing a CI using the percentile approach
has been implemented in Wang, Matsueda and Erosheva (2017).

The bootstrap approach to estimating uncertainty is very general. The bootstrap
percentile approach can be used even when the asymptotic covariance matrix is
not available (e.g., difficult to estimate). When the asymptotic covariance matrix
of θ̂ELBO is known and can be consistently estimated (say using a sandwich estima-
tor), the bootstrap pivotal method may produce CIs with a higher order coverage
than those based on the asymptotic normality [Babu and Singh (1983), Horowitz
(1997), Singh (1981)].

More formally, let X∗
1, . . . ,X∗

n be a bootstrap sample from the original sample
X = {X1, . . . ,Xn}. Given the bootstrap sample, we compute the bootstrap ELBO
estimator

(6) θ̂∗
ELBO = arg max

θ

n∑
i=1

E
(
θ |X∗

i

)
.

Repeating the bootstrap procedure B times, we obtain B bootstrap ELBO estima-
tors:

θ̂
∗(1)
ELBO, . . . , θ̂

∗(B)
ELBO.

We will use these bootstrap ELBO estimators to assess the uncertainty of the orig-
inal ELBO estimator.

Note that one may also use the jackknife and weighted bootstrap [O’Hagan,
Murphy and Gormley (2015)] to generate bootstrap sample. In particular, when
analyzing a network data where each Xi corresponds to the edges of ith vertex,
the empirical bootstrap cannot be applied but the weighted bootstrap (and the para-
metric bootstrap; see Remark 2) is still applicable.
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3.1. Estimating the variance. The bootstrap approach can be applied to esti-
mate the variance of the ELBO estimator. Assume that we focus on the �th param-
eter θ�. The variance of θ̂ELBO,� can be estimated using the sample variance of the
bootstrapped variational estimators

(7) V̂ar(θ̂ELBO,�) = 1

B

B∑
j=1

(
θ̂

∗(j)
ELBO,� − θ̄∗

ELBO,�

)2
, θ̄∗

ELBO,� = 1

B

B∑
j=1

θ̂
∗(j)
ELBO,�.

Figure 2 provides a diagram summarizing the procedure.
The intuition behind equation (7) is that the bootstrap distribution of the esti-

mators θ̂
∗(1)
ELBO, . . . , θ̂

∗(B)
ELBO behaves as if new realizations of the original estimator

θ̂ELBO are drawn. Thus, the variance of the bootstrap estimators would be an ap-
proximation to the variance of θ̂ELBO.

3.2. Confidence interval: Percentile approach. The bootstrap approach en-
ables us to construct CIs for the parameters of interest. We first introduce a simple
approach called the percentile (quantile) approach, which is based on the percentile
of the distribution of the bootstrap variational estimators. Assume again we focus
on the �th parameter. Given a confidence level α, let ŝ�,α denotes the α-quantile of
the bootstrap ELBO estimators

ŝ�,α = Ĝ−1
� (1 − α), Ĝ�(t) = 1

B

B∑
j=1

I
(
θ̂

∗(j)
ELBO,� − θ̂ELBO,� ≤ t

)
.

Then a (1 − α) CI of the �th parameter is

(8) Cn,α,� = [θ̂ELBO,� + ŝ�,α/2, θ̂ELBO,� + ŝ�,1−α/2].
Figure 3 summarizes the steps in computing a bootstrap percentile CI.

BOOTSTRAP VARIANCE ESTIMATOR.
1. Find the variational estimator θ̂ELBO using X1, . . . ,Xn.
2. For j = 1, . . . ,B , do the following task:

(a) Sample with replacement from X1, . . . ,Xn to obtain X
∗(j)
1 , . . . ,X

∗(j)
n .

(b) Compute the variational estimator θ̂
∗(j)
ELBO using X

∗(j)
1 , . . . ,X

∗(j)
n .

3. For the �th parameter, compute its variance estimator using

V̂ar(θ̂ELBO,�) = 1

B

B∑
j=1

(
θ̂

∗(j)
ELBO,� − θ̄∗

ELBO,�

)2
, θ̄∗

ELBO,� = 1

B

B∑
j=1

θ̂
∗(j)
ELBO,�.

FIG. 2. Bootstrap variance estimator.
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CONFIDENCE INTERVAL BY THE BOOTSTRAP PERCENTILE APPROACH.
1. Find the variational estimator θ̂ELBO using X1, . . . ,Xn.
2. For j = 1, . . . ,B , do the following task:

(a) Sample with replacement from X1, . . . ,Xn to obtain X
∗(j)
1 , . . . ,X

∗(j)
n .

(b) Compute the variational estimator θ̂
∗(j)
ELBO using X

∗(j)
1 , . . . ,X

∗(j)
n .

3. For each parameter, say θ�, compute ŝ�,α/2 and ŝ�,1−α/2 from

ŝ�,γ = Ĝ−1
� (1 − γ ), Ĝ�(t) = 1

B

B∑
j=1

I
(
θ̂

∗(j)
ELBO,� − θ̂ELBO,� ≤ t

)
.

4. Form the confidence interval:

Cn,α,� = [θ̂ELBO,� + ŝ�,α/2, θ̂ELBO,� + ŝ�,1−α/2].

FIG. 3. Confidence interval by the bootstrap percentile approach.

Equation (8) presents a CI that uses the percentile of the bootstrap distribution
of the ELBO estimator. This CI is based on the following approximation:

(9) P
(
θ̂∗

ELBO,� − θ̂ELBO,� < t |X1, . . . ,Xn

) ≈ P(θ̂ELBO,� − θELBO,� < t).

Namely, the CDF of the difference between ELBO estimator and the truth
θ̂ELBO,� − θELBO,� can be approximated by the CDF of the bootstrapped differ-
ences. Thus, Ĝ� approximates the distribution of the actual difference and we use
it to construct a (1−α) CI. We will show the validity of equation (9) in Theorem 2
and Theorem 3.

3.3. Confidence interval: The pivotal approach. The (studentized) pivotal ap-
proach [Wasserman (2006)], also called a percentile-t approach [Hall (1992)], is
another popular method for constructing a CI and may lead to a CI with a higher-
order correctness [Hall (1992)].

The pivotal approach requires a consistent estimator of the variance of θ̂ELBO,�.
Let σ̂ 2

ELBO,� be such a consistent estimator. Note that σ̂ 2
ELBO,� can be constructed

using a sandwich estimator as is described in Hall et al. (2011b) and Westling and
McCormick (2015). Then the statistic

Tn = θ̂ELBO,� − θELBO,�

σ̂ELBO,�

acts as a t-statistic and converges to a standard normal distribution [see, e.g., equa-
tion (4)]. Therefore, Tn is a pivotal quantity that has asymptotic normality and the
pivotal approach is based on bootstrapping Tn to construct a CI.

