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We propose a statistical space–time model for predicting atmospheric
wind speed based on deterministic numerical weather predictions and histor-
ical measurements. We consider a Gaussian multivariate space–time frame-
work that combines multiple sources of past physical model outputs and mea-
surements in order to produce a probabilistic wind speed forecast within the
prediction window. We illustrate this strategy on wind speed forecasts dur-
ing several months in 2012 for a region near the Great Lakes in the United
States. The results show that the prediction is improved in the mean-squared
sense relative to the numerical forecasts as well as in probabilistic scores.
Moreover, the samples are shown to produce realistic wind scenarios based
on sample spectra and space–time correlation structure.

1. Introduction. In this study, we propose a statistical space–time model for
predicting atmospheric wind speed based on numerical weather predictions and
historical measurements. The wind speed predictions are based on deterministic
numerical weather prediction (NWP) model outputs in a framework that integrates
past dependence between observational measurements and the NWP model out-
puts. The past dependence between these two datasets is modeled linearly into a
Gaussian process (GP) hierarchical framework. The aim of this work is to improve
the wind speed forecasts and to produce samples (referred to as scenarios) from the
predictive distribution of wind speeds. This is achieved by using the GP framework
in conjunction with NWP forecast output.

Atmospheric near-surface wind conditions are important for numerous sectors
of human activities, and the topic has received considerable attention in the past
several years, for instance, in the study of crop models [Brisson et al. (2003)], ob-
ject drift into the ocean [Ailliot, Frénod and Monbet (2006)], and severe weather
forecasting [Thorarinsdottir and Johnson (2012)]. Arguably, one of the largest ap-
plications is in wind energy, because energy management with renewables relies
heavily on an accurate description of the forecast uncertainty [Constantinescu et al.
(2011), Li et al. (2015), Papavasiliou, Oren and Rountree (2015), Pinson (2013),
Pinson et al. (2009)].
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1.1. Existing context on statistical wind speed prediction. Several components
of the wind field can be predicted separately or jointly: the zonal and meridional
components [Hering and Genton (2010), Sloughter, Gneiting and Raftery (2013)],
wind speed [Brown, Katz and Murphy (1984), Gneiting et al. (2006), Sloughter,
Gneiting and Raftery (2010)], and wind direction [Bao et al. (2010)]. Prediction
of wind conditions can be generated by statistical models built for predicting ob-
served wind [Brown, Katz and Murphy (1984), Gneiting et al. (2006), Hering and
Genton (2010)], or they can be generated from the statistical post-processing of
NWP model forecasts; these latter fall into the domain of model output statistics
(MOS) methods [Glahn and Lowry (1972), Gneiting et al. (2005), Raftery et al.
(2005)]. From a statistical point of view, the prediction error can be accounted
for through the use of a predictive distribution. Ensemble forecasts aim at assess-
ing the uncertainty associated with the numerical model; however, this strategy
is known to be often uncalibrated and underdispersive [Gneiting et al. (2005)].
More recently, the generation of predictive scenarios has gained significant mo-
mentum. These scenarios enable accounting for the uncertainty of the forecasts for
various locations and/or time-ahead lags [Pinson and Girard (2012), Pinson et al.
(2008)]. Predictive scenarios fall into the class of multivariate probabilistic dis-
tributions, which can be handled, for instance, with copula-based methods [Clark
et al. (2004), Pinson (2013), Wilks (2015)] or with parametric methods [Hering
and Genton (2010), Kazor and Hering (2015)].

In the context of improving numerical forecasts, MOS methods provide prob-
abilistic forecasts by post-processing the single or ensemble forecasts and tend to
address the issue of bias and dispersion. Introduced at first for single-trajectory
forecast [Glahn and Lowry (1972)], MOS methods have been extended to ensem-
ble model outputs statistics (EMOS) post-processing methods for ensemble fore-
casts [Gneiting et al. (2005)]. Most of the MOS methods for ensembles are varia-
tions and extensions of the Bayesian model averaging (BMA) initially proposed in
Raftery et al. (2005) and the nonhomogeneous regression (NGR) model proposed
in Gneiting et al. (2005). Several variants of both models have been proposed with
different distributions [Baran (2014), Baran and Lerch (2015), Lerch and Tho-
rarinsdottir (2013), Sloughter, Gneiting and Raftery (2010)], a BMA extension
to spatial interpolation [see Scheuerer and Möller (2015) and references therein],
and an NGR with regime-switching [Baran and Lerch (2016)]. Lately, multivariate
models have been introduced, namely, spatial models [Gel, Raftery and Gneiting
(2004), Thorarinsdottir and Gneiting (2010)] and bivariate frameworks [Schuhen,
Thorarinsdottir and Gneiting (2012), Sloughter, Gneiting and Raftery (2010)]. In
Schefzik, Thorarinsdottir and Gneiting (2013), a multivariate tool based on the
use of copulas is presented that allows one to account for time-ahead dependence,
spatial dependence, and dependence among variables; see also Wilks (2015) for a
discussion of multivariate MOS methods using copulas.

MOS and regression methods treat the NWP model outputs as covariates. Fol-
lowing the arguments in Schefzik, Thorarinsdottir and Gneiting (2013), these mod-
els neglect the dependence between variables, between the different time-ahead
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lags, and between spatial locations. Notable exceptions are the use of copulas to
model the variable dependence [Schefzik, Thorarinsdottir and Gneiting (2013)]
and the use of a parametric model for spatial locations [Feldmann, Scheuerer and
Thorarinsdottir (2015)]. Moreover, the use of covariates creates difficulties such
as addressing misalignment in space and/or time with the response variables and
possible nonexhaustive sampling of these covariates. Multivariate modeling alle-
viates these problems by jointly modeling several variables as a random process.
Multivariate space–time modeling has been an area of intense research in the past
two decades; see Fanshawe and Diggle (2012) for a review of bivariate geostatis-
tical modeling, and see Berliner (2000), for a discussion of hierarchical Bayesian
modeling for multiple dependent datasets.

In the multivariate modeling context, various statistical approaches have been
proposed for hybrid NWP—physical observations usage. For example, in Fuentes
et al. (2005) a Bayesian hierarchical model is presented that combines NWP out-
puts and observed measurements to provide spatial prediction for chemical species.
A hidden process is used to represent the unobserved “true” concentration of sul-
fur dioxide, and the sources of data are affine transformations of this “true” pro-
cess. A similar approach was used in a space–time context for multiple measure-
ments of snow water equivalent data in Cowles et al. (2002). Several outputs of
regional climate models are combined in a spatial framework by using a hierar-
chical model based on a spatial random effects model in Kang, Cressie and Sain
(2012). Berrocal, Gelfand and Holland (2012) proposed a space–time hierarchical
Bayesian model to fuse measurements and numerical model outputs of air-quality
data, with an extension of a downscaling model introduced some years ago. Royle
and Berliner (1999) introduced a conditional hierarchical model that combines two
heterogeneous spatial datasets of ozone and temperature in the objective to predict
these two variables on gridded points while they are recorded at two different ir-
regular networks. A joint distribution is used to cope with the nonalignment of
the two datasets and of the predicted values at gridded points. This distribution is
specified in a hierarchical conditional way in order to avoid the direct specification
of the joint distribution. Indeed, the modeling of multivariate covariance structure
is challenging and is still an on-going research area; see Apanasovich and Genton
(2010), Bourotte, Allard and Porcu (2016), Genton and Kleiber (2015).

