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Respondent-driven sampling (RDS) is a sampling method designed to
study hard-to-reach human populations. Beginning with a convenience sam-
ple, each participant receives a small number of coupons, which they dis-
tribute to their contacts who become eligible. RDS participants are asked to
report on their number of contacts in the target population. Also, a set of
characteristics is observed for each participant. Current prevalence estima-
tors assume that these attributes are measured accurately. However, ignoring
misclassification may lead to biased estimates.

The main contribution of this paper is to discuss two approaches to cor-
rect for the bias introduced by the misclassification on nodal attributes for
existing RDS estimators. The two approaches leverage misclassification rates
assumed to be available from external validation studies. Most importantly,
our analysis identifies circumstances for which the performance of the cor-
rection methods is impaired in the specific context of RDS. The two methods
that are discussed are an analytical correction for estimators of the Hájek esti-
mator style and the Simulation Extrapolation Misclassification (SIMEX MC)
approach. Extended methodology to estimate the uncertainty of the corrected
estimators is also presented. The performance of the proposed methods is
assessed under varying levels of known or uncertain misclassification error
across simulated social networks of varying features. Finally, the methods
are used to estimate HIV prevalence among people who inject drugs (PWID)
and men who have sex with men (MSM) in India.

1. Introduction. There is an ongoing interest in learning about hard-to-reach
human populations. Members of such target populations are often either highly
stigmatized or represent a small proportion of a significantly larger population.
These characteristics commonly translate into a lack of sampling frame, making
the sampling particularly difficult and prohibitively expensive. If the target pop-
ulation is well connected by a social network, the ties in this network may be
exploited to sample from the target population using a variant of link-tracing net-
work sampling. In idealized cases [Goodman (1961), Handcock and Gile (2011)],
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the resulting sample is a probability sample; however, practical constraints typi-
cally interfere, resulting in convenience sampling. For example, an initial proba-
bilistic sample is impractical in most settings [Biernacki and Waldorf (1981), Trow
(1957)] and, therefore, a link-tracing or snowball sample collected from that ini-
tial convenience sample results in a nonprobability sample of the target population
[Handcock and Gile (2011), Trow (1957)].

Respondent-Driven-Sampling (RDS) is a specialized form of link-tracing sam-
pling design introduced by Heckathorn (1997) as a practical sampling method to
be approximated as a probability sample. RDS begins with a convenience sample.
Each participant then receives a small number of coupons, which they distribute
to their contacts who become eligible. All RDS participants are asked to report
on their number of contacts in the target population, their self-reported degree.
Similarly to other link-tracing samples, RDS allows the recruitment of individu-
als otherwise unknown to researchers. By restricting the number of referrals per
participant, a given sample size forces samples many steps away from the initial
sample, reducing the dependence of the final sample on the initial convenience
sample. Finally, the coupon mechanism helps diminish serious confidentiality is-
sues related to the recruitment of stigmatized populations, contributing to its wide
adoption by public health organizations [Johnston et al. (2008)].

RDS is a novel sampling mechanism and inference from RDS data relies on a
number of strong assumptions regarding the network properties and the sampling
process. Due to the great interest in this sampling methodology, the research com-
munity has made significant progress in understanding some of the critical RDS
assumptions. For instance, most of the RDS prevalence estimators assume that
respondents recruit completely at random among their peers. Consequently, the
impact of nonrandom recruitment on the prevalence estimates has been assessed
by many [Frost et al. (2006), Tomas and Gile (2011), Verdery et al. (2015)] and
diagnostics have been proposed to detect nonrandom recruitment [Gile, Johnston
and Salganik (2015), Liu et al. (2012), Wejnert and Heckathorn (2008), Yamanis
et al. (2013)]. Recent advancements also include an extension of the Salganik and
Heckathorn (2004) estimator to reduce the bias introduced by nonrandom recruit-
ment behaviors [Lu (2013)].

Furthermore, various questions have been raised concerning the participants’
degree because currently methodology heavily relies on this metric. For instance,
researchers have studied whether relationships may safely be assumed to be re-
ciprocated [Mccreesh et al. (2012), Rudolph, Fuller and Latkin (2013)] and the
potential sensitivity of the estimators to directed edges Lu et al. (2012). Lu et al.
(2013) proposed an extension of the Salganik and Heckathorn (2004) which ac-
counts for directed ties. Another assumption related to the degrees is that partic-
ipants are commonly presumed to report their degree accurately. Several studies
have recently assessed the impacts of inaccurately self-reported degrees on RDS
estimators [Lu et al. (2012), Rudolph, Fuller and Latkin (2013)], finding that RDS
estimators are robust to many forms of misreporting of degrees, but subject to bias
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in special circumstances such as when misreporting patterns are related to the out-
come of interest or when respondents report degrees rounded to multiples of five,
ten and one hundred [Mills et al. (2014)].

To date, however, the assumption that the outcome of interest is measured ac-
curately has not been discussed in the context of RDS data. In this paper, we show
that neglecting such misclassification may lead to biased estimates. This is a source
of concerns for many RDS studies. For instance, dozens of RDS studies have been
implemented to estimate HIV prevalence among key populations [Johnston et al.
(2008), Malekinejad et al. (2008), Montealegre et al. (2013)]. Accuracy of HIV
diagnosis is considered crucial in that erroneous results may lead to severe reper-
cussions for misdiagnosed individuals [Smith, Rossetto and Peterson (2008)] and
to serious consequences for epidemic prevention [Marks et al. (2005)]. As pointed
out by the World Health Organization in their recent consolidated guidelines on
HIV testing services [World Health Organization (2015)], HIV misdiagnoses have
occurred in numerous settings nonetheless. While the methods in this paper cannot
address the misdiagnosis of individuals, they can help prevent systematic distor-
tions of population estimates based on imperfect diagnostic tests. As illustrated in
our application to high-risk populations, these methods may also make it possible
to adjust population estimates based on lower-quality individual level indicators
(like self-report).

The main contributions of this paper is to extend two existing methods for infer-
ence in the presence of misclassification to the dependent-sampling weighted-data
case of RDS. The first method is an analytical adjustment, also referred to as the
matrix method [Barron (1977)], to correct a population proportion. Despite the
fact that it is not possible to assume independence and identical distribution for the
sampled units in RDS studies, we demonstrate that this correction is applicable to
RDS estimators of the Hájek style such as the sample mean, the Volz–Heckathorn
estimator [Volz and Heckathorn (2008)] and the Successive-Sampling estimator
[Gile (2011)]. We also introduce a novel formulation for the Salganik–Heckathorn
estimator [Salganik and Heckathorn (2004)]. This formulation elucidates the rea-
sons for the suboptimal performance of the analytical adjustment with this estima-
tor. We then discuss the Simulation Extrapolation Misclassification (SIMEX MC)
[Küchenhoff, Mwalili and Lesaffre (2006)] approach which does not rely on the
form of the estimator, but instead requires that the estimator may be expressed as a
function of the misclassification error present in the data. Both methods assume a
classical misclassification model, leveraging misclassification rates from external
validation studies. As in some cases, the error rates may not be known precisely;
we assess the effect of uncertain error rates on the correction methods’ ability to
reduce misclassification bias in our simulation study. We also extend two RDS
Bootstrap uncertainty estimation procedures to account for misclassification.

We have applied the correction methods to RDS surveys conducted in India
among people who inject drugs and men who have sex with men. In those stud-
ies, the participants were asked to answer questions regarding their knowledge of
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their HIV infection status. In addition, on-site biological testing was performed to
determine their actual HIV infection status. The self-reported data contained sub-
stantial false negative rates as participants were largely unaware of their infection
status. Their lack of knowledge of their infection status may have occurred for a
number of reasons, such as the fact that they may not have been tested recently.
In our application, we address the challenge of inference based on only the self-
reported HIV status and known error rates. We compare our results to analysis
based on biological test data. We find that inference from self-reported data may
be significantly improved when applying the correction methods discussed in this
paper.

In Section 2, we present existing methodology for RDS, including a description
of estimators and bootstrap procedures to estimate their variance. Section 3 con-
tains a description of the two correction methods as well as our proposed method-
ology to estimate the variance of the corrected estimators. In Section 4, we present
a simulation study illustrating the performance of the proposed methods. Section 5
discusses the results from the RDS application in India. Finally, in Section 6, we
present a discussion of the proposed methods.

2. Existing methodology for respondent-driven sampling.

2.1. Sampling methodology. This section outlines the procedure to collect a
respondent-driven sample. Assuming that the studied human population is con-
nected by a social network, the objective of RDS is to leverage this relational
structure to reach members who would not otherwise be accessible through a con-
ventional sampling framework. Typically, researchers select the initial participants,
the seeds. Once the seeds are enrolled in the survey, they receive a small number
of uniquely identified coupons to distribute among their social ties of the target
population. Individuals receiving coupons who return to the survey center are en-
rolled in the study. The individuals who were recruited from the seeds are said to
be part of the first wave of recruitment. The subsequent waves occur in the same
fashion, that is, participants in each wave are given the same number of coupons to
distribute to their contacts until a desired sample size is achieved. The respondents
commonly receive a small financial incentive both for their participation and for
each successful recruitment.

2.2. Notation. Suppose a hard-to-reach human population consists of N indi-
viduals, also called the nodes of the network. We assign the labels 1,2, . . . ,N to
the nodes. This population of N nodes is connected by social ties which may be
represented by a sociomatrix Y ∈ {0,1}N×N . Entries in the sociomatrix, yij , are
equal to 1 if nodes i and j are connected or 0 otherwise. Ties are assumed to be
reciprocated such that yij = yji ∀i, j ∈ {1,2, . . . ,N}.