Instead of using the percentile from a standard normal distribution, we use the
bootstrap percentile of Tn. For the j th bootstrap sample, we not only compute
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the bootstrap parameter estimate θ̂
∗(j)
ELBO,� but also re-compute the corresponding

variance estimator σ̂
∗2(j)
ELBO,� to evaluate the bootstrap version of the pivotal statistics

T ∗(j)
n = θ̂

∗(j)
ELBO,� − θ̂ELBO,�

σ̂
∗(j)
ELBO,�

, j = 1, . . . ,B.

We then pick the value t̂�,1−α/2 as the (1 − α/2) upper quantile of the empirical

distribution function of |T ∗(1)
n |, . . . , |T ∗(B)

n |, that is,

t̂�,1−α/2 = F̂−1
� (1 − α/2), F̂�(t) = 1

B

B∑
j=1

I
(∣∣T ∗(j)

n

∣∣ ≤ t
)
.

The (1 − α) CI is

(10) C
†
n,α,� = [θ̂ELBO,� − σ̂ELBO,� · t̂�,1−α/2, θ̂ELBO,� + σ̂ELBO,� · t̂�,1−α/2].

Note that σ̂ELBO,� is the estimator of the variance of θ̂ELBO,� using the original
sample. Figure 4 provides a summary of the bootstrap pivotal approach for con-
structing a CI.

The intuition of the bootstrap studentized pivotal approach is that the distribu-
tion of bootstrap statistic T ∗

n (given X1, . . . ,Xn) converges to the distribution of
Tn faster than the convergence of Tn to a standard normal distribution. Thus, the
CI in equation (10) has a higher order correctness [Babu and Singh (1983), Hall
(1992), Singh (1981)].

REMARK 2 (Parametric bootstrap). In addition to the above bootstrap meth-
ods, the parametric bootstrap is another popular approach which generates boot-
strap samples from P

θ̂ELBO
instead of the empirical distribution function. However,

we caution against using the parametric bootstrap. When using the variational es-
timator, the parametric bootstrap may not give a CI with the (asymptotic) nominal
coverage even if the parametric family is correct (i.e., there exists θ0 ∈ � such that
the data generating distribution P = Pθ0 ) because the ELBO estimator θ̂ELBO does
not converge to θ0 in general. Thus, P

θ̂ELBO
will not be close to Pθ0 , so there is

no guarantee that the CI will have nominal coverage. However, when the model is
correctly specified and θ̂ELBO does converge to θ0 (this may occur when we allow s

to increase; see Remark 5), the parametric bootstrap can provide CIs with nominal
coverage; see Bickel et al. (2013) for an example in the case of stochastic block
model.

REMARK 3 (Label switching problem). In some models, the MLE may only
be unique up to permutation of indices (see, e.g., the example in Section 5). In this
case, the ELBO is non-convex so we need to use a gradient ascent method such
as the EM algorithm. For each bootstrap sample, we will apply the EM algorithm
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CONFIDENCE INTERVAL BY THE BOOTSTRAP PIVOTAL APPROACH.
1. Find the variational estimator θ̂ELBO using X1, . . . ,Xn.
2. Compute the variance estimator σ̂ 2

ELBO = (σ̂ 2
ELBO,1, . . . , σ̂

2
ELBO,p) using a

sandwich estimator.
3. For j = 1, . . . ,B , do the following task:

(a) Sample with replacement from X1, . . . ,Xn to obtain X
∗(j)
1 , . . . ,X

∗(j)
n .

(b) Compute the variational estimator θ̂
∗(j)
ELBO using X

∗(j)
1 , . . . ,X

∗(j)
n .

(c) Compute the variance estimator σ̂
∗2(j)
ELBO using X

∗(j)
1 , . . . ,X

∗(j)
n .

4. For each parameter, say θ�, compute T
∗(1)
n , . . . , T

∗(B)
n using

T ∗(j)
n = θ̂

∗(j)
ELBO,� − θ̂ELBO,�

σ̂
∗(j)
ELBO,�

.

5. Compute t̂�,α/2 and t̂�,1−α/2 from

t̂�,1−γ = F̂−1
� (1 − γ ), F̂�(t) = 1

B

B∑
j=1

I
(∣∣T ∗(j)

n

∣∣ ≤ t
)
.

6. Form the confidence interval:

C
†
n,α,� = [θ̂ELBO,� − σ̂ELBO,� · t̂�,1−α/2, θ̂ELBO,� + σ̂ELBO,� · t̂�,1−α/2].

FIG. 4. Confidence interval by the bootstrap pivotal approach.

with the same initialization (we recommend to use the estimator of the original
sample as the initial point for each bootstrap sample). This will avoid the problem
of label switching [Redner and Walker (1984)] and the bootstrap will recover the
uncertainty in parameter estimation.

4. Asymptotic distribution and bootstrap consistency. In this section, we
derive the asymptotic distribution of the variational estimator and its bootstrap
theory. We will study the theory in both scenarios: fixing and increasing d , the
dimension of parameters θ , after introducing further notation.

Let B(x, r) be a ball with radius r centered at x. We define 
(θ) = E(E(θ |X1)),
and let 
θ = ∇
 and 
θθ = ∇∇
 to be the gradient and Hessian matrix of 
 ,
respectively. For a unit vector b ∈ Rd and a function f :Rd 
→R, ∇bf = bT ∇f is
the derivative of f in the direction of b. For a matrix A ∈Rd×d , we denote λmax(A)

and λmin(A) to be the largest and the smallest eigenvalues of A, respectively.

4.1. Fixed dimension. When the dimension d is fixed, the ELBO estimator
and its target can be analyzed using the theory of M-estimators [van der Vaart
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(1998)]. The asymptotic normality of θ̂ELBO − θELBO has been analyzed in the lit-
erature [Bickel et al. (2013), Hall et al. (2011b), Wang and Blei (2017), Westling
and McCormick (2015)] under several scenarios. Here we present the asymptotic
normality using the result stated in Westling and McCormick (2015) because they
also considered frequentist estimation in the general context of latent variable mod-
els.

THEOREM 1 (Theorem 2 in Westling and McCormick (2015)). Assume con-
ditions (B1)–(B5) in the Appendix of Westling and McCormick (2015). Then

(11)
√

n(θ̂ELBO − θELBO)
D→ N

(
0,V (P0, θELBO)

)
,

where V (P0, θELBO) = A(P0, θELBO)−1B(P0, θELBO)A(P0, θELBO) is a p×p ma-
trix such that

A(P0, θELBO) = EX∼P0

(

θθ(θELBO|X)

)
,

B(P0, θELBO) = EX∼P0

(

θ(θELBO|X)
θ(θELBO|X)T

)
.

