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Density dependent population growth functions are of central importance
to population dynamics modelling because they describe the theoretical rate
of recruitment of new individuals to a natural population. Traditionally, these
functions are described with a fixed functional form with temporally constant
parameters and without species interactions. The Ricker stock-recruitment
model is one such function that is commonly used in fisheries stock assess-
ment. In recent years, there has been increasing interest in semiparametric and
temporally varying population growth models. The former are related to the
general statistical approach of using semiparametric discrepancy functions,
such as Gaussian processes (GP), to model deviations around the expected
parametric function. In the latter, the reproductive rate, which is a key pa-
rameter describing the population growth rate, is assumed to vary in time. In
this work, we introduce how these existing Ricker population growth mod-
els can be formulated under the same statistical approach of hierarchical GP
models. We also show how the time invariant semiparametric approach can
be extended and combined with the time varying reproductive rate using a
GP model. Then we extend these models to the multispecies setting by incor-
porating cross-covariances among species with a continuous time covariance
structure using the linear model of coregionalization. As a case study, we ex-
amine the productivity of three Pacific salmon populations. We compare the
alternative Ricker population growth functions using model posterior prob-
abilities and leave-one-out cross validation predictive densities. Our results
show substantial temporal variation in maximum reproductive rates and re-
veal temporal dependence among the species, which have direct management
implications. However, our results do not support inclusion of semiparamet-
ric discrepancy function and they suggest that the semiparametric discrepancy
functions may lead to challenges in parameter identifiability more generally.

1. Introduction. Density dependent population growth functions, also known
as stock-recruitment (SR) functions in fisheries, are of central importance to popu-
lation dynamics modelling and fisheries stock assessment [Buckland et al. (2007),
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Kuikka et al. (2014), Hilborn and Walters (1992)]. These functions are of central
focus because they describe the rate of recruitment of new individuals to the pop-
ulation, and so they are extensively used in studies concerning the productivity
of fish stocks and other natural resources [e.g., Quinn and Deriso (1999), Myers,
Mertz and Bridson (1997), Dorner, Peterman and Haeseker (2008), Newman et al.
(2009), Pulkkinen and Mäntyniemi (2013), Mäntyniemi et al. (2015)]. In manage-
ment applications, these functions are used to inform decision making about sus-
tainable harvesting. The idea of harvesting the population at the (assumed time-
invariant) maximum sustainable rate is a dominant approach in fisheries man-
agement (e.g., Magnuson–Stevens Act, US; the Fmsy-driven harvest control rule,
ICES; the Commonwealth Harvest Strategy Policy, Australia). The maximum re-
productive rate is an important parameter of SR functions that determines this sus-
tainable harvesting rate [Hilborn and Walters (1992), Quinn and Deriso (1999)].

Traditionally, population growth functions are derived from mechanistic models
for population density dependent survival of offspring [Ricker (1954), Quinn and
Deriso (1999), Brännstron and Sumpter (2005)] and many alternatives have been
suggested based on different assumptions of juvenile survival [see, e.g., Hilborn
and Walters (1992), Brännstron and Sumpter (2005)]. However, it has also been
noticed that often these functions could not properly accommodate real-world sce-
narios, for which reason there has been increasing interest towards semiparametric
population growth models in the recent years [Hillary (2012), Cadigan (2013)].
Early examples of semiparametric population growth functions include neural net-
works [Chen and Ware (1999), Chen and Irvine (2001)] and splines [Jost and Ell-
ner (2000)]. Later, Munch, Kottas and Mangel (2005) used Gaussian processes
[GPs, Rasmussen and Williams (2006)] to model deviations in the SR relationship
around an expected parametric SR function. This is a special case of applying GPs
to model discrepancies from an underlying mathematical process model through a
“discrepancy function” [Kennedy and O’Hagan (2001), O’Hagan (2006)]. Sugeno
and Munch (2013) used this same formalism to infer Allee effects in three herring
data sets. Thorson, Ono and Munch (2014) developed a semiparametric state-space
model, which also used a GP discrepancy function to compensate for model mis-
specification in the parametric population growth function, and suggested that the
GP model improved estimates of the population growth function when the para-
metric function is misspecified.

A common assumption for semiparametric population growth functions is that
they are time invariant [see, e.g., Chen and Irvine (2001), for an exception where
the maximum reproductive rate depends on time-varying covariates]. However,
time invariant functions may not sufficiently capture ecological processes that
change with time [Peterman, Pyper and MacGregor (2003)]. Since semiparamet-
ric models, such as GPs, are very flexible, ignoring temporal variation may be
especially problematic for predicting populations dynamics because the GP may
inappropriately capture such temporal variation through a density dependent func-
tion. Similarly, the semiparametric discrepancy term, which is a function of the
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population density, could also adapt to the temporal changes in productivity and
lead to biased estimates for the density dependent growth under such model mis-
specification.

The traditional approach to account for time varying density dependence with
parametric functions has been to use environmental data to describe deviations
in recruit survival from the mean levels predicted by the simpler function [Hilborn
and Walters (1992), Mäntyniemi et al. (2013), Maunder and Deriso (2011), Morita,
Morita and Fukuwaka (2006)]. In the absence of environmental data, the temporal
variation in the parameters of a density dependent growth function has been mod-
eled with autoregressive models [Peterman, Pyper and Grout (2000), Peterman,
Pyper and MacGregor (2003), Zeng et al. (2010)]. In practical applications, the
temporal variation can improve predictions to account for the uncertainty in pop-
ulation productivity, and related management parameters such as Maximum Sus-
tainable Yield (MSY) [Hilborn and Walters (1992)]. The temporal pattern of the
varying parameters can also be used in building hypotheses about potential drivers
of these fluctuations. Often the interest is in inferring the correlation in tempo-
ral variation of population growth among species or stocks. This has traditionally
been done by calculating the correlation between species specific residual vari-
ations after fitting the time varying population growth models independently for
each species [e.g., Dorner, Peterman and Haeseker (2008), Myers, Mertz and Brid-
son (1997), Peterman, Pyper and MacGregor (2003)]. Recently, Minto et al. (2014)
used a multivariate autoregressive model to simultaneously infer the temporal vari-
ation and among population correlation in the parameters of the Ricker function.
Thorson, Jensen and Zipkin (2014) constructed Beverton–Holt and Ricker models
where the residual error is autocorrelated and the autocorrelation variance has a
hierarchical structure over species.

Despite active development in population growth models there is a lack of rig-
orous statistical treatment and testing of these alternative approaches. More gener-
ally, there is a need for empirical evidence on the predictive performance of statis-
tical models with semiparametric discrepancy functions and on parameter identi-
fiability in such models [see, e.g., Brynjarsdóttir and O’Hagan (2014) for a recent
study on the subject]. In this work, we address both questions. First, we introduce
the alternative Ricker population growth functions under the unifying statistical
approach of hierarchical GP models. This allows us to extend the existing discrete
time models to the continuous time domain, combine the time invariant semipara-
metric approach with the time varying models and extend these models to the mul-
tispecies setting. These alternative models are then evaluated with a unique time
series of SR data. Using a Bayesian approach, models are compared by calculating
their posterior probabilities and leave-one-out cross validation predictive densities.
Our case study examines the productivity of three co-located salmon populations
of Pacific salmon, pink (Oncorhynchus gorbuscha), chum (Oncorhynchus keta)
and sockeye (Oncorhynchus nerka), captured by a 51-year SR time series.
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2. Case study data. The SR time series is from the Weaver Creek Spawn-
ing Channel, which is a controlled-flow environment located in the Fraser River
system, British Columbia, Canada. The spawning channel was designed to aug-
ment a natural population of sockeye salmon (Oncorhynchus nerka) but is also
used by pink (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta)
[Rosberg, Scott and Rithaler (1986)]. The spawning channel was operated by the
International Pacific Salmon Fisheries Commission until 1985 when operational
management transferred to the Department of Fisheries and Oceans. Anadromous
Pacific salmon species have different life history strategies but all spawn in fresh-
water with juveniles outmigrating to live in the ocean until returning to spawn
at the end of their life cycle (semelparous organisms) [Burgner (1991), Healey
(1991), Heard (1991)]. At Weaver Creek, sockeye and chum spawners returned
every year 1965–2015 and pink salmon every other year.

