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University of Washington

In this article, we consider modeling ranked responses from a heteroge-
neous population. Specifically, we analyze data from the Eurobarometer 34.1
survey regarding public policy preferences toward drugs, alcohol, and AIDS.
Such policy preferences are likely to exhibit substantial differences within as
well as across European nations reflecting a wide variety of cultures, political
affiliations, ideological perspectives, and common practices. We use a mixed
membership model to account for multiple subgroups with differing prefer-
ences and to allow each individual to possess partial membership in more than
one subgroup. Previous methods for fitting mixed membership models to rank
data in a univariate setting have utilized an MCMC approach and do not es-
timate the relative frequency of each subgroup. We propose a variational EM
approach for fitting mixed membership models with multivariate rank data.
Our method allows for fast approximate inference and explicitly estimates the
subgroup sizes. Analyzing the Eurobarometer 34.1 data, we find interpretable
subgroups which generally agree with the “left versus right” classification of
political ideologies.

1. Introduction. Rank data often arise from a heterogeneous population with
individuals whose preferences may vary widely. In this article, we consider one
such example, public health policy data from the Eurobarometer 34.1. We develop
a computationally efficient variational EM procedure to estimate mixed member-
ship models with rank data. In addition to the computational aspects, we also ex-
tend the current literature by explicitly estimating the subgroup relative frequen-
cies and accommodating multivariate ranked data.

2. Public policy preferences. Social scientists have long held that in demo-
cratic societies, public opinion plays an important role in the formation of public
policies about important social problems [e.g., Burstein (1998), Brooks and Manza
(2008)]. Public opinion polls, which provide a window on the attitudes and per-
spectives of a nation’s citizenry, at times elicit ranked data about specific public
policies. An example is the Eurobarometer 34.1, a survey commissioned in 1990
to study European perspectives on various political and public health issues [Reif
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and Melich (2001)]. The Eurobarometer 34.1 collected data on a broad range of
topics, using a range of question formats, including measures of health behavior,
knowledge of illegal drugs, descriptions of family structure, and attitudes toward
children. In particular, three of the survey questions, shown in Figure 1, asked
about public policy priorities toward addressing societal/public health problems.
Therefore, our analysis focuses on examining responses to these questions. We
should note that, if the survey contained other pertinent questions of binary or
multinomial responses, these data could have been included in the analysis us-
ing the mixedMem R package [Wang and Erosheva (2015), R Core Team (2016)]
which allows for multivariate analysis when the variables are of different distribu-
tions.

The specific variables we consider address illicit drugs, alcoholism, and AIDS.
The survey respondents were asked to rank, in order of priority, policies such as
punishment for offenders, information campaigns to educate the public, rehabili-
tation and treatment, funding of research into causes and treatment, and fighting
social causes. Such priority rankings are likely to vary across respondents within
a nation, reflecting dissensus among a citizenry, as well as across nations, reflect-
ing national differences in culture, political affiliation, ideological perspective, and
common practices.

The top 5 observed responses for each question, shown in Table 1, are sugges-
tive of significant population heterogeneity. For example, for illegal drugs, a “legal
penalty for drug taking” (policy 3) is highly ranked in the first and fifth most ob-
served permutations, but ranked last in the second, third and fourth most observed
permutations. This heterogeneity is not surprising because the individuals in the
survey come from a wide variety of nationalities, religious backgrounds and age
groups (shown in Table 2). In analyzing such heterogeneity, an important ques-
tion is whether there are underlying subgroups or policy profiles among citizens.
For example, when asked how they prioritize policies about the problem of illegal
drugs, do citizens form a single group that varies along a dimension of punishment
to rehabilitation, which reflects a conservative-liberal continuum? Or do responses

TABLE 1
The top 5 observed rankings for each question. The place in the permutation represents the ranking
level and the recorded number indicates the order in which the policy option was presented in the

questionnaire. See Figure 1 for the corresponding policies

Drug Count Alcohol Count AIDS Count

1, 2, 3, 4, 5, 6, 7 109 1, 2, 8, 9, 10 85 1, 5, 4, 2, 3 740
1, 2, 4, 5, 6, 7, 3 82 1, 5, 8, 9, 10 61 5, 4, 1, 2, 3 722
2, 1, 4, 5, 6, 7, 3 69 1, 8, 9, 10, 3 60 5, 1, 4, 2, 3 670
2, 1, 4, 6, 7, 5, 3 55 1, 2, 5, 8, 10 57 1, 5, 4, 3, 2 604
2, 3, 1, 4, 5, 6, 7 53 1, 8, 9, 10, 2 53 1, 4, 5, 2, 3 515



1454 Y. S. WANG, R. L. MATSUEDA AND E. A. EROSHEVA

Question 28: There are various actions that could be taken to eliminate the
drugs problem. In your opinion, what is the first priority? And the next most
urgent? (Ask respondent to rank all 7, with 1 as the most urgent.)

1. Information campaigns about the dangers of drugs.
2. Hunting down drug pushers and distributors.
3. Legal penalty for drug taking.
4. Looking after and treating drug addicts and rehabilitating them.
5. Funding research into drug substitutes, and into the treatment of drug ad-

diction.
6. Fighting the social causes of drug addiction.
7. Reinforcing the control or distribution and usage of addictive medicines.

Question 39: There are various actions that could be taken in order to ease
the problem of alcoholism and its consequences. Looking at this card, which
is the main priority in your view? and the next? (Rank up to 5.)

1. Information campaigns about the danger of alcoholism.
2. Stiffer penalties for offenses committed under the influence of alcohol.
3. Banning advertising for alcoholic drinks.
4. Increasing taxes on alcohol.
5. Restricting the sale of alcohol. Especially to young people.
6. Putting lower legal limits on alcohol content.
7. Making social outcasts of alcoholics.
8. Helping alcoholics to submit “drying out.”
9. Funding medical research to develop more effective treatments.

10. Setting up more reception centers, drying out treatment centers.

Question 47: There are various actions that could be taken in order to elimi-
nate the problem of AIDS or at least to slow down its development. Looking
at this card, which is the main priority in your view? And the next? (Rank all
by giving a number from 1 to 5. with 1 as a top priority.)

1. Information campaign about the danger.
2. Punishment for behavior which increases the risk.
3. Identifying and isolating those with AIDS or those who are HIV positive.
4. Treating of those with AIDS and looking after them.
5. Funding research to find a vaccine.

FIG. 1. The three questions of interest from Eurobarometer 34.1 regarding illegal drugs, alco-
holism, and AIDS. The survey was administered in Belgium, Denmark, East Germany, France,
Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain, UK, and West Germany. Fur-
ther demographic information is given in Table 2.
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TABLE 2
Demographic breakdown of Eurobarometer 34.1 participants

Nation Count Nation Count Nation Count

Belgium 812 Greece 980 Northern Ireland 267
Denmark 950 Ireland 879 Portugal 978
East Germany 938 Italy 1048 Spain 864
France 967 Luxembourg 242 West Germany 975
Great Britain 956 Netherlands 1016

Religion Count Religion Count Age group Count

Buddhist 11 Orthodox 1057 15–24 Years 2401
Hindu 2 Other 162 25–39 Years 3489
Jewish 20 Protestant 2182 40–54 Years 2780
Muslim 23 Roman catholic 5617 55+ Years 3202
None 2692

reflect subgroups of citizens, in which some favor punitive measures, others re-
habilitation, and still others education? Do some subgroups systematically oppose
some policy measures, while favoring others? Moreover, given such subgroups, are
some citizens members of multiple groups, favoring, for example, both rehabilita-
tion and information? In modern democracies characterized by a diverse citizenry,
such subgroups may be likely to exist. Failure to consider such subgroups, when
they in fact exist, may lead to a distorted view of a nation’s public. Appropriately
modeling the population heterogeneity may be particularly important when the
questions cover a wide range of topics, as they do here.

