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Many new experimental treatments outperform the current standard only
for a subset of the population. Subgroup identification methods provide es-
timates for the population subset which benefits most from treatment. How-
ever, when more than two treatments and multiple endpoints are under con-
sideration, there are many possible requirements for a particular treatment
to be beneficial. In this paper, we adapt notions of decision-theoretic admis-
sibility to the context of evaluating treatments in such trials. As an explicit
demonstration of admissibility concepts, we combine our approach with the
method of credible subgroups, which in the case of a single outcome and
treatment comparison provides Bayesian bounds on the benefiting subpopu-
lation. We investigate our methods’ performance via simulation, and apply
them to a recent dataset from an Alzheimer’s disease treatment trial. Our re-
sults account for multiplicity while showing patient covariate profiles that are
(or are not) likely to be associated with treatment benefit, and are thus useful
in their own right or as a guide to patient enrollment in a second stage study.

1. Introduction. We develop a framework for subgroup analysis in clinical
trials with more than two arms and multiple endpoints, and apply it to data from an
Alzheimer’s disease treatment trial. The proposed approach can be used together
with any Bayesian subgroup analysis method that reports an estimate of the ben-
efiting subpopulation, and generalizes the underlying method to many arms and
multiple endpoints. Examples of estimates of the benefiting subpopulation include
subsets which are likely contained in the benefiting subpopulation, and subsets
for which the within-subset average treatment effect is positive. The approach be-
comes particularly meaningful if the underlying inference approach for subgroups
includes posterior probability bounds for the reported subgroup.

Clinical trials have generally focused on demonstrating that an experimental
treatment performs, on average, better than a control. Recently, researchers have
become increasingly aware that the so-called “average treatment effect” (ATE) is
problematic because it may not accurately represent the treatment effect for a par-
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ticular patient. Treatments for complex diseases, such as cancer or Alzheimer’s dis-
ease, may be effective for some patients but not for others. Some of this variation
may be systematic heterogeneity in the treatment effect due to baseline character-
istics such as age, genetic biomarkers, or disease progression. When investigators
acknowledge treatment effect heterogeneity, their question is no longer “is there a
treatment effect?”, but rather, “who benefits from treatment?”

In the univariate case, the subgroup selection problem may be stated as follows:
estimate the benefiting subgroup, that is, a set of patients defined by a set of ob-
servable baseline characteristics for whom the personalized treatment effect (e.g.,
difference in expected outcome between treatments for that person) is positive.
The traditional approach [e.g., Pocock et al. (2002); Dixon and Simon (1991)] is
to test the average treatment effect in the entire population, perform hypothesis
tests for treatment-covariate interactions, and then test subgroup-specific average
treatment effects where an interaction is indicated. Well-known characteristics of
this approach include insufficient power of interaction tests, lack of power for de-
tecting subgroup-specific effects due to small subsample sizes, and multiplicity
of hypothesis tests. However, the approach remains popular and attractive for its
simplicity and parsimony.

Newer methods take different approaches, differing both in data models and
modes of inference. Subgroup-based adaptive (SUBA) designs [Xu et al. (2016)]
adaptively allocate patients over the course of a trial to what is thought to be the
best treatment, according to accumulated information and a recursive partitioning
model, and report the final allocation scheme as its treatment recommendation for
the broader population. Adaptive signature designs [Freidlin and Simon (2005)]
and extensions [Freidlin, Jiang, and Simon (2010)] construct via general classifi-
cation models a subgroup thought to benefit and then perform a test for the average
treatment effect in that subgroup. Extensive work has also been done in developing
flexible models of treatment effects, especially those based on regression and clas-
sification trees [Breiman et al. (1984); Chipman, George, and McCulloch (1998,
2010)].

Berger, Wang, and Shen (2014) cast subgroup analysis as a model selection
problem. They introduce a set of models arising from a tree splitting process for
covariates that define potential subgroups, and use carefully chosen prior proba-
bility models. Posterior model probabilities formalize the desired subgroup deter-
mination, including posterior probabilities that a patient within a subgroup has
a nonzero treatment effect and that the average within-subgroup treatment ef-
fect is nonzero. Sivaganesan, Laud, and Müller (2011) introduce an algorithm-
based method by introducing decision boundaries on posterior model probabilities.
Foster, Taylor, and Ruberg (2011) describe subgroup analysis as inference for a
subset B (A in their notation) in the covariate space that characterizes patients with
substantially better treatment effect than average (or better than a pre-specified
threshold). Here, treatment effects are defined as difference in mean response for
two counterfactual outcomes under treatment and control in a two-arm trial. They
then proceed to produce an estimate B̂ of B using tree-based methods, along with
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an estimate of the average treatment effect within B̂. Schnell et al. (2016) recognize
B as an unknown quantity and proceed to characterize uncertainty by a “credible
subgroup” pair (D,S) of sets such that P(D ⊆ B ⊆ S|data) ≥ 1 − α, that is, D and
S are subsets in the covariate space with a bound on the posterior probability that
these two sets bracket the desired benefiting subset B. In the context of this setup,
some of the earlier discussed methods can be described as reporting a set similar to
D (though not necessarily with the same bounding relationship to B), for example,
when selecting covariates and thresholds that define a subset D with substantially
higher within-subgroup average treatment effect than the overall treatment effect.
However, Schnell et al. (2016) appears to be the first to consider the notion of
reporting an encompassing set S.