The data used for our analyses are annual estimates of numbers of female
spawners and outmigrating fry for the years 1965 to 2015 [DFO (2016)]. The
number of spawning females was enumerated by a combination of methods in-
cluding controlled entry of species and sex, visual survey and carcass counts; the
number of outmigrating fry were estimated by a trap that samples 5% of fry pass-
ing a weir located at the end of the channel [Rosberg, Scott and Rithaler (1986)].
The average number of spawning females and fry was respectively 12,967 and
28 million for sockeye, 1841 and 2.6 million for chum, and 1513 and 1.3 million
for pink. For sockeye and chum, the data are available for every year from 1965 to
2015 comprising of 51 time points. For pink salmon, which only return every other
year, the data are available for every second year from 1965 to 2015 comprising
of 26 time points. These data are noteworthy for the purposes of model compar-
ison and hypothesis testing because they are comprised of direct estimates of the
number of spawning females and fry over a period greater than 50 years. Typically
SR datasets are comprised of estimates on spawning stock size and recruitment
produced by fisheries stock assessment models.

3. Ricker population growth (stock-recruitment) models.

3.1. Time-invariant models. Since our data is fisheries data, we use the fish-
eries terminology and treat the population growth models under the SR modelling
formalism, which describes the dependence of the recruitment to a population,
Rj,t , in year t to a spawning stock size, Sj,t−τj

, in year t − τj . In the presence of
J populations of different species, denoted by j ∈ J = {1, . . . , J }, the traditional
time invariant single species Ricker SR-model [Ricker (1954)] can be summarized
as

(3.1) Rj,t = αjSj,t−τj
e
−βjSj,t−τj

+εj,t ,

where αj is the maximum reproductive rate, βj the parameter governing density-
dependence and εj,t an i.i.d. random variable with the Gaussian distribution
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N(0, σ 2
j ) that corresponds to uncertainty around the expected recruitment given

by the Ricker model. Here, it should be noticed that we treat time as a contin-
uous variable and allow the lag, τj from spawning to recruitment to depend on
species. The maximum reproductive rate parameter, αj , multiplied by the number
of spawning females gives the number of outmigrating fry in the absence of den-
sity dependence, that is, at low population size relative to the amount of spawning
habitat. In an earlier study, using a subset of our data Essington, Quinn and Ewert
(2000) found little evidence to differentiate between the Ricker from two alter-
native parametric SR functions (a Beverton–Holt model and model with linear
density dependence), so we progress only the former in this study.

However, we consider a more general form of the Ricker model (3.1) that al-
lows for the presence of interspecific density dependence, which may arise due to
competing for space or other resources. We write this in the log-linear form so that

(3.2)
yj,t = log

Rj,t

Sj,t−τj

= logαj −
J∑

j ′=1

βj ′Sj ′,t−τj ′ + εj,t ,

yt = a − Bst + εt ,

where yt = [y1,t , . . . , yJ,t ]T, a = [logα1, . . . , logαJ ]T, st = [S1,t−τ1, . . . ,

SJ,t−τJ
]T, εt = [εt,1, . . . , εt,J ]T and B is the matrix containing the density de-

pendence parameters. When interspecific density dependence is not assumed,
B = diag(β1, . . . , βJ ), but more generally B would be a full matrix.

The traditional Ricker model (3.2) with diagonal B and mutually independent
prior distributions for the elements in a and B will serve as the base line model
here. It will be called the time-invariant independent species model and denoted
by M0. In this model, the reproductive rates of species are independent. However,
in many cases, there is dependence between species through interspecific density
dependence so that the matrix B in (3.2) should have nonzero off-diagonals. The
interspecific density dependence is plausible among the three salmon species con-
sidered in our study [Essington, Quinn and Ewert (2000)] for which reason we also
include models with nonzero off-diagonal entries in B into our model suite. The
time-invariant independent species model with interspecific density dependence is
an extension of M0 where B is a full matrix and it will be denoted by M0+dd. The
species specific prior distributions for the elements in a and B are summarized in
Table 1 and described in detail in Appendix A.1.

3.2. Time varying maximum reproductive rates. Minto et al. (2014) extended
the time invariant single species model (3.2) to a multivariate time varying SR
model:

(3.3) yt = at + Bst + εt ,
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TABLE 1
The priors for model parameters with species index j ∈ {chum,pink, sockeye}. Here, inv-t+ denotes

a half Student-t distribution for inverse of the parameter

Attribute Parameter Prior

The log of maximum reproductive rate, asockeye,μasockeye N(−6.40,0.362)

mean of the log of the maximum apink,μapink N(−7.50,0.522)

reproductive rate in time varying models achum,μachum N(−7.04,0.512)

Density dependence βj N+(0,1.032)

Between species density dependence Bj,j ′ , j �= j ′ N(0,1.032)

Standard deviation of the error σ 2
εj

logN(−0.27,0.22)

Magnitude of the time varying maximum
reproductive rate

σ 2
j logN(−0.14,0.055)

Length-scale of the time varying maximum
reproductive rate

lj inv-t+(−0.02,0.43,4)

Magnitude of the semiparametric correction σ 2
ag1

logN(−0.14,0.055)

Magnitude of the semiparametric correction σ 2
ag2

logN(−0.14,0.055)

Magnitude of the semiparametric correction σ 2
ag3

logN(−0.14,0.055)

Length-scale of the semiparametric
correction

lg1 inv-t+(0,0.1,4)

Length-scale of the semiparametric
correction

lg2 inv-t+(0,0.1,4)

Length-scale of the semiparametric
correction

lg3 inv-t+(0,0.1,4)

Between species correlation of the time
varying maximum reproductive rates

ρ see Eq. (A.1)

where at = [a1,t , . . . , aJ,t ]T follows a Gaussian Markov random walk model. In
this model, the reproductive potential can vary annually. Such variation may orig-
inate from, for example, conditions that affect egg-to-fry survival. Reproductive
potential may also be influenced by interannual factors that impact marine or fresh-
water conditions for adult spawners. For simplicity, throughout this study we treat
the density dependence, B, as time invariant which suggests that it is less affected
by environmental stochasticity than density independence (αj , j = 1, . . . , J ), or in
other words, behavioral interactions are assumed to predominate. A natural exten-
sion of the discrete time random walk model would be a continuous time stochastic
partial differential equation, which can be represented with GPs [Rasmussen and
Williams (2006)]. Hence, we will denote a time varying maximum reproductive
rate of a species j as a function of time so that aj,t = aj (t).

By definition, a function aj (t) follows a Gaussian process if, for any finite set
of points t1, . . . , tT , the vector of function values [aj (t1) . . . aj (tT )] follows a mul-
tivariate Gaussian distribution [Rasmussen and Williams (2006)]. A GP is com-
pletely defined by its mean function, m(t) = E(aj (t)) and its covariance function,
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ka(t, t
′) = Cov(aj (t), aj (t

′)). The mean function specifies the expected value of
the function at any location and the covariance function specifies how function
values at different locations are correlated. In this work, we use constant mean
functions since there is no prior information to suggest any functional form, such
as trends, for them. There are many choices for the covariance function, such as the
Matérn function which is among the most widely used in GP applications. How-
ever, in this work we describe the temporal covariance in log maximum reproduc-
tive rates with an exponential covariance function, ka(t, t

′|σ 2
a , la) = σ 2

a e−|t−t ′|/la ,
which is a Matérn function with 1/2 degrees of freedom [Rasmussen and Williams
(2006)]. Here, σ 2

a is the process variance governing the magnitude of the variation
in log maximum reproductive rate and la is the length-scale that governs how fast
the log maximum reproductive rates vary.