We include the assumptions (B1)–(B5) in the Appendix of Westling and Mc-
Cormick (2015) in Appendix B. These assumptions are made to derive the asymp-
totic normality of an M-estimator [see, e.g., Theorem 5.23 of van der Vaart
(1998)]. Essentially, these assumptions assure that ωmax(θ |x),ELBO(θ,ω|x), and
E(θ |x) are well-defined and sufficiently smooth and well-behaved around θELBO
and P0-a.e. x. Viewing the ELBO estimator as the MLE, the quantity 
θ(·) and
V (P, θELBO) are analogous to the score function and the Fisher information ma-
trix, respectively.

To describe the validity of a bootstrap procedure, we often use the notion of
convergence under Kolmogorov distance [van der Vaart (1998)]. For two random
variables A and B , their Kolmogorov distance is

sup
t

∣∣P(A < t) − P(B < t)
∣∣.

The bound on Kolmogorov distance is also called the Berry–Esseen bound [Berry
(1941), Esseen (1942)]. Note that convergence in probability in Kolmogorov dis-
tance is a stronger result, compared to convergence in distribution. Namely, if a se-

quence of random variables A1, . . . ,An, . . . with dK(An,A0)
P→ 0, then An

D→ A0.
Let �n = √

n(θ̂ELBO − θELBO) and �∗
n = √

n(θ̂∗
ELBO − θ̂ELBO) be the scaled

difference and the bootstrap version of it. We will prove that �n and �∗
n converge

in Kolmogorov distance.

THEOREM 2. Assume conditions (B1)–(B5) in the Appendix of Westling and
McCormick (2015) and E‖
θ(θELBO|X1)‖3 < ∞. Then for any vector a ∈ Rd

such that ‖a‖ = 1,

(12) sup
t

∣∣P (
aT �∗

n < t |X1, . . . ,Xn

) − P
(
aT �n < t

)∣∣ P→ 0.
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Thus, for any � = 1, . . . , d ,

P(θ� ∈ Cn,α,�)→1 − α,

P
(
θ� ∈ C

†
n,α,�

)→1 − α,

where Cn,α,� and C
†
n,α,� are the CIs based on equations (8) and (10), respectively.

The proof is deferred to the Appendix. Theorem 2 shows that no matter which
orientation we project onto (using the unit vector a), the distribution of random
variable θ̂ELBO − θELBO and the distribution of its bootstrap variant θ̂∗

ELBO − θ̂ELBO
converge. Thus, the bootstrap quantile converges to the quantile of the actual dis-
tribution, which proves validity of the bootstrap.

4.2. Increasing dimension. We now study the bootstrap theory when the di-
mension of parameters is allowed to increase with respect to the sample size. These
situations occurs in many scenarios. For example, in a mixed membership model,
we may want to increase the number of subgroups when we have a larger sample.
Or in an item response theory model, both the number of questions in a test and
the number of participants may be increasing at the same time [Douglas (1997),
Haberman (1977)]. In this case, we will write d = dn → ∞ as n → ∞. Note that
we only allow d , the dimension of θ increase and the dimension of variational pa-
rameters are assumed to be fixed. Thus, the population quantity θELBO will also be
changing.

Assumptions.

(A0) θELBO ∈ � is the unique maximizer of 
(θ) and ωmax(θ |x) is unique for
each θ ∈ � and almost surely for x ∈ RJ under P0.

(A1) There exists c0 > 0 such that all eigenvalues of 
θθ(θELBO) are not in
[−c0, c0] for any d .

(A2) There exists r0, c1 > 0 such that for any unit vectors b1, b2, b3 ∈ Rd ,

sup
x

∣∣∇b1∇b2∇b3E(θ |x)
∣∣ ≤ c1 < ∞

for all θ ∈ B(θELBO, r0) and d .
(A3) There exists c2 > 0 such that for any unit vector a ∈ Rd ,

E
(∣∣∇aE(θ |X1)

∣∣3) ≤ c2 < ∞
for any d .

(A0) is a very common assumption that requires θELBO to be uniquely defined
[Westling and McCormick (2015)]. Note that we can relax (A0) to require θELBO
to be unique under permuting the indices when the model is symmetric (such as
the example in Section 5). The theoretical results will be the same after a small
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modification to the proof so here we make this assumption to simplify the exposi-
tion.

(A1) implies that the Hessian matrix of 
 is invertible at θELBO when n,d →
∞. This is a generalization of the invertible Fisher information matrix condition
to the increasing-dimensional setting.

(A2) can be viewed as a generalization of a bounded 2-norm of the third deriva-
tive tensor ∇∇∇E(θELBO|x). To see this, consider only two-directional derivative,
|∇b1∇b2E(θELBO|x)|. The supremum of this will be the 2-norm (maximum ab-
solute eigenvalue) of E(θELBO|x). Note that assumptions similar to (A1–2) also
appear in Portnoy (1985) and Mammen (1989).

(A3) is a third moment condition that is used to establish a Berry–Esseen bound
[Berry (1941), Esseen (1942)]. Note that when d is changing with respect to n,
(A2) and (A3) can be relaxed so that constants c1 and c2 can depend on n. How-
ever, this relaxation will put another constraint on how fast d → n with respect to
n → ∞.

Note that we do not assume the distribution Pθ = P(x, z; θ) belongs to an ex-
ponential family. If Pθ belongs the exponential family, the assumptions can be
weakened to the assumptions in Portnoy (1988).

THEOREM 3. Assume (A0)–(A3) and d = dn → ∞ and d2

n
→ 0. Then, for

any vector an ∈ Rd such that ‖an‖ = 1, there exists a number v(an) such that

(13) sup
t

∣∣P (
aT
n �n < t

) − P
(
σ(an) · Z < t

)∣∣→0,

where Z is a standard normal random variable. Moreover,

(14) sup
t

∣∣P (
aT
n �∗

n < t |X ) − P
(
aT
n �n < t

)∣∣ P→ 0.

Thus, for any � = 1, . . . , d ,

P(θ� ∈ Cn,α,�)→1 − α

P
(
θ� ∈ C

†
n,α,�

)→1 − α,

where Cn,α,� and C
†
n,α,� are the CIs based on equations (8) and (10), respectively.

The proof is deferred to the Appendix. The first assertion in Theorem 3 states
that the difference between the ELBO estimator and its target converges to a nor-
mal distribution when we project the difference to any direction. The quantity σ(a)

is the standard deviation of the difference of the estimator that depends on the data-
generating distribution P0 and on the variational family that is being used. Note
that, when the dimension is fixed, σ(a) = aT V (P0, θELBO)a.

The second assertion in Theorem 3 shows that the limiting distributions of the
scaled difference and its bootstrap variant are asymptotically the same. This im-
plies that the CI constructed using the bootstrap or variance estimated by the boot-
strap is asymptotically valid.
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Note that the requirement d2

n
→ 0 is very common in increasing-dimensional

problem; see, for example, Mammen (1993), Portnoy (1988).