The outcome of interest is represented by a vector z ∈ {0,1}N . We refer to the
outcome of interest as the “infection status” since RDS studies have found many
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applications in public health settings, such as HIV/AIDS surveillance of at-risk
populations [Johnston et al. (2008), Malekinejad et al. (2008), Montealegre et al.
(2013)]. However, z may be interpreted as any binary vector of length N. The ith

entry of this vector is such that

zi =
{

1 person i is infected,

0 otherwise,
i ∈ {1,2, . . . ,N}.

Note that z represents the true infection status, typically assumed to be ob-
servable. We introduce notation for the misclassification of z in Section 3. Fi-
nally, we define the set of infected individuals and uninfected individuals as
Z1 = {i : zi = 1} and Z0 = {i : zi = 0}, respectively.

The RDS estimators described in the remainder of this section estimate the
prevalence of the infection status in the target population. The actual population
prevalence is denoted μ. RDS estimates are based on a sample of n individuals for
whom the self-reported degree is observed and is assumed to be equal to the true
degree di = ∑N

j=1 yij . The vector S ∈ {0,1}N indicates whether the nodes were
sampled such that

Si =
{

1 person i has been sampled,

0 otherwise,
i ∈ {1,2, . . . ,N}.

Similar to notation for infected individuals, we define the set of sampled nodes as
S1 = {i : Si = 1}.

2.3. Hájek estimator. RDS surveys are often used to make inference about the
prevalence of an infection status in the target population, that is, the quantity of

interest is μ =
∑N

i=1 zi

N
. A number of design-based estimators have been developed

for RDS data to estimate this quantity and several of those estimators are closely
related to the Hájek estimator:

(2.1) μ̂Hájek =
∑N

i=1
Sizi

πi∑N
i=1

Si

πi

,

where πi is the sampling probability for individual i.
Due to the complexity of RDS, the sampling probabilities are unknown. A num-

ber of methodologies have been proposed to estimate them. We refer to an estima-
tor of the Hájek form but based on estimated sampling probability as an estimator
of the Hájek style. Such an estimator is of the form

(2.2) μ̃Hájek =
∑N

i=1
Sizi

π̂i∑N
i=1

Si

π̂i

.



2116 I. S. BEAUDRY, K. J. GILE AND S. H. MEHTA

The sample mean, the Volz–Heckathorn estimator [Volz and Heckathorn
(2008)] and the Successive Sampling estimator [Gile (2011)] all are of the Há-
jek style and rely on distinct methodologies to estimate the sampling probabilities.
These methodologies are described in Sections 2.3.1–2.3.3. Next, in Section 2.4,
we present the estimator introduced by Salganik and Heckathorn (2004), which
under certain conditions, may also be formulated as an estimator of the Hájek
style. However, when those conditions fail, the Salganik–Heckathorn is no longer
similar enough to Hájek style to allow for the good performance of the analytical
adjustment correction introduced in Section 3.1.1.

2.3.1. Sample mean. The naive approach to making inference with RDS data
is to consider the sample mean as an estimator for the total population mean. This
implicitly assumes a common sampling probability for all members in the target
population. However, this assumption almost never holds in practice in the context
of RDS. Therefore, the sample mean estimator is not expected to perform well in
most circumstances. The estimator shown in equation (2.2) with constant sampling
probabilities results in the sample mean:

(2.3) μ̂mean =
∑N

i=1 Sizi∑N
i=1 Si

.

2.3.2. Volz–Heckathorn estimator. Volz and Heckathorn (2008) suggested that
the RDS procedure may be approximated by a with-replacement random walk on
the space of the network nodes. Based on the assumptions that the network is fully
connected and that the random walk has reached equilibrium, the authors argue
that the sampling probabilities are proportional to the nodal degrees, di . Their
conclusion is based on the stationary distribution of a random walk and leads the
following estimator:

(2.4) μ̂VH =
∑N

i=1 Si
zi

di∑N
i=1 Si

1
di

.

2.3.3. Successive sampling estimator. The Volz–Heckathorn estimator relies
on the strong assumption that the sampling is performed with replacement. How-
ever, in practice this assumption is violated as members of the target population
are only allowed to participate once in the survey. The contribution of the Suc-
cessive Sampling estimator [Gile (2011)] is to address this issue. The sampling
procedure is instead approximated by a self-avoiding random walk. The resulting
μ̂SS therefore generally outperforms the μ̂VH for large sampling fractions.

This estimator uses a successive sampling procedure [Yates and Grundy (1953)]
with unit size equal to degree to estimate the sampling probabilities jointly with the
population degree distribution. The author suggests an algorithm iterating between
the estimation of the population degree distribution and the inclusion probabilities.
The obtained estimated sampling probabilities are then used in the expression for
estimators of Hájek style (2.2).
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2.4. Salganik–Heckathorn.

2.4.1. Salganik–Heckathorn estimator. The estimator introduced by Salganik
and Heckathorn (2004) relies on the argument that if all ties are reciprocated, then
the total number of ties from infected to uninfected individuals equals the total
number of ties from uninfected to infected individuals. This quantity is referred
to as the number of cross ties and is denoted T(k,1−k) = ∑N

i=1
∑N

j=1 zi(1 − zj )yij

for k ∈ {0,1}. Multiplying by terms which conveniently cancel out leads to this
alternate expression for the number of cross-ties

T(k,1−k) = p(k,1−k) · D̄k · (
μk + (1 − μ)(1 − k)

) · N,(2.5)

where:

1. k ∈ {0,1},
2. p(k,1−k) =

∑N
i=1

∑N
j=1 zi(1−zj )yij∑N

i=1
∑N

j=1(kzi+(1−k)(1−zi))yij
, that is, the proportion of cross-ties

for nodes belonging to Zk .

3. D̄k =
∑N

i=1
∑N

j=1(kzi+(1−k)(1−zi))yij

|Zk | , the average degree of nodes belonging to

Zk .

Using the argument that all ties are reciprocated, and thus T(0,1) equals T(1,0),
and equation (2.5) the following expression for the actual population proportion is
obtained:

(2.6) μ = p(0,1)D̄0

p(1,0)D̄1 + p(0,1)D̄0
.

The quantities in equation (2.6) are not directly observable from a sample. How-
ever, the authors argue that they may be estimated from the collected data. The
methodology they proposed assumes that RDS may be reasonably well represented
by a with-replacement random walk on the space of network nodes at stationarity.
Based on this assumption, the cross-ties proportions, p(k,1−k), may be estimated
from the observed recruitment patterns, such that

(2.7) p̂(k,1−k) = r(k,1−k)

r(k,1−k) + r(k,k)

,

where r(k,1−k) and r(k,k) are the number of recruitment from nodes belonging to
{Zk,S1} to nodes belonging to {Z1−k,S1} and {Zk,S1}, respectively, for k ∈
{0,1}. The random walk assumption also leads to the average degrees, D̄0 and D̄1,
to be estimated as follows:

(2.8) ˆ̄Dk = nk∑N
i=1 Si

(kzi+(1−k)(1−zi))
di

,
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where nk = |{Zk,S1}|. The following expression for the estimator μ̂SH is therefore
derived by substituting p(k,1−k)’s by p̂(k,1−k)’s and D̄k’s by ˆ̄Dk’s in expression
(2.6):

(2.9)

μ̂SH =
∑N

i=1 Si
zi

di∑N
i=1 Si

zi

di
+ c

∑N
i=1 Si

(1−zi)
di

where c = n1

n0

r(0,0) + r(0,1)

r(1,1) + r(1,0)

r(1,0)

r(0,1)

.

More intuitively, the quantity c is approximately equal to the relative number of
cross recruitment from one group to another (r(1,0)/r(0,1)). If the sample was truly
collected with a random walk, the number of recruitment from infected to unin-
fected could at most differ from the number of recruitment from uninfected to in-
fected by one. However, the branching structure of RDS allows larger differences.
Consequently, under RDS, c departs from one when there is a disproportionate
number of recruitment from an infection group to the other.

2.4.2. Relation between μ̂SH and μ̂VH. In this section, we establish a relation
between μ̂SH and μ̂VH. This relation elucidates in which cases the analytical ad-
justment does not perform as well for this estimator compared to the estimators of
the Hájek style.

The Salganik–Heckathorn estimator may be formulated as a function of the
Volz–Heckathorn estimator:

μ̂SH = μ̂VH

μ̂VH + c(1 − μ̂VH)
.(2.10)

The value c in the above relation has a number of important implications. First,
we observe that for c = 1, μ̂SH = μ̂VH, or equivalently, the Salganik–Heckathorn
estimator is of the Hájek style. Second, c approaches 1 under the assumption that
the sampling may be approximated by a Markov Chain at stationarity. However,
our simulations described in Section 4.2 show that c may significantly differ from
1 in RDS data, which has implications for the performance of the analytical adjust-
ment. Finally, under misclassification, c cannot be observed directly, and while its
apparent value, denoted c∗, approaches 1 under the estimator’s assumptions, our
simulations show that it also may differ from 1 and c.

2.5. Variance estimation.

2.5.1. Salganik bootstrap. In this section, we describe the bootstrap proce-
dure proposed by Salganik (2006) to estimate the variability of RDS estimators.
Since RDS does not produce a classic probability sample, Salganik introduced a
nonparametric bootstrap that would capture the recruitment dependencies between
infected and noninfected nodes. The algorithm consists of the following steps:
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1. Resampling A new RDS sample is drawn from the observed data:

(a) A first node is selected at random among all nodes in the observed RDS
sample.