3. Mixed membership models.

3.1. Previous work. Many approaches for modeling rank data have been
proposed; for a review, see Marden (1995). In this paper, we focus on the
Plackett–Luce model due to several attractive attributes (discussed further in Sec-
tion 4). Assuming population homogeneity, Hunter (2004) develop a minorization-
maximization method for estimating MLEs for a single Plackett–Luce distribution,
and Guiver and Snelson (2009) present a Bayesian framework for estimation.

Most of the previous work that address heterogeneity in rank data consider
the univariate case and specify a mixture model. Gormley and Murphy (2006)
assume a mixture of Plackett–Luce distributions, while Busse, Orbanz and Buh-
mann (2007) assume a mixture of Mallow’s distributions. In addition, Bayesian
nonparametric approaches have been used to allow for an infinite number of latent
subgroups [Meila and Chen (2010)] and an infinite set of alternatives [Caron, Teh
and Murphy (2014)]. Gormley and Murphy (2008) propose a mixture of experts
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model where individual level covariates specify the probability that an individual
belongs to a specific subgroup. However, each of these mixture model approaches
assume that every individual always expresses preferences consistent with only a
single subgroup. In many cases, this may be overly restrictive.

Gormley and Murphy (2009) propose a mixed membership model for univariate
rank data which allows for intra-subgroup mixing between ranking levels. Mixed
membership models extend mixture models by allowing an individual membership
to be split among multiple subgroups [e.g., Airoldi et al. (2015)]. As Gross and
Manrique-Vallier (2015), page 128, point out, the structure of a mixed member-
ship model is consistent with Zaller’s (1992) model of responses to public opinion
polls, in which “respondents randomly sample from a number of privately held
“considerations” relevant to the question at hand.” Gross and Manrique-Vallier
(2015) analyzed data on political ideology, examining core beliefs and values, find-
ing that mixed membership models reveal hidden structures in political ideologies
that previous factor analytic results missed.

Direct maximum likelihood estimation of mixed membership models is gener-
ally intractable, so MCMC or approximate inference techniques are used. In partic-
ular, Gormley and Murphy (2009) develop a Metropolis-within-Gibbs sampler. Al-
though the MCMC method allows for direct sampling from the posterior, it scales
poorly. Because of the individual level parameters, the total number of parame-
ters is directly proportional to sample size and the number of variables, which can
result in slow mixing even for moderate sample sizes. MCMC methods can also
require a considerable amount of human effort since convergence diagnostics must
be checked for all parameters [Gill (2008)].

3.2. Contribution of this work. In this article, we propose a variational EM ap-
proach which scales well with the number of observed individuals and is capable
of tractably estimating mixed membership models for rank data with a much larger
sample size than can be handled by existing MCMC methods. Variational inference
has been used as an alternative estimation procedure in mixed membership models
where MCMC methods would be computationally infeasible [Blei, Ng and Jordan
(2003), Erosheva, Fienberg and Lafferty (2004), Airoldi et al. (2008)] and has been
shown empirically to provide results similar to MCMC in some cases [Erosheva,
Fienberg and Joutard (2007)]. A direct computational comparison between the pro-
posed variational method and the MCMC method detailed by Gormley and Mur-
phy (2009) is provided in the supplement [Wang and Erosheva (2017)].

Motivated by Eurobarometer data on public policy priorities, we extend the
method of Gormley and Murphy (2009) to allow for multivariate data and directly
estimate the relative frequencies of each subgroup. The direct estimation of the
subgroup relative frequencies can be viewed as an empirical Bayes-type proce-
dure or robust modeling practice and has been shown to improve predictive perfor-
mance in many cases [Wang and Blei (2015)]. Indeed, we show in the supplement
that direct estimation of the subgroup relative frequencies drastically improves the



MIXED MEMBERSHIP MODELS FOR RANK DATA 1457

goodness-of-fit for exit poll data gathered during the 1997 Irish Presidential Elec-
tion [Wang and Erosheva (2017)]. Finally, informed by exploratory data analyses,
we extend the model specification to include two pre-specified subgroups.

The remainder of the article is structured as follows. We introduce the Plackett–
Luce distribution in Section 4 and the mixed membership rank data model in Sec-
tion 5. In Section 6, we review the variational approximation framework and detail
the variational EM algorithm. Finally, we use the proposed method to analyze pub-
lic policy priorities from the Eurobarometer 34.1 survey in Section 7 and conclude
with discussion in Section 8.

4. Modeling rank data. First, we consider univariate rank data. Suppose
there are V alternatives in the choice set (items to be ranked). For each individual
i, a single observation Xi is a permutation of Ni ≤ V of the alternatives in the
choice set. Each alternative v ∈ V (in this context, alternatives correspond to poli-
cies) is assigned a nonnegative support parameter θv which governs how strongly
it is preferred to other alternatives [Plackett (1975)]. The support parameters sum
to 1 for identifiability. At each ranking level, one of the remaining alternatives is
selected with probability proportional to its support parameter. The mass function
for the Plackett–Luce model is defined as

(1) P(Xi) =
Ni∏

n=1

θa(n)i

1 − ∑n−1
c=0 θa(c)i

,

where a(n)i indicates the alternative selected at the nth ranking level, and θa(0) =
0. The Plackett–Luce selection process can be thought of as a multinomial without
replacement, and the support parameters represent the probability of a policy being
selected as the top priority.

Although there are various distributions for modeling rank data, the Plackett–
Luce model has several attractive properties. First, it can accommodate incom-
plete rankings when not all alternatives in the choice set are selected. Assuming
unranked policies are less preferred than ranked policies, the mass function in
equation (1) has marginalized out any unranked policies. Second, the model satis-
fies Luce’s Choice Axiom [Luce (1977)] which states that an individual’s relative
preference between alternatives v and v′ should not change when a third alternative
v′′ is introduced [Sen (2014)]. Finally, the parameter space of the Plackett–Luce
model is a continuous set in the V − 1 simplex, while the parameter space of other
popular models (notably Mallow’s model) may be discrete sets which can greatly
complicate inference.

5. Generative model: Multivariate rank data. We propose the following
generative model for multivariate rank data. Assuming K latent subgroups, Dirich-
let membership parameter α ∈ R

K
>0, J variables each with Vj alternatives, and a set

of support parameters θjk for each variable j and subgroup k where
∑

v θjkv = 1,
the generative mixed membership model is:
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FIG. 2. Plate notation of the Multivariate Mixed Membership Rank Data Model. Quantities λ, Z,
and X are specific to individuals while quantities α and θ are global.