The reason for using the exponential covariance function is that it makes our
work more comparable to the earlier population growth models with time varying
maximum reproductive rates. The exponential covariance function corresponds to
the continuous representation of the AR(1) autoregressive model (the Ohrnstein–
Uhlenbeck process). With length-scale, la = −1/ logφ, where φ ∈ (0,1), and
equally lagged time steps it reproduces a discrete time autoregressive Markov ran-
dom process of first order with autoregressive parameter φ. Hence, for discrete
time data, a GP with the exponential covariance function would be an AR(1) coun-
terpart of the random walk time-varying productivity model of Minto et al. (2014).
We prefer the AR(1) model over the random walk model since the process gen-
erated from an AR(1) is second-order stationary and will not increase or decrease
without bound. Other choices of covariance functions could be justified as well but
these are not considered here.

3.2.1. Time-varying independent species models. Our first time varying
Ricker model follows (3.3) so that B is diagonal and we give mutually independent
GP priors for the species specific maximum reproductive rates; that is,

(3.4) aj (t)
i.d.∼ GP

(
μaj

, ka

(
t, t ′|σ 2

aj
, laj

))
,

where
i.d.∼ denotes that the processes a1(t), . . . , aJ (t) are independent a priori. The

parameter μaj
is the constant mean of the j th process, corresponding to aj in

the time-invariant single species models, and ka(t, t
′|σ 2

aj
, laj

) is the covariance
function of the j th process. We use the exponential covariance function for all the
species but allow their parameters to vary by species. The priors for the mean and
covariance function parameters are summarized in Table 1 and treated in detail in
Appendix A.1. These prior distributions are the same in all time varying models to
be considered. We call this model the time-varying independent species model and
denote it by M1.

We also extend the time-varying independent species model to allow interspe-
cific density dependence. As with model M0+dd, this is done by extending M1 to
allow nonzero off-diagonals in B. This model will be denoted by M1+dd.



1382 HARTMANN, HOSACK, HILLARY AND VANHATALO

3.2.2. Common length-scale time varying joint species model. Next, we con-
sider a time varying model (3.3) that allows interspecific temporal dependence
in the maximum reproductive rates. We assume that the vector-valued function
of log maximum reproductive rates at = a(t) : t → [a1(t), . . . , aJ (t)]T follows a
J -variate GP with mean E(a(t)) = [μa1, . . . ,μaJ

]T and a separable covariance
function with common temporal correlation structure for all species, that is,

(3.5) Cov
(
aj (t), aj ′

(
t ′

)) = ρj,j ′σjσj ′ k̃a

(
t, t ′|l),

where k̃a(·, ·|l) = ka(·, ·|σ 2 = 1, l) is a time dependent correlation function, ρj,j ′
is the correlation between species j and j ′ and σj is the process standard devia-
tion of species j . Hence, the covariance between maximum reproductive rates at
different times depends on the correlation among species and on the difference in
time. Since the temporal length-scale, l, is the same for each species in this model,
the species specific reproductive rates are assumed to vary with similar speed in
time. This may happen if the three species in the spawning channel are subjected
to common temporally varying factors that impact their maximum reproductive
rate. The correlations between species govern how the direction of the change in
the reproductive rates are related and the process deviation parameters govern the
magnitude of the changes. The prior distribution for the correlations is described
in Appendix A.1. The same prior is used in all time varying joint species models.

The covariance function (3.5) leads to a model that allows interspecific relation-
ships that affect the maximum reproductive potential, and hence, this model cor-
responds to the time-covarying productivity model of Minto et al. (2014). When
interspecific density dependence is not considered (B is diagonal), we call this
model the common length-scale time varying joint species model and denote it by
M2. We consider also a common length-scale time varying joint species model
with interspecific density dependence. This is otherwise the same model as M2 but
allows nonzero off-diagonals for B. We will denote it by M2+dd.

3.2.3. Separate length-scale time-varying models. The second time varying
model with interspecific dependence in the maximum reproductive rates relaxes
the assumption of common length-scale across species by defining the correlation
structure of maximum reproductive rates with the linear model of coregionaliza-
tion [Gelfand et al. (2003), Mardia and Goodall (1993)]. The separate length-scale
time-varying joint species model is a time varying Ricker model (3.3) with diago-
nal B and a J -variate GP prior for the maximum reproductive rates a(t). The mean
of the process is again E(a(t)) = [μa1, . . . ,μaJ

]T but now the covariance function
is

(3.6) Cov
(
aj (t), aj ′

(
t ′

)) =
J∑

i=1

ui

(
j, j ′)k̃a

(
t, t ′|li),

where ui(j, j
′) is the entry (j, j ′) of Ui = LiL

′
i , where Li is the ith column of the

Cholesky decomposition of the coregionalization matrix (covariance matrix) with
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elements 
j,j ′ = σjσj ′ρj,j ′ . Here, each species has its own temporal length-scale
which means that the species specific reproductive rates vary at different rates in
time. The correlations between species govern how rate fluctuations are connected
to one another and the process variance parameters govern the magnitudes of the
variations. This model will be denoted by M3. Its extension to allow interspecific
density dependence (B with nonzero off-diagonals) will be denoted by M3+dd.

3.3. Extension to account for discrepancies to the Ricker model. In the semi-
parametric approach by Munch, Kottas and Mangel (2005), the parametric SR
model is augmented by a GP discrepancy function for the log of the SR function,
that is, logRt = f (St−τ ) where f (St−τ ) has a GP prior whose mean is defined
by the choice of the parametric SR function and whose covariance function can
be chosen freely. Thorson, Ono and Munch (2014) used a squared exponential co-

variance function kg(S, S′|σ 2
gj

, lgj
) = σ 2

gj
e
−(S−S′)2/l2gj , where σ 2

gj
is the process

variance and lgj
the length-scale parameter governing how fast the discrepancies

vary with respect to the population size. Other covariance functions are also pos-
sible but, in order to keep our models comparable to their approach, we use the
squared exponential covariance function as well. The priors for the parameters of
the covariance function of the discrepancy functions are summarized in Table 1
and their biological rationale explained in Appendix A.1. Adding a GP discrep-
ancy function to the time invariant Ricker model gives

(3.7) yt = a − Bst + g(st ) + εt ,

where g(st ) = [g1(S1,t ), . . . , gJ (SJ,t )]� is a vector-valued discrepancy function
that corrects for possible mis-specifications in the species specific Ricker func-
tions. In existing work, species have been treated independently, corresponding to
independent priors for aj , j = 1, . . . , J and diagonal B (i.e., no interspecific den-
sity dependence). Similarly, the discrepancy functions are also given independent
GP priors, so that

(3.8) gj (S)
i.d.∼ GP

(
0, kg

(
S,S′|σ 2

gj
, lgj

))
.

We will call this model the time-invariant independent species model with dis-
crepancy function and denote it by M0+df. The model can be interpreted so that
the discrepancy terms correct for the difference between the density dependent
growth of the true population and theory of the Ricker model.