(b) Two vectors are constructed: w0 and w1 ∈ {0,1}n. The ith entry in each
vector indicates whether node i was recruited by a noninfected or by an infected
node, respectively.

(c) Nodes are subsequently resampled node-by-node by sampling at random
with replacement with weights proportional to w0 if the infection status of the
recruiting node is noninfected or proportional to w1 otherwise. The resampling
is performed with replacement.

(d) The process stops when n nodes are recruited.

2. RDS estimates: A prevalence estimate is calculated based on the resampled
data from step 1.

3. Confidence Interval for μ: Steps 1 and 2 are repeated a large number of times.
For the purpose of this paper, the variability of the resulting resampled estimates
is used to construct t-intervals.

2.5.2. Successive sampling bootstrap. The Successive Sampling Bootstrap
(SS Bootstrap) is a procedure that was proposed by Gile (2011) to estimate the
variance of μ̂SS, described in Section 2.3.3.

The SS Bootstrap procedure is based on a sampling model similar to the one
assumed for the Successive Sampling estimator (μ̂SS), but it allows for additional
RDS features, such as multiple seeds and a fixed number of recruits per partici-
pants. It is also formulated to capture network homophily on the infection status.

In order to simulate sampling under Successive Sampling design [Yates and
Grundy (1953)], the unit size of each element in the population is required. There-
fore, each SS Bootstrap replicate is initiated by the simulation of a unit size dis-
tribution, that is, the degree distribution, of a population of N individuals. This
distribution is also divided between the infection status classes, that is, infected or
uninfected, so an RDS estimate may be computed.

The author argues however that drawing a successive sample based on these
units would likely result in anti-conservative estimates of the variance. Conse-
quently, she extended the proposed methodology to account for network ho-
mophily on the infection status. The homophily is represented by an estimated
mixing matrix partitioned relative to the infection status, which is estimated based
on the observed recruitment patterns.

The resampling process stops when n nodes are sampled. A RDS prevalence
estimate based on the bootstrap sample is calculated. This process is repeated a
large number of times. The SS Bootstrap variance estimator is the sample variance
of the RDS estimates from the replicates.
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3. Methods to correct for misclassification. In many contexts, it is not pos-
sible to directly observe the outcome variable zi . For example, the medical test to
determine the infection status of an individual may not be perfectly accurate. Fail-
ure to account for misclassification may lead to biased estimates. In this section,
we describe two methods to adjust RDS estimators for bias resulting from misclas-
sification on a binary nodal attribute. We first introduce an analytical adjustment
for estimators of the Hájek style. Then, we describe the Simulation-Extrapolation
Misclassification algorithm, as it may be applied to RDS prevalence estimators.
Finally, we also propose methods to estimate the variance of the corrected estima-
tors.

Before describing adjustments for measurement error, we need to introduce the
error-prone binary random variable Z∗

i , which takes value one if the observed in-
fection status is positive and zero otherwise. The observed infection status may
differ from the actual one. Our approach assumes that the risk of misdiagnosis
occurs at known false positive and false negative rates, f + and f −. These proba-
bilities are the conditional probability of observing a positive or negative infection
status when the actual status differs:

f + = P
(
Z∗

i = 1|zi = 0
)
,

f − = P
(
Z∗

i = 0|zi = 1
)
.

For simplicity, we refer to these rates as either misdiagnosis or testing error rates
interchangeably. We recognize though that in many settings a testing procedure
involving multiple tests is used to obtain a diagnosis. In practice, f + and f − may
not always be known. It may be advisable to assess the sensitivity of the correction
methods to various rates in absence of precise external validation data.

An estimate based on taking the observed data, z∗
i at face value, is referred to as

the naive estimator. An expression for the naive estimator of Hájek style is given
by

(3.1) μ̂naive =
∑N

i=1
Siz

∗
i

π̂i∑N
i=1

Si

π̂i

,

the same form as equation (2.2) but with zi replaced by the observed status, z∗
i .

3.1. Corrected prevalence estimators.

3.1.1. Analytical adjustment estimator. The analytical adjustment, also re-
ferred to as the matrix method [Barron (1977)], discussed in this section applies
to estimators of the Hájek style (2.2). We denote the resulting adjusted estimator
μ̂adj.

Equation (3.1) may be interpreted as a ratio of estimators. The numerator repre-
sents an estimate of the number of observed infected individuals, ̂|Z∗1|, where Z∗1
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is the set of individuals for whom a positive infection status would be observed.
As for the denominator, it is an estimate of the total number of individuals in the
population, N̂ . Therefore, equation (3.1) may alternatively be expressed as

μ̂naive =
̂|Z∗1|
N̂

.

Provided that the π̂i ’s were true for all i, then N̂ would be unbiased for N . Also,
under the assumption that the misclassification is the result of a mechanism that is

independent of the sampling procedure, we have that E(̂|Z∗1|) = N [μ(1 − f −) +
(1 − μ)f +]. Therefore, the ratio of estimators leads to an analytical form for a
corrected estimator, μ̂adj, which is approximately unbiased for μ in large samples:

(3.2) μ̂adj = μ̂naive − f +

1 − f + − f − .

The analytical adjustment may result in a corrected estimate smaller than zero
or greater than one. In such cases, the corrected estimate may be set to zero and
one, respectively [Buonaccorsi (2010)].

Equation (3.2) provides a general way to correct estimators of the Hájek style
for misclassification on the nodal attribute. The specific estimators are denoted
μ̂

adj
mean, μ̂

adj
VH and μ̂

adj
SS depending on which of the estimator is used.

The form of the Salganik–Heckathorn estimator, which combines a method of
moments estimator with inverse probability weighting estimators, prevented our
derivation of a direct analytical adjustment specific for μ̂SH. However, for c in
equation (2.9) approaching one, this estimator is almost of Hájek style and we
may simply apply the analytical correction. Similar to the estimators of the Hájek
style, we denote its corrected estimator μ̂

adj
SH. Our simulations show that for c sig-

nificantly departing from 1 or for large discrepancies between c and c∗ (i.e., the
apparent c-factor based on the observed infection status), the effectiveness of the
analytical adjustment in reducing the bias induced by misclassification is dimin-
ished.

3.1.2. SIMEX MC estimators. In this section, we present an alternative
method to correct for misclassification on the nodal attribute, the Simulation Ex-
trapolation Misclassification (SIMEX MC) introduced by Küchenhoff, Mwalili
and Lesaffre (2006). This method is a discrete version of a the Simulation Extrapo-
lation (SIMEX) procedure [Stefanski and Cook (1994)]. Contrary to the analytical
correction discussed in Section 3.1.1, this method does not make any assumption
on the form of the estimator and, therefore, is particularly useful when it is not
possible to derive a tractable expression for analytical adjustment. However, it re-
quires that the estimator may be expressed as function of the error structure which
is presumed to be known.
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Stefanski and Cook (1994) describe their simulation-based method SIMEX
which corrects estimators for measurement error generated from an additive mea-
surement error model with known variance. The general idea is that if an estima-
tor, say θ̂ , may be expressed as a function of measurement error variance then it is
possible to extrapolate such function to the theoretical level where such variance
is zero.

To illustrate the SIMEX procedure, let us suppose that each observation, X∗
i ,

comes from an additive measurement error model such that X∗
i = Xi + ξi , where

Xi are the true unobserved data and ξi is the random error with known variance σ 2
ξ .

Also, we assume that Xi is independent of ξi for i ∈ {1, . . . , n}. Furthermore, let
g(·) be the function mapping the estimator θ̂ to the measurement error variability.
Their proposed two-stage algorithm consists of the following steps:

1. Simulation: In the simulation step, for each of K levels of perturbation, a
large number of data sets, B , are simulated by perturbing the observed data ac-
cording to a variant of the assumed error model. In our example, this translates
into X∗

i,b = X∗
i + λk · ξi,b, where λk is a multiplicative scalar that inflates the mea-

surement error variability present in the simulated data and where ξi,b has the same
distribution as ξi . For each of the K levels of λk , B data sets are simulated which
all contain the same measurement error variability. Estimates θ̂b(λk) are computed
for each of the data sets at this variability level and are subsequently averaged to
obtain θ̂ (λk).

2. Extrapolation: The outcome of the simulation step is a set of K θ̂(λk).
These θ̂ (λk) are estimates for the function g(·) at the measurement error vari-
ance level (1 + λk)σ

2
ξ . The purpose of the extrapolation is to use those points on

the estimated curve to derive a function that can be evaluated at λk = −1, that is,
the point where the estimate is based on data free of measurement error variabil-
ity. The choice of the functional form is critical as it may significantly impact the
estimate. The resulting extrapolated estimate is referred to as the SIMEX estimate.