1. For each individual i = 1,2, . . . , T .

1. Draw a membership vector λi ∼ Dirichlet(α).
2. For each variable j = 1,2, . . . , J and for each ranking level n = 1,2, . . . ,

Nij .
(a) Draw a context indicator Zijn ∼ multinomial(1, λi).
(b) Draw a policy priority Xijn ∼ Plackett–Luce(θ,Zijn|{Xijc}c<n),

where Plackett–Luce(θ,Zijn|{Xijc}c<n) denotes that Xijn is dependent on Xijc

for c < n since the alternatives selected at prior ranking levels cannot be selected
again. The corresponding complete data likelihood and the graphical representa-
tion are shown in equation (2) and in Figure 2:

(2)

P(X,�,Z|α, θ) =
T∏
i

{
Dir(λi |α)

J∏
j

Nij∏
n

(
mult(Zijn|λi)

×
K∏
k

[
θjka(n)ij

1 − ∑n−1
c=0 θjka(c)ij

]Zijnk
)}

.

In the model, λik denotes the degree of membership of individual i within sub-
group k, and in the Eurobarometer context, λik indicates an individual’s level of
adherence to a policy ideology. Zijn is the subgroup governing individual’s i se-
lection for variable j at ranking level n. Note that the model assumes mixing of
subgroup preferences occurs both between different variables and within a single
observed ranking. Thus, an individual may select their top choice according to
the preferences of one subgroup, but select their second choice according to the
preferences of another subgroup. We note that, conditional on the membership λi ,
there is no further dependence enforced on each Zijn across the ranking levels of
a single variable. Although the Zijn are exchangeable in the generative model, in
the posterior conditioned on the observations, the context indicators are no longer
exchangeable because of the assumed sequential nature of the ranking procedure.

6. Variational EM approach.

6.1. Variational approximation. Calculating the marginal probability P(X|α,

θ) = ∫
Z,� P (X,�,Z|θ,α) requires marginalizing over the simplicial membership

vectors � and context indicators Z. Because this calculation is intractable, we
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use a mean-field variational method which approximates the true posterior for la-
tent variables � and Z. A detailed tutorial of variational inference is provided by
Wainwright and Jordan (2008).

The variational distribution is

(3) Q(Z,�|φ, δ) =
T∏
i

(
Dir(λi |φi)

J∏
j

Nij∏
n

mult(Zijn|δijn)

)

with variational parameters φ and δ (φi ∈ R
K
>0 and δijn lies in the K −1 dimension

simplex). Because it factors easily into functions of the variational parameters, this
approximation facilitates tractable computation via the variational EM algorithm.
We first derive a lower bound on the marginal distribution of the observed rankings
using Jensen’s inequality:

(4)

log
[
p(X|α, θ)

] = log
[∫

�,Z

Q(Z,�|φ, δ)

Q(Z,�|φ, δ)
P (X,Z,�|α, θ)

]

= logEQ

[
P(X,Z,�|α, θ)

Q(Z,�|φ, δ)

]

≥ EQ

{
log

[
P(X,Z,�|α, θ)

]} −EQ

{
log

[
Q(Z,�|φ, δ)

]}
.

The last line in equation (4) is often called the Evidence Lower Bound (ELBO) and
is a function of the data, the variational parameters, φ and δ, as well as the global
parameters α and θ . It can be shown that maximizing the ELBO with respect to the
variational parameters φ and δ minimizes the KL-divergence between the true pos-
terior and the variational distribution. In addition, fixing the variational parameters
and maximizing the lower bound with respect to α and θ can be used as a surrogate
procedure for selecting maximum likelihood estimates for α and θ [Beal (2003)].
Ultimately, by maximizing the lower bound (the ELBO), we simultaneously find
pseudo-MLE estimates for α and θ and an approximate posterior distribution for
the latent membership and context variables � and Z. This is accomplished by
iterating between E-steps and M-steps as shown in Algorithm 1. The lower bound
is given in equation (5), but the derivation is left for the Appendix:

ELBO =
T∑
i

log

[
�

(
K∑
k

αk

)]
−

T∑
i

K∑
k

log
[
�(αk)

]

+
T∑
i

K∑
k

{
(αk − 1)

[
	(φik) − 	

(
K∑
k′

φik′

)]}

+
T∑
i

J∑
j

Nij∑
n

{
K∑
k

δijnk

[
	(φik) − 	

(
K∑
k′

φik′

)]}
(5)



1460 Y. S. WANG, R. L. MATSUEDA AND E. A. EROSHEVA

+
T∑
i

J∑
j

Nij∑
n

K∑
k

δijkn

{[
log[θjka(n)ij ]

] − log

[
1 −

n−1∑
c=0

θjka(c)ij

]}

−
T∑
i

log

[
�

(
K∑
k

φik

)]
+

T∑
i

K∑
k

log
[
�(φik)

]

−
T∑
i

K∑
k

[
(φik − 1)

[
	(φik) − 	

(
K∑
k′

φik′

)]]

−
T∑
i

J∑
j

Nij∑
n

K∑
k

δijnk log[δijnk],

�(·) denotes the gamma function; 	(·) denotes the digamma function, the deriva-
tive of log�(·).

6.2. E-step: Update φ and δ. The E-step maximizes the lower bound with
respect to the individual level parameters φ and δ. Taking the derivative of the
lower bound yields the following updates for φ and δ:

δ
(s+1)
ijnk ∝ exp

(
	

(
φ

(s)
ik

) − 	

(
K∑
k′

φ
(s)
ik′

)

+ log[θjka(n)ij ] − log

[
1 −

n−1∑
c=0

θjka(c)ij

])
(6)

φ(s+1) = αk +
J∑
j

Nij∑
n

δ
(s+1)
ijnk ,

Algorithm 1 Variational EM for Mixed Membership Rank Data

1: Initialize θ(0), α(0), K, φ(0) = 1
K

, δ(0) = 1
K

2: while (Convergence criterion not yet satisfied) do
3: while (Convergence criterion not yet satisfied) do � E-Step
4: Update δijnk

5: Update φik

6: end while
7: while (Convergence criterion not yet satisfied) do � M-Step
8: Update α by Newton–Raphson
9: Update θ by interior point method

10: end while
11: end while
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where δ (a multinomial parameter) is normalized to sum to 1. We continue updat-
ing each parameter in a coordinate ascent procedure until the relative increase in
the ELBO is below a specified tolerance.

6.3. M-step: Update α and θ . The M-Step, described in Algorithm 2, fixes
the variational parameters φ and δ, and selects α, the Dirichlet parameter for the
membership vectors, and θ , the Plackett–Luce support parameters, to maximize
the lower bound on the marginal log-likelihood. For both parameters, there are no
closed form solutions so we use iterative updates.

For α, we use a Newton–Raphson method to maximize the lower bound:

(7)

∂ ELBO

∂αk

= T

(
	

(
K∑
k′

αk′

)
− 	(αk)

)
+

T∑
i

(
	(φik) − 	

(
K∑
k′

φik′

))
,

∂ ELBO

∂αki
∂αkj

= −T

(
1{i=j}	 ′(αki

) − 	 ′
(∑

k′
αk′

))
.