We also extend the alternative time-varying (multi-species) Ricker models to ac-
count for systematic deviations from the exact underlying Ricker functional form
by extending the model (3.3) to

(3.9) yt = at − Bst + g(st ) + εt

with at having a GP prior with one of the temporal covariance structures described
above and g(st ) having the same GP prior as in model M0+df. These time-varying



1384 HARTMANN, HOSACK, HILLARY AND VANHATALO

models with discrepancy functions will be denoted by M1+df, M2+df and M3+df
when the prior for at follows the prior in M1, M2 and M3.

In case of models with interspecific density dependence it is natural to assume
that there is dependence also between the discrepancy functions. Hence, a natural
extension to joint interspecific discrepancies is to consider a J -variate GP prior
for the discrepancy functions. Here, we assume that each discrepancy process,
gj (S), has a marginal GP prior with zero mean and squared exponential covariance
function but the discrepancies are correlated between species so that

(3.10) Cov
(
gj (S), gj ′

(
S′)) = ρgj ,gj ′ σgj

σgj ′ k̃g

(
S,S′|l)

leading to multispecies discrepancy function. Here, the discrepancies would be
similarly correlated between species as the time varying maximum reproductive
rates in model M2. Since the discrepancy term is a function of the spawning
stock biomass, and hence corresponds to discrepancy in the density dependence
we only add the correlated discrepancy terms to the interspecific density depen-
dence models M0+dd, M1+dd, M2+dd, M3+dd. We denote the resulting models
with correlated discrepancy functions, respectively, by M0+dd+df(c), M1+dd+df(c),
M2+dd+df(c), M3+dd+df(c). The suite of candidate models are summarised in Ta-
ble 2.

TABLE 2
The comparison of the models according to their log marginal likelihood [logπ(y|M)], posterior

probability [π(M|y)] and leave-one-out cross-validation log predictive density (LOO-CV).
M·+dd denotes models with interspecific density dependence and Mi+df denotes models with

semiparameteric discrepancy function

Model π(M|y) logπ(y|M) LOO-CV

Time-invariant single species models M0 0.0016 −101.4 −60.0
M0+dd 0.0001 −103.9 −62.3
M0+df <0.0001 −128.2 −63.9
M0+dd+df(c) <0.0001 −128.7 −63.9

Time-varying single species models M1 <0.0001 −106.9 −38.2
M1+dd <0.0001 −107.8 −39.8
M1+df <0.0001 −135.9 −44.3
M1+dd+df(c) <0.0001 −135.3 −45.9

Common length-scale time-varying M2 0.4899 −95.6 −31.9
joint species models M2+dd 0.3764 −95.9 −32.4

M2+df <0.0001 −124.4 −38.2
M2+dd+df(c) <0.0001 −125.0 −32.4

Separate length-scale time-varying M3 0.0802 −97.5 −30.3
joint species models M3+dd 0.0517 −97.9 −31.4

M3+df <0.0001 −127.8 −36.0
M3+dd+df(c) <0.0001 −128.1 −36.4
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4. Inference and model comparison.

4.1. Posterior inference. For the purposes of implementation of the above
models, we denote by fj (t, Sj,t ) = aj (t) − βjSj,t the latent “recruitment func-
tion” of species j . When data from species j is available, we denote by
yj = [yj,tj,1, . . . , yj,tj,Tj

]T the vector of Tj observations for species j and

by fj = [fj (tj,1, Sj,1), . . . , fj (tj,Tj
, Sj,Tj

)]T the vector of latent variables at
time points tj = [tj,1, . . . , tj,Tj

]T with respective stock-size biomasses Sj =
[Stj,1, . . . , Stj,Tj

]T. Furthermore, we stack the vectors fj , yj , tj , Sj of each

species, into vectors f, y, t, S, such that, for example, f = [fT
1 , . . . , fT

J ]T, and de-
note μβ = [−β1ST

1 , . . . ,−βJ ST
J ]T and ma = [ma11T

1 , . . . ,maJ
1T
J ]T, where 1j is

a Tj × 1 vector of ones and maj
is the prior mean of μaj

[see equation (3.4)
and Table 1]. Hence, we can write the joint prior for the expected log maxi-
mum reproductive rates at observation time points as μa ∼ N(ma,
a), where
μa = [μa11T

1 , . . . ,μaJ
1T
J ]T and 
a is a block diagonal matrix, where block j is

identical to the prior variance of μaj
, that is, the block j is σ 2

aj
1j 1T

j (although 
a

is not positive definite if any Tj > 1 the resulting covariance matrix to be used in
calculations and described below is).

Now, the conditional distribution of the observations and latent variables under
all our models can be summarized as

(4.1)
y|f,V ∼ N(f,V ),

f|φM, t,S,M ∼ N(μβ + ma,
a + 
M),

where V is a diagonal matrix of process error variances, 
M is a model specific
covariance matrix and φM stands for all the parameters in the mean vectors and
hyperparameters in the covariance functions for each specific model, M ∈ M,
where M is the set of alternative models summarized in the second column of
Table 2. All the considered models share the common mean structure of the latent
process and the covariance matrix 
a . The alternative models differ only in the
model specific covariance matrix 
M which are summarized in Appendix A.2.

Since the conditional distributions p(f|φM, t,S,M) and p(y|f,V ) are Gaus-
sian (4.1), we can marginalize over the latent variables to work directly with the
marginal posterior of the parameters and hyperparameters. Denote θM = (V ,φM)

then

(4.2) π(θM |y, t,S,M) ∝ N(y|μβ + ma,V + 
a + 
M)π(θM),

where π(θM) denotes the joint prior distribution of hyperparameters (Table 1).
We conducted the posterior inference using Markov chain Monte Carlo

(MCMC). We first sampled from (4.2) with the slice sampler [Neal (2003)] (see
Appendix A.4) to obtain posterior samples �M = {θ (r)

M , r = 1, . . . ,N} from (4.2).
Given θM , the conditional posterior distributions of the latent function values and
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the log maximum reproductive rates at any collection of time points are Gaussian.
For example, given θ

(r)
M the conditional posterior of the vector of latent variables

at observation times is f|y, t,S, θ
(r)
M ,M ∼ N(m̃(r)

f , K̃
(r)
f ) where

(4.3)
m̃(r)

f = m(r)
a + μ

(r)
β

+ (

(r)

a + 

(r)
M

)(

(r)

a + 

(r)
M + V (r))−1(

y − m(r)
a − μ

(r)
β

)

and

(4.4)
K̃

(r)
f = (


(r)
a + 


(r)
M

)

+ (

(r)

a + 

(r)
M

)(

(r)

a + 

(r)
M + V (r))−1(


(r)
a + 


(r)
M

)
.

Hence, in order to obtain a sample from the joint posterior p(f, θM |y, t,S,M),
we iteratively sampled from this multivariate Gaussian for each of the samples
θ

(r)
M ∈ �M . The posterior distribution for the log maximum reproductive rates can

be solved analogously (see Appendix A.3).
We generated 6000 samples picking every fourth value (N = 1500) to decrease

the variance of the Monte Carlo estimates and avoid autocorrelations between sam-
ples. We checked the mixing and stationarity of the sample chains using Geweke’s
spectral density diagnostic [Geweke (1992)]. The models were implemented by
using Matlab and they were added into GPstuff package [Vanhatalo et al. (2013)].

4.2. Model comparison. When applying the Bayesian framework, one should
describe all aspects that appear relevant to the problem using probabilistic state-
ments for which reason probabilities should also be used to reflect uncertainty
about alternative models. The posterior probability of each model reflects its cred-
ibility among all alternative models. From the predictive point of view one should
integrate over everything that is not fixed, also over the alternative models, which
forms the basis of Bayesian model averaging (BMA) [Kass and Raftery (1995)].
From a hypothesis testing and management point of view one should also com-
pare the posterior probabilities of models and assess their impact on alternative
decisions. Hence, we compare the models presented above with their posterior
probabilities by assuming a discrete uniform prior over them.