Küchenhoff, Mwalili and Lesaffre (2006) have extended the Stefanski and Cook
(1994) method to misclassified discrete data, referring to their approach as SIMEX
MC. The main difference from the continuous version of SIMEX lies in the sim-
ulation of the perturbed data sets. Analog to the parametric model for continuous
data, SIMEX MC parameterizes the error process with a misclassification matrix,
�. The matrix � is a matrix of conditional probabilities of observing a specific
value of the data given the true value. Each entry of the � matrix is therefore
πz∗

i ,zi
= P(Z∗

i = z∗
i |Zi = zi). As with SIMEX, it is assumed that the � matrix

is known. In the context of misclassification on a binary outcome variable, the �

matrix is

� =
[
π0,0 π0,1
π1,0 π1,1

]
=

[
1 − f + f −

f + 1 − f −
]

.
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A spectral decomposition of the � matrix is the first step in simulating data at
different misclassification magnitudes. The spectral decomposition may be repre-
sented as � = E�E−1, where � is a diagonal matrix with the eigenvalues of � on
the diagonal and where the columns of E are the corresponding eigenvectors. The
level of the additional misclassification applied to the observed data is controlled
by λk . For a given λk , data are simulated according to the conditional probabili-
ties specified by the matrix �k = E�λkE−1. The simulated data are consequently
related to the true unobserved data by the matrix E�(1+λk)E−1. Extrapolation to
λk = −1 gets rid of the misclassification present in the data in principle. Therefore,
once the data are simulated, the remainder of the algorithm remains the same as
the SIMEX algorithm and the SIMEX MC estimator is the extrapolated estimate
at λk = −1.

In the present manuscript, the estimators from the SIMEX MC procedure are
denoted μ̂lin and μ̂quad when the form for g(·) is assumed linear and quadratic, re-
spectively. Similar to the analytical adjustment, the specific RDS estimators are
indicated in the subscript. For example, the symbol μ̂

quad
VH refers to the Volz–

Heckathorn estimator corrected for misclassification with the SIMEX MC pro-
cedure based on a quadratic functional form.

3.2. Uncertainty of the corrected estimators.

3.2.1. Salganik bootstrap extensions. A naive approach to estimating the vari-
ance of a corrected estimator of the Hájek style would be to perform the Salganik
Bootstrap procedure [Salganik (2006)] described in Section 2.5.1 based on the ob-
served data without any modifications. However, this fails to take into account the
variability from the correction procedure and the fact that the observed infection
statuses are measured with uncertainty. In this section, we propose two extensions
to the current methodology to address these issues. Alternatively, one could esti-
mate the variance using the methodology proposed by Küchenhoff, Lederer and
Lesaffre (2007). Here, we have nonetheless chosen to extend existing uncertainty
estimators to reflect the recruitment structure relevant to the RDS data.

The choice of procedure to correct the naive estimate for misclassification im-
pacts the sampling distribution of the corrected prevalence estimator. The first ex-
tension is designed to reflect this source of variability. Simply replacing the naive
estimates (μ̂naive) in step (2) of the bootstrap (i.e., “RDS estimates”) by the cor-
rected estimates (μ̂adj, μ̂lin, or μ̂quad) using the selected correction procedure ac-
counts for the inherent variability due to the correction method.

The purpose of the second extension is to adjust for the variability associated
with the potential misclassification of the recruiters’ infection status. The resam-
pling weights, w0 and w1, defined in step (1) of the bootstrap algorithm (i.e., “Re-
sampling”) implicitly assume that the infection statuses are measured accurately.
We suggest to substitute those weights with the vectors w∗0 and w∗1 defined as
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the conditional probabilities that the recruiter’s infection status is negative (w∗0)
or positive (w∗1) given his or her observed status. For instance, let us assume indi-
vidual i was recruited by j , then

w∗k
i = P

(
Zj = k|Z∗

j = z∗
j

) = (
kμ + (1 − k)(1 − μ)

)P(Z∗
j = z∗

j |Zj = k)

P (Z∗
j = z∗

j )
,

where k ∈ {0,1}. One limitation of this method is that these resampling weights
require the true population proportion μ and P(Z∗

j = z∗
j ). We suggest that μ may

be approximated by the selected corrected estimator. Likewise, P(Z∗
j = 1) and

P(Z∗
j = 0) may be approximated by μ̂naive and 1 − μ̂naive, respectively.

An additional modification to this algorithm is proposed to incorporate the un-
certainty arising from using uncertain misclassification rates, if applicable. The
known error rates correcting the naive prevalence estimates are replaced with
draws from the error rates’ distribution. For the SIMEX MC algorithm, this in-
volves updating �, the misclassification matrix, used in the Simulation step.

3.2.2. Successive sampling bootstrap extension. It is possible to adapt the first
extension discussed in Section 3.2.1 to the successive sampling bootstrap proce-
dure [Gile (2011)], reflecting the variability associated with the correction pro-
cedure. Similar to the extension for the Salganik Bootstrap algorithm, the naive
estimates are substituted for the corrected estimates, which are calculated either
with the known misclassification rates or with draws from the best estimate distri-
butions. Because the resampling step of the successive sampling bootstrap is more
complex, the second extension described in the previous section is not applicable.

4. Simulation study. Because of the inherent complexity of the RDS pro-
cess, and the inadequacy of any approximating model for it, we use simulation
as the primary tool for evaluating the performance of the proposed methods. In
the next sections, we describe the design and present the results of a simulation
study assessing the performance of the two misclassification correction methods
for RDS estimators: the analytical correction and the SIMEX MC, and also as-
sessing the uncertainty estimators. All prevalence and variance estimates based on
true or observed data in this simulation study, as well as in the RDS application
discussed in Section 5, are calculated with functions available in the R package
RDS [Handcock, Fellows and Gile (2015)].

4.1. Simulation study design.

4.1.1. Network, sampling and misclassification rates simulation conditions.
This simulation study’s main objective is to assess the performance of the correc-
tion methods under a variety of conditions capturing the main sources of random-
ness involved in the RDS estimation procedure. These sources include the random
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process underlying the network structure, the RDS sampling procedure and the
misclassification mechanism. The selected scenarios were constructed to capture
those sources of uncertainty.

Our first objective was to design a baseline scenario where the effect of mis-
classification errors could be isolated from other factors. Our second objective
consisted in evaluating the robustness of the correction methods to conditions in-
ducing biases in RDS estimators from sources unrelated to misclassification. Un-
der those circumstances, the misclassification correction methods are expected to
retrieve the estimate based on the true infection statuses rather than the actual pop-
ulation parameter μ. Our third objective was to assess the ability of the methods
to eliminate the misclassification bias for large asymmetric misclassification rates
such as those found in the RDS application in India discussion in Section 5. Our
last objective was to ensure that the performance of the methods is not signifi-
cantly degraded by uncertain misclassification rates, such as rates obtained from
external validation studies. Scenarios’ features intended to assess those objectives
are summarized in Table 1.

Baseline scenario (S1): The purpose of this scenario is to isolate the effect
of misclassification. The average prevalence estimates based on the true outcome
variable (zi’s) approach the true population prevalence so that the bias in the naive
prevalence estimates is mainly attributable to misclassification. Methodology to
simulate the networks, RDS samples and misclassified infection statuses are out-
lined below.

1. Network Simulation: One thousand undirected networks are generated at
random using the exponential-family random graph model (ERGM) [Frank and

TABLE 1
Network and sampling features included in the simulation study scenarios

Condition Parameterization S1 S2 S3

Homophily
P(Yij =1|zi=1,zj =1)

P (Yij =1|zi �=zj )
1.0 5.0 1.0

Seed selection1 P(i ∈ S0|zi = 1) 1/N 1/|Z1| 1/N

P (i ∈ S0|zi = 0) 1/N 0 1/N

Diff. recruitment2
P(Si,t=1|Sj,t−1=1,zi=1,Yij =1)

P (Si,t=1|Sj,t−1=1,zi=0,Yij =1)
1.0 2.0 1.0

Diff. activity
1

|Z1|
∑

i∈Z1 di

1
|Z0|

∑
i∈Z0 di

1.0 1.0 1.4

f + rate (%) 10.3 10.3 1.0
f − rate (%) 0.5 0.5 57.0

1S0: Set of initial participants in the survey, that is, the seeds.
2Si,t : Indicates if i is sampled at step t assuming a random walk on the network nodes.
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Strauss (1986), Hunter, Goodreau and Handcock (2008), Hunter and Handcock
(2006)]. Networks are simulated such that on average, each individual is connected
to 7 members of the population. The total population size is 1000 individuals. Each
individual is assigned an infection status at random, with the true infection preva-
lence maintained at exactly 20% for each network. Networks are simulated using
the R package statnet [Handcock et al. (2015)].

2. Sampling: One RDS sample is drawn per network with a sample size of
200. A total of 10 seeds are selected completely at random among all nodes. Each
respondent recruits 2 participants completely at random among their contacts. The
sampling is performed without replacement.

3. Misclassification: One set of misclassified infection statuses is generated for
every network. For the baseline case, a false positive rate of 10.3% and false neg-
ative rate of 0.5% are assumed. The false positive rate corresponds to the findings
of a study conducted in the Democratic Republic of Congo [Shanks, Klarkowski
and O’Brien (2013)].

Sampling and network assumption violations (S2): In S2, network and
sampling features are simulated to purposively induce bias in the RDS prevalence
estimators. The objective is to assess whether the performance of the correction
methods is altered by those biases.

Networks were simulated with elevated homophily and the sampling procedure
with seed bias and differential recruitment. The mathematical parametrization of
those terms is given in Table 1. Conceptually, homophily is a network feature
which represents the propensity of alike nodes to tie more often than expected
at random. Networks under S2 were produced with an average homophily of five
whereas the ones in S1 displayed no homophily on average. The seed selection
regime was also modified in S2 to force initial participants to be selected among
the infected nodes. We refer to this notion as seed bias. Gile and Handcock (2010)
demonstrate that the selection of the participants starting the referral chains may
bias the estimates. Finally, differential recruitment denotes the propensity of par-
ticipants to recruit individuals with a given characteristic with higher probability.
Literature discusses how this form of differential recruitment induces bias in many
RDS estimators [Gile and Handcock (2010), Lu (2013), Tomas and Gile (2011),
Verdery et al. (2015)]. Although one RDS estimator has shown robustness to this
source of bias [Lu (2013), Verdery et al. (2015)] when information about the par-
ticipants’ ego network is available, none of the estimators included in this study
adjust for this type of bias. Differential recruitment in S2 is such that infected
individuals are twice as likely to be recruited than the noninfected ones.