Since θ is subject to the following constraints
∑Vj

v θjkv = 1 and θjkv ≥ 0 for
v = 1, . . . , Vj , we use an interior point method to select an optimal θ [Nocedal and
Wright (1999)]. Because the constraints are only enforced on each individual set
{θjkv}v=1:Vj

and the objective function separates into additive terms (with respect
to the θjk), we can select θjk for each {j, k} separately by solving the minimization
problem:

(8) min
θjk

−ELBO(θjk) + B(θjk) subject to
Vj∑
v

θjkv = 1,

Algorithm 2 M-step update for θ : interior point method

Require: b0 > 0, M ∈ Z
+, θ(0)

1: for j ∈ [J ] do
2: for k ∈ [K] do
3: for m ∈ [M] do
4: while (Convergence criterion not yet satisfied) do
5: Calculate step direction �θjk using penalty term Bbm

0
(θjk)

6: Use backtracking line search to determine step length τ

7: Set θ
(t+1)
jk = θ

(t)
jk + τ�θjk

8: end while
9: end for

10: end for
11: end for
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where B(θ) = ∞∑V
v 1[θjkv<0] (i.e., the nonnegativity constraint on θ has been

converted into a penalty term which assigns infinite loss to infeasible points). Be-
cause B is not a smooth function of θ , we approximate it with the smooth function

Bb = −1
b

∑Vj
v log[θjkv] and solve the relaxed minimization problem instead.

For notational ease, we use jk(θjk) to denote the objective function; H de-
notes Hessian of jk ; g denotes the gradient of jk and 1 denotes a row vector of
1’s with length Vj :

(9)

∂jk(θ)

∂θjkv1

= −
T∑
i

Nij∑
n

δijnk

[1{Xijn=v1}
θjkv1

+
∑n−1

c=1 1{Xijc=v1}
1 − ∑n−1

c=0 θjva(c)ij

]
− 1

bθjkv1

,

∂2∂jk(θ)

∂θjkv2∂θjkv1

= −
T∑
i

Nij∑
n

δijnk

[∑n−1
c=1 1{Xijc=v1}

∑n−1
c=1 1{Xijc=v2}

(1 − ∑n−1
c=0 θjka(c)ij )

2

]
,

∂2∂jk(θ)

∂θ2
jkv1

= −
T∑
i

Nij∑
n

δijnk

[−1{Xijn=v1}
θ2
jkv1

+
( ∑n−1

c=1 1{Xijc=v1}
1 − ∑n−1

c=0 θjka(c)ij

)2]

+ 1

bθ2
jkv1

.

Satisfying the Karush–Kuhn–Tucker conditions with the remaining equality con-
straint yields the update direction �θ for θ(s+1) = θ(s) + �θ , where

(10) �θ = −H−1
(
g − 1T 1H−1g

1H−11T

)
.

Because the Newton step in equation (10) uses a quadratic approximation of
the objective function, the proposed �θ increment may be ill-sized. If the step
size is too large, the increment may actually lead to a larger value of the objective
function or infeasible updates where θjkv < 0. Thus, we use a backtracking line
search, detailed in Algorithm 3, to ensure that each update will always increase the
lower bound and remain in the feasible set.

6.4. Algorithm discussion. For numerical stability, we first solve the mini-
mization for a small value of b, and then use that solution to initialize subsequent

Algorithm 3 M-step update for θ : backtracking line search
Require: θjk , �θjk , τ0 ∈ (0,1)

1: s = 0
2: while Any(θjkv +τ s

0�θj,k < 0) or [ELBO(θjkv +τ s
0�θjk) < ELBO(θjkv)] do

3: s++
4: end while
5: return τ = τ s

0
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minimizations with increasingly larger values of b [Nocedal and Wright (1999)].
In addition, if a particular variable has a large number of options, inverting the
Vj × Vj Hessian can become computationally expensive. A quasi-Newton or gra-
dient ascent procedure may require less overall computation by avoiding large
matrix inversions. We also note that the sub-routines for α and each θjk can be
computed completely in parallel which may be fruitful if the number of subgroups
or variables is large.

As with almost all variational methods, the objective function is multi-modal, so
only convergence to a local maximum is guaranteed. Using available prior knowl-
edge can be very helpful in determining reasonable initializations for a specific
problem; however, multiple initialization points are recommended to increase the
probability of finding the global maximum.

We found empirically that initializing α and θ with the following heuristically
driven two step procedure generally resulted in stationary points with a larger
ELBO. Using a random initialization of θ and α and setting all values of φ and
δ to 1/K , iterate the variational EM procedure until reaching a stationary point α̃

and θ̃ . Then, use the resulting global parameters α̃ and θ̃ to initialize a second run
(with φ and δ reset to 1/K). The result of the first run is only a stationary point
with respect to all the parameters (both global and individual), so resetting the φ

and δ parameters will generally result in a new stationary point where the global
parameters θ̂ and α̂ are different than the intermediate initialization points.

Because the dimension of even just the α and θ parameters can be quite large, a
huge number of random restarts may be needed to explore the space well when se-
lecting uniformly. We posit that using this two-step procedure to find initialization
points concentrates the search in areas where the ELBO is likely to be larger.

7. Eurobarometer analysis. We now analyze rank data from the Eurobarom-
eter 34.1 survey [Reif and Melich (2001)]. We removed individuals with missing
data (i.e., anyone who did not respond to all 3 questions of interest) and individuals
who had reported ties in any of their rankings, leaving 11,872 individuals of the
original 12,733.

7.1. Model selection. Table 1 shows the top 5 observed rankings for each
question. In particular, we observe that the response which ranks the policy pri-
orities in the exact order of presentation is the most common pattern for drug
priorities and is also the 6th and 28th most common pattern for alcohol and AIDS.
If some individuals used this ordering out of convenience, the resulting responses
may not be informative of true policy preferences. To capture this tendency, we
include a subgroup whose preferences correspond with the presentation-ordered
permutation. Following Gormley and Murphy (2006), we also include a “noise”
subgroup whose preferences are uniform across all policy priorities. We fix the
support parameters, θ , for these groups, but estimate their relative frequencies (the
corresponding elements of α). This approach is similar to the extended grade of
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membership model [Erosheva, Fienberg and Joutard (2007)] which also models
specific response patterns with unusually high counts; however, here we allow
for partial membership in the fixed subgroups, whereas Erosheva, Fienberg and
Joutard (2007) assume that some individuals are full members of the fixed sub-
groups.

We use a held out ELBO procedure to select an appropriate number of sub-
groups K . We randomly split the sample in half to create a training set and test
set. For each K = 3,4, . . . ,10 (we do not include K = 2 because that would only
be the 2 fixed groups), we first fit a model to the training set and select global pa-
rameters α̂ and θ̂ . Then, to compute the held out ELBO on the test set, we use a
single E-step which fits the individual variational parameters φ and δ for the test
set given the α̂ and θ̂ from the training set. We use 40 different initialization points
θ0 ∼ Dir({a, a, . . . , a}) at each a = 0.6,1.1, and 1.5 and select the stationary point
across all K with the highest resulting held out ELBO. We then used the stationary
point selected by the procedure to initialize a final run with the results presented
below.