In this section, we suppress the notation by leaving out conditioning on t and S
for brevity. We first calculate a model’s marginal likelihood (model evidence):

(4.5) π(y|M) =
∫

π(y|θM,M)π(θM)dθM.

Since the marginal likelihood (4.5) is not available in closed-form expression, we
approximated it numerically by using the Laplace–Metropolis estimator [Kass and
Raftery (1995), Lewis and Raftery (1997)]

(4.6) π(y|M) ≈ (2π)d/2|Ĉ|1/2π(y|θ̂M,M)π(θ̂M),
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where θ̂M maximizes π(y|θM,M)π(θM) among the posterior samples and the
covariance-matrix Ĉ is the MCMC approximation of the posterior covariance
of θM and d = dim(θM). After solving the marginal likelihood, we can cal-
culate each model’s posterior probability by using Bayes’ theorem, π(M|y) =
π(y|M)π(M)/

∑
M ′∈M π(y|M ′)π(M ′), where M is the set of candidate models

(Table 2) and π(M) ∝ 1 denotes the prior probability of a model.
The marginal likelihood measures the prior predictive performance of a given

model. As a measure of posterior predictive performance, we additionally cal-
culated for each model the leave-one-out cross validation (LOO-CV) predictive
density [Vehtari and Ojanen (2012)],

(4.7) LLOO(y,M) =
n∑

i=1

logπ(yi |y−i ,M),

where n is the length of vector y, yi is the ith element of y and y−i = {yi′ : i′ �=
i, i = 1, . . . , n}. For most of the data points the prediction is made inside the range
of the observed data set. Hence, LOO-CV measures a model’s posterior predictive
performance in interpolation. There is no closed form expression for the LOO-CV
predictive distributions in (4.7). To avoid running MCMC for each of the LOO-
CV training sets, we approximated the predictive density on the right-hand side of
(4.7) by

π(yi |y−i ,M) ≈ 1

N

N∑
r=1

π
(
yi |y−i , θ

(r)
M ,M

)
,

where θ
(r)
M ∈ �M are samples from the full posterior π(θM |y,M) and π(yi |y−i ,

θ
(r)
M ,M) is available under closed form expression [Sundararajan and Keerthi

(2001)]. This approximation speeds up the computation of the LOO-CV predictive
density and the error induced by approximating the LOO-CV posterior of hyper-
parameters by the full posterior π(θM |y−i ,M) ≈ π(θM |y,M), can be considered
to be negligible. The posterior of the hyperparameters (i.e., the parameters of the
mean and the covariance functions) is rather insensitive to leaving out one data
point whereas the same cannot be assumed for the conditional posterior predictive
distribution π(yi |y−i , θ

(r)
M ,M).

5. Results and discussion.

5.1. Model comparison. There is strong support for the time varying joint
species models since the four models with highest posterior probability were, in
decreasing order, M2, M2+dd, M3 and M3+dd (Table 2). There is also some ev-
idence for interspecific density dependence since the second best model, which
included interspecific interactions, had only slightly less posterior probability than
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the best model. However, there was no support for adding semiparametric dis-
crepancy functions since all models with the discrepancy function had negligible
posterior probabilities, inferior log marginal likelihoods and low LOO-CV log pre-
dictive densities compared to models without this term. This indicates that corre-
lated temporal evolution of the maximum reproductive rate is more relevant than a
semiparametric discrepancy function.

Using the data from Weaver Creek spawning channel Essington, Quinn and
Ewert (2000) found some evidence for interspecific density dependence only be-
tween chum and sockeye. Among the three species of salmon studied here, chum
has the largest body-size, followed by sockeye and pink; sockeye avoid aggressive
chum in the Weaver Creek spawning channel [Rosberg, Scott and Rithaler (1986)].
Essington, Quinn and Ewert (2000) hypothesized that the difference in fish body-
size gives rise to spatial segregation of spawning sites between the species which
would ease interspecific competition. They also showed that there was no evidence
of strong competitive effects of pink or chum on sockeye, although there was some
evidence of sockeye may exert density dependence on chum, and chum on pink
salmon. However, density-dependence and maximum reproductive rates are highly
dependent on each other [Rose et al. (2001)]. Our results (see Table 2) weakly
support the hypothesis of interspecific density dependence since these models had
almost equal posterior probabilities and LOO-CV predictive performance as the
models without the interspecific density dependence.

5.2. Temporal variation in recruitment and maximum reproductive rate. To
illustrate the differences between alternative models, we compared in more detail
the best model, which is the time varying joint species model with common length-
scale (M2), to the time invariant single species models both with and without the
discrepancy function (M0+df and M0). As expected the posterior predictive distri-
bution for y varies in time more with M2 than in the two other models (Figure 1).
Notably, we see less predictive variance and better fit with M2 for all time points
throughout the species. This is reflected also by the posterior distributions of the
parameters (Table 3). The model M2 has the smallest error variance among these
three models. The temporal length-scale in M2 is rather long (approximately 77
years, Table 3) compared to the length of the data. This reflects the fact that the
temporal changes in log maximum reproductive rates are smooth and there is a de-
creasing trend. The reproductive rates have dropped in late 1970s, then increased
back upward until the early 1990s after which they have constantly decreased [Fig-
ure 1(d)]. The correlations between species specific log maximum reproductive
rates in M2 are high (ranging from approximately 0.75 to 0.85, Table 3) for which
reason there is clear positive dependence in the maximum reproductive rate be-
tween all the three salmon species in the Weaver Creek spawning channel.

The maximum reproductive rate may change due to the merging of environmen-
tal settings and biological characteristics of the three species. The Weaver Creek
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FIG. 1. The posterior predictions for y = logR/S with the time invariant single species model
(M0, panel a), time invariant single species model with discrepancy function (M0+df, panel b) and
time varying joint species model with common length-scale (M2, panel c), and the posterior predic-
tions for the log maximum reproductive rates logα(t) in model M2 (panel d) as a function of time.
The log maximum reproductive rate in models M0 and M0+df is time invariant and their posterior
distributions are summarized in Table 3. The lines show the posterior mean and the shaded area
shows the posterior 95% central credible region.

channel is a controlled environment, operated to provide ideal physical reproduc-
tion habitat and to reduce variation in reproductive success due to abiotic factors
[Essington, Quinn and Ewert (2000)]. Hence, we did not expect to find dramatic
year to year variations in the maximum reproductive rate and our results are confir-
matory in this respect (see Figure 1). Nevertheless, the time-varying models reveal
two important temporal changes in the reproductivity.