Large asymmetric misclassification rates (S3): Under S3, the misclassification
rates were chosen to replicate the average misclassification rates from the RDS
application discussed in Section 5, that is, f + = 1% and f − = 57%. Data from
this application also suggest an average differential activity of approximately 1.4.
Differential activity exists when one group has more social connections than the
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other. More specifically, differential activity is defined as the ratio of mean degree
of the infected individuals in the population to the mean degree of the noninfected
ones. The baseline scenario was produced with an average differential activity of
one, or in other words, without differential activity, while S3 used 1.4.

In the three scenarios, we assumed known misclassification rates. In practice,
however, researchers may instead have to rely on uncertain error rates such as
rates estimated from an external validation study for instance. To assess the per-
formance of the correction methods with uncertain error rates, Scenarios 1 to 3
were repeated with infection statuses (z∗

i ’s) simulated with rates generated from
Beta distributions. The parameters of the Beta distributions were chosen so the ex-
pected values would equal the known error rates. For S1 and S2, the parameters
of the Beta generating the false positive rates were also chosen to reproduce the
precision of the rate in the work of Shanks, Klarkowski and O’Brien (2013). The
95% confidence interval for the error rates under S1 to S3 are as follows:

• S1 and S2: (0.071,0.14) for f + and (0.002,0.009) for f −; and
• S3: (0.005,0.017) for f + and (0.52,0.62) for f −.

The naive estimates are subsequently corrected with the best guess misclassifica-
tion rates, that is, the expected value of the distributions.

4.1.2. SIMEX misclassification parameters. The objective of SIMEX Mis-
classification (SIMEX MC) is to express the estimator as a function of the mag-
nitude of misclassification in the data. This procedure relies on a number of tun-
ing parameters, one of which controls the amount of misclassification at which
the function g(·) is evaluated. This parameter is λk and is described in Sec-
tion 3.1.2. For the simulations, we have used λk ∈ {0,0.4,0.8,1.2,1.6,2}, which
is a slightly finer grid than what found in the literature related to SIMEX. Our
analysis of the RDS application also suggested that in presence of greater misclas-
sification, the optimal choice of λk’s might differ. As such, we have instead used
λk ∈ {0,0.1,0.2,0.3,0.4,0.5} for S3. We have simulated B = 100 data sets for
each levels of λk with the exception of λk = 0 for which θ̂ (λk) = μ̂naive.

For the purpose of our simulation study, and subsequently for the RDS appli-
cation in India, we have selected two functional forms to extrapolate the simu-
lated estimates to the theoretical level where there is no misclassification, that is,
to λk = −1. We have selected the linear and quadratic functional forms based
on standard practice in the literature, visual inspection of the functions, and on
a comparison of a number of model selection criteria. Objective model-selection
criterion favor the quadratic form approximately 80% to 90% of the time under the
selected scenarios.

4.2. Simulation study: Point estimates. Simulation study results for all estima-
tors, under the three scenarios and calculated with known and uncertain misclassi-
fication rates are presented in Figure 1.
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FIG. 1. Estimates under the three scenarios summarized in Table 1 and under known and uncertain
misclassification rates. The estimates were calculated based on the observed data (μ̂naive) and on the
observed data but adjusted for misclassification with the correction methods (μ̂adj, μ̂lin and μ̂quad).
A “*” on the horizontal axis indicates that the method is in the set of methods producing the least
biased estimates based on a Bonferroni pairwise comparison at a family-wise error rate of 5%. The
horizontal lines are set at the average estimates based on the true infection statuses.

Results in Figure 1 are organized in three panels on the horizontal axis cor-
responding to the three scenarios. In addition, two panels on the vertical axis
separate the results produced with known rates from those produced with uncer-
tain error rates. In each of the six sections of the plot, the naive and corrected
prevalence estimates are summarized by box plots for each of the four estima-
tors (μ̂mean, μ̂VH, μ̂SS and μ̂SH). The average estimates based on the true infec-
tion statuses over one thousand simulations for a given estimator and scenario
are depicted by the horizontal lines. Those lines represent the best case value to
retrieve. Since RDS estimators may be subject to other sources of biases than mis-
classification and we expect the correction methods to strictly address the mis-
classification bias, the placement of the blue line may differ from the population
prevalence of 20%. Finally, the “*”s indicate that the method belongs to the set
of methods achieving the lowest misclassification error, for a given scenario and
estimator based on a Bonferroni pairwise comparison at a family-wise error rate
of 5%.
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The first key finding that Figure 1 reveals is that the corrected estimates ex-
hibit significantly less misclassification error than the naive approach. However,
the methods do not perform equally well under all circumstances.

For the estimators of the Hájek style, the analytical adjustment is the best
method to reduce the misclassification bias in all presented scenarios. For practi-
cal purposes though, the SIMEX MC with quadratic extrapolation displays similar
performance under S1 and S2. The large false negative rates used in S3 however
alters this method’s ability to reduce the misclassification error.

Similar conclusions may be reached for the Salganik–Heckathorn estimator un-
der S1 and S3. However, we observe a poorer performance of the analytical ad-
justment under S2. As demonstrated in Section 2.4.2, the Salganik–Heckathorn
estimator is exactly of the Hájek style when c in equation (2.9) equals one. Conse-
quently, the analytical adjustment is expected to do reasonably well for a c of one.
As discussed in Supplement A [Beaudry, Gile, and Mehta (2017)], discrepancies
between c and its analog observed version c∗ may also impact the efficiency of the
analytical adjustment. The average c and c∗ factors over the one thousand simu-
lations under S2 are 2.37 and 1.65, respectively. This discrepancy combined with
the magnitude of c explain the inability of the analytical adjustment to eliminate a
substantial portion of the misclassification error in S2. For comparison purposes,
those averages were 1.00 and 1.00 for S1 and 0.99 and 0.99 for S3. Lastly, since
the SIMEX MC algorithm does not depend on the form of the estimator the per-
formance of this method with quadratic extrapolation is mostly unaffected by the
assumption violations simulated under S2.

Although SIMEX MC with linear extrapolation displays significantly less mis-
classification error than the naive approach, it consistently results in larger error
than the quadratic extrapolation. This agrees with our prior findings which sug-
gested a better fit for the quadratic form.

The distribution of the prevalence estimates with known and uncertain error
rates appear similar in Figure 1. The main difference is the increased variability of
the estimates computed with the uncertain rates. The increase in standard deviation
ranges from 9.5% to 27.1% in the selected scenarios. More details regarding the
absolute bias, standard deviation and root mean-squared-error (RMSE = √

MSE)
may be found in Supplement B [Beaudry, Gile, and Mehta (2017)].

The performance of the correction methods have also been assessed at vari-
ous levels of miclassification. Results are presented in Supplement B. In most in-
stances, the RMSE based on the analytical adjustment is substantially lower than
the naive RMSE, with a maximum reduction of approximately 84%. The few ex-
ceptions occur when the estimates contain little misclassification error. In those
cases, our analysis suggests that the benefits from the reduction in misclassifica-
tion error are offset by the increase in the uncertainty of the corrected prevalence
estimates.

The discussed correction methods rely on the knowledge of the misclassification
rates f + and f −. In practice, however, those rates may be uncertain and possibly
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contain measurement error. In Supplement B, we have evaluated the impact of
inaccurate error rates on the correction methods. We found lower misclassification
error in the corrected estimates than in the naive estimates when using moderate
departure from the true error rate for either f + or f − for S1 to S3.

Overall, the correction methods perform better than the naive approach in all
scenarios presented in our simulation study. The performance of the analytical
adjustment and the SIMEX MC with quadratic extrapolation is similar with two
exceptions: when misclassification rates are very large (analytical preferred) and
when the analytical adjustment is not suitable for the Salganik–Heckathorn esti-
mator (SIMEX MC preferred).

4.3. Simulation study: Variance estimates. In Section 3.2, we proposed exten-
sions to the existing bootstrap procedures to account for the additional variability
of the RDS estimators due to the correction methods, the misclassification on the
outcome variable and the uncertainty of the misclassification rates, if applicable.
In this section, we evaluate the performance of these extended variance estimation
procedures against the naive application of the original method.

Ideally, a bootstrap variance estimator should produce results aligned with the
total variance of the stochastic process. Our closest estimate of this total variance
is the variability among the estimates in the simulation study for each scenario
(s’s). Figure 2a displays the relative differences between the average estimated
standard deviation under the various bootstrap methodologies ( ¯̂σ ’s) and their re-
spective sample standard deviation (s’s). The relative bias is computed as

¯̂σ−s
s

.
Figure 2a presents, for each of the three scenarios, six versions of the extended

Salganik Bootstrap procedure to estimate the variance of μ̂VH and μ̂SH and three
versions of the extended Successive Sampling Bootstrap procedure to estimate the
variance of μ̂SS. For the Salganik Bootstrap procedure, each of the three correc-
tion methods produce a set of two variance estimators. The first estimator of that
set only accounts for the first extension, that is, corrected resampled estimates,
while the second one also reflects the second extension, that is, modified resam-
pling weights. Results produced with uncertain misclassification rates include the
additional modifications to the algorithm described in Section 3.2.1, that is, the
known error rates are replaced by draws from the error rates’ distribution.

