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Photodegradation, driven primarily by ultraviolet (UV) radiation, is the
primary cause of failure for organic paints and coatings, as well as many
other products made from polymeric materials exposed to sunlight. Tradi-
tional methods of service life prediction involve the use of outdoor expo-
sure in harsh UV environments (e.g., Florida and Arizona). Such tests, how-
ever, require too much time (generally many years) to do an evaluation. To
overcome the shortcomings of traditional methods, scientists at the U.S. Na-
tional Institute of Standards and Technology (NIST) conducted a multiyear
research program to collect necessary data via scientifically-based laboratory
accelerated tests. This paper presents the statistical modeling and analysis
of the photodegradation data collected at NIST, and predictions of degrada-
tion for outdoor specimens that are subjected to weathering. The analysis in-
volves identifying a physics/chemistry-motivated model that will adequately
describe photodegradation paths. The model incorporates the effects of ex-
planatory variables which are UV spectrum, UV intensity, temperature, and
relative humidity. We use a nonlinear mixed-effects model to describe the
sample paths. We extend the model to allow for dynamic covariates and com-
pare predictions with specimens that were exposed in an outdoor environment
where the explanatory variables are uncontrolled but recorded. We also dis-
cuss the findings from the analysis of the NIST data and some areas for future
research.

1. Introduction.

1.1. The problem and NIST experiments. Polymeric materials are widely used
in many products such as paints, coatings, and components in systems such as
photovoltaic power generation equipment (e.g., encapsulant and backsheet). Pho-
todegradation caused by ultraviolet (UV) radiation is the primary cause of failure
for paints and coatings, as well as many other products made from polymeric mate-
rials that are exposed to sunlight. Other environmental variables including temper-
ature and humidity can also affect degradation rates. When a new product that will
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be subjected to outdoor weathering is developed, it is necessary to assess the prod-
uct’s service life. As an example, for paints and coatings, the traditional method
of service life prediction involves sending perhaps ten coated panels to Florida
(where it is sunny and humid) and another ten panels to Arizona (where it is sunny
and dry). Then every six months one panel is returned from each exposure location
for detailed evaluation (e.g., to quantify chemical and physical changes over time).
If the amount of degradation is sufficiently small after, say, five years, the service
life is deemed to be satisfactorily long.

The problem with the traditional method of service life prediction is that it takes
too long to obtain the needed assessment [Martin et al. (1996)]. For many decades,
accelerated tests [e.g., Nelson (1990)] have been used successfully to assess the
lifetime of products and components in environments that do not involve UV ex-
posure. Accelerated tests for photodegradation are, however, more complicated.
Nonscientific approaches to achieve acceleration of the degradation process by
simply “speeding up the clock” in laboratory testing led to incorrect predictions.
It is believed that the efforts failed for a combination of reasons including that
UV lamps do not have the same spectral irradiance distribution as the sun and that
varying all experimental factors simultaneously (the opposite of what would be
done in a carefully designed experiment) does not provide useful information for
modeling and prediction.

Scientists at the U.S. National Institute of Standards and Technology (NIST),
in collaboration with scientists and engineers from companies and other organi-
zations, conducted a multiyear research program to collect necessary data via sci-
entifically based laboratory accelerated tests that could be used to build statistical
models and then to predict the service life of polymeric materials subjected to out-
door weathering. The main objective of this paper is to describe the statistical mod-
eling and analysis of the laboratory accelerated test data collected at NIST, which
incorporate physical and chemical knowledge of the degradation mechanism. We
also generate predictions for specimens that were subjected to outdoor exposure
where dynamic explanatory variables (i.e., time-varying covariates) although not
controlled, were recorded.

While the details of the NIST experiments are described in Section 2, here we
provide a brief introduction. The laboratory accelerated weathering tests were con-
ducted using the NIST Simulated Photodegradation via High Energy Radiant Ex-
posure (SPHERE), a device in which spectral UV wavelength, UV spectral inten-
sity, temperature, and relative humidity (RH) can be controlled over time. Also,
outdoor-exposure experiments were conducted on the roof of a NIST building
in Maryland over different time periods. Both sets of experiments used a model
epoxy coating. Chemical degradation was measured on both the laboratory accel-
erated test specimens and the outdoor-exposed specimens every few days using
Fourier transform infrared (FTIR) spectroscopy. Longitudinal information on am-
bient temperature, RH, and the solar intensity and spectrum for outdoor-exposed
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specimens were carefully recorded at 12-minute intervals over the period of out-
door exposure.

We use the following major steps for the statistical modeling and prediction
based on NIST data from photodegradation of polymeric materials. In these major
steps, we combine physical/chemical knowledge and accelerated test data to build
a model that can predict field performance:

1. Use the accelerated test data and knowledge of the physics and chemistry of
the degradation process to help identify the functional forms for the experimental
variables as they relate to the degradation path model.

2. Use the identified functional forms and the accelerated test data to build a
degradation path model linking the sample degradation paths and the experimental
variables.

3. Use the identified model to generate predictions of degradation for given
covariate histories.

4. To verify the effectiveness of the statistical models, compare predictions,
based on the accelerated test degradation data and model, with observed degra-
dation paths for outdoor-exposed specimens.

5. Use prediction intervals to quantify the statistical uncertainties associated
with the outdoor degradation predictions.

1.2. Related literature. In this section, we review the general degradation liter-
ature. Lu and Meeker (1993) provided examples of models and analyses of degra-
dation data. To speed up the degradation process and provide information in a more
timely manner, accelerated degradation tests are commonly used [e.g., Chapter 12
of Nelson (1990)]. Potential accelerating variables include the use rate or aging
rate of a product, exposure intensity, voltage stress, temperature, humidity, etc.
Degradation processes are often affected by dynamic covariates. The cumulative
damage model has been used to describe the effect that dynamic covariates have on
degradation and failure-time processes [e.g., Bagdonavičius and Nikulin (2001),
and Hong and Meeker (2010)]. Liao and Elsayed (2006) considered reliability in-
ference for accelerated degradation testing under varying stress. Hong et al. (2015)
and Xu, Hong and Jin (2016) used dynamic covariates to build predictive models
for degradation.