The maximum reproductive rate was at a low level in the late 1970s to late
1980s, and has been constantly decreasing since the early 2000s. The former
change is perhaps linked to a large flood that occurred in 1977, and to an out-
break of infectious haematopoietic necrosis virus in the late 1970s and late 1980s
[Rosberg, Scott and Rithaler (1986), Traxler and Rankin (1989)], that presum-
ably reduced outmigrating fry survival [Essington, Quinn and Ewert (2000)].
In fact, the latter study, which analysed part of the data used here, discarded
several of these years as outliers, whereas our time-varying models have suc-
cessfully captured such changes. In recent years, a possible explanation for de-
creasing maximum reproductive rates for sockeye could be explained by the
trend toward early freshwater entry, which is thought to have increased pre-
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TABLE 3
The posterior median (and the central posterior 95% credible interval) of the parameters under a

subset of example models M0, M0+df, M2

Parameter Posterior

M0 M0+df M2

E(asockeye|D) −5.9697 −6.0392 see Figure 1
E(achum|D) −6.4660 −6.5277 see Figure 1
E(apink|D) −7.0072 −6.9141 see Figure 1

βsockeye 1.2756 × 10−5 2.2061 × 10−5 0.6757 × 10−5

[0.3169,2.6703] × 10−5 [0.3337,7.5243] × 10−5 [0.2455,1.8290] × 10−5

βchum 5.1729 × 10−5 0.8447 × 10−5 2.6466 × 10−5

[0.6590,13.3550] × 10−5 [0.5391,29.4706] × 10−5 [0.3545,8.7680] × 10−5

βpink 8.7067 × 10−5 13.7852 × 10−5 6.8499 × 10−5

[0.8775,21.3320] × 10−5 [0.9500,48.1510] × 10−5 [0.6727,20.9160] × 10−5

σε 0.4055 0.3778 0.3025
[0.3648,0.4558] [0.3248,0.4446] [0.2483,0.35707]

σsockeye – – 0.8761
[0.6991,1.0798]

σchum – – 0.9286
[0.75303,1.1285]

σpink – – 0.9727
[0.7847,1.2141]

l – – 77.30256
[26.1692,241.4495]

σgsockeye – 0.8934 –
[0.7075,1.1233]

σgchum – 0.9118 –
[0.7184,1.1610]

σgpink – 0.8290 –
[0.6552,1.0744]

lgsockeye – 64979.1759 –
[3244.1718,8243.9756]

lgchum – 2407.3727 –
[749.0252,7621.6811]

lgpink – 42.9398 –
[1.3890,5575.1189]

ρsockeye,chum – – 0.8076
[0.0250,0.9873]

ρsockeye,pink – – 0.7567
[−0.0694,0.9892]

ρchum,pink – – 0.8569
[0.2071,0.9928]
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spawning mortality rates [Cooke et al. (2004)]. The early entry may increase pre-
spawning mortality rates because of longer exposure to high freshwater temper-
atures above physiological tolerances and also increased exposure to freshwater
parasites [Bradford, Lovy and Patterson (2010), Hinch et al. (2012)]. In addition,
within the Fraser River system the egg retention rate by viable spawners may
be depressed in years with high pre-spawning mortality (D. Lofthouse, personal
communication, 9 November 2016). Both increased pre-spawning mortality and
increased egg retention would lead to a lower maximum reproductive rate in re-
cent years.

5.3. Stock-recruitment relationship under alternative model assumptions. The
effects of time varying maximum reproductive rates and discrepancy functions to
the SR-function are illustrated in Figure 2. The discrepancy function only tends to

FIG. 2. The posterior probability distribution of the Ricker SR-function for the time invariant sin-
gle species model (M0), the time invariant single species model with discrepancy function (M0+df)
and the time varying joint species model with common length-scale (M2). The black lines show the
posterior median, the highlighted area the posterior central 95% credible interval, and the dots the
data points. In the bottom row the crosses and the thin vertical lines show, respectively, the posterior
median and 95% credible interval of recruits for each year from 1965 to 2015.
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correct the Ricker functional form at regions where the data deviates from its ex-
pected value, which may be misleading if temporal variation in model parameters
is unaccounted for. For example, in the case of sockeye the discrepancy function
leads to biologically unrealistic predictions because the SR-function levels off and
even decreases slightly at around 20 × 103 spawners after which it starts to in-
crease again. Most of the data points at this region are measured between 1980 to
1985 and after 2005 when the maximum reproductive rate was low (Figure 1), for
which reason the discrepancy term appears to be correcting for the time varying α.

This result is rather strong since our data were exceptionally large relative to
many fisheries time series, spanning 51 years and three species, and informative
since the number of spawners and recruits in the Weaver Creek are measured with
higher accuracy compared to typical SR-data that are derived from stock assess-
ment models [e.g., Minto et al. (2014)]. The addition of a discrepancy term de-
creased models’ marginal likelihoods and the LOO-CV log predictive densities
considerably compared to the base model without the discrepancy term. Although
marginal likelihoods may be to some extent sensitive to chosen priors [for which
we did not find evidence but see Kass and Raftery (1995)], the prior sensitivity in
the LOO-CV log predictive densities with this large data is practically negligible.
Hence, our results do not support using semiparametric discrepancy functions in
modelling density dependent population growth in their current form, at least for
the temporally extensive data.

The problem of biologically unrealistic SR-function could potentially be allevi-
ated by defining a semiparametric discrepancy function g(S) that includes mono-
tonicity constraints. Such constraints have been used in GP models by, for exam-
ple, Riihimäki and Vehtari (2010) and Brynjarsdóttir and O’Hagan (2014) who
present methods to set constraints on the first derivative of a latent function. In our
application, it would be natural to constrain the second derivative to be nonpositive
everywhere implying that the sign of the derivative could change only once. This
result is in line with the discussion by Brynjarsdóttir and O’Hagan (2014) who dis-
cuss problems with identifiability in statistical models with discrepancy functions
in general. They consider similar discrepancy functions to those discussed here
and in the fisheries literature and propose informative priors that set constraints on
the Gaussian process discrepancy function and its derivative as a possible solution.
However, we leave these considerations for the future.

5.4. Possible extensions and relationship with existing work. We presented
the traditional time invariant Ricker SR-function and its extensions to include
semiparametric discrepancy corrections and time varying parameters under the GP
framework. The hypothesized models were evaluated with a unique 51 year empir-
ical data set. Our results support the time varying model with species interactions
but they do not support inclusion of semiparametric discrepancy functions.

Our results also add evidence to the substantial literature on the limitations
of time invariant models’ ability to sufficiently capture ecological processes that
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change with time [e.g., Hilborn and Walters (1992), Mäntyniemi et al. (2013),
Maunder and Deriso (2011), Morita, Morita and Fukuwaka (2006), Peterman,
Pyper and MacGregor (2003)]. Here, we accounted for the time invariance in the
productivity by building a GP model for the temporal changes in the maximum
reproductive rate. Our approach can be seen as a continuous time generalization
to the traditional random walk and autoregressive models [Minto et al. (2014),
Peterman, Pyper and Grout (2000), Peterman, Pyper and MacGregor (2003), Zeng
et al. (2010)]. Our model could straightforwardly be extended to account for en-
vironmental variables in the traditional fixed effects manner [Mäntyniemi et al.
(2013), Maunder and Deriso (2011)]. In this case, the temporal GP would explain
the excess temporal variation in the reproductive parameters not explainable by the
known covariates.

There is growing interest in inferring correlations in time varying reproduc-
tivity between species or meta-populations (stocks in fisheries). The traditional
approach has been to calculate the correlation between species specific residual
variations after fitting the time varying population growth models independently
for each species [e.g., Dorner, Peterman and Haeseker (2008), Myers, Mertz and
Bridson (1997), Peterman, Pyper and MacGregor (2003)]. Our GP approach allows
model based joint inference on these correlations. Moreover, the GP model could
straightforwardly be extended to spatio-temporal setting allowing model based in-
ference on the spatial dependence of these correlations. Such analyses have tradi-
tionally been done by fitting a parametric covariance function to the correlations
between residual variations in the reproductivity in different meta-populations af-
ter fitting the time varying population growth models independently for each meta-
population [e.g., Dorner, Peterman and Haeseker (2008), Myers, Mertz and Brid-
son (1997)]. Our approach could be extended so as to allow for joint estimation
of the population growth function together with both spatial and temporal depen-
dence.