In Figure 2a, we observe that including both extensions to the Salganik Boot-
strap variance estimator for μ̂

adj
VH and μ̂

adj
SH reduces the relative bias in most in-

stances. The main exception is under S2 for μ̂
adj
SH, that is, when μ̂

adj
SH is not of

the Hájek style. The improvement from the second extension, if any, is negligible
when applied to the SIMEX MC correction. Overall though, no methods appear to
consistently be the best method across all conditions.

For the variance estimation of μ̂SS, the extended bootstrap with the three cor-
rected methods perform in a similar fashion. There is a slightly higher relative bias
when uncertain error rates are used as opposed to known rates. Again, however,
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(a) Relative bias of the standard deviation estimates calculated as
¯̂σ−s
s

, where ¯̂σ is
the average estimated standard deviation under a bootstrap methodology and s is

the sample standard deviation.

FIG. 2. Standard deviation estimation and 95% confidence interval coverage results for μ̂VH, μ̂SH
and μ̂SS and for the various versions of the bootstrap procedures under S1 to S3 with known or un-
certain misclassification rates. The notation “adj,” “lin” or “quad” indicates whether the variance
is being estimated for μ̂adj, μ̂lin or μ̂quad whereas “f.” and “s.” refer to the first and second bootstrap
extensions, respectively.

none of the methods systematically lead to the best performance under all circum-
stances.

Figure 2a suggests that the naive bootstrap procedure sometimes outperforms
the extended bootstrap estimators with uncertain misclassification rates. However,
the decrease in relative bias with uncertain rates is mainly caused by the fact that
the uncertainty of the error rates is not accounted for in the naive procedure rather
than by superior properties of the procedure. Larger uncertainty around the error
rates would deteriorate its performance.

In conclusion, we recommend using the variance estimator corresponding to the
appropriate correction method for the problem at hand. For the Salganik Bootstrap,
one has to further decide between applying the first extension or both of them. We
suggest applying both extensions solely with the analytical adjustment. The two
extensions showed smaller relative bias in our simulation study with this correction
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(b) 95% confidence interval coverage rates, where the coverage rates are the
percentage of the intervals including the true population proportion μ of 20%.

FIG. 2. (Continued).

method, which was not systematically the case when used in combination with the
SIMEX-MC algorithm.

Figure 2b helps evaluate the combined performance of the point estimation and
the variance estimation procedures. The 95% confidence interval coverage rates
with respect to the true population proportion of μ = 20% for μ̂VH, μ̂SH and μ̂SS
under three scenarios with known or uncertain error rates and using the different
bootstrap variance estimators are shown in this plot. This figure clearly highlights
that the naive approach is either worse than or, at best, equivalent to the correc-
tion methods. Also the analytical adjustment and the SIMEX MC with quadratic
extrapolation have similar coverage for each scenario. In addition, their coverage
rates are comparable to the coverage calculated based on the true infection sta-
tuses. For μ̂SH under S2, since the analytical adjustment does not strictly apply,
SIMEX MC with quadratic extrapolation performs better. Similarly, since the an-
alytical correction reduces a larger proportion of the misclassification error with
large error rates, this inference is slightly better with this method under S3. Fi-
nally, the SIMEX MC with linear extrapolation tends to do worse than the other
two correction methods.
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Consequently, we conclude that for the scenarios examined in this simulation
study, the methodologies proposed do improve the statistical inference when com-
pared to the naive approach and that unless the Salganik–Heckathorn is far from
the Hájek style, the analytical approach is preferred to the other correction meth-
ods.

5. Application to high risk populations in India. RDS has been used ex-
tensively in the context of HIV/AIDS surveillance for populations at high risk of
infection such as people who inject drugs (PWID), men who have sex with men
(MSM) and female sex workers (FSW) [Johnston et al. (2008), Malekinejad et al.
(2008), Montealegre et al. (2013)]. In this section, we present HIV prevalence es-
timates for RDS studies conducted in India among two of these key populations,
that is, among PWID and MSM. We compare two sets of estimates which are either
derived from self-report HIV status or from blood testing. The former is likely an
inaccurate measurement of the actual HIV infection status since, as discussed by
the gap report [UNAIDS (2014)], around 54% of people living with HIV-positive
status are unaware of their status. Therefore, in this section we show that in most
cases, it is possible to reduce the misclassification bias present in the estimates
based on self-reported status by using the methods proposed in this paper.

The first study on which our analysis is based consists of 15 RDS samples col-
lected in 2013 in multiple cities in India [Lucas et al. (2015)]. In that study, a
total of 14,481 PWID were surveyed. Two to three seeds were selected to initiate
the sampling in each city. Every respondent could recruit up to two individuals.
With the exception of one location, all sites recruited approximately one thousand
individuals from the target population.

Participants’ HIV status was determined based on three rapid HIV testing kits
[Lucas et al. (2015)]. The results from the on-site HIV test were compared with the
self-reported HIV status. This status was determined based on questions regarding
their past HIV testing and result history. Participants who answered that their last
HIV test was positive are treated as positive HIV self-reports whereas participants
who had never been tested or who reported a nonpositive test result are treated as
negative self-reports. Finally, for the purpose of our analysis, we assume the on-site
HIV test is 100% specific and sensitive. All indeterminate results were confirmed
using western blot, and this assumption is likely to be quite accurate. Therefore,
these values are treated as the truth for estimating error rates and the evaluation of
our methods.

The Volz–Heckathorn HIV prevalence estimates without misclassification for
the 15 sites range from 5.9% to 44.8% with a weighted average of 18.2%. The
Volz–Heckathorn naive estimates are much lower, ranging from 0.9% to 30.2%
with a weighted average of 8.9%. The large discrepancy between the two sets of
estimates is attributable to large false negative rates (weighted average of 53.9%).
These false negative rates may be imputable to nonrecent testing, for example,
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and indicate that individuals in the populations are largely unaware of their pos-
itive infection status. The false positive rates (weighted average of 1.3%) are not
compensating for the observed unawareness. The weighting is proportional to the
sample sizes.

We have applied similar analysis to another RDS study which was conducted
among MSM in India [Solomon et al. (2015)]. This study covered 12 locations for
a total of 12,022 participants. The data collection was performed under nearly the
same methodology as the PWID study. The weighted HIV false negative and false
positive average rates, 59.3% and 0.2%, are comparable to the ones in the PWID
populations.

Figure 3 displays the absolute relative bias, as defined as the difference between
the corrected or naive estimate and the corresponding estimate based on the true
infection status divided by the latter, as a function of the false negative rates. The
results are shown for μ̂VH, μ̂SS and μ̂SH, for all PWID populations. One MSM site
is omitted since the analytical adjustment could not be evaluated in that instance.
In that sample, no false positives were observed and all HIV positive individuals
were unaware of their infection status.

For all data sets, the factor c discussed in Section 2.4.2 is close to one and to c∗.
This implies that we expect the analytical adjustment to perform well in adjusting
the Salganik–Heckathorn estimator. In general, c and c∗ may substantially differ
from one in RDS studies. They may be close to their theoretical values, as well as
close to each other in these examples because of the small number of seeds and the
large sample sizes.

A similar analysis to the one performed in the simulation study was conducted to
decide on the SIMEX tuning parameters and extrapolation function. We concluded
that a larger number of simulated data sets is necessary to improve the model fit.
Consequently, B = 500 was selected in all but two scenarios where even greater
B’s were chosen. Also, we established a false negative error rate threshold of 25%
to determine whether the lambdas would be {0,0.4,0.8,1.2,1.6,2} (f − < 25%)
or {0,0.1,0.2,0.3,0.4,0.5} (f − > 25%). This choice is justified by improvement
to model selection criteria. Finally, the quadratic function appears to be a better
choice based on model selection criteria.

Both studies lead to similar methodological findings. For all but one study, the
naive estimates are more biased than estimates produced by any of the three correc-
tion methods. We also observe that the SIMEX procedure tends to perform better
for lower false negative rates. This suggests that the functional form fitted with
large error rates may not be representative of the functional form at lower error
rates. The performance of the analytical correction is also poorer for large error
rates, but to a lesser extent. These findings are consistent with results from S3 in
our simulation study. Under that scenario, the conditions were purposely chosen
to mimic on average some of the conditions in this application.

One of the sites in the PWID study appears to have a greater relative bias than
the remaining sites despite the false negative rate being small in comparison to
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(a) PWID: 15 sites

(b) MSM: 11 sites

FIG. 3. Point estimate relative bias as a function of the false negative rates for PWID and MSM
for (a) 15 PWID sites and (b) 11 MSM sites of the studies conducted in India. The estimates using
the naive and the corrected estimators are shown for the Volz–Heckathorn, the Salganik–Heckathorn
and the Successive Sampling estimators.
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TABLE 2
Number of sites for which the estimate without misclassification lies inside the 95% confidence

interval, out of a total of 15 PWID and 11 MSM sites

Variance estimators
Prevalence

Study estimator σ̂naive σ̂c.adj σ̂c.lin σ̂c.quad σ̂w.adj σ̂w.lin σ̂w.quad

PWID μ̂VH 2 15 7 11 15 7 11
μ̂SH 2 15 7 10 15 7 11
μ̂SS 2 15 5 8 — — —

MSM μ̂VH 2 8 4 6 8 4 6
μ̂SH 3 8 4 6 8 4 6
μ̂SS 1 8 6 9 — — —

other cities. The noticeable deviation is explained by the larger false positive rate
observed at that site (f + = 7.6%). The weighted average for the remainder of the
sites is 0.8%.