In recent years, new degradation analysis techniques have been developed us-
ing a functional data analysis framework. Zhou, Serban and Gebraeel (2011) used
functional data analysis approaches for degradation modeling and residual life-
time prediction. Zhou, Gebraeel and Serban (2012) presented degradation model-
ing and monitoring based on truncated degradation signals using the framework
of functional data analysis. Zhou et al. (2014) developed a functional time warp-
ing approach for degradation analysis. Zhou, Serban and Gebraeel (2014) consid-
ered residual life prediction under different environments. Recent development of
stochastic models for degradation analysis includes Wang and Xu (2010), Ye and
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Chen (2014), and Peng (2015), using the inverse Gaussian process as the main
model. Pan and Crispin (2011) used a hierarchical modeling approach to analyze
accelerated degradation testing data, and Wang et al. (2013) developed a Bayesian
framework for degradation analysis. Zhang and Liao (2015) considered degrada-
tion modeling with a random degradation initiation time. Existing methods, how-
ever, cannot be directly applied for the degradation modeling problem in this paper
because photodegradation involves multiple accelerating variables under compli-
cated relationships, and the outdoor prediction involves time-varying covariates.

In the area of photodegradation modeling, Gu et al. (2009) described three
potential approaches to link laboratory accelerated degradation test data with
outdoor-exposure data for a coating system. In a preliminary report of the NIST ex-
perimental program, Vaca-Trigo and Meeker (2009) described a predictive model
to link the NIST laboratory accelerated test data and outdoor-exposure data. They
used a nonlinear model for the accelerated test data and a cumulative damage
model to predict the outdoor-exposure data. In this paper, we use a sophisticated
nonlinear mixed-effects model with a careful physically-motivated modeling of
the effects of the accelerating variables on the sample degradation paths. We also
account for different sources of variability in the degradation path. The improved
model in this paper provides enhanced prediction performance and the ability to
quantify prediction uncertainty with prediction intervals.

1.3. Overview. The rest of this paper is organized as follows. Section 2 de-
scribes the laboratory accelerated test and the outdoor-exposure experiments for
data collection and provides notation for the data. Section 3 describes the nonlin-
ear mixed-effects model and defines total effective dosage. Section 4 uses the lab-
oratory accelerated test data to compute estimates of a categorical-effects model,
providing information about the functional forms of the experimental variables
needed to identify a model relating photodegradation to the experimental vari-
ables. Section 5 uses model parameter estimates from the laboratory accelerated
test data and a cumulative damage model to predict outdoor-exposure degrada-
tion and compares the predictions with actual outdoor-exposure degradation paths.
A comparison is also done for several different models in terms of model fitting
and prediction accuracy. Section 6 contains conclusions and discussion of areas
for future research.

2. Photodegradation data.

2.1. Laboratory accelerated test experiments and data. We first briefly dis-
cuss the time scale for degradation processes. For a coating subjected to UV expo-
sure, the scientifically appropriate time scale is proportional to the number of pho-
tons that get absorbed into the coating, taking into account that shorter wavelength
photons are more energetic (and thus have a higher probability to cause damage).
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FIG. 1. Plot of the laboratory accelerated test lamp spectral irradiance distribution.

For those who study photodegradation, such a measure is called UV dosage, as
will be described in detail in subsequent sections of this paper.

The light source for the laboratory accelerated test experiments was high-
intensity UV lamps. The spectral irradiance of the lamps is a function of wave-
length λ, which gives the power density at a particular wavelength λ. The spectral
irradiance of the UV lamps in the NIST SPHERE is illustrated in Figure 1. Specif-
ically, the irradiance is defined as the power of the electromagnetic radiation per
unit area incident on a surface.

The effect of UV radiation on degradation depends on both the UV spectrum
and UV intensity. UV radiation with shorter wavelengths tends to have higher en-
ergy per photon, thus causing more damage to the material when compared with
UV radiation with longer wavelengths. Also, for the UV with the same wavelength,
higher UV intensity (means more photons per time unit) tends to cause more dam-
age than lower intensity. To study the effect of UV spectrum and UV intensity, the
spectral irradiance of the lamps was modified and controlled by bandpass (BP) and
neutral density (ND) filters. BP filters pass only UV with wavelengths over a par-
ticular range. For example, the 306 nanometer (nm) BP filter has a nominal center
wavelength of 306 nm and full-width half-maximum values of ±3 nm. The four
BP filters used in the experiments have nominal center wavelengths of 306 nm,
326 nm, 353 nm, and 452 nm.

ND filters control the intensity of the UV radiation without affecting the shape
of the UV spectrum. For example, a 10% ND filter (nominally) passes 10% of the
UV photons at any wavelength. The four ND filters used in the experiments are
10%, 40%, 60%, and 100% (actually, a 100% ND would use no ND filter). As an
illustration, Figure 2 shows all combinations of the 16 BP and ND filters.

The laboratory accelerated test experiments also have other controlled environ-
mental factors: temperature and RH. Table 1 gives a summary of the experimen-
tal factors for the laboratory accelerated degradation experiment. The temperature
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FIG. 2. Illustration of the combinations of the BP and ND filters. The y-axis shows the percentage
of photons passing through the combinations of filters.

levels were 25◦C, 35◦C, 45◦C, and 55◦C. The RH levels were 0%, 25%, 50%, and
75%. The laboratory accelerated test data contain a total of 80 combinations of the
experimental factors. Due to time and funding constraints, not all combinations of
the four experimental factors were run in the experiments. Table 2 summarizes the
80 experiment combinations of the BP and ND filters, and temperature and RH
levels. There were four replicates for most of the experimental factor-level combi-
nations. A total of 319 specimens were exposed in the laboratory accelerated test
experiments.

TABLE 1
Laboratory accelerated test setup, showing the BP filters,

ND filters, and levels of temperature and RH

306 nm (±3 nm), 326 nm (±6 nm),
BP filter 353 nm (±21 nm), 452 nm (±79 nm)

ND filter 10%, 40%, 60%, 100%

Temperature 25◦C, 35◦C, 45◦C, 55◦C

RH 0%, 25%, 50%, 75%



2058 Y. DUAN ET AL.

TABLE 2
Summary of the 80 experimental combinations of BP and ND
filters and temperature and RH levels. An empty cell implies

that no experiments were done for the corresponding
combination of temperature and RH. 4 × 4 implies that

experiments were done for all of the 16 combinations of the
BP and ND filters at the corresponding temperature and RH
combination. 4 × 1 implies that experiments were done for

all four BP filters and the 100% ND filters for the
corresponding temperature and RH combination

RH

Temp 0% 25% 50% 75%

25 4 × 4
35 4 × 4 4 × 1 4 × 1
45 4 × 1 4 × 1 4 × 4
55 4 × 4

Damage to the material, which is used as an indication for degradation, was
measured by Fourier transform infrared (FTIR) spectroscopy. An FTIR spectrom-
eter provides an infrared spectrum of absorption or emission of a material. In
particular, special structures of compounds absorb the infrared energy at differ-
ent wavelengths, which results in peaks in the FTIR spectra. The locations of the
FTIR peaks correspond to unique chemical structures, and thus can be used to
identify the relative concentration of different compounds. The height of a peak is
proportional to the concentration of a particular compound or structure. The time
intervals between the FTIR measurements in the accelerated test were typically on
the order of a few days.