REMARK 4 (Increasing both d and s). Theorem 3 can be applied to a case
where both the dimension of parameter d and the dimension of variational pa-
rameter s are increasing. In this case, we need assumptions (A0)–(A3) to hold for
every s and d . When we allow s = sn to increase, the assumption (A1) may be too
strong. We can relax this assumption by allowing the constant c0 in (A1) to de-
crease to 0 slowly. The increasing rate of sn will be constrained by the decreasing
rate of c0 to guarantee the invertibility of 
θθ .

REMARK 5 (Increasing s only). Even when d , the dimension of the parameter,
remains fixed (i.e., the population MLE θMLE is fixed), changing s, the dimension
of ω, will also change the (population) quantity θELBO = θELBO,s . In some situa-
tions, we even have θELBO = θELBO,s → θMLE; see Hall et al. (2011b) and Bickel
et al. (2013) for examples. The difference θELBO,s − θMLE can be viewed as the
bias of the variational estimator. Because the dimension of variational parameter
s can be viewed as a measure of model complexity of the variational estimator,
the property θELBO,s → θMLE can be interpreted as an asymptotic unbiasedness
property in terms of model complexity.

REMARK 6 (High-dimensional case). When d > n, the conventional cen-
tral limiting theorem fails because of the complexity coming from the high di-
mensional parameters [Portnoy (1984, 1985)]. Thus, CIs from the percentile or
pivotal approaches do not have the nominal coverage. However, it is still pos-
sible to construct an asymptotically valid CI using the bootstrap. The rectangle
CI [Chernozhukov, Chetverikov and Kato (2013)] is one example. We refer the
readers to Chernozhukov, Chetverikov and Kato (2013), Fan and Zhou (2016),
Wasserman, Kolar and Rinaldo (2013) for more details about rectangle CIs.

5. Data analysis. We illustrate our theoretical results with multivariate binary
data on functional disability from the National Long Term Care Survey (NLTCS).
Erosheva, Fienberg and Joutard (2007) presented the first case of variational es-
timation for mixed membership models with binary data from the NLTCS. Here,
we consider observations collected on the NLTCS participants in 1984, 1989, and
1994. The data contain binary indicators on six activities of daily living (ADL)
and 10 instrumental activities of daily living (IADL) for community-dwelling el-
derly. The six ADL items include basic activities of hygiene and personal care:
eating, getting in/out of bed, getting around inside, dressing, bathing, and getting
to the bathroom or using toilet. The 10 IADL items include basic activities neces-
sary to reside in the community: doing heavy housework, doing light housework,
doing laundry, cooking, grocery shopping, getting about outside, traveling, man-
aging money, taking medicine, and telephoning. Responses are coded as 0 and 1,
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where 1 denotes a presence and 0 denotes an absence of a functional disability. In
the NLTCS, positive (1) ADL responses mean that during the past week the activ-
ity had not been, or was not expected to be, performed without the aid of another
person or the use of equipment; negative (0) IADL responses mean that a person
usually could not, or was not going to be able to, perform the activity because of a
disability or a health problem. For a more in-depth discussion, see Manton, Corder
and Stallard (1993) and Erosheva and White (2006).

Similar to Erosheva, Fienberg and Joutard (2007), we also use a mixed mem-
bership analysis. Erosheva, Fienberg and Joutard (2007) take a fully Bayesian ap-
proach and specify priors for the α and  model parameters discussed below;
however, in this analysis we take a frequentist approach and directly compute max-
imum ELBO estimates for α and . Also, Erosheva, Fienberg and Joutard (2007)
analyze all four waves (1982, 1984, 1989, and 1994), but we restrict our analysis
to the 1984, 1989, and 1994 waves.

In particular, we are interested in two tasks. First, we use a mixed member-
ship model to describe the 5934 observations in the 1984 wave. We use a vari-
ational procedure to estimate the model parameters and then give bootstrapped
confidence intervals for each of those estimates. Next, we consider the 4463 and
5089 observations from 1989 and 1994 respectively. We test whether the responses
observed in 1989 and 1994 arise from the same distribution. Given the two natural
sub-populations, this corresponds to a possible two-sample test described in Sec-
tion 2.1. A conceptually simpler approach could be used instead of a model based
approach. At the coarsest resolution, this might be a two sample t-test for each of
the 16 variables, and at the finest resolution, this might be a two sample t-test for
each of the 216 possible response patterns. However, testing in the mixed member-
ship framework allows investigation of subtle changes in the underlying structure,
while still retaining easy interpretation.

5.1. Mixed membership models and variational inference. Throughout this
analysis, we use mixed membership models to uncover latent structure. Like a mix-
ture model, mixed membership models assume that the population is comprised of
several groups, where each group has a distribution over the observed variables.
However, while mixture models assume that each individual belongs to a single
group, mixed membership models allow each individual to have a partial mem-
bership in multiple groups [Airoldi et al. (2015)]. Mixed membership models have
been used for topic modeling [Blei, Ng and Jordan (2003)], social network analysis
[Airoldi et al. (2008)], survey data [Erosheva, Fienberg and Joutard (2007)], and
statistical genetics [Pritchard, Stephens and Donnelly (2000)]. Note that allowing
for mixed membership differs from estimating the posterior probability of group
assignment when using a mixture model. Under a mixture model, as the data about
an individual grows, the posterior should concentrate on a single group, while in a
mixed membership model, as the data about an individual grows, we may consis-
tently estimate the individual’s membership, which could be in the interior of the
simplex.
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In the setting we consider, for each individual i = 1, . . . , n we observe mul-
tivariate data Xi = (Xi,1, . . . ,Xi,16) and assume the following generative model.
Let j = 1, . . . , J = 16 index variables and K be the fixed number of groups. We
assume fixed parameters α ∈ RK

>0, which regulates the Dirichlet distribution for
group membership, and  = {πjk} for j = 1, . . . , J and k = 1, . . . ,K , where πjk

is the Bernoulli parameter for a response to variable j from a full member of
group k. The generative model for individual i is:

1. λi ∼ Dirichlet(α), where λi lies in the K − 1 simplex (i.e.,
∑

k λik = 1 and
λik ≥ 0). Each element λik characterizes the extent of membership for individual
i in group k.

2. For each variable j :

• gij ∼ Categorical(λi), where gij ∈ {1, . . . ,K} indicates the group whose param-
eters govern individual i’s response to question j .

• Xij ∼ Bernoulli(πjgij
), the observed response for individual i on question j .

This hierarchical model assumes that each individual responds to each question
as a full member of group gij . However, for each individual, the group may vary
across variables and the probability of responding as a full member of group k for
each question is governed by λik . In addition, Xij is independent of Xij ′ given λik .

