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While genome-wide association studies (GWAS) have discovered thou-
sands of risk loci for heritable disorders, so far even very large meta-analyses
have recovered only a fraction of the heritability of most complex traits. Re-
cent work utilizing variance components models has demonstrated that a
larger fraction of the heritability of complex phenotypes is captured by the
additive effects of SNPs than is evident only in loci surpassing genome-wide
significance thresholds, typically set at a Bonferroni-inspired p ≤ 5 × 10−8.
Procedures that control false discovery rate can be more powerful, yet these
are still under-powered to detect the majority of nonnull effects from GWAS.
The current work proposes a novel Bayesian semiparametric two-group mix-
ture model and develops a Markov Chain Monte Carlo (MCMC) algorithm
for a covariate-modulated local false discovery rate (cmfdr). The probability
of being nonnull depends on a set of covariates via a logistic function, and the
nonnull distribution is approximated as a linear combination of B-spline den-
sities, where the weight of each B-spline density depends on a multinomial
function of the covariates. The proposed methods were motivated by work
on a large meta-analysis of schizophrenia GWAS performed by the Psychi-
atric Genetics Consortium (PGC). We show that the new cmfdr model fits the
PGC schizophrenia GWAS test statistics well, performing better than our pre-
viously proposed parametric gamma model for estimating the nonnull density
and substantially improving power over usual fdr. Using loci declared signif-
icant at cmfdr ≤ 0.20, we perform follow-up pathway analyses using the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) Homo sapiens pathways
database. We demonstrate that the increased yield from the cmfdr model re-
sults in an improved ability to test for pathways associated with schizophrenia
compared to using those SNPs selected according to usual fdr.
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1. Introduction. While genome-wide association studies (GWAS) have dis-
covered thousands of risk loci for heritable disorders, so far even large meta-
analyses have recovered only a fraction of the heritability of most complex traits.
Recent work utilizing variance components models [Purcell et al. (2009), Yang
et al. (2010, 2015), Davies et al. (2011)] has demonstrated that a much larger frac-
tion of the heritability of complex phenotypes is captured by the additive effects of
common variants than is evident only in loci surpassing genome-wide significance
thresholds. Thus, the emerging picture is that traits such as these are highly poly-
genic, and that a large fraction of the heritability is accounted for by numerous loci
each with a very small effect [Glazier, Nadeau and Aitman (2002)].

An example is given by the motivating application of this paper, a large meta-
analysis of schizophrenia GWAS performed by the Psychiatric Genetics Consor-
tium (PGC, www.med.unc.edu/pgc). Schizophrenia is a complex disorder with
a heritability (total variability in liability of disease due to variability in genetic
factors) estimated from family studies as high as 80%. The latest PGC analy-
ses [Psychiatric-Genomics-Consortium (2014)] combined 82,315 subjects from
52 sub-studies to identify 108 independent regions (128 significant variants) that
explained 3% of risk variability. Predictive models using liberally selected col-
lections of thousands of variants not reaching the accepted significance in the
PGC study explained as much as 18% of the variability in an independent sam-
ple [Psychiatric-Genomics-Consortium (2014)]. Further, mixed models used to
estimate the total variability in schizophrenia risk explained by all SNP vari-
ants tested in the PGC GWAS suggest that as much as 43% of the variability
could, in theory, be explained by the collection of variants used for these stud-
ies [Psychiatric-GWAS-Consortium (2011)]. Taken together these findings suggest
that schizophrenia is highly polygenic, with many tiny genetic effects yet to be
discovered by conventional statistical approaches and significance criteria, even
using more liberal thresholds based on false discovery rate methods [Benjamini
and Hochberg (1995), Efron and Tibshirani (2002)].

Methods for estimating and controlling false discovery rates typically treat all
hypothesis tests as exchangeable, ignoring any auxiliary covariates that may influ-
ence the distribution of test statistics [Benjamini and Hochberg (1995), Efron and
Tibshirani (2002)]. For example, the local false discovery rate (fdr) [Efron and
Tibshirani (2002)] rests on a simple two-groups mixture model for test statistic Z.
Letting f0 and f1 be the probability density functions corresponding to null and
nonnull tests, respectively, the marginal pdf of Z is given by

(1.1) f (z) = (1 − π1)f0(z) + π1f1(z),

where π1 is the nonnull proportion. The fdr is then defined as the posterior proba-
bility the test is null given the observed test statistic Z = z.