Figure 3 gives an illustration of FTIR peaks for a particular specimen at
one point in time. Our modeling focuses on intensity changes at wavenumber
1250 cm−1, which corresponds to C-O stretching of aryl ether. Other peaks that
were recorded as potentially useful responses include 1510 cm−1 (benzene ring
stretching), 1658 cm−1 (C=O stretching of oxidation products), and 2925 cm−1

(CH2 stretching) [e.g., see Bellinger and Verdu (1984, 1985), Rabek (1995), and
Kelleher and Gesner (1969)].

As an example of the degradation data collected in the laboratory accelerated
test experiments, Figure 4 shows the degradation paths for FTIR wavenumber
1250 cm−1 for specimens with 10%, 40%, 60%, and 100% ND filters, the BP
filter centered at 353 nm, temperature 35◦C, and 0% RH. For this wavenumber,
the degradation paths are decreasing (i.e., the amount of C-O stretching of aryl
ether was decreasing). As expected, the degradation rates were higher for the ND
filters passing larger percentages of UV photons. For the groups of two to four
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FIG. 3. Illustration of FTIR spectrum of the model epoxy used in the NIST experiments.

specimens exposed to the same conditions (and at the same time and in the same
chamber), there is some specimen-to-specimen variability.

To use a degradation model to make inferences about failure times, it is nec-
essary to have a definition of failure. When dealing with soft failures (as is com-
monly done in degradation analysis applications), such definitions generally have
a subjective element (e.g., at what point in loss of gloss of a coating do we have

FIG. 4. Degradation paths for specimens with 10%, 40%, 60%, and 100% ND filters, the 353 nm
BP filter, temperature at 35◦C, and 0% RH.
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FIG. 5. Plots of the degradation paths as a function of the days since the first measurement for a
representative subset of 12 outdoor-exposed specimens.

a failure), but such decisions are typically made in a purposeful manner and with
great care (e.g., using customer survey information to assess perception of gloss
loss). These ideas relating degradation modeling to the estimation of service life
are widely used in applications of degradation data modeling (e.g., the light out-
put of lasers and LEDs, corrosion of pipelines, and growth of cracks in structures).
During the NIST experimental program, physical measurements of gloss loss were
also taken and correlated with the FTIR chemical degradation measurements. One
reason that we choose to use the wavenumber 1250 cm−1 as our response is that it
correlated best with gloss loss of the model epoxy used in the NIST experiments.
As indicated by the horizontal lines in Figures 4 and 5, a damage level of −0.40
was used as the failure definition.

2.2. Outdoor-exposure experiments and data. The UV exposure for the
outdoor-exposure specimens is from the sun. There were 53 specimens in the
outdoor-exposure experiments and they were exposed over different time intervals
during a three-year period. The UV spectral irradiance, temperature, and RH are,
of course, uncontrolled outside, but were recorded at 12-minute intervals. For the
outdoor-exposure specimens, the UV, temperature, and RH are dynamic covariates.
The measurements of degradation were taken every three to four days, similar to
the accelerated test specimens. We continue to focus on chemical changes at the
wavenumber 1250 cm−1. Note, however, that we used the laboratory accelerated
test data for model fitting. The data from the outdoor-exposed specimens are used
only for validating the accelerated test methodology.
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We also want to point out the interesting difference between the laboratory ac-
celerated test data and outdoor-exposure data. The data shown in Figure 4 were
collected in laboratory accelerated tests in which the UV, temperature, and RH are
controlled to be constant over time. All of the sample paths have the same shape.
Figure 5, on the other hand, shows the sample degradation paths as a function of
the days since the beginning of exposure for a representative subset of 12 speci-
mens that were exposed outdoors at different times. The sample degradation paths
have different shapes, depending on the time of the year that the specimens were
being exposed. The variability in the shapes of degradation paths for the outdoor-
exposure data is due to and can be explained by the variability in the dynamic
covariate time series [also see Hong et al. (2015)].

To further illustrate and understand the outdoor-exposure degradation-path pat-
terns, Figure 6(a) shows the degradation path for a particular outdoor-exposed
specimen as a function of the calendar time. Figures 6(b), 6(c), and 6(d) show
the dynamic covariates corresponding to the particular degradation path in Fig-
ure 6(a). From Figure 6(d), we can see that the UV intensity is low during the late
fall and winter months, corresponding to a smaller slope in the degradation path,
while the UV is stronger for the months of March and April, corresponding to a
larger slope in the degradation path.

2.3. Notation. Here, we introduce notation for the data. The degradation
(damage) measurement for specimen i is the change (relative to the value at the
beginning of exposure) in the FTIR peak at 1250 cm−1 at time tij and for the labo-
ratory accelerated test data is denoted by yi(tij ), i = 1, . . . , n, j = 1, . . . ,mi . Here,
n is the total number of laboratory accelerated test specimens and mi is the num-
ber of time points where the degradation measurements were taken for specimen i.
The last observation time for specimen i is denoted by ti = timi

.
For the laboratory accelerated test data, the UV radiation is quantified by the

cumulative dosage Di(τil) at time τil (note that the cumulative dosage values were
reported at times that differ from the times at which the degradation measurements
were taken). The cumulative dosage is proportional to the total number of photons
that were absorbed by specimen i across all wavelengths between time 0 and τil .
Here, i = 1, . . . , n, l = 1, . . . , ni , where ni is the number of time points at which
the total dosage was recorded for specimen i.