The parameters of interest are α and . For the Dirichlet parameter α, the
quantity αk/

∑
k′ αk′ indicates the relative proportion of each group and the mag-

nitude,
∑

k αk , indicates the level of intra-individual mixing. Distributions with
larger values of

∑
k αk concentrate density in the interior of the simplex and imply

a higher level of intra-individual mixing, while distributions with smaller values
of

∑
k αk concentrate density in the corners of the simplex and indicate less intra-

individual mixing. The Bernoulli parameters  characterize the ability/disability
of each group. The parameters λi and gij are latent variables which we consider
as nuisance parameters. In the previous notation, θ = {α,} and Zi = {λi, gij }.

Although the model is straightforward to describe and generate, maximum like-
lihood estimation is difficult because the normalizing constant is intractable. Thus,
to fit the model, we use the mixedMem R package [Wang and Erosheva (2015)]
which specifies the following mean field variational distribution with variational
parameters φi ∈RK

>0 and δij in the K − 1 simplex:

(15)

λi ∼ Dirichlet(φi);
gij ∼ Categorical(δij );
Xij ∼ Bernoulli(πjgij

).

In the previous notation, ωi = {φi, δij }. The likelihood and specified variational
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distribution yield the following ELBO:

ELBO(θ,ω|X)

= ∑
i

log�

(∑
k

αk

)
− ∑

i,k

log�(αk)

+ ∑
i,k

(αk − 1)

[

(φik) − 


(∑
k

φik

)]

+ ∑
i,j,k

δijk

[

(φik) − 


(∑
k

φik

)]
(16)

+ ∑
i,j,k

δijkXij log(πjk) + ∑
i,j,k

δijk(1 − Xi,j ) log(1 − πjkv)

− ∑
i

log�

(∑
k

φik

)
+ ∑

i,k

log�(φik)

− ∑
i,k

(φik − 1)

[

(φik) − 


(∑
k

φik

)]
− ∑

i,j,k

δijk log(δijk),

where �(·) is the gamma function and 
(·) is the digamma function which is
the derivative of the log-� function. We maximize the ELBO with respect to the
parameters of interest, α and , and the variational parameters, φi and δij , through
a block coordinate ascent procedure which alternates between two steps. In the
first step, holding α and  fixed, we compute the optimal variational parameters
by iterative coordinate ascent. Then, holding the variational parameters fixed, we
update α and  through a Newton–Raphson procedure. Because there is no closed-
form solution for δ̂ij (α,) and φ̂i(α,), we can not easily compute a Hessian
required for the sandwich estimator of Westling and McCormick (2015) or the
pivotal confidence intervals summarized by Figure 4. However, percentile based
bootstrap confidence intervals and bootstrap variance estimates can be used.

5.2. Initial analysis and bootstrapped standard errors. We first select an ap-
propriate number of groups, K , using a pseudo-BIC criterion:

(17) pBIC = p log(n) − 2 × ELBO(θ̂ELBO, ω̂ELBO|X),

where p = K + J × K , the count of parameters α and . Because the ELBO is
generally multi-modal, we use 1000 random initialization points (for α and )
for K = 2, . . . ,9. For each K , we then select the resulting stationary point with
the largest ELBO and compute the pseudo-BIC. Using many random restarts is
important, because, as is typically the case, the ELBO defined by the mixed mem-
bership model and variational family we use is multi-modal. We see from the left
panel of Figure 5 that the ELBO of each stationary point can vary widely within
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FIG. 5. The pseudo-BIC across levels of K groups. The left panel shows pseudo-BIC values across
all random initializations, and the right panel shows only the optimal model for each K .

each value of K . In the right panel of Figure 5, we plot only the lowest pBIC for
each K ; we see that the pBIC criteria leads us to select a 4 group model, though a
6 group model might also be appropriate.

The estimated Bernoulli and Dirchlet parameters for the optimal 4 group model
are presented in Figure 6 and 7. The confidence intervals shown in black are cal-
culated by using the nonparametric percentile bootstrap summarized in Figure 3
and the confidence intervals shown in red are calculated using the parametric per-
centile bootstrap. The intervals used are post model-selection [Leeb and Pötscher
(2005)].

Since the ELBO can be multi-modal and we use a coordinate ascent procedure,
we need to carefully initialize each bootstrap run so that we do not enter another
basin of attraction and overestimate the sampling variability. In particular, we ini-
tialize the global parameters, α and , as well as the individual latent variables,
λi and gij , at the corresponding quantities estimated from the original data. In
general, we expect each bootstrap run to require less computational effort than the
original estimation procedure since we expect the initialization to be near the sta-
tionary point. In addition, each of the bootstrap runs can be easily parallelized on
a cluster; for this particular analysis, an individual bootstrap run took roughly 15
seconds on a laptop.

In Figure 6, we have sorted the groups top to bottom (1 through 4) by least
disabled to most disabled. Group 1 is generally most likely to be able to perform
each of the 16 tasks. Group 2 appears to be relatively less able to perform most
physical/mobility related tasks, but is relatively more able to perform tasks requir-
ing mental acuity. For instance, members of Group 2 are relatively less able to get
in/out of bed, move around inside, and move around outside; however, they are rel-
atively more able to cook, manage money, take medicine, and use the telephone.
Group 3 appears to have more mobility, but is less able to perform tasks which
require mental acuity. For instance, individuals in Group 3 are relatively more able
to get in/out of bed, move around inside, and use the toilet, but less able to manage
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FIG. 6. The estimated parameters and CIs for the 4 group mixed membership model. The black
CI’s are formed using the nonparametric bootstrap; the red CI’s are formed using the parametric
bootstrap. The top panel shows estimates for the ADL activities and the bottom panel shows estimates
for the IADL activities. The estimated population proportion, α̂k/

∑
k′ α̂k′ is shown on the left with

the corresponding CI under each group label. For aiding interpretation, the vertical dashed lines
shows the marginal proportion of individuals whose response was 1 for each variable.

money or use the telephone. Finally Group 4 is generally least likely to be able to
perform each task. The estimated Bernoulli parameters for Group 4 are higher than
the marginal probabilities for all 16 tasks. Note that the CIs from the two bootstrap
methods are small, indicating that our estimators are quite precise.

We caution against using the parametric bootstrap with variational inference
since θELBO in general is not equal to θMLE so the CI’s may not always cover the
variational point estimates. In particular, for the Bernoulli parameters, 37 of the 64
CI’s constructed via the parametric bootstrap do not cover the point estimates. In
addition, all four of the parametric bootstrap CI’s for α̂ (and 2/4 of the CI’s for the

FIG. 7. The left panel shows the estimates and CI’s for α and the right panel shows the estimates
and CI’s for the proportion of each group; that is, αk/

∑
k′ αk′ . The black CI’s are formed using the

nonparametric bootstrap and the red CI’s are formed using the parametric bootstrap.
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population proportions) do not cover the point estimates. However, all of the CI’s
(both for the Bernoulli and Dirichlet parameters) constructed using the nonpara-
metric bootstrap do cover the point estimates. As noted by Andrews (2000), when
the point estimates are near the boundary of the parameter space, the bootstrap es-
timates might be unstable. In this case, we see that when the Bernoulli parameters
are close to 0 or 1, this generally causes a problem for the parametric bootstrap,
but not for the nonparametric bootstrap.