Covariate-modulated fdr (cmfdr) attempts to incorporate the effects of auxiliary
covariates into fdr estimation. Ferkingstad et al. (2008) proposed a uniform-beta

http://www.med.unc.edu/pgc
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mixture model for f , first stratifying on levels of a scalar covariate x and then
estimating the parameters of the mixture model within each stratum separately.
Lewinger et al. (2007) proposed a noncentral χ2 distribution for f1, where the
prior proportion π1 and the noncentrality parameter are linear combinations of the
covariates, passed through nonlinear link functions. Zablocki et al. (2014) pro-
posed a gamma distribution for f1 where covariates contribute not only to f1, but
also to the prior probability of being nonnull. Scott et al. (2015) developed f1 as a
location mixture of null (normal) density and only the prior probability depended
on covariates.

These parametric approaches can be efficient if the model fit is adequate. How-
ever, the assumed parametric distributions may not always provide an adequate fit
to the underlying true nonnull distribution, in which case a more flexible nonpara-
metric alternative is desirable to avoid biases in estimating the cmfdr. For example,
we found that the gamma distribution underestimated the tails of f1 in the PGC
Schizophrenia GWAS test statistics, leading to elevated estimates of the cmfdr, and
hence a loss of power for some loci. The current paper is an extension of Zablocki
et al. (2014) to incorporate a more flexible model for the nonnull density. We take
a semiparametric approach, modeling the mixture density f as a weighted com-
bination of a normal null distribution with B-spline densities bounded away from
zero. These nonnegative weights are smooth functions of a vector of locus-specific
covariates x, and normalized to sum to unity. From this mixture model for the den-
sity f , we can compute a semiparametric cmfdr, or posterior probability that a test
is null given the observed test score z and vector of covariates x. Model inference
is performed via a Markov Chain Monte Carlo (MCMC) sampling algorithm.

Section 2 presents a two-group semiparametric model for cmfdr incorporat-
ing covariates into the estimation of the nonnull proportion and density. We de-
scribe the MCMC sampling algorithm in Supplementary Section 1 [Zablocki et al.
(2017)]. Section 3 presents Monte Carlo simulations and an application to the
PGC Schizophrenia GWAS data. Here, we show large increases in power uti-
lizing functional genomic annotations in the cmfdr model, compared with stan-
dard fdr and previous cmfdr methods. The increased yield of SNPs allows for a
more powerful pathway analysis of SNPs surpassing a significance threshold of
cmfdr ≤ 0.20. Section 4 concludes with a brief discussion and future directions.
The R code for implementing the methods proposed in this paper may be found at
https://github.com/rongw16/cmfdr_semi-parametric_model.

2. Method.

2.1. Covariate-modulated local false discovery rate. We use as our starting
point the simple two-group mixture model as specified by equation (1.1). Let Zi be
random variables, i = 1, . . . ,N , where Zi denotes the test statistic for the ith test.
We consider the scenario where for each Zi we also have an (M + 1)-dimensional
vector of covariates (including intercept) denoted by xi = (1, x1i , x2i , . . . , xMi)

T .

https://github.com/rongw16/cmfdr_semi-parametric_model
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The test statistics Zi are assumed independent, with marginal density f condi-
tional on x given by

f (z|x) = π0(x)f0
(
z|0, σ 2

0
) + π1(x)f1(z|x),(2.1)

where f0(·|0, σ 2
0 ) denotes a normal density with mean 0 and variance σ 2

0 and
π0(x) = 1 − π1(x). The nonnull prior probability π1 and density f1 depend on
the auxiliary covariates x as specified in Section 2.2.

We define the cmfdr as the posterior probability that the test is null given Z = z

and x, which by Bayes’ rule is given by

cmfdr(z|x) = π0(x)f0(z)

f (z|x)

= π0(x)f0(z)

π0(x)f0(z) + π1(x)f1(z|x)
.

(2.2)

The “zero assumption” of Efron (2007) states that tests with z-scores close to
zero are primarily of null cases. This is required to ensure the nonnull distribution
is identifiable. As in Efron (2007), the default assumption in our applications is that
any test with |z| ≤ 0.68 (corresponding to the middle 50% of the standard normal
distribution) is considered a null test, that is, the nonnull density f1(z) = 0 for
|z| ≤ 0.68. Martin and Tokdar (2012) note that identifiability is not guaranteed for a
two-group model with an empirical null involving an unknown variance parameter;
however, since a theoretical (standard normal) null poorly describes the behavior
of the null in many applications, an empirical null is often required [Scott et al.
(2015), Efron (2004)]. To solve the problem, Martin and Tokdar (2012) and Scott
et al. (2015) impose a “tail assumption” on their models such that f1 has heavier
tails than f0, where f0 is a normal distribution with unknown mean and variance
and f1 is a location mixture of f0. We show that our model is identifiable under
the zero assumption and other mild conditions (Supplementary Section 3). In our
application of the model to the PGC schizophrenia data, we run multiple chains
(each with 23,000 iterations) with different random initial values. Figures 1 to 6 in
Supplementary Section 4 depicts convergence of the parameter estimates.