There is also growing interest in detecting regime shifts in the productivity.
For example, recently Perälä and Kuparinen (2015) built a Bayesian change point
model to detect regime shifts through changes in parameters of population growth
models, and Munch and Kottas (2009) used a hidden Markov model to infer
regime-specific parameters and to identify regime changes. Even though our model
is not specifically planned for modelling regime changes it could be extended to
these applications as well by allowing the hyperparameters of the temporal pro-
cesses to change in time. Note, however, that the time-varying approach allows for
a rich class of continuously changing maximum reproductive values that can iden-
tify periods with high rates of change, and hence, our model can detect practical
change-points.

6. Conclusions. The results contained in this paper have clear relevance to
a number of key exploited population management issues. In the single-species
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context, the idea of harvesting the population at the (assumed time-invariant) max-
imum sustainable rate still dominates in terms of management approaches globally
(e.g., US Magnuson-Stevens Act, ICES the Fmsy-driven harvest control rule, Aus-
tralia the Commonwealth Harvest Strategy Policy). The maximum reproductive
rate is the most dominant determinant of this sustainable harvesting rate [Hilborn
and Walters (1992), Quinn and Deriso (1999)]. These results add to the already
existing evidence [Minto et al. (2014)] that show that this optimal harvesting rate
can be highly variable over time, with obvious implications for management ap-
proaches that assume time-invariance. In the multi-species fisheries management
context, for example, the focus is almost always exclusively on the fishery, but
this work shows the clear importance of the biological side of the problem. In
the salmon example detailed herein, the strong temporal correlation between max-
imum reproductive rate, and hence, sustainable harvesting rates suggests that a
sensible management approach would be to consider all three species simultane-
ously, not in isolation.

An important finding that has wider impact on modeling SR relationship is that
the semiparametric discrepancy function adapted to temporal changes in the maxi-
mum reproductive rate (Figures 1, 2), and hence, resulted in biased estimate for the
SR relationship. In fact, the unconstrained semiparametric discrepancy correction
of the form given by equation (3.7) [and used, e.g., in Munch, Kottas and Mangel
(2005), Sugeno and Munch (2013), Thorson, Ono and Munch (2014)] can lead
to a biologically unrealistic functional form where the recruitment per spawners
may level off or decrease after which it starts to increase again (Figure 2). How-
ever, a biologically reasonable restriction for SR functions is that the derivative of
the SR function must be negative (if Allee effects are not considered) [Cadigan
(2013)]. We therefore recommend against using unconstrained discrepancy func-
tions to model SR functions in the presence of temporally dependent variation in
the maximum reproductive rates. This result suggests also that the semiparamet-
ric discrepancy functions may lead to challenges in parameter identifiability more
generally.

APPENDICES

A.1. Priors for model parameters. The priors for the (expected) log maxi-
mum reproductive rates, μaj

= aj = logαj , are derived from the estimates of the
annual fecundities, Fj , of sockeye, pink (from 1965 to 2013) and chum (from
1989 to 2013) in the Weaver Creek channel [see Essington, Quinn and Ewert
(2000)] and from the estimates for mortality rates from eggs to juveniles, Qj ,
of wild populations of chum, sockeye and pink [Table 1 and Figure 1 in Bradford
(1995)]. The maximum reproductive rate is defined as the fecundity of a female
spawner multiplied by the egg-to-fry survival probability, αj = Fj × sj , where
Pj = e−Qj is the egg-to-fry survival probability. We summarize the log fecundi-
ties over the study years by a Gaussian distribution with mean and variance given



GP FRAMEWORK IN RICKER POPULATION GROWTH MODELS 1395

by the sample mean, F̂j and sample variance, σ̂ 2
Fj

of the log fecundity data. Simi-
larly, we use a log-Gaussian distribution to summarize the mortality rate estimates
of wild stocks by calculating its location, Q̂j and scale, σ̂ 2

Qj
, parameters with the

method of moments [Bradford (1995) provide mean estimates and standard er-
rors]. Essington, Quinn and Ewert (2000) estimate that the survival of eggs in the
Weaver Creek channel is an order of magnitude higher relative to the unmanaged
Weaver Creek proper for sockeye. However, this estimate is not independent of
the hatchery fry data, which were compared with the wild population to obtain
the 10-fold estimate. Therefore, we did the same calculation but using estimates
for sockeye in the nearest spawning channel considered by [Rosberg, Scott and
Rithaler (1986), Table 52]: the Gates Creek Spawning Channel for the years 1968
to 1984. The ratio of hatchery to wild survival probabilities, ρ, was given a log-
Gaussian distribution parameterised by the sample log mean, ρ̂, (approximately
4.6) and log standard deviations, σ̂ρ . This leads to a Gaussian prior distribution
for μaj

= logαj with mean F̂j − Q̂j + ρ̂ − log 106 and variance σ̂ 2
Fj

+ σ̂ 2
Qj

+ σ̂ 2
ρ .

Subtracting the factor log 106 from these mean parameters accounts for the fact
that the response is considered on the scale of millions of fry per spawning female.
The induced species specific priors are given in Table 1.

We assume that positive intraspecific density dependence does not occur which
induces a hard constraint βj > 0. The parameter β is a measure of the slope of
the linear relationship between spawners and the logarithm of the ratio between
fry and spawners. We specify for all three species a half-Gaussian prior such that
there is a 50% chance that the recruit to spawner ratio is halved given that the
number of female spawners increases by 1000 individuals. This leads to a half
Gaussian prior with standard deviation 1.03. For interspecific density dependence,
which is described by the off-diagonal entries of B, we use a Gaussian distribu-
tion with zero mean and standard deviation 1.03, which gives equal probability to
positive and negative density dependence between the species, and implies that a
priori the magnitude of inter-species dependence is comparable to the intra-species
dependence.

In the time-invariant models M0· the error variance σ 2
j can be interpreted as de-

scribing the year-to-year variation in log(Rj/Sj ) given no change in Sj between
years. We consider it a priori likely that, given Sj did not change, there would typ-
ically be more than two fold, but less than an order of magnitude, annual change in
the ratio Rj/Sj . With σj = 0.42, there would be 10% probability for over two fold
variation and with σj = 1.4, 10% chance for over an order of magnitude change.
We a priori assume that once every ten years the variation would be outside these
ranges. We give σ 2

j a log-Gaussian prior with location parameter −0.27 and scale
0.22 which gives 90% probability for 0.42 < σj < 1.4.

It is unlikely that the interannual variation in the maximum reproductive rate
would exceed the natural variation (described by σ 2

j ) and we assume that it is
unlikely that the interannual variation is more than half of the natural variation.



1396 HARTMANN, HOSACK, HILLARY AND VANHATALO

Hence, we gave σ 2
aj

a log-Gaussian prior with location parameter and scale param-
eters half and one fourth from those of σj . The effective range of these interannual
variations is defined as the duration at which the correlation between at and at ′
decays below 0.05. Temporal dependences in maximum reproductive rate greater
than 5% can be induced at the population level (e.g., cohort effects) or by environ-
mental factors (e.g., change in management around the spawning channel, ENSO,
or the Pacific Decadal Oscillation). Hence, a priori it is likely that the maximum
reproductive rate should either remain constant (l = ∞, corresponding to the base
model M0) or vary over several years; fast year to year variation should be captured
by the error term, ε. Hence, a priori we want to favour large temporal length-scales
and, in particular, we want to restrict temporal length-scales so that the maximum
reproductive rate and the random variation parameters remain identifiable. With
this reasoning, we defined the prior for the inverses of temporal length-scales as
follows. We consider it a priori implausible that the effective range is less than 5
years and much more than 15 years. We use a heavey-tailed Student-t distribution
with 4 degrees of freedom as a weakly informative prior. The location and scale
parameters of the Student-t distribution were defined so that a priori the effective
range is less than 5 years with probability 0.01 and greater than 15 years with
probability 0.25. The choice is due to the consideration of three different kind of
salmons may have different effective range and the lack of knowledge of the time
dependency in the maximum reproductive rate for each specific species.