To ensure that the model interpretation is not dependent on the selected train-
ing/test set, we repeated this procedure with 3 different training/test splits. For
each batch, the held out ELBO values do vary widely within a fixed K due to the
multi-modality of the ELBO. However, we see the same trend in all 3 cases; the
largest held out ELBO values for each K = 3,4,5,6 are somewhat close and peak
at either 4 or 5 and the maximum held out ELBO values decrease rapidly as K

increases beyond 6. Of the three batches, the first batch selects a 5 subgroup model
(including the two fixed groups) and the other two batches select a 4 subgroup

FIG. 3. The estimated support parameters of two largest subgroups of the selected 5 subgroup
model from batch 1 (squares) is plotted against the estimated support parameters from batch 2 (cir-
cles) and batch 3 (triangles).
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FIG. 4. 1000 simulated top priority rankings using the fitted α̂ and θ̂ values are shown with the
boxplots. The observed counts are indicated by the x’s.

model. Figure 3 shows that the two largest subgroups of the first batch (5 subgroup
model) are very similar in structure to the two nonfixed subgroups of the second
and third batches (4 subgroup models). Since the 5 subgroup model has the largest
ELBO, we describe that model in the remainder of this article.

7.2. Goodness of fit. To check goodness-of-fit, we generate 1000 simulated
data sets using the fitted values α̂ and θ̂ . Figure 4 shows that the model captures
the general trend of observed counts for the first place rankings of each variable.
These plots are not quite posterior predictive checks because α and θ are fixed
so the variability of the simulated outcomes is smaller than if α and θ were also
considered random quantities.

7.3. Model interpretation. Table 3 presents the ratio of the estimates θ̂ and
uniform support parameters (i.e., θ̂jkv/

1
Vj

). Thus, the reported values represent
how many times more likely a full member of a subgroup would be to select a
specific policy as their top priority compared to an individual selecting policies
randomly. A value larger than 1 indicates that the policy is more popular than
average for the variable and subgroup, and a value less than 1 indicates that the
policy is less popular than average. The log10 of these values are also represented
in Figure 5 where priorities favored more than average have a positive bar height
and priorities favored less than average have a negative bar height. Furthermore,
within each subgroup, priorities are sorted by estimated support allowing readers
to more easily characterize subgroup preferences.

Subgroup 1 generally favors punitive policies. For illegal drugs, the top two
priorities are “Punish dealers” and “Penalize users,” and subgroup 1 is 44 times
more likely to select “Punish dealers” than the least favored option of “Funding
research.” Similarly, for alcohol, the most popular policies are “Stricter penalties
for offenses” and “Restricting sale.” Although “Ostracizing alcoholics” is the least
popular policy for all subgroups, in subgroup 1, it is only 55 times less likely than
the top priority while it is 260 times less popular than the top option for subgroup 3
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and numerically zero for subgroup 2.1 For AIDS, although the two punitive options
(“Punish behavior” and “Isolate patients”) are the least favored policies, subgroup
1 is only roughly 3.5 times less likely to select these two options relative to the
most popular option of “Funding research.”

Subgroup 2 generally prioritizes “Information campaigns.” “Information cam-
paigns” are roughly 1.7 times more likely to be selected as the top priority than the
second most popular option of “Penalizing dealers” and 14 times more likely than
the least popular option “Penalize users.” For alcohol, “Information campaigns”
are 4 times more likely than the second most popular alternative “Rehabilitate al-
coholics.” The least popular option is “Penalize users,” with an estimated support
parameter that is numerically zero; the two other least popular policies include
“Increasing taxes” and “Lowering limits.” The dislike for these options is consis-
tent with the idea of limited government social intervention. For AIDS, subgroup
2 is the only subgroup for which “Funding research” is not the most popular op-
tion, with “Information campaigns” roughly 1.3 times more likely than “Funding
research.”

Finally, subgroup 3 typically supports rehabilitation and treatment, as well as
funding research. For illegal drugs, although the most popular policy is “Treat-
ing addicts,” “Punishing dealers,” and “Addressing social causes” are also popular
policies. For alcoholism, “Rehabilitation” is by far the most popular policy with
“Funding research” and “Increasing resources for rehabilitation” as the only other
options with substantial support. For AIDS, this subgroup expresses strong support
for “Treating AIDS” and “Funding research.”

Broadly speaking, the identified groups are consistent with the typical Left (lib-
eral) versus Right (conservative) political ideology archetypes. The focus on puni-
tive measures is consistent with a right leaning approach toward governance while
the focus on information and rehabilitation typifies a more left leaning approach
[Cavadino and Dignan (2006)].

Shown in Table 4, the small magnitude of α̂, the Dirichlet membership param-
eter, suggests relatively low levels of intra-individual mixing. However, the modal
grade of membership in Figure 6 shows that a quarter of all individuals still ex-
hibit significant intra-individual mixing. We also see that the nontrivial relative
frequency estimates of the noninformative fixed groups justify their inclusion in
the analysis.

The Dirichlet distribution for λi implicitly enforces negative dependence be-
tween subgroup memberships, although positive dependencies could be modeled
using distributions considered by Blei and Lafferty (2005). However, the magni-
tude of correlations between subgroup memberships is still informative. In Table 5,
the estimated membership in the informative subgroups is more strongly correlated

1For alcohol, there are 10 options and at most 5 ranking levels. Thus, it may be possible for an
option to appear extremely infrequently or not at all.
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TABLE 3
The estimated support parameters divided by the support parameter under uniform selection. The

bootstrapped 95% confidence intervals are shown in parentheses

Subgroup 1 Subgroup 2 Subgroup 3
Punitive subgroup Info subgroup Rehab subgroup

Drug policy

Inform public 0.191 (0.175, 0.209) 2.249 (2.17, 2.324) 0.745 (0.694, 0.8)
Punish dealers 5.719 (5.623, 5.808) 1.338 (1.27, 1.404) 1.411 (1.304, 1.527)
Penalize users 0.344 (0.316, 0.376) 0.157 (0.147, 0.167) 0.225 (0.204, 0.246)
Treat addicts 0.162 (0.149, 0.176) 1.103 (1.064, 1.144) 1.456 (1.373, 1.542)
Fund research 0.132 (0.122, 0.143) 0.489 (0.469, 0.509) 0.966 (0.913, 1.017)
Social causes 0.251 (0.231, 0.272) 1.197 (1.149, 1.247) 1.386 (1.313, 1.461)
Control medicine 0.202 (0.186, 0.219) 0.468 (0.449, 0.489) 0.81 (0.767, 0.853)