In this paper, we develop subgroup analysis methods to handle cases in which
more than two treatments are being compared with respect to multiple endpoints.
This multivariate problem setting admits several ways of defining a treatment
effect and benefiting subgroup, as well as strategies for choosing the multiplic-
ities for which to adjust. The initial discussion is general and can be applied
with any method that reports (or from which can be extracted) an estimate for
a benefiting subgroup B, especially when inference includes posterior probabili-
ties P(D ⊆ B|data). Here, D is the reported estimate, together with the posterior
probability that the reported subset does indeed characterize covariate combina-
tions with a substantially higher treatment effect (or one exceeding some other
threshold). The discussion can also apply to methods which produce some sub-
group by any means and then tests for a within-subgroup treatment effect, though
these methods will not be our focus here. Eventually, in the implementation we
will incorporate the approach of Schnell et al. (2016), who report a credible sub-
group pair (D,S). Additionally, in that case, we offer extended machinery for per-
forming the multiple testing procedure for arbitrary joint posterior distributions of
personalized treatment effects, which allows the use of a much wider variety of
error distributions and regression models than the normal-errors linear regression
to which Schnell et al. (2016) is restricted.

A related course of research is underway in the area of dynamic treatment
regimes (DTRs), which infers optimal processes in which sequences of treatments
are given to a single patient in a response-adaptive manner. Several methods have
been developed to select the best from among many previously vetted treatments
for individual patients in the presence of multiple relevant endpoints. Thall, Sung,
and Estey (2002) treat response, nonresponse, and death as an ordinal outcome
and use a real-valued utility function elicited from experts to quantify the trade-off
between response and death. Thall et al. (2007) report a trial in which four treat-
ments were tested in a two-stage regime. Almirall, Lizotte, and Murphy (2012) in-
clude patient preference among various endpoints in the estimated rule, in addition
to clinical characteristics. Lizotte, Bowling, and Murphy (2012) identify optimal
treatment regimes for all linear combinations of endpoints, while Laber, Lizotte,
and Ferguson (2014) and Lizotte and Laber (2016) report regimes with sets of non-
inferior treatment choices. Since research in DTRs focuses on providing optimal
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care to a given patient, attention is not generally paid to Type I error control. In
contrast, our work focuses on single-stage, population-level inferences for a given
treatment, and owing to our focus on the regulatory process, attention must be
paid to Type I error and its control under multiplicity of endpoints, treatments, and
covariate profiles.

Our motivating data set stems from a clinical trial of an Alzheimer’s disease
(AD) treatment carried out by AbbVie. While effective treatment strategies for
AD are in their infancies, a number of risk factors for the disease are known. For
example, advanced age and the presence of the ApoE4 allele dramatically increase
the risk of AD, while longer education and higher intelligence appear somewhat
protective [Burns and Iliffe (2009)]. It is possible that some of these prognostic
factors are also predictive of the effectiveness of certain treatments. In this moti-
vating trial, we are interested in both the efficacy and safety of the test treatment
relative to two controls (placebo and active), and wish to allow for heterogeneity
in those effects. Our primary interest lies in searching for benefiting subgroups in
a study that, like most, failed to show an overall treatment benefit in the population
as a whole, but which may still reveal important subgroups, either as candidates
for immediate approval or to be further studied in subsequent trials. This is very
valuable, since if a strong effect is identified in a subgroup, it is sometimes possi-
ble, even post hoc, to file a new drug application in settings where the disease is
severe and there is no effective standard of care.

The remainder of our paper is organized as follows. Section 2 develops an infer-
ence framework for trials with more than two arms and multiple endpoints, with
Section 2.4 reviewing and extending the concept of credible subgroups in this set-
ting. Section 3 applies the methods of Section 2; in particular, Section 3.1 provides
simulation results regarding the methods’ sensitivity, specificity, and Type I error,
while Section 3.2 illustrates the use of a subset of the methods on the motivating
data set with two endpoints and five arms. Finally, Section 4 discusses our findings
and offers avenues for further research.