For the laboratory accelerated test specimens, the experimental factors are held
constant at specified levels over time. We let BPi , NDi , Tempi , and RHi be the BP
filter, ND filter, temperature, and RH levels, respectively, for specimen i. In sum-
mary, the laboratory accelerated test data are {yi(tij ),Di(τil),BPi ,NDi ,Tempi ,

RHi} for i = 1, . . . , n, j = 1, . . . ,mi , and l = 1, . . . , ni .
For the outdoor-exposure data, we use subscript k to index the exposed speci-

mens. The degradation measurement at time tkj is denoted by yk(tkj ), k = 1, . . . , q ,
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FIG. 6. Plots of the degradation path for an outdoor-exposed specimen showing the relationship
between the degradation and the dynamic covariates. (a) The degradation path, (b) temperature as
a function of time, (c) RH as a function of time, and (d) a perspective plot showing the recorded UV
intensity as a function of time and wavelength.

j = 1, . . . ,mk for specimen k. Here, q is the number of outdoor-exposure speci-
mens. The recorded ambient temperature and RH for specimen k at time τkl are
denoted by Tempk(τkl) and RHk(τkl), l = 1, . . . , nk , respectively. For the UV radi-
ation, dosage was recorded for each 12-minute interval and each 2 nm wavelength
interval between 300 nm and 532 nm. We denote the UV dosage for outdoor-
exposure specimen k at time τkl and wavelength interval λ by Dk(τkl, λ). An
example of Dk(τkl, λ) data is shown in Figure 6(d). In summary, the outdoor-
exposure data are {yk(tkj ),Dk(τkl, λ),Tempk(τkl),RHk(τkl)} for k = 1, . . . , q ,
l = 1, . . . , nk , and j = 1, . . . ,mk .
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3. Models for photodegradation paths.

3.1. The concept of UV dosage. The UV dosage is an important concept that
will be used as the “time scale” for the subsequent photodegradation modeling.
For the laboratory accelerated test data, only the cumulative dosage Di(τil) was
available. Conceptually, the cumulative dosage is computed as follows. The num-
ber of incident photons from UV light source, defined as dose, for specimen i at
time τik from wavelength λ after BP and ND filters, is denoted by Ei(τik, λ). Let
Lamp(λ) be the spectral irradiance of the UV lamp as a function of wavelength,
and let Filter(λ,BPi ,NDi ) denote the combined effect of the BP and ND filters.
The dose Ei(τik, λ) can be computed as

Ei(τik, λ) = Ei(λ) = Lamp(λ) × Filter(λ,BPi ,NDi ),

which is constant over time for the laboratory accelerated test specimens due to
the controlled experimental factors. The number of incident photons absorbed by
a specimen at time τik , defined as “dosage,” is denoted by

Di(τik, λ) = Ei(τik, λ)
{
1 − exp

[−A(λ)
]}

,

and A(λ) is the spectral absorbance of the specimen at specified wavelength λ (a
property of the material). Thus the cumulative dosage, which is proportional to the
total number of photons absorbed by a specimen across all wavelengths up to time
t , is computed as

Di(t) =
∫ t

0

∫
λ
Di(τ, λ) dλdτ,

where the integral is over the entire range of λ. We also define Dit (λ) =∫ t
0 Di(τ, λ) dτ to be the wavelength-specific cumulative dosage.

3.2. The physical model. To model the effect of the experimental factors, we
introduce the concept of “effective dosage.” The cumulative effective dosage up to
time t is defined as

(1)
∫ t

0

∫ λmax

λmin

Di(τ, λ)φ(λ)dλdτ.

Here, the function φ(λ) is the quasi-quantum yield function describing the fact that
photons with a shorter wavelength have a higher probability of causing damage.
The wavelengths that are of interest are between λmin and λmax. For values of λ >

λmax, the probability of damage is negligible. For values of λ < λmin, potentially
damaging photons are normally filtered out by the protective ozone layer in the
stratosphere.

To allow for the environmental effects for specimen i, we use the following
model for experimental-variable adjusted effective dosage:

(2) Si(t) =
∫ t

0
f (Tempi )g(RHi )d(NDi )

∫ λmax

λmin

Di(τ, λ)φ(λ)dλdτ.
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Here, f (Tempi ), g(RHi ), and d(NDi ) are functions of the acceleration factors due
to temperature, RH, and ND, respectively.

Dosage Di(τ, λ) for each specimen was computed taking into account the nom-
inal values of the ND filters. The percentage of UV photons passing through the
ND filters, however, is not exactly equal to the nominal values. Thus the factor
d(NDi ) is used to provide a data-based adjustment for the deviations.

The quasi-quantum yield function φ(λ) describing the effect of UV spectrum
is material dependent and unknown and needs to be estimated from the data. The
estimation of φ(λ) from experimental data helps us understand material properties
and how the UV exposure affects the degradation process at different wavelengths.

Environmental factors such as temperature and RH will also affect the degra-
dation process. The Arrhenius relationship is widely used to describe the rate of
chemical reactions, and thus the acceleration effect of temperature. The manner
in which RH and UV intensity (controlled by the neutral density filters) affect the
degradation process, however, is unknown. That is, the functional forms of g and d

need to be identified from a combination of scientific knowledge of the degradation
process and the experimental data.

3.3. The statistical model for photodegradation. In the general degradation
path model, the degradation measurement of specimen i at time tij is

(3) yi(tij ) = Gi(tij ) + εi(tij ),

where Gi (tij ) is the actual degradation path and εi(tij ) is the corresponding error
term. Photodegradation is primarily driven by the effective dosage Si(t) as defined
in (2). The general shape of the laboratory accelerated test degradation paths can
be described by the following parametric model:

(4) Gi (tij ) = αexp(vi)

1 + exp(−z)
,

where z = {log[Si(tij )] − μ}/σ , and μ and σ are the parameters describing the
location and steepness of the damage curve, respectively. Ignoring the random
effect vi , the asymptote α reflects the maximum degradation damage when total
effective dosage goes to infinity. The parameter exp(μ) is the half-degradation
effective dosage (i.e., the amount of effective dosage needed for the degradation to
reach the level α/2). The reciprocal of the scale parameter 1/σ is proportional to
the slope of the degradation path for any fixed value of z. So a larger value of 1/σ

implies a larger degradation rate.
In (4), the term vi is the individual random effect for degradation path i, which is

modeled by a normal distribution with mean 0 and variance σ 2
v . The random effect

is used to explain the specimen-to-specimen variability that is caused by uncon-
trolled and/or unobservable factors (e.g., differences in fabricating the specimens
or specimen position in the environmental chamber). The model in (4) is a non-
linear mixed-effects model. The statistical literature on this topic is rich. One can
refer to, for example, Davidian and Giltinan (2003) or Pinheiro and Bates (2006)
for more information about such models.
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4. Modeling the laboratory accelerated test data.