2.2. Covariate-modulated mixture density. We first introduce a global latent
indicator vector δ = (δ1, . . . , δN)T , where δi = 1 if the ith test is nonnull and

zero otherwise, and N is the total number of tests. It is assumed that δi
ind∼

Bernoulli{π1(xi )}, where

(2.3) π1(xi) = P(δi = 1|γ ,xi ) = exp(xT
i γ )

1 + exp(xT
i γ )

,

and γ = (γ0, γ1, γ2, . . . , γM)T is an (M +1)-vector of unknown parameters. Let x
denote the (M + 1) × N covariate matrix with columns xi . Then the joint density
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of δ given γ and annotations x is given by

(2.4) fδ(δ|x,γ ) =
N∏

i=1

[{
exp(xT

i γ )

1 + exp(xT
i γ )

}δi
{

1

1 + exp(xT
i γ )

}1−δi
]
.

The marginal density of Z given by equation (2.1) is a mixture of a null density
f0 and a nonnull density f1, each symmetric around zero. Note, the assumption
that f0 and f1 are symmetric around zero is appropriate for the GWAS example
presented here, but could easily be relaxed for other applications. We also assume
that z scores from null tests are independent and normally distributed with mean
zero, that is, Zi |δi = 0 ∼ N(0, σ 2

0 ). Thus, the likelihood of the null tests is given
by

f0
(
z0 | δ, σ 2

0
) = (

2πσ 2
0
)−N0

2 exp
{−zT

0 z0

2σ 2
0

}
,(2.5)

where N0 = N − δT δ is the number of tests for which δi = 0 and z0 denotes the
corresponding N0-dimensional vector of z-scores. The parameter σ 2

0 is unknown
and estimated from the data (the “empirical null”).

The nonnull density f1 is approximated by a finite mixture of B-spline densities
[B-splines normalized to integrate to unity, Lopes and Dias (2012)] with weights
that vary smoothly as a function of covariates. B-splines are basis functions having
compact support, defined by their polynomial degree and the number and place-
ment of knots [Eilers and Marx (1996)]. In the remainder of the paper, we use
cubic B-spline densities with knots of multiplicity one fixed by the user, leading to
piecewise cubic models with continuous first and second derivatives. Rather than
focus on knot selection, the strategy here is to include enough knots to allow a
flexible fit and to estimate variance parameters that control the smoothness of the
fit [Ruppert (2002), Thompson and Rosen (2008)].

Specifically, the likelihood of the nonnull cases is given by

f1(z1|x1, δ,α) = ∏
i:δi=1

{
K∑

k=1

ckigk(zi)

}
,(2.6)

where z1 is the vector of z-scores corresponding to nonnull tests of dimension; let
N1 = δT δ and x1 is the corresponding (M + 1) × N1 matrix of annotations. The
gk are cubic B-spline densities and the

cki = exp(xT
i α·k)∑K

l=1 exp(xT
i α·l)

are nonnegative weights so that
∑K

k=1 cki = 1. Coefficient cki is the probability that
the ith test belongs to the kth B-spline component, given δi = 1 and covariates xi .
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These coefficients depend on an (M + 1) × K unknown parameter matrix

α(M+1)×K =

⎡
⎢⎢⎢⎣

α01 = 0 α02 α03 · · · α0K

α11 = 0 α12 α13 · · · α1K

...
...

...
...

...

αM1 = 0 αM2 αM3 · · · αMK

⎤
⎥⎥⎥⎦ ,

where the kth column α·k corresponds to the kth B-spline component and αm·
denotes the row corresponding to the mth covariate (including intercept), m =
0,1,2, . . . ,M . For identifiability, the first column α·1 = 0.

We also introduce a local indicator vector η = (η1, η2, . . . , ηN1)
T . The element

ηi ∈ {1, . . . ,K} specifies the B-spline component from which the ith nonnull test

statistic zi is generated. The ηi
ind∼ Multinomial(ci ), where ci = (c1i , . . . , cKi)

T .
The joint density of η given δ, α, and x1 is given by

fη(η|δ,α,x1) = ∏
i:δi=1

K∏
k=1

{
Pη(ηi = k|xi )

I (ηi=k)}

= ∏
i:δi=1

K∏
k=1

[{
exp(xT

i α·k)∑K
l=1 exp(xT

i α·l)

}I (ηi=k)]
.

(2.7)

In summary, at the global level, the covariates modulate the probability of the null
and nonnull status of each test. At the local level (within the nonnull distribution),
the covariates modulate the B-spline component assignment probability for each
nonnull test.