We allow the same level of variation for the discrepancy function as specified
for the process variance of maximum reproductive rate. Hence, the prior for σ 2

ag
is

the same as that for σ 2
aj

. The inverse of the length-scale of the discrepancy term
is given a weakly informative half Student-t prior with scale 0.1 and 4 degrees
of freedom. Hence, the prior choice prefers stiff discrepancy functions with small
variance (most weight is given to constant function) and is similar to the penalized
complexity priors by Simpson et al. (2017). For comparison, we tried also the prior
suggested by Munch, Kottas and Mangel (2005) which does not strictly follow the
Bayesian reasoning since they use data to define their priors. The results were not
sensitive to these choices of prior.

For the correlation matrix ρ, we assume a prior that induces marginally nonin-
formative priors for every correlation parameters, that is, the marginal distributions
for every correlation parameter ρij is uniform over (−1,1). This is achieved by the
distribution of Barnard, McCulloch and Meng (2000), Tokuda et al. (2012),

(A.1) π(ρ|v) = �(v
2 )J

�J (v
2 )

|ρ| 1
2 (v−1)(J−1)−1

J∏
i=1

|ρii |− v
2 I(0,∞)(detρ),

setting v = J − 1, where �J (x) is the multivariate gamma function, |Aii | is the
determinant of a submatrix Aii which is obtained by removing the ith column and
ith row of A. If the parameter v increases, then the density becomes concentrated
around the origin.
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A.2. The structures of covariance matrices in alternative models. Within
the time-invariant model, M0, the model specific covariance matrix is a null ma-
trix 
M0 = 0. When interspecific density dependence is added to the time-invariant
model (model M0+dd) the model specific covariance matrix is 
M0+dd = D where
D is block diagonal so that its j ’th block is Dj = ∑

j ′ �=j 
Sj ′ , where 
Sj ′ =
σ 2

βjj ′ sj ′sT
j ′ . For the time-invariant model with discrepancy function (M0+df), the

model specific covariance matrix, 
M0+df = Gdf, is a block diagonal matrix where
the j ’th block of Gdf is constructed by the covariance function kgj

(·, ·|σ 2
gj

, lgj
)

(3.8). When both interspecies density dependence and the semiparametric discrep-
ancy functions are present (model M0+dd+df(c)), the model specific covariance ma-
trix is additive so that 
M0+dd+df(c) = 
M0+dd + Gdf(c), where Gdf(c) is a full matrix
of covariances Cov(gj (S), gj ′(S′)) formed by the covariance function (3.10).

In the time-varying single species model (M1), the model specific covariance
matrix 
M1 is block diagonal so that the block j is constructed by the covariance
function ka(·, ·|σ 2

j , lj ) (3.3). In the models M1+dd, M1+df and M1+dd+df(c), the
model specific covariance matrices are respectively 
M1+dd = 
M1 + D, 
M1+df =

M1 + Gdf and 
M1+dd+df(c) = 
M1 + D + Gdf(c).

In the common length-scale time varying joint species model (M2), the model
specific covariance matrix 
M2 is a full matrix constructed by the covariance func-
tion (3.5). Similar to the time invariant and time varying single species mod-
els, the rest of the model specific covariance matrices of the common length-
scale joint species models are 
M2+dd = 
M2 + D, 
M2+df = 
M2 + Gdf and

M2+dd+df(c) = 
M2 + D + Gdf(c).

In the separate length-scale time varying joint species model (M3), the model
specific covariance matrix 
M3 is a full matrix constructed by the covariance
function (3.6). Again, the rest of the model specific covariance matrices of the
separate length-scale time varying joint species models are 
M3+dd = 
M3 + D,

M3+df = 
M3 + Gdf and 
M3+dd+df(c) = 
M3 + D + Gdf(c).

A.3. Posterior distribution of log maximum reproductive rates. In order
to summarize the conditional posterior distributions of log maximum reproductive
rates with the alternative models, we introduce a notation for four sets of mod-
els so that M0 = {M0,M0+dd,M0+df,M0+dd+df(c)}, M1 = {M1,M1+dd,M1+df,

M1+dd+df(c)}, M2 = {M2,M2+dd,M2+df,M2+dd+df(c)} and M3 = {M3,M3+dd,

M3+df,M3+dd+df(c)}. Given the hyperparameter values, θ
(r)
M , the conditional pos-

terior of the vector of log maximum reproductive rates at observation times is
multivariate Gaussian distributed, that is a|y, t,S, θ

(r)
M ∼ N(m̃(r)

a , K̃
(r)
a ) where

(A.2) m̃(r)
a = m(r)

a + (

(r)

a + �
(r)
M

)(

(r)

a + 

(r)
M + V (r))−1(

y − m(r)
a − μ

(r)
β

)

(A.3)
K̃(r)

a = (

(r)

a + �
(r)
M

)

+ (

(r)

a + �
(r)
M

)(

(r)

a + 

(r)
M + V (r))−1(


(r)
a + �

(r)
M

)



1398 HARTMANN, HOSACK, HILLARY AND VANHATALO

and 

(r)
M and �

(r)
M are model specific covariance matrices. The matrix 


(r)
M is con-

structed as detailed in Appendix A.2 and the matrix �
(r)
M is constructed by the

temporal covariance function of the model so that

(A.4) �
(r)
M =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


M0 if M ∈ M0,


M1 if M ∈ M1,


M2 if M ∈ M2,


M3 if M ∈ M3.

Hence, in order to obtain a sample from the marginal posterior p(a|y, t,S), we
repeated sampling from this multivariate Gaussian with each of the samples in
�M . Similarly, if we want to predict at times not included in the training data we
have

m̃(r)
a∗ = m(r)

a∗
(A.5)

+ (

(r)

a∗ + �
(r)
M∗

)(

(r)

a + 

(r)
M + V (r))−1(

y − m(r)
a − μ

(r)
β

)
,

K̃(r)
a∗ = (


(r)
a∗∗ + �

(r)
M∗∗

)
(A.6)

+ (

(r)

a∗ + �
(r)
M∗

)(

(r)

a + 

(r)
M + V (r))−1(


(r)
a∗ + �

(r)
M∗

)T
,

where 

(r)
a∗ and �

(r)
M∗ are covariance matrices between prediction time points

(rows) and training time point (columns). 

(r)
a∗∗ and �

(r)
M∗∗ are the full covariance

matrices between prediction time points.

A.4. Slice sampler scheme. To sample from (4.2), each component of the
parametric vector is repeatedly sampled from its conditional posterior distribu-
tion in turn within the Gibbs sampling style. The procedure is as follows. Ini-
tialize the algorithm by choosing an initial value θ (0) and setting r = 0. For
k = 1, . . . ,dim(θ ), sample θ

(r+1)
k from its conditional posterior distribution with

the slice sampler method [Neal (2003)], that is, draw

(A.7) θ
(r+1)
k ∼ π

(
θk|θ∗−k,y,S, t

)
,

where θ∗−k = {θ(r+1)
1 , . . . , θ

(r+1)
k−1 , θ

(r)
k+1, . . . , θ

(r)
dim(θ)} contains all the other param-

eters than θk at their current values. Next, increment r by 1 and repeat the sam-
ple scheme until the desired sample size. We transformed parameters whose sup-
port did not cover the whole real line so that the sampling was conducted on the
real line. We used log transformation for parameters that were restricted to posi-
tive real line and the correlation parameters were transformed using ρj,j ′(xj,j ′) =
2/[1 + exp(−axj,j ′)] − 1 where a is a positive scalar which stretches or squeeze
the real line and xj,j ′ ∈R.
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