4.1. Initial analysis of laboratory accelerated test data. In this section, we
perform some initial exploratory analyses of the laboratory accelerated test data.
We start by fitting a categorical-effects model so that we can study the effects of
the experimental variables without making any a priori assumptions about the form
of the relationships. Because the experimental factors were held constant over time
in the laboratory accelerated test, using the definition of Si(tij ) in (2), the term z

in (4) can be computed as

z= log[Si(tij )] − μ

σ

= log(tij ) + log[b(BPi )] + log[f (Tempi )] + log[g(RHi )] + log[d(NDi )] − μ

σ
,

(5)

where

(6) b(BPi ) =
∫ λmax

λmin

Lamp(λ)Filter(λ,BPi ,NDi )
{
1 − exp

[−A(λ)
]}

φ(λ)dλ

is the effect of UV spectrum because it integrates over φ(λ) for the wavelength
range defined by the BPi .

For the model in (5), we use the constraint that f (35) = g(25) = d(10) = 1 to
ensure that the parameters are estimable (i.e., we treat temperature 35◦C, RH 25%,
and ND 10% as the baseline experimental setting in the categorical-effects model).
For the UV spectrum effect, only the values of log[b(BPi )] − μ are estimable,
which is sufficient because we are only interested in the relative relationship among
the effects of the BP filters. The maximum likelihood (ML) estimates of parameters
in (5) were obtained by using nlme in R. Degradation paths in a small wavelength
interval [e.g., 306 nm (±3 nm)] have similar steepness. We assume σ is mainly
determined by wavelength. Thus we denote the categorical effect by σλ for each
of the four BP filters.

Table 3 lists the ML estimates of the fixed-effects parameters in (5). Although
the categorical-effects model only provides estimates of the UV, temperature, and
RH effects at a limited number of points, the information from the model is useful
for guiding the choice of the functional forms of φ(λ), d(ND), f (Temp), g(RH),
and σλ in the next modeling stage.

4.2. Effects of the explanatory variables. In this section, we discuss the se-
lection of the functional forms for the effects of explanatory variables used in the
laboratory accelerated test.

Modeling the BP filter effect. To suggest a functional form for φ(λ), we ini-
tially assume that φ(λ) is constant over the specific range of each BP filter, denoted
by φ̄(λ). For example, for the 306 nm BP filter, φ̄(306) will be used to represent the
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TABLE 3
Parameter estimates for the categorical-effects model

Standard
Parameter Estimate error p-value

α −0.6810 0.0130 <0.0001

log[φ̄(306)] − μ −6.5620 0.0755 <0.0001
log[φ̄(326)] − μ −7.0844 0.0361 <0.0001
log[φ̄(353)] − μ −9.0275 0.0323 <0.0001
log[φ̄(452)] − μ −10.1087 0.0350 <0.0001

log[d(40)] −0.7939 0.0201 <0.0001
log[d(60)] −1.0553 0.0199 <0.0001
log[d(100)] −1.3082 0.0200 <0.0001

log[f (25)] −0.1963 0.0092 <0.0001
log[f (45)] 0.1973 0.0247 <0.0001
log[f (55)] −0.8193 0.0357 <0.0001

log[g(0)] 0.8749 0.0231 <0.0001
log[g(50)] −0.3707 0.0255 <0.0001
log[g(75)] 0.2287 0.0240 <0.0001

σ306 1.5591 0.0149 <0.0001
σ326 1.2336 0.0074 <0.0001
σ353 1.0443 0.0057 <0.0001
σ452 0.8416 0.0054 <0.0001

effect. From (6), we obtain b(BPi ) = [Di(ti)/ti]φ̄(λ). Because we record Di(ti)

and have an estimate of b(BPi ) from the categorical-effects model, we can obtain
a heuristic estimate for φ̄(λ) from this relationship. For example,

(7) φ̄(306) = b(306)

(
∑

i:BPi=306[Di(ti)/ti])/(∑i:BPi=306 1)
,

for 303 nm ≤ λ ≤ 309 nm. Similarly, one can obtain the estimates of φ̄(λ)

for the other BP filters, 320 nm ≤ λ ≤ 332 nm, 332 nm ≤ λ ≤ 374 nm, and
373 nm ≤ λ ≤ 531 nm. The corresponding results are shown in Table 3. Figure 7
provides a visualization of a simple estimate of φ(λ). The results suggest that for
shorter wavelengths, there is more damage than at longer wavelengths, agreeing
with known physical theory.

The quasi-quantum yield φ(λ) describes the fact that photons at shorter wave-
lengths have higher energy, and thus a higher probability of causing damage.
Martin, Lechner and Varner (1994) state that for polymeric materials, the shape
of φ(λ) is typically exponential decay. The empirical results in our categorical-
effects model also suggest this, and thus we use a log-linear function φ(λ) =
exp(β0 + βλλ), to describe quasi-quantum yield where β0 and βλ are parameters
to be estimated from the data.
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FIG. 7. Plots of the categorical effects for UV spectrum, ND filter, temperature, and RH.

The parameter σ in (5) is related to the slope of the degradation path. Because
UV is the main cause of degradation and shorter wavelength paths tend to have
larger slopes, we model σ as a function of λ. The curve of categorical-effects
estimates of σλ versus λ suggests an exponential relationship with a lower bound.
Thus we use the functional form σλ = σ0 + exp(σ1 + σ2λ) to describe the effect
that UV wavelength has on σ .

From (5), one needs to have a wavelength specific dosage Dit (λ) to estimate
the parameters in φ(λ) (i.e., β0 and βλ). For the laboratory accelerated test data,
however, only the aggregated dosage Di(t) data were available. We use an ap-
proximate method to obtain Dit (λ) from Di(t). We consider the four intervals
303 nm ≤ λ ≤ 309 nm, 320 nm ≤ λ ≤ 332 nm, 332 nm ≤ λ ≤ 374 nm, and
373 nm ≤ λ ≤ 531 nm, corresponding to the four BP filters. Note that the spec-
tral irradiance after filtering is Lamp(λ)Filter(λ,BPi ,NDi ), and the approximate
trapezoid area under each λ interval is denoted as Areaλ. The integration of Areaλ

over each of the four wavelength intervals is denoted by Areaλ̄, where λ̄ is 306 nm,
326 nm, 353 nm, or 452 nm, the BP filter nominal center points. We define
the proportion of area under λ relative to its corresponding wavelength range as
P(λ) = Areaλ/Areaλ̄. Note that

(8) Di(t) =
∫ t

0

∫
λ

Lamp(λ)Filter(λ,BPi ,NDi )
{
1 − exp

[−A(λ)
]}

dλdτ,

and the specific form of A(λ) is unknown. For the narrow intervals, 303 nm ≤
λ ≤ 309 nm and 320 nm ≤ λ ≤ 332 nm, we can assume {1 − exp[−A(λ)]} is
constant because the fluctuation over the narrow range of wavelengths is rel-
atively small. Thus, for 303 nm ≤ λ ≤ 309 nm and 320 nm ≤ λ ≤ 332 nm,
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we obtain approximate values from Dit (λ) = Di(t)P (λ). Although the interval
373 nm ≤ λ ≤ 531 nm is wide, the variation in Dit (λ) will be small because both
{1 − exp[−A(λ)]} and φ(λ) are small over the interval. Thus we can assume that
Dit (λ) is constant for 373 nm ≤ λ ≤ 531 nm. For the 332 nm ≤ λ ≤ 374 nm, the
lamp spectra curve is complicated and {1 − exp[−A(λ)]} is typically not small
enough to do a trapezoidal approximation. Thus, in the subsequent modeling,
we (as in the categorical-effects model) use φ̄(353) to represent the effect of the
353 nm BP filter and treat it as an unknown parameter to be estimated from the
data. There is, however, enough information from the other three BP filters for us
to estimate the unknown parameters of the log-linear relationship for φ(λ).