Alcohol policy

Inform public 0.648 (0.609, 0.689) 4.565 (4.421, 4.709) 0.324 (0.296, 0.355)
Penalize off 4.269 (4.104, 4.432) 0.722 (0.681, 0.767) 0.192 (0.168, 0.218)
Ban ads 0.85 (0.798, 0.904) 0.744 (0.702, 0.787) 0.104 (0.089, 0.121)
Inc taxes 0.541 (0.509, 0.576) 0.25 (0.23, 0.271) 0.045 (0.036, 0.055)
Rest sale 2.086 (1.994, 2.181) 0.7 (0.662, 0.741) 0.391 (0.347, 0.438)
Low limits 0.472 (0.445, 0.5) 0.243 (0.224, 0.262) 0.134 (0.117, 0.154)
Ostze alcs 0.074 (0.065, 0.084) 0.00 (0.00, 0.00) 0.022 (0.017, 0.028)
Rehab alcs 0.535 (0.505, 0.563) 1.128 (1.085, 1.171) 5.194 (5.011, 5.38)
Fund research 0.27 (0.25, 0.288) 0.787 (0.751, 0.822) 1.788 (1.69, 1.887)
Inc resources 0.254 (0.234, 0.274) 0.862 (0.825, 0.898) 1.805 (1.718, 1.893)

AIDS policy

Inform public 1.026 (0.984, 1.067) 2.314 (2.234, 2.393) 0.646 (0.598, 0.7)
Punish behavior 0.521 (0.495, 0.548) 0.079 (0.072, 0.086) 0.251 (0.228, 0.276)
Isolate patients 0.537 (0.508, 0.57) 0.072 (0.065, 0.079) 0.199 (0.176, 0.225)
Treat AIDS 1.031 (0.993, 1.068) 0.74 (0.705, 0.775) 1.607 (1.524, 1.685)
Fund research 1.885 (1.819, 1.951) 1.796 (1.725, 1.869) 2.296 (2.195, 2.4)

TABLE 4
The estimated α Dirichlet membership parameter and the 95% bootstrapped confidence intervals.

The estimated relative frequency of each subgroup is given by αk∑
k′ α′

k

α̂ Relative frequency

Subgroup 1 0.05 (0.048, 0.053) 0.322 (0.314, 0.329)
Subgroup 2 0.048 (0.047, 0.051) 0.31 (0.302, 0.318)
Subgroup 3 0.024 (0.023, 0.026) 0.154 (0.149, 0.16)
Subgroup 4 0.014 (0.013, 0.015) 0.088 (0.084, 0.092)
Subgroup 5 0.02 (0.019, 0.021) 0.126 (0.122, 0.131)
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FIG. 5. Each barplot in the figure shows log10(θ̂jkv/(1/Vj )) so that priorities which are more
likely to be selected than average have a positive bar height and priorities which are less likely to
be selected than average have a negative bar height. The priorities for each subgroup are reordered
vertically by largest estimated support to smallest estimated support. Note that the bar for “Ostracize
alcoholics” for subgroup 2 has been truncated.

with membership in the other informative subgroups (the least negative correlation
between subgroups 1–3 is −0.29) than membership in the fixed groups (the most
negative correlation between subgroups 1–3 versus subgroups 4–5 is −0.25). This
is not surprising because subgroups 1–3 indicate a particular ideology on public
policy, while subgroups 4 and 5 essentially represent the lack of preferences which
align with the dominant subgroups.

FIG. 6. The estimated degree of membership in each individual’s modal subgroup.
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TABLE 5
Correlation between the estimated subgroup memberships for each subgroup

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

Subgroup 1 1.00 −0.55 −0.29 −0.25 −0.07
Subgroup 2 −0.55 1.00 −0.36 −0.25 −0.18
Subgroup 3 −0.29 −0.36 1.00 −0.16 −0.03

Subgroup 4 −0.25 −0.25 −0.16 1.00 −0.04
Subgroup 5 −0.07 −0.18 −0.03 −0.04 1.00

7.4. Uncertainty estimates. Because α̂ and θ̂ were selected through a pseudo-
MLE procedure, there are no readily available model-based standard errors; how-
ever, we estimate standard errors via an empirical bootstrap procedure. For each
bootstrap sample b = 1, . . . ,5000, we select 11,872 individuals with replacement
from the observed sample and use the variational EM procedure to select pseudo-
MLE estimates α̂(b) and θ̂ (b). Each bootstrap sample run is initialized at the same
starting points used for the full model. This initialization avoids overestimating
variability in stationary points due to multi-modality of the objective function and
seeks to only capture sampling variability. To form 95% confidence intervals, we
take the 0.025 and 0.975 quantiles of the bootstrapped estimates.

7.5. Multivariate versus univariate model. We also acknowledge the implicit
decision to use a multivariate model instead of fitting a univariate model for each
question. Under univariate models, subgroup membership λ for each individual
is estimated independently of the responses to other questions. By contrast, in a
multivariate specification, individuals can still exhibit a different mix of subgroups
across each question and ranking level, but the posterior estimates are shrunk to-
ward the individual’s overall membership λi .

As a sensitivity analysis, we fit univariate models for each question. Fewer sub-
groups may be necessary when considering a univariate model when compared a
multivariate model, but since the univariate models are only used to validate the
structure of subgroups identified with multivariate data, we fit models with 5 sub-
groups and do not repeat the model selection procedure. The estimated support
parameters θ do not differ substantially from the multivariate model, but the esti-
mated membership parameters α differ across univariate models in an informative
way. Table 6 shows a much higher proportion of membership in the information
subgroup for the AIDS univariate model than we see in the drugs univariate, al-
cohol univariate, or full multivariate models. This suggests that, on average, indi-
viduals have a stronger preference for “Information campaigns” to address AIDS,
which is not seen as strongly in addressing alcohol or drugs. As expected, the rel-
ative frequencies when averaged across all three univariate models are similar to
the relative frequencies of the full model.
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TABLE 6
The estimated α̂ and corresponding relative frequency for each of the univariate and full

multivariate models

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5

Drug univariate est. 0.031 0.020 0.015 0.010 0.011
Alcohol univariate est. 0.062 0.042 0.042 0.021 0.027
AIDS univariate est. 0.006 0.060 0.018 0.014 0.012
Full model est. 0.050 0.048 0.024 0.014 0.020

Drug univariate rel. freq. 0.362 0.229 0.169 0.113 0.128
Alcohol univariate rel. freq. 0.321 0.217 0.218 0.107 0.138
AIDS univariate rel. freq. 0.052 0.549 0.160 0.126 0.113
Full model rel. freq. 0.322 0.310 0.154 0.088 0.126
Average univariate rel. freq. 0.259 0.319 0.181 0.115 0.127

7.6. Individual membership estimates. We examine two specific individuals
that illustrate the richness of description afforded by using a mixed membership
model.

Table 7 shows the observed responses from a 68-year-old British male. For ad-
dressing drugs, his responses follow the presentation ranking, but for alcohol and
AIDS, he indicates a preference for research and rehabilitation. We estimate the
membership for this man to be 66% subgroup 3 (Rehab and Research) and 34%
subgroup 5 (Presentation Ordering). Because the mixed membership framework
allows for intra-individual mixing, the rank ordered response for drug policy is at-
tributed to the noninformative subgroup. This contrasts with a finite mixture model
approach, which would otherwise include this noisy response for drug policy in the
estimates for subgroup 3.