1.2. Proposed modeling framework and position within the existing literature.
In this study, we fuse two heterogeneous datasets: numerical forecasts and physical
observations. Our endeavor stems from the observation that physical observations
alone cannot be used to deliver accurate forecasts 24–48 hours ahead, whereas
NWP uncertainty analysis may be (as pointed out above) uncalibrated and un-
derdispersive. By heterogeneity, we mean that the physical observations are not
necessarily on the NWP output grid. We note that refining the grid would be a
costly computational expense and would not guarantee that the sites of the physical



PREDICTIVE SCENARIOS OF WIND SPEED 435

observations were exactly on the grid or that the forecast were improved. More-
over, NWP physics constrains assumptions that make refining below a grid size
limit inconsistent, if not even erroneous [Palmer (2014)]. We propose a bivariate
space–time Gaussian process to improve forecasts from an NWP model, where
the physics model outputs and the measurements are modeled as two random
space–time processes. GPs allow us to describe the conditional forecast distribu-
tion as a Gaussian distribution as well as facilitate robust computational algorithms
[Anitescu, Chen and Wang (2012), Stein, Chen and Anitescu (2012)]. Moreover,
we use a marginal Box–Cox transformation to address the typical positivity and
skewness of wind speed distribution. Our model is specified in a hierarchical way
in order to avoid characterizing the full space–time bivariate covariance. We ex-
tend the specification, which was initially proposed in Royle and Berliner (1999),
Royle et al. (1999) in a spatial context, to space–time modeling.

The numerical forecasts of wind speed are combined with historical measure-
ments data to provide scenarios of prediction. The modeling of the NWP fore-
casts as a random process with spatial or space–time structure, also carried out in
Berrocal, Gelfand and Holland (2012), Fuentes et al. (2005), Royle et al. (1999),
differentiates this approach from MOS methods, where dependencies are most
of the time ignored. The NWP random process modeling allows for a consistent
statistical framework for the discrepancy between the NWP output and physical
measurement locations. A particularly important aspect of our model is that the
proposed prediction framework accounts for the space–time dependence between
these two heterogeneous datasets. Furthermore, in this work we consider a strat-
egy where NWP future and past temporal information is used to provide a temporal
prediction that begins at the current time. In our approach, we set a 24-hour ahead
forecast window and use this entire window of NWP outputs to predict wind speed
at each time hour during this window. In contrast, MOS methods commonly work
with current information only. In other words, MOS methods adjust the forecast
point-wise in space or time sequentially one step at a time, whereas our approach
accounts for future and past information within the forecast window itself. The
same argument applies to the strategies proposed in Berrocal, Gelfand and Hol-
land (2012), Fuentes and Raftery (2005).

The paper is organized as follows. In Section 2, we introduce the modeling
context and the statistical formulation. In Section 3, we describe the two sources
of data that are used and combined. In Section 4, the model is validated on dif-
ferent months of the year, and the quality of the time prediction at one station is
assessed. We highlight the improvements in terms of the forecasting accuracy of
the proposed model with respect to the NWP forecasts. We conclude in Section 5
by presenting general improvements made by the model with respect to the NWP
data.

2. Statistical model for NWP outputs. In this section, we introduce a Gaus-
sian modeling framework that embeds the space–time dependence between mea-
sured observations and NWP model forecasts. We model two heterogeneous
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spatio-temporal datasets as jointly distributed variables. We extend the hierarchical
GP ideas of Royle and Berliner (1999) to a space–time context; the joint process is
a space–time Gaussian process specified conditionally. We provide temporal pre-
diction of observations given past and future NWP data while accounting for past
space–time dependence between the two datasets; see equation (2.3) below.

2.1. Overview of the proposed method. We consider measured observations,
YObs, and NWP forecasts, YNWP. Both are available in the past; however, only fu-
ture YNWP is available at the current time. We are therefore interested in generating
samples from the distribution of future observations conditional on the past obser-
vations and NWP simulations and on future NWP simulations. This distribution is
represented as a hierarchical Gaussian process and is calibrated by maximizing its
likelihood. In particular, the ingredients of our proposed approach are as follows:

- We aim to construct a probabilistic model for future observations based on the
current available data:

p
(
yu

Obs(tfuture)|θ, ya
NWP(tfuture), y

a
Obs(tpast), y

a
NWP(tpast)

)
,(2.1)

where the superscript “a” stands for available and “u” for unavailable quantities
and θ denotes parameters of a statistical model (see Section 2.2).

– To specify the probability in (2.1), we use a joint model for (YObs, YNWP) rep-
resented by a GP. As indicated in Section 2.3, the full joint distribution can be
expressed as(

YObs
YNWP

)
∼N

((
μObs(θ)

μNWP(θ)

)
,

(
�Obs(θ) �Obs,NWP(θ)

�T
Obs,NWP(θ) �NWP(θ)

))
,(2.2)

where θ is the set of parameters that describe the parametric shapes of the means
and covariances. One of the main objectives is to specify an appropriate structure
for the mean and covariance of (2.2).

– The joint distribution of (YObs, YNWP) in (2.2) is specified in a conditional hier-
archical way where the distributions of (YObs|YNWP) and (YNWP) are described
separately in terms of parametric space–time mean and covariance. This is dis-
cussed in detail in Section 2.4.

– The parameters θ in (2.2) are estimated by maximizing the likelihood, as dis-
cussed in Section 2.5, so that θ∗ = arg maxθ L(θ;ya

Obs(tpast), y
a
NWP(tpast)). This

aspect is also discussed at the end of Section 2.2 in the more abstract context of
equation (2.1), where we also specify the probabilistic modeling assumptions.

– The predictive scenarios sampled from p(yu
Obs(tfuture)| · · · ) are obtained via

kriging equations and are detailed in Section 2.6.