ND filter effect. A power law relationship is typically used to describe the ND
effect [e.g., James (1997)]. The power law relationship is based on Schwarzschild’s
law, which says that the photo-response of radiation over a given time period has
a form NDp , where ND is the UV intensity level. To achieve the same photo-
response, NDp × t should be the same, where p is the Schwarzschild coefficient
and t is the exposure time. When p = 1, this relationship is called the reciprocity
law. Experimental deviations from the reciprocity law are called reciprocity law
failure. More discussion about Schwarzschild’s law and reciprocity can be found
in Martin, Chin and Nguyen (2003).

Figure 7 shows the effects of the ND filter. A power law relationship d(NDi ) =
NDi

p gives a perfect fit to the four points. Note that the Filter(λ,BPi ,NDi ) al-
ready includes the effect of the ND filter as NDi with a power of one. Thus the
overall effect of ND filter is NDi

(1+p). If the reciprocity law (i.e., the effect of ND
is NDi

1) holds, p should be equal to zero in this parameterization. Thus, combin-
ing the physical knowledge and the empirical evidence, we used the power law
relationship to describe the UV intensity effects. Another way of thinking about
this is that with the reparameterization, the effect p describes the deviation be-
tween the nominal properties of the ND filters and the actual amount of photon
attenuation provided by the ND filters.

Temperature effect. Figure 7 shows the effect that temperature has on the
degradation rate. The Arrhenius relationship is widely used to describe the ac-
celeration effect of temperature on the rate of a chemical reaction [e.g., Meeker,
Escobar and Lu (1998)]. According to the Arrhenius relationship, the logarithm
of the reaction rate should be proportional to reciprocal temperature in the Kelvin
scale. In particular, the Arrhenius relationship is

(9) f (Tempi ) = γ0 exp
( −Ea/R

TempKi

)
,

where TempKi is the Kelvin temperature computed as Celsius temperature plus
273.15, Ea is the effective activation energy, and R = 8.314 J K−1 mol−1 is the
gas constant. We define Ea/R to be the temperature effect to be estimated from
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the data. The categorical-effects estimates agree well with this relationship except
for the specimens at 55◦C and 75% RH.

A possible explanation for the change in the estimated temperature effect at
55◦C is that there is an interaction between the high temperature and the high RH
level. Such an interaction could arise because water release is known to affect the
rate of degradation. We can not, however, estimate the interaction effect because
there is data at 55◦C for only one RH level. Another possible explanation is that
there had been a failure of an integrated circuit chip in a controller that caused
certain chambers to be overheated for a period of time. This could have lead to a
different failure mechanism for the affected specimens. Based on these considera-
tions, we still use the Arrhenius relationship to model the temperature effect after
removing the data at 55◦C and 75% RH.

RH effect. The effect of relative humidity on coating degradation is compli-
cated. There are few theoretical results to suggest the functional form for humidity
effect in this type of application. It is known that low humidity will accelerate
the side-chain scission process. As more end groups are created, the degradation
rate will tend to increase. On the other hand, higher water content in the coating
(caused by higher levels of RH) will tend to increase the diffusion rate of oxy-
gen in the oxidation zone, which can also increase the degradation rate [e.g., Chen
and Fuller (2009), and Kiil (2009)]. Thus there is a middle range of RH values
where the degradation rate would be expected to be smaller than the rates at the
extremes. These mechanisms suggest a hump shape function for the effect that RH
has on degradation. Figure 7 shows the categorical-effects model estimates for the
RH effect. The effect is increasing first and then decreasing, suggesting a concave
relationship. Based on the empirical evidence and the suspected chemical reaction
mechanisms, we used a quadratic model

(10) log
[
g(RH)

] = −βRH(RH − rh0)
2

to describe the RH effect. Here, βRH and rh0 are unknown parameters to be esti-
mated from the data.

4.3. The combined model. Combining all of the identified functional forms
for the effects of the experimental variables gives the following model for the un-
derlying degradation path:

(11) Gi (tij ) = αexp(vi)

1 + exp(−z)
,

where

z =
η0 + log[Di(tij )] + A + p(log[NDi]) − (

Ea/R
TempKi

) − βRH(RHi − rh0)
2

σ0 + exp(σ1 + σ2λ)
,

A = log
[∫ λmax

λmin

P(λ) exp(βλλ)dλ

]
,
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TABLE 4
Parameter estimates for the combined model in (11)

Standard
Parameter Estimate error p-value

α −0.6191 0.01013 <0.0001

βλ −0.0297 0.00026 <0.0001
p −0.5606 0.00781 <0.0001
Ea
R

1945.6482 75.83458 <0.0001
βRH −0.0005 0.00001 <0.0001
rh0 45.4748 0.28749 <0.0001

η0 9.8986 0.25662 <0.0001
b(353) −11.5661 0.09428 <0.0001
σ0 0.8019 0.00664 <0.0001
σ1 7.6776 0.18760 <0.0001
σ2 −0.0260 0.00062 <0.0001

and vi is the random effect with mean 0 and variance σ 2
v . Note that the total ef-

fective dosage for wavelength λ is Si(t, λ) = Dit (λ) exp(β0 + βλλ), which is pro-
portional to Dit (λ) exp(βλλ). We use Di(t) × P(λ) × exp(βλλ) to approximate
Dit (λ) exp(βλλ). We define the constant η0 = β0 + log(γ0)−μ because the μ and
the individual intercept terms are not independently estimable in the model.