5.3. Two-sample test. We now consider observations from the 1989 and 1994
waves. In particular, we test whether the functional disability measures taken five
years apart are generated by the same distribution. In order to concretely interpret
differences between the two waves, we fix K = 4 and use the Bernoulli parame-
ters estimated from the 1984 wave. We then find point estimates α̂1989 and α̂1994
separately by maximizing the ELBO with respect to α (keeping  fixed). Again,
because of multi-modailty of the ELBO, we use 1000 random initialization to se-
lect an α̂ for each wave. In principal, fixing the Bernoulli parameters to any random
quantity and concluding that α89,ELBO| �= α94,ELBO| would result in rejecting
the null hypothesis (where αELBO| indicates the α value which maximizes the
ELBO for fixed ). However, we use the point estimates from the 1984 wave to
facilitate interpretability.

The estimated group proportions for 1989 and 1994 are shown in Figure 8 with
the corresponding confidence intervals formed by the nonparametric percentile
bootstrap standard errors. In 1994, the prevalence of the least disabled group
(Group 1) increased, while the prevalence of Group 2 (incapable of mobility tasks,
but capable of mental tasks), Group 3 (capable of mobility tasks, but incapable
of mental tasks), and Group 4 (generally incapable of all tasks) all decreased by
roughly 0.03 each.

FIG. 8. The estimated proportions of each group for 1989 and 1994. The CIs are percentile method
bootstrapped intervals.
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For good measure, we also perform a Wald test for the population proportions:

p̂ = (α̂1, α̂2, α̂3)
/ 4∑

k=1

α̂k,

where the proportion for Group 4 is excluded so that the distribution is non-

degenerate. Using the bootstrap estimate of covariance V̂ (p̂) calculated by the
procedure summarized in Figure 2, we find that

(p̂1989 − p̂1994)
T (

̂V (p̂1989) + ̂V (p̂1994)
)−1

(p̂1989 − p̂1994) = 143.7.

Thus, we reject the null hypothesis that all population proportions are equal with a
p-value less than 10−16 when compared to the χ2

3 reference distribution.

6. Discussion. We conclude this paper by including some remarks about prac-
tical aspects of the variational inference and the bootstrap, and by making several
observations on the connections between the research presented in this paper and
the work of late Stephen E. Fienberg, to whom this special issue of the Annals of
Applied Statistics is dedicated.

Bootstrap versus asymptotic normality. For practitioners, constructing a CI us-
ing a bootstrap approach is generally easier than using the asymptotic normality
[Hall et al. (2011b), Westling and McCormick (2015)]. To construct a CI using
asymptotic normality, we need a (consistent) variance estimator and calculating
that estimator often requires an involved derivation, which could be very challeng-
ing when the model is complex. The NLTCS example of mixed membership is one
such example. And sometimes, such an estimator does not exist so we are unable
to use the asymptotic normality approach. On the other hand, the implementation
of a bootstrap approach is very easy—it is just sampling with replacement and
re-applying the variational inference. The bootstrap approach does not require a
consistent variation estimator so it is a more general approach than the interval
from asymptotic normality approach. Moreover, if we do have a variance estima-
tor, as is discussed in Section 3.3, we can construct a CI using the bootstrap pivotal
approach, which may lead to a CI with a higher order correctness [Babu and Singh
(1983), Hall (1992), Singh (1981)].

Implications for variational inference in Bayesian settings. Theorems 1 and
2 proved the asymptotic normality and bootstrap validity of using the variational
inference to approximate the MLE. These theorems can be applied to Bayesian
variational estimators as long as the prior is sufficiently smooth (for a trivial case,
consider a uniform prior on the parameter space) or to a penalized ELBO with
a very weak (i.e., asymptotically negligible) penalty. However, in the Bayesian
framework, the posterior distribution and credible intervals are the quantities of
the interest and the CI is not the main objective. For the penalized ELBO, a weak
penalty is often not of research interest because it neither encourages sparsity nor
stabilizes the estimator.
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Two-sample test and comparison. The two-sample test used in Section 5.3
shows great potential of combining the bootstrap CI and variational inference.
In the NLTCS example that we presented, without adequate tools to obtain un-
certainty in estimates, it is possible that an erroneous conclusion could have been
made, stating that the proportion of responses that corresponds to profile 3 (mainly
problems with managing money, grocery shopping, and traveling) stays the same
over the 10 year interval, while our analysis demonstrated that the difference is
significant. Note that the approach of comparing two samples is very generic—it
can be applied to various problems involving a comparison of two datasets using
variational inference. With the methodologies developed in this paper, we can as-
sess the significance of the difference between estimates using the bootstrap and
make a statistical conclusion about the two datasets.

Connection with Stephen E. Fienberg. Stephen Fienberg had originally in-
troduced Erosheva, then a graduate student, to the Grade of Membership Model
[Woodbury, Clive and Garson (1978)]and to the functional disability data from the
NLTCS. Erosheva’s graduate work has motivated the original NLTCS publication
[Erosheva, Fienberg and Joutard (2007)] as well as the development of the general
mixed membership modeling framework. For that original NLTCS publication, un-
der Fienberg’s direction, Erosheva and Joutard have developed and implemented
both a fully Bayesian MCMC approach and the corresponding variational estima-
tion algorithm for mixed membership models with binary data [Erosheva, Fien-
berg and Joutard (2007)]. Later, Wang, Matsueda and Erosheva (2017), extended
this line of work and developed a variational estimation algorithm for mixed mem-
bership models with rank data, where, at a suggestion of a reviewer, they used
bootstrap methods to assess uncertainty in the model estimates.

Although Fienberg’s impact on statistical science spanned many areas, includ-
ing the census and survey research in general, he is perhaps best known for his
contributions to discrete data analysis and log-linear models. Even though he used
to say that “everything is a log-linear model”, meaning that almost any statistical
model for discrete data has a log-linear representation, he did not brush off other
approaches. In particularly, Stephen Fienberg was a big advocate of mixed mem-
bership models—because of their flexibility and practical appeal—during the last
15 years of his career. Mixed membership models present certain challenges in
estimation, and, while recommending variational inference as a step toward solv-
ing those challenges, Fienberg was very much cognizant of both the practical ad-
vantages and the lack of statistical theory for variational estimation. We are not
aware of his involvement in recent efforts to provide a theoretical foundation for
variational estimates, but we can say with confidence that he would have been
supportive and encouraging for advancing research in this direction.
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APPENDIX A: PROOFS

PROOF OF THEOREM 2. Our proof consists of two parts. In the first part, we
show that the asymptotic normality admits a Berry–Essen bound. In the second
part, we show that the bootstrap variant converges to the same distribution with a
Berry–Essen bound.