In other words, we represent the joint distribution of the numerical simulations
and observations through a Gaussian model that is calibrated by maximizing the
likelihood of the model parameters. This distribution is then used to condition on
the numerical forecasts at the current time in order to forecast observations. In the
following sections, we give details of each step in constructing this framework.
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2.2. Prediction setting. Let us assume that both measured observations YObs
and NWP forecasts YNWP are available from time t1 to time tkK

. In the following,
the term “observations” refers to the observational measurements. Observations
are available at J0 locations S = {s1, . . . , sJ0}, and NWP forecasts are available
over a grid that covers these stations. Each day, the Weather Research and Fore-
casting (WRF) model is run for a period of h hours independently from the pre-
vious day, because WRF is initialized from a reanalysis or assimilated dataset;
time can then be written in terms of blocks of length h. Henceforth, we consider
a time window of h = 24 hours. We denote by bi the ith time block of length
h, bi = {tki

, . . . , tki+h−1}. The objective here is to predict the measurements YObs
between time tkK+1 and tkK+1+h−1 at stations S = {s1, . . . , sJ0}, and possibly at lo-
cations S0 = {sJ0+1, . . . , sJ} where no historical measurements are recorded, from
NWP forecasts that are available between tkK+1 and tkK+1+h−1. S denotes the sets
of measurements stations, YNWP are taken at the closest grid point. S0 denotes a
set of unobserved stations. This can be summarized by(

ya
Obs(b1:K ;S)

yu
Obs(bK+1;S,S0)

)
and

(
ya

NWP(b1:K ;S)

ya
NWP(bK+1;S,S0)

)
,

(2.3)
with b1:K = {b1, b2, . . . , bK}.

In this context, the model is trained on the following available pairs:(
ya

Obs(b1:K ;S), ya
NWP(b1:K ;S)

)
,

and the prediction is made from ya
NWP(bK+1;S,S0) to estimate yu

Obs(bK+1;S,S0),
where bK+1 = {tkK+1, . . . , tkK+1+h−1}. In a probabilistic sense, we aim to compute

p
(
yu

Obs(bK+1)|ya
NWP(bK+1), y

a
Obs(b1:K), ya

NWP(b1:K)
)

(2.4)
=

∫
p

(
yu

Obs(bK+1), θ |ya
NWP(bK+1), y

a
Obs(b1:K), ya

NWP(b1:K)
)

dθ,

where θ is a random set of model parameters, blocks b1:K are available, and bK+1
is a predicted block; the spatial components are suppressed for brevity. Note that
bK+1 is not necessarily a block coming right after bK , but rather a day that is
not observed. To simplify the computation of (2.4), we now make several assump-
tions. First, we assume that we have approximate independence of yu

Obs(bK+1)

and ya
Obs(b1:K), ya

NWP(b1:K) conditional on ya
NWP(bK+1). In hierarchical models

such as ours, which has NWP predictions as its first layer and the observation sites
as the second layer, one commonly assumes that random variables on the second
layer are independent conditional on the realizations of the ones in the first layer;
see Cressie and Wikle (2011). We assume as well that θ∗ can be obtained by max-
imizing the likelihood

θ∗ = argmax
θ

L
(
θ;ya

Obs(b1:K), ya
NWP(b1:K)

)
(2.5)

= argmax
θ

p
(
θ |ya

Obs(b1:K), ya
NWP(b1:K)

)
.
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The probability (2.4) that we aim to compute is then approximated by the following
probability obtained by conditioning only on the NWP predictions for the same
temporal block and plugging-in the maximum likelihood estimate θ∗:

p
(
yu

Obs(bK+1)|ya
NWP(bK+1), y

a
Obs(b1:K), ya

NWP(b1:K)
)

(2.6)
≈ p

(
yu

Obs(bK+1)|θ∗, ya
NWP(bK+1)

)
.

In what follows, we consider multivariate normal distributions to describe the in-
volved probabilities of (2.6). We have found that a sensible approach is to model
statistically the output of NWP itself. Indeed, a probabilistic structure for NWP
outputs enables us to address misalignment issues between the two datasets and
express a kriging distribution (2.6) in that case. Moreover, modeling the joint dis-
tribution allows us to embed statistically the space–time structure of the NWP
outputs. Efforts will be directed to specify the full multivariate distribution for the
two involved datasets, namely, the mean and covariance structures. In Section 2.3,
we review a hierarchical approach for Gaussian processes, and in Section 2.4 we
present the model used for the mean and covariance functions that introduce the
parametrization θ .

2.3. Hierarchical bivariate framework. Gaussian processes are chosen for
their convenience in expressing conditional distributions and in a multivariate and
space–time context. Power transformations are commonly used to approximate
Gaussian margins. To address the typical skewness of the wind speed distribution,
we apply the Box–Cox transformation; see, for instance, Brown, Katz and Mur-
phy (1984)]. A specific transformation is used for each dataset (NWP and mea-
surements) to account for the heterogeneity between the two datasets. Within each
dataset, the same power transformation is applied to each spatial location in order
to preserve the variance structure. The model is fitted on the transformed data. We
write the joint distribution of the process (YObs, YNWP) as(

YObs
YNWP

)
∼N

((
μObs
μNWP

)
,

(
�Obs �Obs,NWP

�T
Obs,NWP �NWP

))
.(2.7)

The goal here is to find accurate representations of the data with this distribution
in terms of mean and variance. The positive-definiteness of block matrices is gen-
erally difficult to ensure when specifying the three blocks in (2.7) independently.
Therefore, to avoid specifying of the full covariance in (2.7), we follow the hierar-
chical conditional modeling proposed by Royle and Berliner (1999), Royle et al.
(1999), and we model (YObs|YNWP) and (YNWP), where (YObs|YNWP) stands for
the conditional distribution of YObs given YNWP. When (YObs, YNWP) is a Gaus-
sian process, (YObs|YNWP) and (YNWP) follow a Gaussian distribution; then only
first- and second-order structures are to be specified. Consequently, the model is
described by the following distributions:

(YObs|YNWP) ∼ N (μObs|NWP,�Obs|NWP).(2.8)
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The Gaussian joint distribution of (YObs, YNWP) implies a conditional linear depen-
dence between YObs and YNWP, which agrees reasonably with the data analysis:

μObs|NWP = E(YObs|YNWP) = μ + �YNWP,(2.9)

where μ and �, which is called the transition matrix, will be parameterized below,
and

YNWP ∼ N (μNWP,�NWP).(2.10)

From these equations, we express the full joint distribution given by (2.7) as(
YObs
YNWP

)
∼ N

((
μ + �μNWP

μNWP

)
,

(2.11) (
�Obs|NWP + ��NWP�T ��NWP

(��NWP)T �NWP

))
.

The derivation of the latter joint mean and covariance do not necessitate the as-
sumption of normality, the covariance can be derived from the law of total vari-
ance. The normality of the joint distribution is derived from the Bayes’ rule.

2.4. Statistical model. To provide time prediction and to ensure model parsi-
mony, we propose a parameterization in space and time of the involved first- and
second-order structures of the conditional and the marginal distributions defined
by (2.8) and (2.10) are specified following an exploratory analysis of the datasets.