Table 8 shows the responses of a 40-year-old Spanish female. Her perspectives
on alcohol policy differ drastically from her preferences for drugs and AIDS. We
see that her top policies for drugs and AIDS are highly punitive, but information

TABLE 7
Observed Responses from a 68-year-old British male

Drug policy Alcohol policy AIDS policy

Priority 1 Inform public Fund research Isolate patients
Priority 2 Punish dealers Increase resources Treat AIDS
Priority 3 Penalize users Rehabilitate alcoholics Fund research
Priority 4 Treat addicts Ban advertisements Inform public
Priority 5 Fund research Inform public Punish behavior
Priority 6 Fight social causes
Priority 7 Control medicine



MIXED MEMBERSHIP MODELS FOR RANK DATA 1471

TABLE 8
Observed responses from a 40-year-old Spanish female

Drug policy Alcohol policy AIDS policy

Priority 1 Punish dealers Inform public Punish behavior
Priority 2 Penalize users Rehabilitate alcoholics Isolate patients
Priority 3 Treat addicts Restrict sale Treat AIDS
Priority 4 Inform public Ban advertisements Fund research
Priority 5 Fight social causes Increase resources Inform public
Priority 6 Control medicine
Priority 7 Fund research

campaigns and rehabilitation are preferred for alcoholism. These different perspec-
tives are captured in the model with an estimated membership of 63% in subgroup
1 and 37% in subgroup 2.

7.7. Membership by demographic subgroup. The broad interpretation of our
results agree with previous studies which have identified demographic characteris-
tics associated with general dispositions toward penal ideology. To examine these
demographic trends clearly, we filter out individuals whose membership in sub-
groups 4 and 5 (the noninformative subgroups) is over 50%. This leaves 10,448 of
the 11,872 original individuals. We then examine the conditional membership of
the remaining individuals in subgroups 1, 2, and 3 (i.e., λ̃i = λi

λ1+λ2+λ3
).

We first examine a self reported measure of Left versus Right political ideology.
Individuals were asked: “In political matters, people talk of the left or the right.
How would you place your views on this scale?” In the recorded scale, 1 indicates
far left and 10 indicates far right. This is not a perfect analog since each individual
likely responded in reference to their national definition of “center” whereas the
subgroup membership estimated from the rank data is a global measure. Nonethe-
less, we see that there is a very significant Spearman’s rank-order correlation of
0.15 (p-value < 2e−16) between self-reported Left versus Right score from Euro-
barometer 34.1 and membership in the “Punitive subgroup.”

We also examine the average membership across religious affiliation. Some
speculate that Anglo-Saxon cultures are particularly punitive because of Protes-
tant religions with strong Calvinistic overtones [Tonry (2007)] or fundamentalist
beliefs [Grasmick et al. (1992)]. As shown in Table 2, almost all individuals in the
survey report their religion as either Roman catholic, None, Protestant, or Ortho-
dox. In addition to denomination, the Eurobarometer also recorded how often an
individual attends religious services. We collapse the original categories of “Sev-
eral times a week” and “Once a week” to a single “Regular attendance” category
and collapse “Few times a year,” “Once a year,” and “Never” into an “Irregu-
lar attendance” category. Table 9 shows that those who attend religious services
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TABLE 9
Average conditional membership by denomination and regularity of attending religious services.

Regular attendance indicates attending a religious service at least once a week; irregular
attendance indicates attending a religious service less than once a week

Religion Attendance Subgroup 1 Subgroup 2 Subgroup 3

None NA 0.36 0.45 0.19
Orthodox Irregular 0.21 0.58 0.21
Orthodox Regular 0.30 0.47 0.23
Protestant Irregular 0.40 0.40 0.20
Protestant Regular 0.53 0.31 0.16
Roman catholic Irregular 0.40 0.39 0.21
Roman catholic Regular 0.47 0.34 0.18

regularly have a much higher average membership in subgroup 1. Also, Roman
catholics and Protestants are much more likely to belong to subgroup 1 than indi-
viduals who report no religion or Orthodox Christians. We note that roughly 90%
of the individuals who responded as Orthodox Christians were Greek and roughly
97% of Greek respondents reported their religion as Orthodox Christianity. This
confounding may be the cause of the particularly low subgroup 1 membership for
Orthodox Christians.

In addition, we examine the average estimated membership across levels of ed-
ucation. The Eurobarometer asks “How old were you when you finished full-time
education?” Table 10 shows that the average membership in subgroup 1 (punitive)
decreases steadily as education increases, a finding that is consistent with previous
research on industrialized countries, including Western Europe [e.g., Kitschelt and
Rehm (2014), Mayhew and Van Kesteren (2002)].

At the national level, the average memberships are also consistent with qualita-
tive characterizations of national policy. Figure 7 shows that the United Kingdom
and Ireland have high average memberships in subgroup 1 (punitive), while Den-
mark and France are among a cluster of countries with low average memberships
in subgroup 1. These findings are generally consistent with previous research us-
ing the International Crime Victimization Surveys, which finds punitive attitudes

TABLE 10
Average conditional membership by “Last age of formal education”

Last age of formal education Subgroup 1 Subgroup 2 Subgroup 3

16 or less 0.47 0.33 0.19
17 to 19 0.40 0.40 0.20
20 to 21 0.33 0.48 0.20
22 or older 0.26 0.54 0.20
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FIG. 7. The estimated average membership of each country where the noninformative fixed groups
(subgroups 4 and 5) have been marginalized out.

in the United Kingdom and Ireland, and nonpunitive attitudes in Denmark and
France [e.g., Roberts (2013)]. In slight contrast to that work, we find Belgium to
have a relatively high membership in subgroup 1, and the Netherlands to have a
relatively low membership.

8. Discussion. In this article, we propose a mixed membership model for mul-
tivariate rank data and develop a variational EM estimation approach that is a com-
putationally attractive alternative to fully Bayesian estimation for large scale rank
data. Mixed membership models provide valuable insights into latent structure
within a heterogeneous population and allow for a richer description when com-
pared to previous mixture model approaches. When MCMC is tractable for smaller
data sets as in Gormley and Murphy (2009), the results provide direct samples from
the posterior. Nevertheless, the demands placed on human and computer time to
conduct such an analysis can be substantial, and scalability of MCMC methods
is poor. Ultimately, a mixed membership analysis of larger data sets necessitate
other approaches. Of course, what actually qualifies as “large scale” or “big data”
is dependent on the complexity of analysis. In rank data, the complexity quickly
grows as the number of variables and alternatives increase.

In addition to the computational gains, the proposed method extends the method
of Gormley and Murphy (2009) to explicitly fit the Dirichlet membership parame-
ter α. Unless there is strong prior knowledge about subgroup sizes, this extension
can result in better fitting models by directly capturing from the data differences in
the subgroup structure and the level of intra-group mixing. A direct comparison of
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both goodness of fit and computational effort is provided in the supplement [Wang
and Erosheva (2017)].

To accommodate multivariate ranked data, our model makes the simplest as-
sumption that all context indicators Zijn are drawn from the same multinomial
distribution governed by a single membership vector λi . An alternative and more
complex model might include an additional layer of hierarchy between λi and
Zijn for each variable j . This would allow context indicators Zijn from separate
variables to be drawn from different distributions, while still respecting the multi-
variate structure.