Table 4 lists the ML estimates of the parameters in (11). The maximum degra-
dation damage when total effective dosage goes to infinity is −0.6191, not con-
sidering random effects. For the ND filter effect, the power p is estimated to
be −0.5606, which is significantly different from 0. Thus there is evidence that
the reciprocity law does not hold in this application. The combined ND effect in
Filter(λ,BPi ,NDi ) is 1 − 0.5606 = 0.4394; that is, ND0.4394 describes the over-
all effect of the ND filters. For example, the effect of a nominal 80% ND filter is
100(0.800.4394)% = 90.6% filtering. As expected, the quasi-quantum yield coeffi-
cient βλ = −0.0297 < 0 indicating that shorter wavelengths cause more damage.
The estimate of Ea/R is 1945.6482. Thus the point estimate of the effective acti-
vation energy Ea is 16.176 kJ mol−1. The estimate for the variance of the random
effects is σ̂ 2

v = 0.058. Figure 8 displays examples of our model (11) fitted to the
laboratory accelerated test data, showing good agreement.

5. The prediction model for outdoor-exposure data. In this section, we
adapt the laboratory accelerated test model (11) and its parameter estimates to
predict outdoor-exposure degradation.

5.1. The cumulative damage model for outdoor-exposure degradation predic-
tion. For computational convenience, we used 60 minutes instead of 12 minutes
as the time interval for the dynamic covariates. For outdoor-exposure specimen k,
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FIG. 8. Fitted degradation paths for four randomly selected specimens based on the model in (11).
The points are the measured values and the lines show the fitted values. The plot titles show the levels
of the experimental factors.

we define the incremental effective dosage at wavelength interval λ ± 1 over the
60-minute interval starting at τ to be

(12) �S∗
k (τ, λ) =

∫ τ+60 min

τ

∫ λ+1 nm

λ−1 nm
Dk(τ,λ) exp(βλλ)dλdτ.

Here, we use an “∗” to indicate that the difference from the effective dosage de-
fined previously. The previous definition used φ(λ) but here we use exp(βλλ),
which is proportional to φ(λ). The effective dosage across all wavelengths at time
τ is S∗

kτ (τ ) = ∫
λ �S∗

k (τ, λ) dλ. The cumulative total effective dosage across all
wavelengths from time 0 to time t is S∗

k (t) = ∫ t
0 S∗

kτ (τ ) dτ . Temperature and RH
are averaged over all 60-minute intervals. Because no ND filters were used during
the outdoor exposures, we set ND to be 100% for all outdoor-exposure predictions.

According to the cumulative damage model, the slope of the degradation curve
at time τ and wavelength λ is a function of total effective dosage S∗

k (τ ) and other
environmental effects. That is,

(13) g′
k(τ, λ) = dGk(τ )

d[S∗
k (τ )] = 1

S∗
k (τ )σλ

× α exp(z)

[1 + exp(z)]2 ,
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where

(14) z =
log[S∗

k (τ )] + η0 + p[log(ND)] − [ Ea/R
Tempk(τ )+273.15 ] − βRH[RHk(τ ) − rh0]2

σ0 + exp(σ1 + σ2λ)
.

Note that here we compute the slope g′
k(τ, λ) as a function of τ and λ because

σλ depends on λ and the incremental damage amounts need to be accumulated
across the time τ and wavelength λ intervals. The incremental damage, �Gk(τ, λ),
is the damage at time τ that was caused by the UV radiation in the 2 nm wave-
length interval (λ − 1, λ + 1). In particular, �Gk(τ, λ) = g′

k(τ, λ)�S∗
k (τ, λ). The

additivity law is assumed, implying that the damage can be summed up from each
wavelength interval in every 60-minute time interval. Then �Gk(τ ) denotes in-
cremental damage at time τ from all wavelengths, �Gk(τ ) = ∑

λ �Gk(τ, λ). The
cumulative damage Gk(t) from time 0 to t from all wavelengths is

(15) Gk(t) =
t∑

τ=0

�Gk(τ ).

Hence, the degradation level Gk(t) can be predicted based on the model estimated
from the laboratory test data. Because there is a random effect vk in the mean
structure Gk(t), for the point prediction, we set vk to be zero when computing
point predictions.

5.2. Outdoor-exposure prediction uncertainty quantification. Here, we use θ

to denote all the parameters in (11), and θ̂ is the ML estimator. The correspond-
ing variance-covariance matrix is denoted by �θ̂ . The outdoor exposure prediction
involves two sources of variability: the random effect vk and the variability in θ̂ .
We use prediction intervals to quantify the prediction uncertainty. Prediction in-
tervals are calculated and calibrated following a procedure that is similar to those
described in Hong, Meeker and McCalley (2009), using the Lawless and Fredette
(2005) predictive distribution. For notational simplicity, let G = Gk(t), because we
compute pointwise prediction intervals. The cumulative distribution function of G
at a particular point in time t is denoted by F(G; θ) which is primarily determined
by the distribution of the random effect. The algorithm to compute the predictive
distribution is as follows:

1. Simulate B sample estimates θ̂
∗
b ∼ N(̂θ ,�θ̂ ) and v∗

b ∼ N(0, σ̂ 2
v ), b =

1, . . . ,B . We use B = 50,000.
2. Compute the degradation G∗

b , b = 1, . . . ,B using the method summarized by
(15) under parameter θ̂

∗
b and the random effect v∗

b .
3. Compute W ∗

b = F(G∗
b |̂θ∗

b), b = 1, . . . ,B .
4. Compute wl and wu, the lower and upper α/2 sample quantiles, respectively,

of W ∗
b .
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5. Solve F(Gl |̂θ) = wl , F(Gu |̂θ) = wu for (Gl ,Gu), providing the 100(1−α)%
calibrated prediction interval.

This algorithm needs to be repeated over the range of t values of interest.

5.3. Outdoor-exposure prediction results and model comparisons.

Outdoor-exposure predictions. Figure 9 compares the measured and predicted
degradation paths based on our cumulative damage model for the same representa-
tive set of outdoor-exposed sample paths shown in Figure 5. The predicted values
for some specimens agree well with the measured values, while for others the pre-
dicted values are either above or below that of the actual outdoor-exposed sample
paths. These variations correspond to the distribution of the random effects. Most
of the measured data points are within the calibrated prediction intervals, except
for some small levels of degradation at early times which may have been caused
by measurement error. Because the random effects are modeled as normally dis-
tributed with mean 0, the average predicted values should be close to the averaged

FIG. 9. Prediction results for 12 representative outdoor-exposed specimens. The points show the
measured values, the solid lines show the predicted values, and the dashed lines show the 95% point-
wise prediction intervals.
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FIG. 10. Plots of averaged outdoor-exposed degradation measurements and values predicted by
the cumulative damage model.

measured values for all 53 outdoor-exposed specimens. Figure 10 shows the aver-
age of predicted and measured damage for all of the outdoor-exposed specimens.
The average predicted values correspond well to average measured values.