Results from the implementation of the adjusted estimates along with the ex-
tended bootstrap procedures are summarized in Table 2. In this table, we com-
pare the number of 95% confidence intervals that include the corresponding “true”
value without misclassification for the different sites, treated as a favorable-case
for evaluating coverage performance. For comparison purposes, results from the
naive point estimates and variance estimates are also presented. As expected, since
the false negative rates are so high, very few of the intervals for the 15 PWID and
11 MSM samples based on the naive methodologies include the estimate without
misclassification. However, it is clear from this table that the corrected estimates
used in combination with the extended versions of the bootstrap procedures sig-
nificantly increase the number of confidence intervals including the prevalence
estimates based on the true data.

An additional finding from these results is that, perhaps not surprisingly, the
intervals based upon the analytical adjustment produce higher coverage than their
SIMEX MC counterparts in all but one case. From Figure 3, it is clear that the mis-
classification bias is smaller for the former method in most instances. Finally, since
all correction methods are reasonably applicable to all estimators, the coverage is
similar across the three estimators.

Overall, adjusting for misclassification on the outcome variable in the presented
examples improves the inference made from RDS data. The three correction meth-
ods all reduce the misclassification bias in the estimates, although the analytical
adjustment tends to perform best in the studies discussed in this section.

6. Discussion. The main contribution of this article is to introduce approaches
to correct existing RDS estimators for the bias introduced by the misclassification
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on a binary nodal attribute, and associated novel estimators of uncertainty. We
also have highlighted circumstances for which the performance of the correction
methods is impaired in the specific context of RDS. We apply these methods to
estimate the HIV rates of 15 populations of people who inject drugs and 12 pop-
ulations of men who have sex with men in India. We compare estimates based on
HIV testing, self-reported HIV status, and self-reported HIV status corrected for
misclassification, and illustrate the dramatic improvement possible with the pro-
posed adjustments.

We have presented two methods to correct prevalence estimators for misclassi-
fication: an analytical correction and a simulation-based SIMEX correction. The
analytical correction is designed for, and works well for estimators of the Hájek
style, including μ̂mean, μ̂VH, and μ̂SS estimators. When the factor c, introduced in
Section 2.4, = 1, or nearly so, the estimator μ̂SH is also nearly of Hájek style, and
this adjustment works well. For estimators that are not of the Hájek style, such as
μ̂SH when c is far from 1, the performance of the analytical adjustment is compro-
mised, and the SIMEX procedure is recommended. In practice, we do not observe
this c-factor. However, since the c- and c∗-factors are positively correlated (see
Supplement A), a large (small) value for c∗ may indicate a large (small) value for
c and, therefore, may help evaluate whether the analytical adjustment is likely to
be appropriate.

Although the SIMEX MC procedure does not require that the estimators be of
the Hájek style, it necessitates that the estimator may be expressed as a function of
the measurement error present in the data. In many instances, this method produced
comparable results to the analytical adjustment in terms of the reduction of the
misclassification bias. However, in cases where large error rates prevailed, this
method did not eliminate as much misclassification error. This suggests that the
function mapping the estimates to the measurement error variance at higher error
rates may not be representative of the function when little to no misclassification
is present. The main advantage of using this method is therefore for situations
where the Salganik–Heckathorn estimator is far from the Hájek style, in which
case, the SIMEX MC with quadratic extrapolation provided the largest reduction
in the misclassification error.

In this paper, we have also extended procedures to estimate the variance of the
corrected estimators. The extensions are intended to capture the variance compo-
nent attributable to the misclassification on the outcome variable, to the adopted
correction methodology and to the uncertain misclassification rates, if applicable.
The first extension substitutes the corrected estimates for the naive estimates in the
naive bootstrap procedures. The main innovation is the modification to the resam-
pling weights applicable to the Salganik Bootstrap procedure only. We have seen
that in most instances, with known error rates, the extended methodology for vari-
ance estimation does better or at least similarly to the naive approach for estimators
of the Hájek style. The second extension provides only marginal improvements,
if any, over the first extension for the SIMEX MC corrected estimator, but does
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appreciably improve the estimators corrected with the analytical adjustment. All
versions of the SS Bootstrap procedure perform similarly and the first extension
does not appear to significantly improve the performance of the SS Bootstrap pro-
cedure. No method systematically outperformed the other, especially in the case
of uncertain error rates.

The application to the RDS data from India led to similar findings. Inference
based on the self-reported HIV status displayed large misclassification error as
participants were widely unaware of their actual HIV status. The 95% confidence
interval coverage rates illustrating the combined performance of the point estima-
tion and variance estimation procedures showed that the naive estimation proce-
dures may severely compromise the validity of the inference from self-reported
HIV status. The analytical correction performed best in most instances especially
with the largest misclassification rates.

One limitation of the proposed methodology is that it relies on the assumption
that f + and f − are known and uniform in the population. In many cases, this
assumption might not hold. The results from our simulation study however suggest
that using uncertain misclassification rates from an external validation study result
in nearly unbiased estimates when the uncertain rates are unbiased.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference for respondent-driven sampling with misclassifi-
cation” (DOI: 10.1214/17-AOAS1063SUPP; .pdf). Supplement A—Performance
of the Analytical Adjustment with the Salganik–Heckathorn Estimator: The per-
formance of the Salganik–Heckathorn estimator depends on whether it is close
enough to a Hajek style estimator. In this supplement, we discuss why the c-
factor and its observed version c∗ both play a role in whether the analytical adjust-
ment suits the Salganik–Heckathorn estimator. Supplement B—Additional Results
From Simulation Study: In this supplement, we present additional results from the
simulation study such as: (1) the calculations of the Root Mean-Squared-Error
(RMSE); (2) the RMSE at various levels of misclassification rates and (3) the sen-
sitivity to erroneous error rates.

REFERENCES

BARRON, B. A. (1977). The effects of misclassification on the estimation of relative risk. Biometrics
33 414–418.

https://doi.org/10.1214/17-AOAS1063SUPP


INFERENCE FOR RDS WITH MISCLASSIFICATION 2139

BEAUDRY, I. S, GILE, K. J and MEHTA, S. H (2017). Supplement to “Inference for respondent-
driven sampling with misclassification.” DOI:10.1214/17-AOAS1063SUPP.

BIERNACKI, P. and WALDORF, D. (1981). Snowball sampling: Problem and techniques of chain
referral sampling. Sociol. Methods Res. 10 141–163.

BUONACCORSI, J. P. (2010). Measurement Error: Models, Methods, and Applications. CRC Press,
Boca Raton, FL. MR2682774

COOK, J. R. and STEFANSKI, L. A. (1994). Simulation extrapolation estimation in parametric mea-
surement error models. J. Amer. Statist. Assoc. 89 1314–1328.

FRANK, O. and STRAUSS, D. (1986). Markov graphs. J. Amer. Statist. Assoc. 81 832–842.
MR0860518

FROST, S. D. W., BROUWER, K. C., CRUZ, M. A. F., RAMOS, R., RAMOS, M. E.,
LOZADA, R. M., MAGIS-RODRIGUEZ, C. and STRATHDEE, S. A. (2006). Respondent-driven
sampling of injection drug users in two U.S.–Mexico border cities: Recruitment dynamics and
impact on estimates of HIV and syphilis prevalence. J. Urban Health 83 83–97.

GILE, K. J. (2011). Improved inference for respondent-driven sampling data with application to HIV
prevalence estimation. J. Amer. Statist. Assoc. 106 135–146. MR2816708

GILE, K. J. and HANDCOCK, M. S. (2010). Respondent-driven sampling: An assessment of current
methodology. Sociol. Method. 40 285–327.

GILE, K. J., JOHNSTON, L. G. and SALGANIK, M. J. (2015). Diagnostics for respondent-driven
sampling. J. Roy. Statist. Soc. Ser. A 178 241–269. MR3291770

GOODMAN, L. A. (1961). Snowball sampling. Ann. Math. Stat. 32 148–170. MR0124140
HANDCOCK, M. S., FELLOWS, I. E. and GILE, K. J. (2015). RDS: respondent-driven sampling.

R package version 0.7-2, Los Angeles, CA.
HANDCOCK, M. S. and GILE, K. J. (2011). Comment: On the concept of snowball sampling. Sociol.

Method. 41 367–371.
HANDCOCK, M. S., HUNTER, D. R., BUTTS, C. T., GOODREAU, S. M., KRIVITSKY, P. N.,

BENDER-DEMOLL, S. and MORRIS, M. (2015). statnet: Software tools for the statistical analysis
of network data. R package version 2015.6.2, The Statnet Project (http://www.statnet.org).

HECKATHORN, D. D. (1997). Respondent-driven sampling: A new approach to the study of hidden
populations. Soc. Probl. 44 174–199.

HUNTER, D. R., GOODREAU, S. M. and HANDCOCK, M. S. (2008). Goodness of fit of social
network models. J. Amer. Statist. Assoc. 103 248–258. MR2394635

HUNTER, D. R. and HANDCOCK, M. S. (2006). Inference in curved exponential family models for
networks. J. Comput. Graph. Statist. 15 565–583. MR2291264

JOHNSTON, L. G., MALEKINEJAD, M., KENDALL, C., IUPPA, I. M. and RUTHERFORD, G. W.
(2008). Implementation challenges to using respondent-driven sampling methodology for HIV
biological and behavioral surveillance: Field experiences in international settings. AIDS Behav.
12 131–141.