Part 1: Berry–Esseen Bound. By the derivation of Theorem 2 in Westling and
McCormick (2015) and Theorem 5.23 in van der Vaart (1998), the ELBO estimator
has the property that

θ̂ELBO − θELBO = A(P0, θELBO) · 1

n

n∑
i=1


θ(θELBO|Xi) + oP

(
1√
n

)
.

Note that the above equation is a common expression for an M-estimator. Thus,
aT �n has the following expression:

aT �n = aT
√

n(θ̂ELBO − θELBO)

= aT A(P0, θELBO) · 1√
n

n∑
i=1


θ(θELBO|Xi) + oP (1)

= √
n · 1

n

n∑
i=1

(
Wi −E(Wi)

) + oP (1),

where Wi = aT A(P0, θELBO)
θ(θELBO|Xi) and E(Wi) = 0 because E(
θ(θELBO|
X1)) = 0.

By the assumption that E‖
θ(θELBO|X1)‖3 < ∞ and the Berry–Esseen theo-
rem [Berry (1941), Esseen (1942)], we conclude that

sup
t

∣∣P (
aT �n < t

) − P(Zw < t)
∣∣ ≤ CBE

E‖W1‖3
√

n
+ oP (1),

where Zw is a normal distribution with variance Var(W1) and CBE is a universal
constant from the Berry–Esseen theorem.

Part 2: bootstrap. Let Xn = {X1, . . . ,Xn}. For the bootstrap case, we have a
similar decomposition of θ̂∗

ELBO − θ̂ELBO:

θ̂∗
ELBO − θ̂ELBO = A(P̂n, θ̂ELBO) · 1

n

n∑
i=1


θ

(
θ̂ELBO|X∗

i

) + E∗
n,

where ‖E∗
n‖ = oP ( 1√

n
) is a small correction error and P̂n is the empirical distribu-

tion. Thus,

aT �∗
n = aT

√
n
(
θ̂∗

ELBO − θ̂ELBO
)

= √
n · 1

n

n∑
i=1

(
W ∗

i −E
(
W ∗

i |Xn

)) + oP (1),
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where W ∗
i = aT A(P̂n, θ̂ELBO)
θ(θ̂ELBO|X∗

i ) and E(W ∗
i |Xn) = 0. Again, by ap-

plying the Berry–Essen theorem [Berry (1941), Esseen (1942)], we conclude that

sup
t

∣∣P (
aT �∗

n < t
∣∣Xn

) − P
(
Z∗

w < t |Xn

)| ≤ CBE
Ên‖W1‖3

√
n

+ oP (1),

where Z∗
w is a normal distribution with variance Var(W ∗

1 |Xn) and Ên‖W1‖3 =
1
n

∑n
i=1 W 3

i .

By the strong law of large number, Ên‖W1‖3 < 2E‖W1‖3 almost surely. Be-
cause Var(W ∗

1 |Xn) − Var(W1) = OP ( 1√
n
) implies supt |P(Z∗

w < t |Xn) − P(Zw <

t)| = OP ( 1√
n
), we conclude

sup
t

∣∣P (
aT �∗

n < t |Xn

) − P
(
aT �n < t

)∣∣ = OP

(
1√
n

)
.

Finally, by choosing a to be the unit vector along each coordinate, we obtain the
desire result for the bootstrap CIs. �

PROOF OF THEOREM 3. The high level ideas of this proof is very similar to
that of the previous theorem. In the first part, we derive the Berry–Esseen bound of
the ELBO estimator. In the second part, we prove the bootstrap consistency. Note
that in the increasing-dimensional case, many smaller-order approximations (e.g.,
those from a Taylor expansion) may depend on the dimension d and may no longer
be small. So we need to examine each approximation term.

Part I: Berry–Esseen Bound. Recall that 
(θ) = E(E(θ |X1)) and 
θ,
θθ are
the gradient and Hessian matrix of 
 . Let


n(θ) = 1

n

n∑
i=1

E(θ |Xi),


θ,n(θ) = 1

n

n∑
i=1

∇E(θ |Xi),


θθ,n(θ) = 1

n

n∑
i=1

∇∇E(θ |Xi)

denote the corresponding empirical versions.
Because 0 = 
θ,n(θ̂ELBO) = 
θ(θELBO), by Taylor’s theorem


θ,n(θELBO) − 
θ(θELBO) = 
θ,n(θELBO) − 
θ,n(θ̂ELBO)

= 
θθ,n(θELBO)(θELBO − θ̂ELBO) + E1,n

= (

θθ(θELBO) + E2,n

)
(θELBO − θ̂ELBO) + E1,n
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= 
θθ(θELBO)(θELBO − θ̂ELBO)

+ E2,n(θELBO − θ̂ELBO) + E1,n,

where E1,n ∈ Rd is a vector about the second order Taylor approximation error
and E2,n = 
θθ,n(θELBO) − 
θθ(θELBO).

Let Zn = 
θ,n(θELBO) − 
θ(θELBO) denotes the empirical gradient minus the
corresponding expected gradient. By assumption (A1), 
θθ(θELBO) is always in-
vertible, so multiplying � = 
−1

θθ (θELBO) in both sides and rearranging the equa-
tion lead to

�̃n = θ̂ELBO − θELBO

= −�Zn − �E2,n(θELBO − θ̂ELBO) − �E1,n.

The first quantity �Zn has an asymptotic normality because it contains an empiri-
cal sum minus the corresponding expectation.

To derive the asymptotic normality of �n, we need

(18)

∥∥√naT
n �̃n + √

naT
n �Zn

∥∥
= √

n
∥∥aT

n �E2,n(θELBO − θ̂ELBO)︸ ︷︷ ︸
(I)

−aT
n �E1,n︸ ︷︷ ︸

(II)

∥∥
= oP (1)

for any sequence of unit vectors an ∈ Rd .
For part (I), because E2,n = 
θθ,n(θELBO) − 
θθ(θELBO) is the average of IID

random matrices minus the corresponding expectation, the matrix Bernstein in-

equality [see, e.g., Theorem 6.2 in Tropp (2012)] implies ‖E2,n‖2 = OP (

√
log2 d

n
),

where ‖ · ‖2 is the matrix 2-norm. This, along with the fact that assumption (A1)
implies ‖�‖2 being bounded, implies

√
n
∥∥aT

n �E2,n(θELBO − θ̂ELBO)
∥∥

≤ √
n‖an‖‖�‖2 ‖E2,n‖2︸ ︷︷ ︸

=OP (

√
log2 d

n
)

‖θELBO − θ̂ELBO‖︸ ︷︷ ︸
=OP (

√
d
n
)

= OP

(√
d log2 d

n

)
.