2.4.1. Marginal mean structure of (YNWP). The empirical mean function of
YNWP exhibits spatial patterns associated with the geographical coordinates but
also with several parameters of the NWP model. Indeed the studied area is in the
Great Lakes region with the large water mass of Lake Michigan (the “land use,”
LU, is used, which is a categorical variable that represents the type of land used in
the parameterization of the NWP model). Time-periodic effects are present in the
first-order structure of YNWP and are accounted for through harmonics of different
frequencies. In Figure 2, these spatial and temporal patterns are plotted. We write

μNWP(t, s) = E
(
YNWP(t, s)

)
=

(
β0 + β1 cos

(
2πt

24

)
+ β2 sin

(
2πt

24

)
+ β3 cos

(
2πt

12

)
(2.12)

+ β4 sin
(

2πt

12

)
+ β5 cos

(
2πt

8

)
+ β6 sin

(
2πt

8

))

× (
α0

(
LU(s)

) + α1Lat(s) + α2Long(s)
)
,

where t is measured in hours, LU(s) is a categorical variable that represents the
land use associated with station s used in the model; Lat and Long are the latitude
and longitude coordinates; (α0(l))l=1,...,n, with n the number of possible land uses,
α1, α2, and (βk)k=0,...,6 are real numbers to be estimated.
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2.4.2. Marginal covariance structure of (YNWP). The block structure of the
space–time covariance of the data suggests expressing wind speed at each station
as a linear transformation of an unobserved common signal Y0 with added noise;
see Figure 3. Intuitively, we can think of this common signal as an average flow
over the studied region. The wind speed at each site is a linear transformation of
this average flow. The temporal dynamics of the unobserved signal is modeled with
a squared exponential covariance. The following structure is used:

Y(bi, sj) = �sjY0(bi) + εsj(bi),

where Y represents YNWP in this paragraph and will represent (YObs|YNWP) in
Section 2.4.4, bi is a temporal window of h = 24 lags, sj is the spatial location, and
�sj is an h × h-matrix. The various εsj are assumed independent from each other
and from Y0. This model is inspired in part by an earlier study [Constantinescu and
Anitescu (2013)] where the � operators were used to represent a known functional
relation. In our case, �sj is a parameterized matrix that is inferred from the data.

The overall space–time covariance of YNWP has the following structure:

�NWP(·, si; ·, sj ) = cov
(
YNWP(·, si), YNWP(·, sj ))

(2.13)
= (

�si
0�
T
sj

) + δi−j
si ,

for j ∈ {1, . . . , J0} and where δ stands for the Kronecker symbol. The h × h-
matrices 
sj are written as


sj [l, k] = σsj exp
(−λsj

(|tk − tl|)2) + δk−lγsj ,

with

σsj = σ1 + σ2Lat(sj) + σ3Long(sj),

λsj = λ1 + λ2Lat(sj) + λ3Long(sj),

γsj = γ1 + γ2Lat(sj) + γ3Long(sj),

and


0[l, k] = σ0 exp
(−λ0

(|tk − tl|)2) + δk−lγ0,

where σ1, σ2, σ3, λ1, λ2, λ3, γ1, γ2, γ3, σ0, λ0, and γ0 are positive real numbers to
be estimated.

Following the data analysis, the h × h-matrices �sj are parameterized as tridi-
agonal matrices. Given the study of the variance in space and time, the diagonal
and off-diagonal quantities are modeled with a quadratic dependence in time and
spatially dependent coefficients. The diagonal, subdiagonal, and superdiagonal of
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the matrix �sj are written respectively as

�sj [i, i] = (
1 + ν1Lat(sj ) + ν2Long(sj )

)
+ (

1 + ν3Lat(sj ) + ν4Long(sj )
) × i

+ (
1 + ν5Lat(sj ) + ν6Long(sj )

) × i2,

�sj [i, i − 1] = (
1 + ν7Lat(sj ) + ν8Long(sj )

)
+ (

1 + ν9Lat(sj ) + ν10Long(sj )
) × i

+ (
1 + ν11Lat(sj ) + ν12Long(sj )

) × i2,

�sj [i, i + 1] = (
1 + ν13Lat(sj ) + ν14Long(sj )

)
+ (

1 + ν15Lat(sj ) + ν16Long(sj )
) × i

+ (
1 + ν17Lat(sj ) + ν18Long(sj )

) × i2,

for i ∈ {1, . . . , h}; ν1, . . . , ν18 are real numbers to be estimated. We work in rela-
tively small areas and use distances in latitude and longitude here and for the rest
of this work.

2.4.3. Conditional mean structure of (YObs|YNWP). In Royle and Berliner
(1999), several configurations of the transition matrix � are proposed depend-
ing on its use. For instance, a transition matrix from atmospheric pressure to wind
speed is derived from geostrophic equations in Royle et al. (1999). The observa-
tions exhibit daily and half-daily periodicity (with various intensities depending
on the month of the year) and spatial patterns; see Figure 2. However, the relation
between the two datasets does not exhibit significant time dependence that requires
a time-varying dependence. We use spatial and temporal neighbors to explain the
observed wind speed. The land use LU is included in the transition matrix because
it defines different behaviors in the NWP model data. We choose the following
transition between the two datasets:

μObs|NWP(t, s) = E
(
YObs(t, s)|YNWP

) = μ(t, s) + (�YNWP)(t, s),

with

μ(t, s) =
(
β7 + β8 cos

(
2πt

24

)
+ β9 sin

(
2πt

24

)

+ β10 cos
(

2πt

12

)
+ β11 sin

(
2πt

12

))

× (
1 + α3Lat(s) + α4Long(s)

)
,

(�YNWP)(t, s) =
h∑

i=1

ρ
(
LU(s), |t − ti|)

×
3∑

k=1

�k(�Lat,�Long)(s, sk)YNWP(ti, sk), t1 ≤ t ≤ th,
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where

– ρ(·, ·) are temporal weights, parameterized according to ρ(l,�t) =
ρ0(l) exp(−ρ1(l)|�t |) + ρ2(l), for the time difference �t in {0, . . . , h − 1};
the integer l ∈ {1, . . . , n} is the land use value of the closest grid point of s;
ρ(l,0) = 1 for identifiability purposes;

– �·(�Lat,�Long) = φ0,· + φ1,·�Lat + φ2,·�Long, with �Lat(si, sj) =
|Lat(si) − Lat(sj)| and �Long(si, sj) = |Long(si) − Long(sj)|;

– s1, s2, s3 are nearest spatial neighbor grid points of s selected according to the
radial distance, but other distances are possible. Moreover, for simplicity we
consider here nearest neighbors, but other choices of predictors can be made,
such as upwind stations; and

– all the parameters β7, . . . , β11, α3, α4, (ρ0(l))l=1,...,n, (ρ1(l))l=1,...,n,
(ρ2(l))l=1,...,n, (φ0,k)k=1,...,3, (φ1,k)k=1,...,3, (φ2,k)k=1,...,3 are real numbers to
be estimated.