2.2.1. Prior distributions. We specify prior distributions for parameters σ 2
0 ,γ ,

and α. The rows of α are assumed independent. Based on Eilers and Marx (1996),
Lang and Brezger (2004), Chib and Jeliazkov (2006) and Rosen and Thompson
(2015), we propose the following prior distribution for rows αm·. Let

[
αm2
αm3

]
∼ N

([
0
0

]
,

[
cτ 2

m 0
0 cτ 2

m

])
, m = 0, . . . ,M,

where c is a fixed constant and τ 2 = (τ 2
0 , τ 2

1 , . . . , τ 2
M)T is a (M + 1)-vector hyper-

parameter. In our test runs, c = 10,100 or 1000 give similar results; hence c = 100
is taken in the implementation. The remaining αmk , k = 4,5, . . . ,K , are assumed
normally distributed with mean 2αm(k−1) − αm(k−2) and variance τ 2

m. The prior
distribution on αm· may be expressed in the more compact form as

P
(
αm·|τ 2

m

) ∝ (
τ 2
m

)−K−1
2 exp

{
− 1

2τ 2
m

αm(2:K)�
∗αT

m(2:K)

}
,



2258 R. W. ZABLOCKI ET AL.

where αm(2:K) is a (K − 1)-vector of B-spline components for the mth covariate
and �∗ is a (K − 1) × (K − 1) matrix defined as follows. Let

D(K−3)×(K−1) =

⎡
⎢⎢⎢⎣

1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · 1 −2 1

⎤
⎥⎥⎥⎦

and � = DT D. We define �∗ = �, except for 
∗
(1,1) = 
(1,1) + c−1 and 
∗

(2,2) =

(2,2) + c−1 to ensure that the matrix �∗ is positive definite.

We propose Inverse Gamma prior for each τ 2
m based on Wand et al. (2011),

Gelman (2006) and Rosen and Thompson (2015),

τ 2
m|am ∼ Inverse Gamma

(
ν

2
,

ν

am

)
,

am ∼ Inverse Gamma
(

1

2
,

1

A2

)
,

m = 0, . . . ,M,

where a = (a0, a1, . . . , aM)T is a (M + 1)-vector hyperparameter and am follows
an inverse Gamma distribution. Hyper-parameters ν and A are assumed known; in
our experience, values of ν, 10 or 20, and values of A, 10 or 10,000, yield similar
results, as observed in Rosen and Thompson (2015). Therefore, we take ν = 10
and A = 10 in the implementation. The kernel probability functions of τ 2

m and am

take the following forms:

Pτ 2
m

(
τ 2
m|am

) ∝ (
τ 2
m

)(− ν
2 −1)

a
− ν

2
m exp

(
−

ν
am

τ 2

)
,

Pam(am) ∝ a
− 1

2 −1
m exp

(
−

1
A2

am

)
.

To complete the model, we assume weakly informative priors on the unknown
parameters γ and σ 2

0 :

• γ ∼ N(0,�γ ),
• σ 2

0 ∼ Inverse Gamma(aσ0, bσ0),

where hyperparameters �γ , aσ0, and bσ0 are fixed by the user. In the simula-
tions and data application, we set �γ to be diagonal with variance 10,000 and
(aσ0, bσ0) = (0.001,0.001). Conditional posterior distributions and the MCMC
sampling algorithm are described in Supplementary Section 1.

3. Results.

3.1. Simulation study. In these simulation studies, we set the minimum non-
null |z|-score at 1.96, 0.68 and 0.25 to represent high, medium and low power
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scenarios (corresponding to the central 95th, 50th and 20th percentiles of a stan-
dard normal distribution, respectively). We set γ = (−5.29,2.5,−1.5)T , γ =
(−3.74,1.2,−1)T , and γ = (−3.06,0.5,−0.2)T to represent large, medium and
small effects, respectively. These choices for γ0 set the true nonnull proportion in
all simulations around 5%. The variance parameter σ 2

0 = 1.2. The values for α, τ 2

and a are drawn from their respective distributions as described in Section 2.2.1.
Each of the nine combinations of power scenarios and covariate effects includes

100 datasets, each dataset includes N = 50,000 hypothesis tests where K = 5. Two
covariates are generated, with x1 binomial and x2 standard normal random vari-
ables. We compare the proposed cmfdr model to an intercept only model, which
is functionally equivalent to the fdr given in Efron (2007). For each setting each
dataset, the MCMC algorithm was run for 18,000 iterations with 1400 retained
samples.