KÜCHENHOFF, H., LEDERER, W. and LESAFFRE, E. (2007). Asymptotic variance estimation for
the misclassification SIMEX. Comput. Statist. Data Anal. 51 6197–6211. MR2407708

KÜCHENHOFF, H., MWALILI, S. M. and LESAFFRE, E. (2006). A general method for dealing with
misclassification in regression: The misclassification SIMEX. Biometrics 62 85–96. MR2226560

LIU, H., LI, J., HA, T. and LI, J. (2012). Assessment of random recruitment assumption in
respondent-driven sampling in egocentric network data. Soc. Netw. 1 13–21.

LU, X. (2013). Linked ego networks: Improving estimate reliability and validity with respondent-
driven sampling. Soc. Netw. 35 669–685.

LU, X., BENGTSSON, L., BRITTON, T., CAMITZ, M., KIM, B. J., THORSON, A. and LILJEROS, F.
(2012). The sensitivity of respondent-driven sampling. J. Roy. Statist. Soc. Ser. A 175 191–216.
MR2873802

LU, X., MALMROS, J., LILJEROS, F. and BRITTON, T. (2013). Respondent-driven sampling on
directed networks. Electron. J. Stat. 7 292–322. MR3020422

https://doi.org/10.1214/17-AOAS1063SUPP
http://www.ams.org/mathscinet-getitem?mr=2682774
http://www.ams.org/mathscinet-getitem?mr=0860518
http://www.ams.org/mathscinet-getitem?mr=2816708
http://www.ams.org/mathscinet-getitem?mr=3291770
http://www.ams.org/mathscinet-getitem?mr=0124140
http://www.statnet.org
http://www.ams.org/mathscinet-getitem?mr=2394635
http://www.ams.org/mathscinet-getitem?mr=2291264
http://www.ams.org/mathscinet-getitem?mr=2407708
http://www.ams.org/mathscinet-getitem?mr=2226560
http://www.ams.org/mathscinet-getitem?mr=2873802
http://www.ams.org/mathscinet-getitem?mr=3020422


2140 I. S. BEAUDRY, K. J. GILE AND S. H. MEHTA

LUCAS, G. M., SOLOMON, S. S., SRIKRISHNAN, A. K., AGRAWAL, A., IQBAL, S., LAEYEN-
DECKER, O., MCFALL, A. M., KUMAR, M. S., OGBURN, E. L., CELENTANO, D. D.,
SOLOMON, S. and MEHTA, S. H. (2015). High HIV burden among people who inject drugs
in 15 Indian cities. AIDS 29 619–628.

MALEKINEJAD, M., JOHNSTON, L., KENDALL, C., KERR, L., RIFKIN, M. and RUTHERFORD, G.
(2008). Using respondent-driven sampling methodology for HIV biological and behavioral
surveillance in international settings: A systematic review. AIDS Behav. 12 105–130.

MARKS, G., CREPAZ, N., SENTERFITT, J. W. and JANSSEN, R. S. (2005). Meta-analysis of high-
risk sexual behavior in persons aware and unaware they are infected with HIV in the United
States: Implications for HIV prevention programs. J. Acquir. Immune Defic. Syndr. 39 446–453.

MCCREESH, N., FROST, S. D. W., SEELEY, J., KATONGOLE, J., TARSH, M. N., NDUNGUSE, R.,
JICHI, F., LUNEL, N. L., MAHER, D., JOHNSTON, L. G., SONNENBERG, P., COPAS, A. J.,
HAYES, R. J. and WHITE, R. G. (2012). Evaluation of respondent-driven sampling. Epidemiol-
ogy 23 138–147.

MILLS, H. L., JOHNSON, S., HICKMAN, M., JONES, N. S. and COLIJN, C. (2014). Errors in
reported degrees and respondent driven sampling: Implications for bias. Drug Alcohol Depend.
142 120–126.

MONTEALEGRE, J. R., JOHNSTON, L. G., MURRILL, C. and MONTERROSO, E. (2013). Respon-
dent driven sampling for HIV biological and behavioral surveillance in Latin America and the
Caribbean. AIDS Behav. 17 2313–2340.

WORLD HEALTH ORGANIZATION (2015). Consolidated guidelines on HIV testing services 2015.
Technical report, World Health Organization, Geneva.

RUDOLPH, A., FULLER, C. and LATKIN, C. (2013). The importance of measuring and accounting
for potential biases in respondent-driven samples. AIDS Behav. 17 2244–2252.

SALGANIK, M. J. (2006). Variance estimation, design effects, and sample size calculations for
respondent-driven sampling. J. Urban Health 83 i98–i112.

SALGANIK, M. J. and HECKATHORN, D. D. (2004). Sampling and estimation in hidden populations
using respondent-drive sampling. Sociol. Method. 34 193–239.

SHANKS, L., KLARKOWSKI, D. and O’BRIEN, D. P. (2013). False positive HIV diagnoses in re-
source limited settings: Operational lessons learned for HIV programmes. PLoS ONE 8 8–13.

SMITH, R., ROSSETTO, K. and PETERSON, B. (2008). A meta-analysis of disclosure of one’s HIV-
positive status, stigma and social support. AIDS Care 20 1266–1275.

SOLOMON, S. S., MEHTA, S. H., SRIKRISHNAN, A. K., VASUDEVAN, C. K., MCFALL, A. M.,
BALAKRISHNAN, P., ANAND, S., NANDAGOPAL, P., OGBURN, E. L., LAEYENDECKER, O.,
LUCAS, G. M., SOLOMON, S. and CELENTANO, D. D. (2015). High HIV prevalence and inci-
dence among MSM across 12 cities in India. AIDS 29 723–731.

TOMAS, A. and GILE, K. J. (2011). The effect of differential recruitment, non-response and
non-recruitment on estimators for respondent-driven sampling. Electron. J. Stat. 5 899–934.
MR2831520

TROW, M. (1957). Right-Wing Radicalism and Political Intolerance. Arno Press, New York.
Reprinted 1980.

UNAIDS (2014). The gap report.
VERDERY, A. M., MERLI, M. G., MOODY, J., SMITH, J. A. and FISHER, J. C. (2015). Respondent-

driven sampling estimators under real and theoretical recruitment conditions of female sex work-
ers in China. Epidemiology 26 661–665.

VOLZ, E. and HECKATHORN, D. D. (2008). Probability based estimation theory for respondent
driven sampling. J. Off. Stat. 24 79–97.

WEJNERT, C. and HECKATHORN, D. D. (2008). Web-based network sampling: Efficiency and
efficacy of respondent-driven sampling for online research. Sociol. Methods Res. 37 105–134.
MR2516739

http://www.ams.org/mathscinet-getitem?mr=2831520
http://www.ams.org/mathscinet-getitem?mr=2516739


INFERENCE FOR RDS WITH MISCLASSIFICATION 2141

YAMANIS, T. J., MERLI, M. G., NEELY, W. W., TIAN, F. F., MOODY, J., TU, X. and GAO, E.
(2013). An empirical analysis of the impact of recruitment patterns on RDS estimates among a
socially ordered population of female sex workers in China. Sociol. Methods Res. 42 392–425.
MR3190735

YATES, F. and GRUNDY, P. M. (1953). Selection without replacement from within strata with prob-
ability proportional to size. J. R. Stat. Soc. Ser. B. Stat. Methodol. 15 253–261.

I. S. BEAUDRY

DEPARTMENT OF STATISTICS

PONTIFICIA UNIVERSIDAD CATÓLICA

DE CHILE

SANTIAGO, 7820436
CHILE

E-MAIL: isabelle.beaudry@mat.uc.cl

K. J. GILE

DEPARTMENT OF STATISTICS

UNIVERSITY OF MASSACHUSETTS AMHERST

AMHERST, MASSACHUSETTS 01003
USA
E-MAIL: gile@math.umass.edu

S. H. MEHTA

DEPARTMENT OF EPIDEMIOLOGY

JOHNS HOPKINS UNIVERSITY BLOOMBERG

SCHOOL OF PUBLIC HEALTH

BALTIMORE, MARYLAND 21205
USA
E-MAIL: smehta@jhu.edu

http://www.ams.org/mathscinet-getitem?mr=3190735
mailto:isabelle.beaudry@mat.uc.cl
mailto:gile@math.umass.edu
mailto:smehta@jhu.edu

	Introduction
	Existing methodology for respondent-driven sampling
	Sampling methodology
	Notation
	Hájek estimator
	Sample mean
	Volz-Heckathorn estimator
	Successive sampling estimator

	Salganik-Heckathorn
	Salganik-Heckathorn estimator
	Relation between µSH and µVH

	Variance estimation
	Salganik bootstrap
	Successive sampling bootstrap


	Methods to correct for misclassiﬁcation
	Corrected prevalence estimators
	Analytical adjustment estimator
	SIMEX MC estimators

	Uncertainty of the corrected estimators
	Salganik bootstrap extensions
	Successive sampling bootstrap extension


	Simulation study
	Simulation study design
	Network, sampling and misclassiﬁcation rates simulation conditions
	SIMEX misclassiﬁcation parameters

	Simulation study: Point estimates
	Simulation study: Variance estimates

	Application to high risk populations in India
	Discussion
	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