2.4.4. Conditional covariance structure of (YObs|YNWP). Analysis of the em-
pirical conditional covariance suggests the use of the parametric shape proposed
in (2.13), with a different set of parameters.

2.5. Estimation of the parameters. Maximum likelihood is chosen for es-
timating the parameters. The likelihood of the model for the observed dataset
(yObs(t1, . . . , tkK

; s1, . . . , sJ0), yNWP(t1, . . . , tkK
; s1, . . . , sJ0)) is written as

L
(
θ;yObs(t1, . . . , tkK

; s1, . . . , sJ0), yNWP(t1, . . . , tkK
; s1, . . . , sJ0)

)
= pθ

(
yObs(t1, . . . , tkK

; s1, . . . , sJ0), yNWP(t1, . . . , tkK
; s1, . . . , sJ0)

)
= pθ

(
yNWP(t1, . . . , tkK

; s1, . . . , sJ0)
)

× pθ

(
yObs(t1, . . . , tkK

; s1, . . . , sJ0)|yNWP(t1, . . . , tkK
; s1, . . . , sJ0)

)
.

This is the particular instantiation of (2.5). Each day, the WRF model is run in-
dependently from the previous day. Here, we have assumed short temporal error
correlations (see Figure 3). Furthermore, the forecasts are restarted from reanaly-
ses, and at least in the linear case the innovations are independent of observations
[Shumway and Stoffer (2010), Section 6.3]. Therefore, we consider statistical in-
dependence between each day, which leads to the following product:

pθ

(
yNWP(t1, . . . , tkK

; s1, . . . , sJ0)
) =

K∏
i=1

pθ

(
yNWP(tki

;S), . . . , yNWP(tki+23;S)
)

=
K∏

i=1

pθ

(
yNWP(bi;S)

)
,
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where S = {s1, . . . , sJ0} and {b1, . . . , bK} = {t1, . . . , t24, t25, . . . , tkK
} with bi =

{tki
, . . . , tki+23}. For each i ∈ {1, . . . ,K} the associated log-likelihood is written

as

log
(
pθ

(
yNWP(bi;S)

)) = log
(
f

(
yNWP(bi;S);μNWP,�NWP

))
,

where f (.;μ,�) denotes the multivariate normal density with mean μ and covari-
ance � and μNWP and �NWP are the parametric mean and covariance, respectively,
expressed in (2.12) and (2.13). Similarly, the likelihood of conditional distribution
is written and maximized. In practice, a preliminary least-squares estimation of
the parameters is realized between the empirical and parametric first- and second-
order structures of YObs and YNWP. These estimates are used as initial conditions
of the maximum likelihood procedure.

2.6. Kriging. Predictions of YObs from YNWP are obtained from the kriging
equations [Stein (1999)], with the mean and covariance defined by (2.11). For
t0 in bK+1 = {tkK+1, . . . , tkK+1+h−1} and s0 in {S,S0} = {1, . . . , J0, J0 + 1, . . . , J}
defined in (2.3), we have(

YObs(t0; s0)|YNWP(bK+1;1, . . . , J0, J0 + 1, . . . , J )
)

(2.14)
∼ N

(
μ̂Obs(t0; s0), �̂Obs(t0; s0)

)
with

μ̂Obs(t0; s0) = (μ + �μNWP)(t0; s0) + cT
0 �−1

NWP
(
(bK+1;S,S0);

(2.15a)
(bK+1;S,S0)

)(
(YNWP − μNWP)(bK+1;S,S0)

)
,

�̂Obs(t0; s0) = �Obs
(
(t0; s0); (t0; s0)

) + cT
0 �−1

NWP
(
(bK+1;S,S0);

(bK+1;S,S0)
)
c0,(2.15b)

c0 = �Obs,NWP
(
(t0; s0); (bK+1;S,S0)

)
.

The distribution (2.14) is used to generate the scenarios of prediction of wind
speed in Section 4. This is in fact the predictive distribution presented in (2.6).
Note that the conditional distribution (2.8) could directly be used for predictions;
however, this would not enable predictions with misaligned data. Nevertheless, in
our results the predictive variance is on average 2.7% greater when using directly
the conditional distribution instead of the kriging one (2.14).

3. Wind data. In order to improve forecasts from the considered numerical
model, two sources of data are combined: ground measurements and WRF model
outputs. The measurement data are recorded across an irregular network, and at
each observational station we pick the closest gridded point of NWP outputs. As
a result, the two datasets have the same number of spatial locations; however, the



444 J. BESSAC, E. CONSTANTINESCU AND M. ANITESCU

proposed model is not restricted to this spatial layout and can handle datasets with
different numbers of stations. In the following, the time series of the two datasets
are filtered in time by a moving average process over a window of 1 hour to remove
small-scale effects and focus on a larger temporal scale; they are picked every hour.
We focus on a region around Lake Michigan in the United States; however, the
framework proposed here is not specific to that region.

3.1. Direct observations. Observational data are extracted from the Auto-
mated Surface Observing System (ASOS) network, available at ftp://ftp.ncdc.noaa.
gov/pub/data/asos-onemin. The network of collecting stations covers the U.S. ter-
ritory. The studied data are 1-minute data selected from Wisconsin, Illinois, Indi-
ana, and Michigan; see Figure 1. The measured wind speed is discretized in integer
knots (one knot is about 0.5 m/s). We do not apply any additional treatment to ac-
count for this discretization because the data are filtered over a window of 1 hour;
see Sloughter, Gneiting and Raftery (2010) for a discussion of the discretization
of the wind speed. The orography of this region is simple and flat; however, the
presence of Lake Michigan has a strong impact on the wind conditions. Several
months are investigated and reveal different behaviors; in particular, periodicities
differ from winter to summer months. In the following, for homogeneity purposes
the dataset of 31 stations is subdivided into three spatial clusters of respectively

FIG. 1. Map of the considered area (Midwest; visible are Lake Michigan, Michigan, Illinois, Indi-
ana, and Wisconsin). Clusters are depicted with different colors: respectively in black dots are the 11
stations of subregion C1, in triangle the 12 stations of C2, and in diamond the 8 stations of C3.

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin
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11, 12, and 8 stations, depicted in Figure 1. A spatial clustering is performed on
wind speed in order to distinguish among different average regional weather con-
ditions. This is a proxy for different NWP forecast behaviors. These three clusters
are treated independently hereafter.