Table 1 presents the median values of sensitivity, specificity, false discovery
proportion (FDP, defined as the proportion of incorrectly identified nonnull nodes)
and number of the nonnull cases identified, as well as corresponding 95% cred-
ible intervals from 100 runs. Significance cutoffs for both fdr and cmfdr are set
to 0.05. Specificity is consistently high and FDP is consistently low across all
conditions. Sensitivity and the number of identified nonnull cases are consistently
higher in cmfdr comparing with fdr (horizontal comparisons) across all conditions.
Increased sensitivity is more pronounced with low and medium power regardless
of covariate effects. For example, at high power large covariate effect scenario,
sensitivity increases 6.9% and 195 more nonnull cases are identified by cmfdr
comparing to fdr; where as for the medium power/large covariate effect scenario,
sensitivity is increased by 14.4% and 400 more nonnull cases are identified by
cmfdr. These results suggest that in the high power scenario, the null and nonnull
distributions tend to be naturally separated, the covariate effects may become less
important.

3.2. Schizophrenia GWAS application. For this study, we used publicly avail-
able (https://www.med.unc.edu/pgc/downloads) results from the PGC Schizophre-
nia GWAS meta-analysis [Psychiatric-Genomics-Consortium (2014)]. These data
consist of summary statistics for 9,279,485 SNP variants. For each SNP variant
independently, a fixed effects meta-analysis was performed across the results of 52
sub-studies. Each sub-study used a logistic regression to test the count of one of the
two variant alleles (0, 1 or 2) for association with schizophrenia (as a case-control
outcome), adjusted for nuisance covariates.

The allele counts of variants in close proximity on the genome are correlated
[termed Linkage Disequilibrium or LD, Reich et al. (2001)] with the dependence
falling off approximately exponentially with distance, although at variable rates
across the genome. As a result, the test statistics from a GWAS are not indepen-
dent and have a variable width, approximately block diagonal correlation structure.
To obtain an approximately independent subset of test statistics, we compute the

https://www.med.unc.edu/pgc/downloads
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TABLE 1
Performance comparison between semiparametric cmfdr and fdr under different conditions

Simulation1

N = 50,000
100 datasets/setting cmfdr fdr

High power2 Large effect3 Sensitivity (%) 87.8 [86.3, 88.9] 80.9 [79.1, 82.2]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP4 (%) 0.2 [0.1, 0.4] 0.4 [0.3, 0.5]
Number of nonnull identified 2479 [2376, 2568] 2284 [2193, 2378]

Medium effect Sensitivity (%) 85.9 [84.6, 87.6] 80.7 [79.2, 82.4]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 100]
FDP (%) 0.2 [0.1, 0.4] 0.4 [0.2, 0.4]
Number of nonnull identified 2397 [2302, 2468] 2256 [2162, 2327]

Small effect Sensitivity (%) 86.6 [85.1, 87.8] 83.4 [82.1, 84.6]
Specificity (%) 99.9 [99.9, 100] 99.9 [99.9, 99.9]
FDP (%) 0.2 [0.1, 0.4] 0.2 [0.1, 0.3]
Number of nonnull identified 2178 [2113, 2226] 2099 [2035, 2152]

Medium power Large effect Sensitivity (%) 64.1 [62.0, 65.7] 49.6 [47.4, 51.4]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.6 [0.3, 1.0] 0.7 [0.6, 0.9]
Number of nonnull identified 1816 [1737, 1878] 1407 [1340, 1482]

Medium effect Sensitivity (%) 61.7 [60.0, 63.1] 51.4 [49.7, 53.8]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.5 [0.3, 0.8] 0.6 [0.4, 0.7]
Number of nonnull identified 1724 [1649, 1802] 1446 [1365, 1532]

Small effect Sensitivity (%) 65.3 [63.2, 67.7] 60.8 [58.9, 62.9]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.4 [0.4, 1.2] 0.4 [0.3, 0.5]
Number of nonnull identified 1649 [1580, 1723] 1534 [1471, 1604]

Low power Large effect Sensitivity (%) 52.8 [50.9, 54.8] 37.7 [35.8, 40.3]
Specificity (%) 99.9 [99.9, 100] 99.9 [99.9, 99.9]
FDP (%) 0.7 [0.2, 0.6] 1.0 [0.7, 1.1]
Number of nonnull identified 1495 [1415, 1583] 1069 [1001, 1154]

Medium effect Sensitivity (%) 51.4 [49.3, 53.3] 41.4 [39.1, 43.4]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.6 [0.3, 1.0] 0.8 [0.6, 0.9]
Number of nonnull identified 1442 [1361, 1511] 1157 [1084, 1223]