There are drawbacks, however, to the variational approximation. Because of
the multi-modal objective function, many random restarts should be used. Prior
knowledge can be used to select good initialization points, but finding a global
maximum is not guaranteed. We propose a two-step procedure for initialization,
but addressing multi-modality through stochastic optimization methods [Bottou
(2010)] or placing strong priors on the support parameters to induce “smoothness”
in the ELBO are two natural extensions.

Also, unlike a full Bayesian specification, the variational EM method does not
provide a posterior for the global parameters. Frequentist uncertainty estimates,
however, can still be achieved through a bootstrap procedure, but each boot-
strapped model must be carefully initialized to avoid overestimating variability. To
our knowledge, bootstrapping with variational estimation has not been previously
used in the existing literature.

As with any mixture or mixed membership model, selecting the number of
subgroups is difficult. Our model selection procedure involves cross-validation of
the held-out ELBO. This procedure, however, can be complicated by the multi-
modality of the objective function and the selected model might depend on the
specific test and training sets. BIC procedures are also widely used although the
theoretical justification does not hold in mixed membership models [Airoldi et al.
(2015)]. Alternative approaches include stability-based measures [Lange et al.
(2002)], direct goodness-of-fit measures [Cohen and Mallows (1983)], and non-
parametric model extensions such as those based on Dirichlet processes [Teh et al.
(2006)].

Analyzing the Eurobarometer 34.1 data, we find three informative policy pref-
erence subgroups as well as substantial support for a uniform ranking group and a
presentation-ordered group. The three informative subgroups primarily favor puni-
tive policies, information campaigns, and rehabilitation and research, respectively.
When comparing subgroup membership to educational, religious and national de-
mographic information, we see trends which generally agree with the existing lit-
erature. In particular, fewer years of formal education and more religious partici-
pation is generally associated with more punitive attitudes toward social issues. In
addition, at the national level, average subgroup membership roughly agrees with
previous characterizations of national punitive attitudes.
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Finally, our analysis has implications for survey development. Because of a siz-
able presentation-ordered subgroup in our analysis, we recommend randomizing
the presentation of choices when collecting rank data to decrease bias due to non-
informative responses where respondents rank choices by simply following the
presentation order. We also note that the variable with the largest proportion of
presentation-ordered responses is the question regarding illegal drugs which also
happens to allow up to 7 rankings, while the other two questions only allow up to 5
ranking levels. This observation naturally leads to speculation of whether decreas-
ing the number of ranking levels and cognitive load may ultimately lead to more
“informative” responses.

Although our analysis focused on issues within political science, sociology, and
public health, multivariate rank data can elicit and capture a rich representation of
individual preferences. We believe that the proposed methodology will be of broad
interest. Psychologists, economists, other social scientists, and marketing profes-
sionals who analyze large scale rank data can rely on the proposed methodology
to represent large scale ranked preferences with realistic models which are still
parsimonious and easily interpretable.

APPENDIX

Derivation of lower bound on marginal log-likelihood (ELBO). The
derivation of the lower bound from equation (4) is shown here. The lower bound
is
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Note that �(·) denotes the gamma function, 	(·) denotes the digamma function,
and fj denotes the Plackett-Luce mass function of variable j . Xij denotes the
observation of Nij level rankings and a(n)ij indicates the alternative selected by
individual i for variable j at ranking level n. Note that for all multinomial mass
functions shown below, the size = 1.
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The expectation of the first term with respect to the variational distribution Q
becomes

(12)
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[
�(αk)

]

+
T∑
i

K∑
k

(αk − 1)Eq

{
log[λik]}

=
T∑
i

log

[
�

(
K∑
k

αk

)]
−

T∑
i

K∑
k

log
[
�(αk)

]

+
T∑
i

K∑
k

(αk − 1)

[
	(φik) − 	

(
K∑
k

φik

)]
.

The expectation of the second term with respect to the variational distribution
Q becomes

(13)

T∑
i

J∑
j

Nijr∑
n

EQ

{
log mult(zijn|λi)

}

=
T∑
i

J∑
j

Nij∑
n

EQ

{
log

[
K∏
k

λ
Zijnk

ik

]}

=
T∑
i

J∑
j

Nij∑
n

K∑
k

EQ

{
Zijnk log(λik)

}

=
T∑
i

J∑
j

Nij∑
n

K∑
k

EQ{Zijnk}EQ

{
log[λi,k]}

=
T∑
i

J∑
j

Nij∑
n

K∑
k

δijnk

[
	(φik) − 	

(
K∑
k′

φik′

)]
.
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The third term is

(14)

T∑
i

J∑
j

EQ

{
log

[
f (Xij |θ,Zij ·)

]}

=
T∑
i

J∑
j

EQ

{
log

[Nij∏
n

[
K∏
k

[
θjka(n)ij

(1 − ∑n−1
c=0 θjka(c)ij )

]Zijnk
]]}

=
T∑
i

J∑
j

Nij∑
n

K∑
k

EQ

{
Zijnk

(
log[θjka(n)ij ]

− log

[
1 −

n∑
c=0

θjka(c)ij

])}

=
T∑
i

J∑
j

Nij∑
n

K∑
k

δijnk

(
log[θjka(n)ij ] − log

[
1 −

n∑
c=0

θjka(c)ij

])
.

Now for the second term of the ELBO

EQ

{
log

[
Q(Z,�)

]}

= EQ

{
log

[
T∏
i

(
Dir(λi |φi)

J∏
j

Nij∏
n

mult(Zijn|δijrn)

)]}

= EQ

{
T∑
i

log
[
Dir(λi |φi)

] +
T∑
i

J∑
j

Nij∑
n

log
[
mult(Zijn|δijn)

]}

= EQ

{∑
i

log

[
�(

∑K
k φik)∏K

k �(φk)

K∏
k

λ
φik−1
ik

]
+

T∑
i

J∑
j

Nij∑
n

log

[
K∏
k

δ
Zijnk

ijnk

]}

= EQ

{
T∑
i

log

[
�

(
K∑
k

φik

)]
−

T∑
i

K∑
k

log
[
�(φik)

]}
(15)

+EQ

{
T∑
i

K∑
k

(φik − 1) log[λik] +
T∑
i

J∑
j

Nij∑
n

K∑
k

Zijnk log[δijnk]
}

=
T∑
i

log

[
�

(
K∑
k

φik

)]
−

T∑
i

K∑
k

log
[
�(φik)

]



1478 Y. S. WANG, R. L. MATSUEDA AND E. A. EROSHEVA

+
T∑
i

K∑
k

(φik − 1)

[
	(φik) − 	

(
K∑
k

φik

)]

+
T∑
i

J∑
j

Nij∑
n

K∑
k

δijnk log[δijnk].
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SUPPLEMENTARY MATERIAL

Supplement to “A variational EM method for mixed membership models
with multivariate rank data: An analysis of public policy preferences” (DOI:
10.1214/17-AOAS1034SUPP; .pdf). By analyzing 1997 Irish presidential election
data, we provide a direct computational and goodness-of-fit comparison to the
MCMC method of Gormley and Murphy (2009).
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