3.2. Numerical weather prediction data. State-of-the-art NWP forecasts are
generated by using WRF v3.6 [Skamarock et al. (2008)], which is a state-of-the-
art numerical weather prediction system designed to serve both operational fore-
casting and atmospheric research needs. WRF has a comprehensive description of
the atmospheric physics that includes cloud parameterization, land-surface mod-
els, atmosphere-ocean coupling, and broad radiation models. The terrain resolu-
tion can go up to 30 seconds of a degree (less than 1 km2). The NWP forecasts
are initialized by using the North American Regional Reanalysis fields dataset that
covers the North American continent (160W-20W; 10N-80N) with a resolution of
10 minutes of a degree, 29 pressure levels (1000–100 hPa, excluding the surface),
every 3 hours from the year 1979 until the present. Simulations are started every
day during January and August 2012 and cover the continental United States on a
grid of 25 × 25 km with a time resolution of 10 minutes.

4. Results. In this section, we first analyze the estimated parameters and then
explore qualitatively and quantitatively the ability of the model to provide accu-
rate forecasts. Two months of the year (January and August) are considered and
are studied independently in order to investigate the model performance under dif-
ferent conditions. Moreover, the model is compared with two embedded models:
one model with only temporal dependencies but without spatial interactions and
one model without temporal or spatial dependencies. For each month, the model
is trained on contiguous two-thirds of the month and predicted on the remaining
third. The training periods are rolled over the three possible permutations of one-
third to fill in the entire month.

4.1. Analysis of the estimated parameters. In this section, we investigate the
maximum likelihood estimation of the mean and covariance of the process. First,
the empirical mean and covariance are compared with the fitted parametric ones
proposed in Section 2. The mean of the process (YObs, YNWP) is depicted in Fig-
ure 2; for each station, the mean at each hour of the day is plotted. The structure
of the estimated mean of the two processes is accurately reproduced in terms of
temporal and spatial patterns, the empirical and fitted spatial trends are not pro-
nounced for this studied month. In Figure 3, the empirical and fitted space–time
correlations are plotted. A great part of the structure is captured by the proposed
parametric shapes; however, the global shapes tend to be smoothed by the para-
metric models. The nonseparability between space and time that is visible on the
empirical off-diagonal blocks is not entirely captured by the parametric model and
tends to be overestimated. Analysis of the matrices �s that are involved in the
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FIG. 2. Empirical and fitted parametric mean of wind speed at each hour of a day and at each
station in the subregion C1 in August. Vertical lines separate each station. Within each of these
windows, each hour of the day is considered. Top panel: mean of YNWP; bottom panel: mean of
YObs.

covariance model (2.13) reveals different configurations given the subregion and
the period of the year. These can be expected because these operators can be inter-
preted as a linear projector of a process that is common to all the stations. Average
air flows differ according to the season and the spatial location; the dependence

FIG. 3. Empirical and fitted parametric space–time correlation estimated in August 2012 in the
subregion C1. Left: NWP space–time correlation; right: measurement correlation. The upper left
part of the matrix corresponds to the empirical correlation; the right bottom blocks display the fitted
parametric correlation. Diagonal blocks correspond to temporal correlations at each station, and
off-diagonal blocks correspond to temporal cross-correlation between stations.
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FIG. 4. Maximum likelihood estimation of the parameters of the model and associated standard
deviation of estimation. Vertical lines separate the different sets of parameters. From left to right are
the parameters of μObs|NWP, �Obs|NWP, μNWP, and �NWP. Parameters are plotted following this

order: μObs|NWP: β7, . . . , β11, α3, α4, (ρ
(l)
0 )l=1,...,n, (ρ

(l)
1 )l=1,...,n, (ρ

(l)
2 )l=1,...,n, (φ0,k)k=1,...,3,

(φ1,k)k=1,...,3, (φ2,k)k=1,...,3, �Obs|NWP: ν1, . . . , ν18, σ0, λ0,γ0, σ1, σ2, σ3, λ1, λ2, λ3, γ1, γ2, γ3,

μNWP: (βk)k=0,...,6, (α
(l)
0 )l=1,...,n, α1, α2 �NWP: same indexation as �Obs|NWP.

from a common process that would contain this information is likely to differ in
space and in time across the year.

The matrix �, which appears in both the mean and covariance components, is
important because it links the NWP forecasts to the objective predictive quantities.
The analysis of � reveals that the intensity of temporal dependence varies with the
land use; however, the temporal persistence is curtailed to a few hours across the
different land use.

In the second step, the uncertainty associated with the estimation of the param-
eters is accounted for. Figure 4 plots the maximum likelihood estimation of the
parameters and the associated standard deviation of estimation, given by the in-
verse of the Hessian of the log-likelihood calculated at the maximum. Note that the
uncertainty is relatively narrow. For both distributions, the estimation of the covari-
ance parameters tends to show more variance than the one of the mean structure
parameters. The greatest estimation variance is presented by several parameters
νi that appear in the matrices � of both covariances in Section 2.4.2. In the pa-
rameters of μObs|NWP, parameters with a high estimation variance are the ones
associated with φ defined in Section 2.4.3. In these cases, a lack of data in the
estimation of these specific parameters may cause this high estimation variance.

4.2. Assessment of the quality of the predictive model. In this part, samples
(or scenarios) are generated from the predictive distribution defined by equation
(2.14). The mean of these samples can be used as a pointwise prediction, but
the objective here is to embed the uncertainty associated with the prediction by
working with samples from the predictive distribution. The presented predictive
scenarios are back-transformed by using the inverse Box–Cox transformation.

4.2.1. Description of the embedded models. In the current study, the model
proposed in Section 2 is compared to two embedded versions of it. These two ver-
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sions of the model use the same NWP-predictors from Section 2.4.3; however, the
covariance structures are less sophisticated. First, we consider a model where only
temporal dependence is accounted for and where spatial interactions are ignored
in the covariance structures. This model will be called temporal model in the fol-
lowing. This version of the model has all the characteristics of the full model of
Section 2, except that both covariance structures do not handle the spatial cross-
covariance of equation (2.13) between two stations si and sj , and the matrices �si

are diagonal. Second, another reduction of the model is implemented, where only
the bias in the space–time mean is corrected, and neither temporal nor spatial de-
pendencies are accounted for in the covariance structures. We call this reduced ver-
sion bias-correction model. In this reduced version, only characteristics described
by equation (2.12) and Section 2.4.3 hold true, and the covariance is reduced to a
site-specific variance without temporal features.