This bounds the contribution of (I).
For part (II), we only need to focus on bounding ‖E1,n‖ because ‖�‖2 is

bounded. By the Taylor’s theorem, the �th element of E1,n can be written as

E1,n,� = (θELBO − θ̂ELBO)T A�(θELBO − θ̂ELBO)
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with

A� =
∫ t=1

t=0

∂

∂θ�


θθ,n

(
θ̂ELBO + t (θELBO − θ̂ELBO)

)
dt.

Let μ̂ = θELBO−θ̂ELBO

‖θELBO−θ̂ELBO‖ denote the direction of θELBO − θ̂ELBO, and rn = ‖θELBO −
θ̂ELBO‖, and e� ∈ Rd be the unit vector pointing toward the �th coordinate. Then
we can rewrite E1,n,� as

E1,n,� = r2
n

∫ t=1

t=0
∇e�

∇μ̂∇μ̂
n(θ̂ELBO + t · rn · μ̂n) dt.

Therefore,

E1,n = r2
n

∫ t=1

t=0
∇∇μ̂∇μ̂
n(θ̂ELBO + t · rn · μ̂n) dt

and assumption (A2) implies that

(19)

‖E1,n‖ = r2
n

∥∥∥∥∫ t=1

t=0
∇∇μ̂∇μ̂
n(θ̂ELBO + t · rn · μ̂n) dt

∥∥∥∥
≤ r2

nc1

= OP

(
d

n

)
.

By assumption (A1), ‖�‖2 bounded so

∥∥√naT
n �E1,n

∥∥ ≤ √
n‖�‖2‖E1,n‖ = OP

(√
d2

n

)
,

which bounds (II).
As a result, the assumption d2

n
→ 0 implies

√
n
∥∥aT

n �E2,n(θELBO − θ̂ELBO) − aT
n �E1,n

∥∥ = oP (1)

so equation (18) holds.
To obtain the Berry–Esseen bound, after rearranging equation (18),

√
naT

n �̃n = −√
naT

n �Zn + oP (1) = √
nW̄n + oP (1),

where W̄n = 1
n

∑n
i=1 Wi and Wi = −aT

n �(
θ(θELBO|Xi)−
θ(θELBO)). Note that
the W1, . . . ,Wn are also IID. Thus, by assumption (A3) and the Berry–Esseen
theorem [Berry (1941), Esseen (1942)] we conclude that

(20)
sup

t

∣∣P (√
naT

n �̃n < t
) − P

(
σ(an)Z < t

)∣∣ = oP (1) + cBE
E(|aT

n W1|3)√
n

= oP (1) + o(1),
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where Z ∼ N(0,1) and σ 2(an) = Var(W1) = aT
n �Cov(
θ(θELBO|X1))�an.

Part II: Bootstrap. In the bootstrap world, we are sampling from P̂n. Thus, all
the above derivations hold except that everything is conditional on X1, . . . ,Xn and
the expectation is taken over P̂n instead of P . So the derivation in part I leads to

(21)

sup
t

∣∣P (√
naT

n �̃∗
n < t

∣∣Xn

) − P
(
σ̂n(an)Z < t |Xn

)|
= oP (1) + cBE

Ên(|aT
n W1|3)√
n

= oP (1) + cBE√
n

· 1

n

n∑
i=1

∣∣aT
n Wi

∣∣3
≤ oP (1) + cBE√

n
· 1

n

n∑
i=1

‖Wi‖3

≤ oP (1) + cBE√
n

· max
{‖W1‖3, . . . ,‖Wn‖3}

≤ oP (1) + OP

(√
logd

n

d3/2

n3/2

)
= oP (1),

where

σ̂ 2
n (an) = aT

n �̂n
ˆCovn

(

θ(θ̂ELBO|X1)

)
�̂nan,

�̂n = 
−1
θθ,n(θ̂ELBO),

Ĉovn

(

θ(θ̂ELBO|X1)

) =
n∑

i=1


θ(θ̂ELBO|Xi)
θ(θ̂ELBO|Xi)
T

are the empirical versions of σ 2(an),� and Cov(
θ(θELBO|X1)).
By matrix Bernstein inequality [Tropp (2012)], the difference∣∣σ̂n(an) − σ(an)

∣∣
≤ sup

a:‖a‖=1

∣∣σ̂n(a) − σ(a)
∣∣

= ∥∥�̂nĈovn

(

θ(θ̂ELBO|X1)

)
�̂n − �Cov

(

θ(θELBO|X1)

)
�

∥∥
2

= OP

(‖�̂n − �‖2 + ∥∥Ĉovn

(

θ(θ̂ELBO|X1)

)
− Cov

(

θ(θELBO|X1)

)∥∥
2

)
= OP

(√
log2 d

n

)
= oP (1).
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Therefore,

sup
t

∣∣P(P
(
σ(an)Z < t

) − P
(
σ̂n(an)Z < t |Xn

)∣∣ = oP (1).

This, together with equations (20) and (21), implies

sup
t

∣∣P (√
naT

n �̃∗
n < t |Xn

) − P
(√

naT
n �̃n < t

)
)
∣∣ = oP (1).

Finally, by choosing an to be the unit vector along each coordinate, we obtain the
desire result for the bootstrap CIs. �

APPENDIX B: ASSUMPTIONS IN WESTLING AND MCCORMICK (2015)

Here we describe the assumptions (B1)–(B5) in the Appendix of Westling and
McCormick (2015).

(B1) For all θ ∈ � and P0-a.e. x, ELBO(θ,ω|x) is uniquely maximized at ω =
ωmax(θ |x), which is an element of �, an open subset of Rs .

(B2) ωmax(θ |x) is a measurable function of x for all θ and twice continuously
differentiable in a neighborhood of θELBO for P0-a.e. x.

(B3) ELBO(θ,ω|x) is twice continuously differentiable in a neighborhood of
θELBO and ωmax(θELBO|x) for P0-a.e. x.

(B4) There exists r1 > 0, s(x) > 0, b1(x) and b2(x) such that

1. For all x ∈ RJ and θ ∈ B(θELBO, r1),

ωmax(θ |x) ∈ B
(
ωmax(θELBO|x), s(x)

)
.

2. For all x ∈ RJ , θ1, θ2 ∈ B(θELBO, r1) and ω1,ω2 ∈ B(ωmax(θELBO|x), s(x)),

|ELBO(θ1,ω1|x) − ELBO(θ2,ω2|x)| ≤ b1(x)
(‖θ1 − θ2‖ + ‖ω1 − ω2‖)

.

3. For all θ1, θ2 ∈ B(θELBO, r1),∥∥ωmax(θ1|x) − ωmax(θ2|x)
∥∥ ≤ b2(x)‖θ1 − θ2‖.

4. The functions b1, b2 ∈ L2(P0).

(B5) |∇2E(θ |x)| ≤ κ(x) for all θ in a neighborhood of θELBO and P0-a.e. x for
an integrable function κ .
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