We saw that the random effects tend to be similar within the same outdoor-
exposed group. For example, four specimens from outdoor-exposed group G1 all
have predictions larger than the measured values. The four specimens from group
G16OUT all have predictions smaller than the measured values, and the four spec-
imens from group G4 all have predictions close to the measured values. These
suggest that the random effects could be related to group conditions such as ad-
ditional weather-related effects not accounted for in our model. Other factors that
may contribute to the random effects include the nonuniform spatial irradiance of
specimens, possible nonuniformity of the material of the specimens, etc.

Predictions with early degradation information. When information about the
early part of degradation path is available for a particular specimen k, that infor-
mation can be used to estimate the random effect vk , providing a more precise
prediction of the future amount of degradation. Such predictions are often needed
in practice (say for a fleet of units in the field or for individual units) to estimate
the distribution of the remaining life. In particular, we used the fifth to tenth data
points and use the least squares approach to find v̂k . That is, v̂k is the value that
minimizes

∑10
j=5[ykj −exp(vk)ŷkj ]2, where ŷkj is obtained by substituting the ML

estimates into the prediction model. Then the predicted path for specimen k is ob-
tained as exp(v̂k)ŷkj . The first four data points were not used because their damage



PHOTODEGRADATION MODELING AND PREDICTION 2075

FIG. 11. Prediction results for 12 representative outdoor-exposed specimens, with adjustment
made by random effects estimated from the 5th to 10th data points. The points show the measured
values, the solid lines show the predictions without adjustments, and the dashed lines show the pre-
dictions with adjustments.

values were too small (i.e., the damage amount is less than 0.01) to be useful in es-
timating vk . Figure 11 shows the results for several example specimens where we
estimated the random effect exp(vk) using the early part of the degradation. The
dashed lines indicate the predicted values after adjusting. For most specimens, the
adjusted predicted values match the measured values considerably better than the
unadjusted values.

Comparisons. This section describes comparisons among several models. We
used the Akaike information criterion (AIC) for model-fitting comparisons and the
mean squared error (MSE) for prediction comparisons. We considered the follow-
ing models for comparisons:

• Model A: A model similar to that was used in Vaca-Trigo and Meeker (2009),
using no random effect and where UV intensity was not modeled directly.

• Model B: The model in (4) with individual random effects for each specimen
and carefully modeled effects for all of the experimental variables. For predic-
tions from this model, there are two variants.
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TABLE 5
Comparisons of model fits and predictions

Prediction
Log likelihood Number of

Model values parameters AIC Model MSE

A 15740.22 9 −31462.44 A 0.004238

B 30201.98 13 −60377.95
B1 0.002879
B2 0.002522

C 30414.43 14 −60800.85
C1 0.002524
C2 0.002396

– Model B1: Prediction with all random effects set equal to the expected value
of zero.

– Model B2: Prediction using some of the early data points to estimate the
random effects for the individual specimens.

• Model C: The model in (4) can be easily extended to more complicated random-
effects structures. For Model C, we consider the model in (4) but with both
specimen-to-specimen and group-to-group random effects. Note that there were
typically four replicates within experimental group (i.e., exposed at the same
time and in the same chamber). For predictions from this model, we also have
two variants.
– Model C1: Prediction with all random effects set equal to the expected value

of zero.
– Model C2: Prediction using some of the early data points to estimate the

random effects for the groups and the individual specimens.

Table 5 shows the model comparison results. The results show that the proposed
Models B and C provide a much better fit to the laboratory accelerated test data
than the model in Vaca-Trigo and Meeker (2009). There is not much difference
between the prediction performance of Models B and C. Both models provide
much better predictions than Model A.

6. Conclusions and areas for future research. This paper describes the sta-
tistical modeling and analysis of accelerated test data for photodegradation and
the prediction of photodegradation for specimens subjected to outdoor exposure.
We used a physically motivated nonlinear regression model with random effects
to describe the laboratory accelerated test degradation data, carefully studied the
functional forms of the experimental variables to develop the model, and estimated
model parameters from the accelerated test data. We found that the log-linear re-
lationship and the power law relationship can provide adequate descriptions of the
effects of the UV spectrum and intensity, respectively. The Arrhenius relationship
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can describe the temperature effects well, and the quadratic relationship can de-
scribe the RH effect well.

We used a cumulative damage model, incorporating the parameter estimates
from the laboratory accelerated test and individual specimen dynamic covariate
information, to predict the individual outdoor-exposed degradation paths. We also
developed an algorithm to calculate prediction intervals. The outdoor predictions
agree well with the observed degradation, indicating that both indoor and outdoor
degradation share the same degradation mechanism. The comparison results show
that the models in this paper provide a much better fit to the laboratory accelerated
test data, and more accurate outdoor prediction than the results in Vaca-Trigo and
Meeker (2009), which indicates that the model improvements in this paper are
important for better photodegradation modeling and prediction.

Although NIST has been a leader in the development of UV accelerated test
methods, UV testing is quite common in industry, and UV testing equipment is
readily available from companies like Atlas (http://atlas-mts.com/). Also, because
photodegradation is common for polymeric materials, such as components used
in photovoltaic panels, the results in this paper will be useful to statisticians and
engineers working in this area. Although the analysis in this paper is based on
the data collected from a model epoxy, the modeling and prediction methods can
also be used to predict the degradation of other materials such as ethylene-vinyl
acetate (EVA) and polyethylene terephthalate (PET) and materials containing UV
protection.

The degradation modeling and prediction methods presented in this paper serve
as an important step in the development of the science of outdoor weathering ser-
vice life prediction. There are, however, several areas for further research. Given a
probability model for degradation paths and corresponding random effects, a spe-
cific set of dynamic-covariate time series, and a definition of the corresponding
soft-failure threshold, methods need to be developed to compute the failure-time
distribution for exposed units. In general, outdoor environments are complicated,
and a more extensive experiment could be conducted to study the effect of factors
like contaminants in the air, dust, acid rain, and extreme weather events. In recent
years, new degradation analysis methods have been developed such as functional
data analysis approach [e.g., Zhou et al. (2014), and Zhou, Serban and Gebraeel
(2014)] and stochastic models [e.g., Peng (2015)]. The extension of existing meth-
ods for photodegradation analysis will be an interesting area for future research.
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