The proposed model and its embedded versions can be linked to the NGR model
proposed by Gneiting et al. (2005) through the conditional distribution of equation
(2.8). Indeed, the ensemble members of the NGR model could be replaced here
by the NWP-predictors in space and time described in Section 2.4.3 with some
weight constraints given by μ and �. The full space–time model can be seen as
a multidimensional NGR in space and time with a constrained covariance struc-
ture given in Section 2.4.4. Similarly, the temporal model version appears as a
multidimensional NGR in time with a constrained squared-exponential temporal
covariance structure. However, the second reduction, the bias-corrected model, re-
lates to an univariate NGR model where the dispersion of the ensemble would not
be corrected. Further correspondences are harder to draw between the two models
because predictions with the present model are made through a kriging proce-
dure that is derived from the joint distribution of YObs and YNWP, whereas in the
NGR model the prediction is made from an analogue of the conditional distribution
(YObs|YNWP). Both the proposed and the NGR models have their respective merits,
the former has more constraints but handles nonaligned data and accounts for the
statistical space–time structure of YNWP, whereas the latter is less parametrically
constrained but is more difficult to use in a multidimensional context.

4.2.2. Qualitative exploration of the predictions. We first investigate the time
series of the predictions by a visual assessment in Figure 5. We next explore how
the forecast scenarios are representative in terms of calibration through rank his-
tograms (Figure 6) and in terms of temporal and spatio-temporal structures through
spectral and correlation investigations (Figures 7 and 8).

Diagnostic tools and scores to evaluate vector-valued prediction have been pro-
posed recently for single and ensemble forecasts [Gneiting et al. (2008), Pinson
and Girard (2012), Scheuerer and Hamill (2015), Smith and Hansen (2004),
Thorarinsdottir, Scheuerer and Heinz (2016)]. Some of these criteria evaluate si-
multaneously univariate predictive skills and multivariate dependencies. Criteria
for ensemble forecasts can be used for predictive scenarios where each sample of
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FIG. 5. Time series of wind speed at the station with the median RMSE in subregion C1. January
2012 (top) and August 2012 (bottom) for six days that are separated by vertical lines. Left panels: 50
predictive samples are plotted; right panel: 3 samples are plotted.

the predictive distribution is treated as a member of the ensemble [Pinson and
Girard (2012)]. Here, we focus on univariate criteria for the calibration sepa-
rately from the temporal and spatio-temporal dependencies; however, diagnostic
tools such as multivariate rank histograms [Gneiting et al. (2008), Thorarinsdottir,
Scheuerer and Heinz (2016)] can be used to assess univariate predictive skills and
multivariate dynamics. Multivariate scores are discussed and compared in Sec-
tion 4.2.3.

FIG. 6. Univariate rank histograms at the station with the median RMSE in subregion C1. Left:
January 2012; right: August 2012. The red error bars are 95%-confidence intervals (confidence
intervals are computed with a binomial distribution); the horizontal red line represents the density of
a uniform distribution.
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FIG. 7. Estimated spectrum in January (left) and August (right) for the station with the median
RMSE in subregion C1.

Visual assessment of time series. We investigate observed time series and gener-
ated predictive scenarios for part of the months of January and August; see Fig-
ure 5. Measured wind speed, which is to be predicted, is plotted as a reference
in order to evaluate the accuracy of the prediction. NWP wind forecasts are also
plotted because they are predictors and a target to be improved with respect to
the measurements. For both months, the global trend of the measured time se-
ries is well captured by the predictive mean and by the scenarios. The predictive
samples cover the measurements that are to be predicted (see left panels); and
the predictive mean realizes, most of the time, an improvement with respect to
the NWP forecasts. Moreover, each sample has a temporal dynamics consistent
with the observed temporal behavior (right panels). The scenarios take negative
values; however, such values happen only 0.3% of the time in January and 0.2%
in August. The improvement of the proposed prediction is more visible in Au-
gust (bottom panels), likely because of the periodic components that are stronger

FIG. 8. Space–time correlation of wind speed in January in subregion C1. The upper left part
of the matrix corresponds to the empirical correlation; the right bottom blocks display the fitted
correlation. Diagonal block correspond to temporal correlations at each station, and off-diagonal
blocks correspond to temporal cross-correlation between stations. From left to right: full space–time
model, temporal model, bias-correction model.
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TABLE 1
Statistics and metrics for the station, representing the median RMSE in each cluster denoted as Ci ,
for i = 1,2,3. ES is the energy score and M/S is measurements or samples. They are evaluated on

the concerned month for time prediction. Associated with the model RMSE is the percentage of
improvement of the model with respect to the NWP data. The bottom block corresponds to metrics

computed on the three proposed reductions of the model

RMSE ES Mean(YObs) Var(YObs)

Model (m/s) (m/s) M/S (m/s) (m2/s2)

NWP (Jan. 2012, C1) 1.85 48 M 4.7 5.6
Model (Jan. 2012, C1) 1.64 (11%) 29 S 4.68 5.08
NWP (Aug. 2012, C1) 1.7 44 M 2.5 1.99
Model (Aug. 2012, C1) 1.15 (34%) 21 S 2.5 2

NWP (Jan. 2012, C2) 2.01 52 M 3.74 5.09
Model (Jan. 2012, C2) 1.62 (19%) 43 S 3.78 4.96
NWP (Aug. 2012, C2) 1.62 41 M 2.76 1.97
Model (Aug. 2012, C2) 1.04 (36%) 19 S 2.86 2.23

NWP (Jan. 2012, C3) 2.31 60 M 4.72 6.54
Model (Jan. 2012, C3) 1.72 (25%) 32 S 4.71 6.09
NWP (Aug. 2012, C3) 1.72 44 M 2.31 2.23
Model (Aug. 2012, C3) 1.02 (41%) 18 S 2.33 2.04

NWP (Jan. 2012, C1) 1.85 48 M 4.7 5.6
Model (Jan. 2012, C1) 1.64 (11%) 29 S 4.68 5.08

Model Temp. (Jan. 2012, C2) 1.63 (12%) 29 S 4.45 4.37
Model Bias (Jan. 2012, C2) 1.81 (2.1%) 32 S 5.23 4.93

in this period of the year are well captured by the model, and also because the
global variance of the wind speed is smaller in August than in January; see also
Figure 7. Furthermore, the spread of the scenarios is more important in January
than in August, likely because the wind speed has more variability in winter, as il-
lustrated in the observed variances in Table 1, which may make it less predictable.
We note that the scenarios are not spreading at the end of each prediction window,
as observed in the literature. The reason is that the NWP predictors are available
over the entire prediction window and such spread increase is not obvious in the
model–measurement discrepancy.

Calibration assessment. Rank histograms are commonly used to assess the cali-
bration of predictive ensembles; they can be seen as analogous to ensembles of the
probability integral transform (PIT) that evaluates the calibration of single fore-
casts [Anderson (1996), Hamill (2001)]. In Figure 6, univariate rank histograms
are plotted for one station, and each predictive scenario is treated as an ensem-
ble member in the rank histogram. No strong signs of trend or over- and under-
dispersion are seen in these histograms, except the upper tail of distribution for
August. The two panels indicate a well-calibrated ensemble of samples; the hori-
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zontal line representing the uniform distribution is covered most of the time by the
confidence intervals associated with the proportions of the histogram. The predic-
tions from January tend to show better calibration than the August ones do.