Small effect Sensitivity (%) 57.7 [55.8, 60.2] 52.9 [51.5, 55.1]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.4 [0.1, 0.7] 0.3 [0.2, 0.5]
Number of nonnull identified 1453 [1400, 1501] 1332 [1287, 1392]

1True nonnull proportion in all simulations is controlled around 5% under sample size 50,000.
2Simulated data with minimum nonnull |Z| score preset at 1.96, 0.68 and 0.25 to represent high, medium and
low power scenarios.
3Covariates modulate the probability of being nonnull via parameter γ ; preset γ = (−5.29,2.5,−1.5)T to rep-
resent large effect, γ = (−3.74,1.2,−1)T to represent medium effect, and γ = (−3.06,0.5,−0.2)T to represent
small effect.
4FDP: False discovery proportion. All results presented are the median and [95% credible interval] over 100 runs
for each setting. Cutoff for cmfdr and fdr is set to be 0.05.
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pairwise squared correlation coefficient (r2) between allele counts for all pairs of
SNPs within a conservatively large window of 1,000,000 base pairs. Genotype data
for the PGC study were not available, so correlations were estimated in an inde-
pendent, but representative, collection of European individuals sequenced as part
of the 1000 genomes project [1000 Genomes Project Consortium et al. (2012)]. To
facilitate follow-up pathway analyses, we assigned SNPs with gene annotations
corresponding to genes within 50,000 base pairs for that given SNP. Genes were
selected based on the 242 Kyoto Encyclopedia of Genes and Genomes (KEGG)
Homo sapiens pathways [Kanehisa and Goto (2000), Kanehisa et al. (2016)] SNPs
within the major histocompatibility complex (MHC) on chromosome 6 were re-
moved due to the extensive and complex correlation structure within the region.
The resulting test statistics were then randomly pruned for approximate indepen-
dence, such that the estimated squared correlation coefficient r2 was less than 0.2
for any pair of SNPs. In order to approximate the maximum independent set of
those SNPs (to minimize the information loss due to the pruning) our pruning
scheme is based on a greedy algorithm which in each step keeps a node with
the minimum number of neighbors in a complete graph. The final data are com-
posed of N = 74,800 SNP summary statistics (z-scores) on n = 82,315 subjects
(35,476 cases). The meta-analysis z-scores of the 52 sub-studies are calculated
based Willer, Li and Abecasis (2010) and converted to z-test statistics using the
inverse (standard normal) probability transform.

For each SNP, we also computed three covariates: (1) the Total LD score
(TotLD), which is the sum of the squared correlation coefficients between a given
SNP and all others within a 1,000,000 base pairs window, again computed in the
representative 1000 genomes sample, a measure of the size of the correlation block
the SNP resides in; (2) heterozygosity (H), which is the variance of the allele count,
or H = 2(p)(1 − p), where p is the frequency of the reference allele; (3) the
Total Protein Coding Gene LD score (ProteinCoding), which sums the squared
correlation coefficients between a given SNP and all others within a 1,000,000
base pairs window that are in a protein coding gene as annotated on the refer-
ence genome [Hsu et al. (2006)], a rough measure of the functional DNA within
a SNP’s correlation block. We have previously shown that these three covariates
enrich for nonnull SNP associations across a broad range of complex phenotypes
[Schork et al. (2013)]. The distributions of TotLD and ProteinCoding are highly
skewed, and thus were log-transformed. All three covariates were then standard-
ized to have mean zero and standard deviation one. The MCMC algorithm was
applied with K = 5. Parameter estimates for γ indicate that all three covariates are
positively associated with the prior probability of nonnull status in semi-parametric
cmfdr, where coefficient for TotLD is 0.73, 95% credible interval is [0.61, 0.86];
H: 0.31 [0.24, 0.38] and ProtenCoding: 0.29 [0.22, 0.37]. The positive association
are also observed in gamma cmfdr [Zablocki et al. (2014)] as well as in FDRreg
cmfdr [Scott et al. (2015)].
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FIG. 1. Power curve for fdr, cmfdr (FDRreg), cmfdr (gamma model) and cmfdr (semiparametric
model). The x-axis is the fdr cutoff required to declare a SNP significant. The y-axis is the number
of rejected SNPs.

Power to detect nonnull SNPs in different models is displayed in Figure 1. This
figure compares the number of nonnull SNPs rejected under different models as a
function of significance threshold. The increase in power for both the gamma and
semiparametric cmfdr approaches compared to fdr, across a range of cut-offs from
0.001 to 0.20, is large. For example, for cut-off 0.20, fdr rejects 175 null hypothe-
ses, semiparametric cmfdr with all three covariates rejects 588, gamma model
cmfdr rejects 368 and FDRreg cmfdr rejects 203. For reference, the commonly-
used GWAS threshold of p ≤ 5 × 10−8 rejects 111 null hypotheses.