2. Inference on subgroups for multiple endpoints and many arms.

2.1. Notation. Consider a patient population represented by a covariate
space C; for example, in Section 3.2 we consider a trial with Alzheimer’s dis-
ease patients between the ages of 55 and 90, with covariates specifying age, sex,
disease severity, and carrier status of a genetic biomarker. When investigating a
treatment, it is desirable to make inferences regarding the subset of this population
which benefits from the treatment over the control. In particular, we define the
benefiting subgroup B as the set of covariate vectors z for which the personalized
treatment effect �(z) is greater than some fixed threshold of clinical significance δ.
The treatment effect may be, for example, a difference in expected response, a log
odds ratio, or a log hazard ratio, signed so that a positive treatment effect indicates
benefit. Except for special model assumptions, like the proportional hazards rate
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model, the use of log odds ratios would include a suitable definition of averag-
ing over other event times and other covariates; where �(z) > δ, we simply say
that the treatment is beneficial at z. We begin by considering a simple estimator
D for B, constructed so that for each z ∈ D, P(z ∈ B|data) ≥ 1 − α and later ex-
tend via multiplicity adjustments to estimators such that P(D ⊆ B|data) ≥ 1 −α or
P(D ⊆ B ⊆ S|data) ≥ 1 − α.

2.2. Subgroup inference for multiple endpoints. Results regarding the effect
of a treatment on a specific endpoint are generally not considered in a vacuum.
For example, an experimental treatment may have approximately the same effect
as the standard of care on the primary endpoint (cognitive function score in our
example), but have a lower instance of adverse side effects such as nausea. In such
a situation, it would be useful to know not only who benefits from the experimental
treatment with respect to the primary endpoint, but also who is likely to avoid side
effects.

Suppose that there are K ≥ 2 endpoints by which the test treatment is being
compared to the control, and let �k(z) be the treatment effect at covariate point
z with respect to the kth endpoint. It is possible to construct subgroup inferences
for the treatment effect corresponding to each endpoint, either independently or
adjusting for the multiplicity of endpoint inferences. For a set of independently
estimated subgroups {Dk}Kk=1, we have that for each endpoint k and covariate point
z ∈ D, P(z ∈ Bk|data) ≥ 1 − α. A set of subgroups is simultaneous (adjusting for
endpoint multiplicity) if P({k : z ∈ Dk} ⊆ {k : z ∈ Bk}|data) ≥ 1 − α for each z.
Both methods result in K subgroup estimates, and may be used when each of the
endpoints are of interest separately, rather than in combination.

A way to construct a single subgroup estimate that incorporates information
about each of the endpoint effects is through a utility function, for example, trading
off probability of response and risk of death as in Thall, Sung, and Estey (2002).
Let u be some utility function of all the endpoints, and define the treatment effect
�u(z) as E[u|z, t = 1]−E[u|z, t = 0], where t = 1 indicates the test treatment and
t = 0 the control. The benefiting subset B and the subgroup estimate D may then
be defined in the same way as in the single-endpoint case. Constructing a single
subgroup estimate may simplify interpretation, but it is often difficult for multiple
parties to agree on a single, often stylized utility function, especially for diseases
such as Alzheimer’s that affect quality of life in complex ways and frequently have
uncomfortable side effects. If a range or distribution U of utility functions is to be
considered, �U(z) may be constructed to reflect some summary of the distribution
of the �u(x) as u varies, such as the mean, median, or minimum.

We can also construct a joint subgroup report motivated by the decision-
theoretic concept of admissibility. Recall that a decision rule is admissible if there
are no other rules that always perform at least as well and better in at least one case.
Here, we would like to call a test treatment admissible at z if the control treatment
does not perform at least as well with respect to every endpoint and better with
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respect to at least one endpoint for a patient with covariate vector z. Strictly speak-
ing, the formalization of this definition is that a treatment is admissible at z unless
�k(z) ≤ 0 for all k and the inequality is strict for at least one k.

Next, we generalize to allow for thresholds of clinical significance and nonin-
feriority. In addition to the δk , the thresholds for clinical significance, let εk ≤ δk

be thresholds for noninferiority, that is, a treatment is considered “just as good”
if εk ≤ �k(z) ≤ δk . Introducing these thresholds allows for multiple formulations
of criteria. We call a treatment weakly admissible at z if �k(z) > δk for at least
one k or �k(z) ≥ εk for all k. This is the generalization of our previous definition
of admissibility most directly related to the decision-theoretic concept. However,
a treatment may be undesirable if it is demonstrably inferior with respect to one
endpoint, even if it is superior in others, or if it is not superior in any. Thus we call a
treatment strongly admissible at z if �k(z) > δk for at least one k and �k(z) ≥ εk

for all k. A related method is to require only noninferiority at z, that is, �k(z) ≥ εk

for all k.
The decision-theoretic criteria described above may be written in notation uni-

fied with the previous formulations of individual-endpoint and utility function
treatment effects. For example, we define I(condition) to be 1 if the condition
is true and 0 otherwise; an indicator of strong admissibility may be written as