Temporal spectral analysis. The spectral content of the scenarios and of the ob-
servations is estimated and depicted in Figure 7; the average spectrum of the esti-
mated spectrum on each sample is also plotted. We note that a similar analysis was
carried out in Bouallegue et al. (2016). The estimated spectra of the scenarios cover
most of the spectrum of the observations. The overall shape of the estimated spec-
tra and of the average spectrum indicates a robust agreement, especially in August
where small frequencies are accurately captured. In this and other spectral esti-
mates, the spectral content at high frequency is sometimes slightly overpredicted;
we believe the reason is that the time series has discontinuities at the boundaries
between temporal blocks due to overlapping prediction windows, which in turn
are a result of assimilating data and restarting the NWP forecast. Nevertheless, the
features of the spectrum of the measurements appear well captured by our model.
Notice that the spectrum of NWP data in August provides a poor description of
the observations; however, the model is able to correct this. Therefore, our model
appears to be a suitable and realistic wind scenario generator.

Space–time correlation structure. In Figure 8, empirical space–time correlations
of measurements are compared with those of scenarios from the model proposed in
Section 2 and with those of scenarios from the simplified models. The space–time
model enables of the space–time correlation structure to be captured, whereas the
embedded models capture significantly less information than does the full model.
These two embedded models miss most of the spatial cross-correlation between
stations. From this figure, we see the importance of space–time information in the
structure of the wind speed prediction.

4.2.3. Quantitative assessment of the quality of the predictions. As our second
step, we assess quantitatively the overall improvement of the model in comparison
with the WRF model outputs. We study general metrics because we would like
to preserve a general application scope. See Pinson (2013) for reflections on links
between improvement of these general metrics and user-specific metrics and also
for general challenges associated with forecast verification.

Univariate predictive skills. In Table 1, the root mean square error (RMSE) is
computed for the predictive mean of the proposed distribution and for the NWP
forecasts. We consider also the energy score (ES), which represents a generaliza-
tion of the continuous ranked probability score (CRPS) for ensemble predictions
[see Gneiting et al. (2008), Pinson and Girard (2012)]. This metric is an omnibus
metric that enables comparison of ensemble forecasts and scenarios with point-
wise prediction; it is computed on predictive samples and on NWP forecasts. The
energy score is a proper scoring rule, the lower the energy score, the better the
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FIG. 9. Maps of percentage of improvement of RMSE of the proposed prediction with respect to
RMSE of NWP prediction. Left: January; right: August.

proposed forecast. In subregion C3, the model shows the greatest improvement in
terms of RMSE and energy score, likely because this subregion is the most ho-
mogeneous one and the model fits the best for this subregion. In subregion C2,
the model also presents good improvements in terms of RMSE and energy score,
due mostly to the influence of Lake Michigan on the results. Indeed around Lake
Michigan, NWP forecasts overestimate wind speed values. Indeed, the NWP em-
beds this presence through the lake mask and land use, but this may be overesti-
mated in comparison with the behaviors of the observations. The improvement in
terms of RMSE is more significant in August, likely because the periodic compo-
nents are well captured by the model and the variability of wind speed is smaller.
The energy score clearly favors the proposed model in comparison with the WRF
outputs. Most of the means and variances of the observations are well captured by
the prediction made with the model. In addition, in Table 1, the metrics are com-
puted for the full space–time model and for its two simplifications (temporal model
and bias-correction model). The proposed space–time model reveals better results
than do the embedded models, as expected. Results are presented only for January
in subregion C1; however, similar conclusions can be drawn from the other months
and subregions. In Figure 9, maps of the percentage of improvement of RMSE are
shown for each station and for both months. The improvement is greater in August
and also around Lake Michigan in subregion C2.

Multivariate predictive skills. In Figure 10, we compute three multivariate proper
scores for the proposed model and its two reductions: the energy score; the Dawid–
Sebastiani score [Dawid and Sebastiani (1999)], which is equivalent to the log-
score for a Gaussian multidimensional predictive distribution; and the variogram-
based score [Scheuerer and Hamill (2015)], which measures the dissimilarity
between variograms of the observation and of the forecasts. The distributions of the
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FIG. 10. Energy score, Dawid–Sebastiani score, and Variogram-based score computed for the sta-
tion with median RMSE in subregion C1 and its closest neighbor for 24 hours, for January 2012. The
variogram-based score is computed with equal weights and for an order p = 0.5, which shows here
the most discrimination between the models. Scores are computed for the proposed model and its two
reductions: a temporal model and a bias-correction model. Each point of the boxplot corresponds to
the score computed for one day of the month.

scores computed for every day of the month of January are displayed in the box-
plots of Figure 10. The energy score may not be discriminative in the case of mis-
specified correlations; see Pinson and Tastu (2013), Scheuerer and Hamill (2015)
and Figure 10. However, it helps discriminate accurate intensity in forecasts; see
Table 1. Note that in Figure 10 the values of the energy score differ from those in
Table 1 because different windows are under consideration: a space–time window
is used in Figure 10 and a temporal one in Table 1. The Dawid–Sebastiani score
enables the model that corrects only the bias to be strictly distinguished from the
models that embed also the temporal and space–time structures. The variogram-
based score enables the three models to be distinguished, the separation between
the temporal and space–time models is not as clear as expected. These multivariate
proper scores assess different properties of the predictions and exhibit different re-
sults. A sensible approach, therefore, is to apply multiple scores in order to select
appropriate predictive multivariate models and assess their skills.

A potential limitation of our approach stems from the assumption that an inher-
ent stationarity exists across the calibration and forecast windows. In our case, all
days of a third of each month are modeled with the same model. We currently are
exploring introducing nonstationarity between each temporal block (day) in order
to account for such potential shortcomings.

5. Conclusions. We have introduced a statistical space–time modeling frame-
work for predicting atmospheric wind speed based on deterministic numerical
weather predictions and historical measurements. We have used a Gaussian multi-
variate space–time process that combines multiple sources of past physical model
outputs and measurements along with model predictions to forecast wind speed at
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observation sites. We applied this strategy to surface wind-speed forecasts for a
region near the U.S. Great Lakes. The results show that the prediction is improved
in the mean-squared sense as well as in probabilistic scores. Moreover, the sam-
ples are shown to produce realistic wind scenarios based on the sample spectrum.
Using the proposed model, one can correct the first- and second-order space–time
structure of the numerical forecasts in order to match the structure of the measure-
ments.
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