We also investigate the model fits, comparing semiparametric cmfdr and the
parametric gamma cmfdr. Figure 2 presents stratified Q-Q plots by π0 quantiles.
This figure displays the − log10 observed p-values versus the theoretical − log10
p-values under a standard normal distribution. Each SNP has been assigned to
one of three strata based on π0(xi ) = 1 − π1(xi ) value by quantiles: [0.00, 0.33],
(0.33, 0.66] and (0.66, 1.00]. The predicted − log10 p-values estimated from the
models are shown with a solid line, dashed line and dotted line, respectively;
the observed − log10 p-values are shown with dots, triangles and stars. SNPs in the
stratum π0 : [0–33] have the highest likelihood of being nonnull, while SNPs in the
stratum π0 : (66–100] have the highest probability of being null. The gray dash–dot
line indicates where the Q-Q curve would lie if all SNPs were null under a standard
normal distribution. The leftward deflection of the − log10 p-values on the Q-Q
plots stratified by π0 quantiles implies an abundance of nonnull SNPs versus the
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FIG. 2. Q-Q plot by π0 quantile for the PGC Schizophrenia GWAS data. The x-axis is the theoret-
ical − log10 p-values under a standard normal distribution. The y-axis is the − log10 observed or
predicted p-value (converted from z-scores). The gray dash–dot line is the reference line indicating
where the − log10 p-values would lie if all SNPs were null under a standard normal distribution.

global null hypothesis. The semiparametric cmfdr displays the best model fit com-
pared to the data. Of the 588 SNPs rejected by the semiparametric cmfdr at the 0.2
cutoff, 578 are from the stratum π0 : [0–33], 9 from the stratum π0 : (33–66] and
only one from the stratum π0 : (66–100]. Analogously, of the 368 SNPs rejected
by the gamma cmfdr at the 0.2 cutoff, the numbers of SNPs in corresponding strata
are 364, 4 and 0, respectively.

Furthermore, we plot the semiparametric cmfdr [Figure 3(a)] and gamma cmfdr
[Figure 3(b)] versus the observed absolute z-scores stratified by quantiles of
π0(xi ); fdr is also added as a reference. The gray dotted line is the 0.2 cutoff.
For the most enriched sample, the minimum absolute z-scores with semiparamet-
ric cmfdr ≤ 0.2 is 2.25 and with gamma cmfdr ≤ 0.2 is 2.57. For fdr, the minimum
absolute z-score under this threshold is 4.46, further demonstrating the increase in
power from using cmfdr versus fdr.

Finally, we compare the nonnull densities of semiparametric [Figure 4(a)] and
gamma [Figure 4(b)] covariate-modulated mixture models with different values
of covariates. The model without covariates is also included (solid lines). Both
figures show the nonnull densities where all the covariates were set at their cor-
responding 33 (dash line), 66 (dot line) and 99 (dash–dot line) percentiles. With
increasing values for the covariates, the densities show progressively heavier tails.
The nonnull density of the model without covariates shifts to the right, as com-
pared to the semiparametric model with covariates in Figure 4(a). This shift is
probably due to the fact that the variance of the null density (σ 2

0 ) is larger in the
model without covariates (median: 1.31, 95% credible interval: 1.29–1.33) than
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FIG. 3. cmfdr and fdr plotted against observed absolute z-scores.

the model with covariates (median: 1.12, 95% credible interval: 1.09–1.15). The
shift also appears in Figure 4(b) where the median of σ 2

0 from the gamma model is
1.24 (95% credible interval: 1.22–1.26). These results collectively indicate that the
enrichment annotation categories we employ here (TotLD, H and ProteinCoding)
provide useful information for selecting “interesting” subsets of SNPs for further
analysis.

To examine the biological significance of the SNPs, we performed pathway
analyses on the 242 gene sets in the KEGG Homo sapiens pathways database

FIG. 4. Nonnull densities where all three covariates were set at their corresponding 33, 66 and 99
percentiles.
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TABLE 2
KEGG PATHWAY with ALIGATOR p-values from three models

Pathway Semiparametric cmfdr1 gamma cmfdr2 fdr3

Axon guidance 0.0006 0.002 0.2046
Herpes simplex infection 0.0008 0.027 1
Osteoclast differentiation 0.0062 0.019 1
Pentose phosphate pathway 0.0096 0.521 1
Tuberculosis 0.01 0.0068 0.132
Leishmaniasis 0.0162 0.095 1
Antigen processing and presentation 0.022 0.096 1
Taste transduction 0.033 1 1
Cytokine-cytokine receptor interaction 0.037 0.038 1
Cell adhesion molecules (CAMs) 0.0446 0.131 1

1p values from ALIGATOR based on 588 nonnulls identified by the semiparametric model at cmfdr
cutoff 0.2.
2p values from ALIGATOR based on 368 nonnulls identified by the gamma model at cmfdr cut-
off 0.2.
3p values from ALIGATOR based on 175 nonnulls identified without covariates at fdr cutoff 0.2.

(http://www.kegg.jp/). To perform these pathway analyses, we implemented the
ALIGATOR [Holmans et al. (2009)] algorithm, which tests for overrepresentation
of biological pathways in SNP lists. ALIGATOR corrects for LD between SNPs,
variable gene size and multiple testing of nonindependent pathways. Using the 175
SNPs with fdr ≤ 0.20 results in no pathways with p-value ≤ 0.05 (corrected for
multiple testing). On the other hand, there were 10 pathways with p-values ≤ 0.05
using 588 SNPs with semiparametric cmfdr ≤ 0.20 (Table 2). The p-values us-
ing 368 SNPs with gamma cmfdr are also listed for comparison. Axon Guidance
is ranked highest in both cmfdr models. The 10 top ranked pathways from semi-
parametric cmfdr given in Table 2 provide interesting insight into the pathogenesis
of schizophrenia, given that the KEGG database is expertly curated without prior
emphasis in terms of disease etiology. The top ranked pathways show abnormal ax-
onal connectivity, lipid metabolizing and voltage-gated ion channels, as well as co-
morbid conditions that have been noted among patients with schizophrenia in prior
research [Greiner and Nicolson (1965), Lidow (2003), Battaglino et al. (2004),
Leucht et al. (2007), Putnam, Sun and Zhao (2011), Maiti et al. (2011), Buckley,
Pillai and Howell (2011), Gardiner et al. (2012), Liu et al. (2013)]. A complete
list of the 242 KEGG Homo sapien pathways and their ALIGATOR p-values are
given in Supplementary Section 2.

4. Discussion. GWAS of highly polygenic traits such as schizophrenia remain
underpowered to detect most genetic variants involved in the disorder, even with
very large sample sizes. By incorporating auxiliary information, the process of

http://www.kegg.jp/
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gene discovery can be sped up significantly, along with the assessment of the role
of molecular pathways. Moreover, the examination of which auxiliary information
is useful for predicting nonnull status can be informative of the genetic architecture
of polygenic traits.

Using a set of genetic loci (SNPs) pruned for approximate independence, we
demonstrate a large increase in power in the PGC schizophrenia data using our
semiparametric cmfdr model compared with fdr, as well as previous models for
cmfdr that either use a parametric model (gamma fdr) or a model that does not
incorporate covariate effects (FDRreg) into the estimation of the nonnull density.
For example, using a 0.20 cut-off, we reject 588 null hypotheses with cmfdr com-
pared with only 175 using fdr, or over 3.4 times as many SNPs as the intercept
only model, with a similarly large increase in power versus FDRreg, and a smaller
but still substantial increase in power over gamma fdr. This increase in power ap-
pears to be driven by a better-fitting model of the tails of the nonnull distribution
for highly enriched SNPs.

Our choice of covariates in the PGC schizophrenia application was driven by
scientific considerations based on theory and substantial prior evidence that these
annotations enriched for nonnull associations [Schork et al. (2013)]. In general,
we recommend selection of covariates based on these criteria. However, the model
could also be used for exploratory analyses, to examine whether a given anno-
tation significantly enriches for associations. For this use, it would be useful to
implement a model-selection metric such as the Watanabe–Akaike Information
Criterion [WAIC, Vehtari and Gelman (2017)].

The proposed cmfdr model assumes independence of the z-scores. To ensure
this was approximately true in the current data example, we randomly pruned SNPs
so that no two SNPs in the sample were correlated at more than r2 = 0.20. We thus
need to delete many tests to achieve independence. Our current research considers
alternative schemes to explicitly model the effects of the correlation on the val-
ues of the z-scores. We are also developing an extension of the cmfdr model that
also incorporates biological networks (gene sets with graphical model structure
determined by biological interactions).
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric covariate-modulated local false discovery
rate for genome-wide association studies” (DOI: 10.1214/17-AOAS1077SUPP;
.pdf). The supplement consists of 4 sections. Section 1 presents conditional pos-
teriors and Gibbs sampling algorithm. Section 2 provides the full list of KEGG
Homo sapiens pathways with ALIGATOR p-values from different models. Sec-
tion 3 demonstrates identifiability of the mixture model. Section 4 shows conver-
gence diagnosis plots of parameter estimates.
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