(1) �sa(z) = I

[
max

k

{
�k(z) − δk

}
> 0

]
I

[
min

k

{
�k(z) − εk

} ≥ 0
]

and compared to δsa = 0 (with sa indicating strong admissibility) in the same fash-
ion as the treatment effects above. We may similarly define the indicator �wa(z)

for weak admissibility (wa), which would then be compared to δwa = 0. We can
then define B as the set of z for which the treatment is admissible, and construct
the desired joint subgroup report in the usual fashion. We term this approach the
direct method for estimating admissibility.

A multiplicity problem arises when constructing subgroup reports from �sa or
�wa. As more endpoints are included in an analysis, the frequentist probability of
identifying at least one endpoint with respect to which the test treatment is supe-
rior or inferior increases, even when treatments are equivalent with respect to ev-
ery endpoint. This makes it more likely for a treatment to be classified as weakly
admissible or not strongly admissible. To avoid these biases, we may construct
admissibility inferences via a fully adjusted method as follows. Let {Dk}Kk=1 be a
simultaneous set of subgroup reports for superiority with respect to the K end-
points such that for all z, P({k : z ∈ Dk} ⊆ {k : z ∈ Bk}|data) ≥ 1 − α, and {D′

k}Kk=1
be similarly defined for noninferiority. Then for weak and strong admissibility,
respectively,

(2) Dwa =
{

K⋃
k=1

Dk

}
∪

{
K⋂

k=1

D′
k

}
, Dsa =

{
K⋃

k=1

Dk

}
∩

{
K⋂

k=1

D′
k

}
.
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2.3. Many-arm multiple-endpoint subgroup inferences. Suppose now that
there are M > 2 treatments being considered. It may not be desired to compare
every treatment to every other. For example, we may envision a scenario in which
there are three test treatments and one control, and it is desired to determine for
each test treatment which patients benefit relative to the control. Consider a compe-
tition graph (V,E) where V = {t = 1, . . . ,M} is the set of treatment arm vertices
and E = {(t, c)} is the set of directed edges where (t, c) is present if treatment t

is being compared to control c. Let E(t) be the set of edges which originate at t .
Let �tc

k (z) be the effect of treatment t relative to treatment c for endpoint k, and
δtc
k be a threshold of clinical significance such that �ct

k (z) = −�tc
k (z) but δct

k is
not necessarily the same as δtc

k . We generalize each of the two-arm methods to the
many-arm multiple-endpoint case.

A subgroup inference may be constructed for each of the K|E | endpoint-
comparison combinations, either independently or simultaneously (adjusting for
multiplicity among endpoints and comparisons). For a set of independently gen-
erated inferences {Dtc

k }, we have that for each endpoint-comparison pair (k, (t, c))

and covariate point z ∈ Dtc
k , P(z ∈ Btc

k |data) ≥ 1 − α. For a simultaneous set
of inferences, we require that for each z, P({(k, (t, c)) : z ∈ Dtc

k } ⊆ {(k, (t, c)) :
z ∈ Btc

k }|data) ≥ 1 − α, where (t, c) varies over E . These methods may be use-
ful when each of the endpoints and treatment-comparisons are of interest sepa-
rately.

Alternatively, inferences may be constructed for each of the KM endpoint-
treatment combinations, in which each treatment t is compared against the to-
tality of its competition, the comparison being denoted as t∗. Again, the esti-
mates Dt∗

k may be determined independently or simultaneously. Let �t∗
k (x) =

minc∈E(t){�tc
k (z) − δtc

k } be the treatment effect versus the totality of competition
and δt∗

k = 0 be the corresponding threshold, so that t is considered beneficial if it
outperforms all of its competition by the corresponding margins. For independent
sets of pairs, we require that for each (k, t) and z ∈ Dt∗

k , P(z ∈ Bt∗
k |data) ≥ 1 − α.

For a simultaneous set of inferences, we would require for each z, P({(k, t) : z ∈
Dt∗

k } ⊆ {(k, t) : z ∈ Bt∗
k }|data) ≥ 1 − α.

Utility functions may be used to reduce the effective number of endpoints to
one, and either |E | inferences may be constructed for pairwise treatment effects
�tc

u , or M may be constructed for the treatment effects �t∗
u . Alternatively, in-

ferences for weak and strong admissibility or noninferiority may be constructed,
either for a treatment against each of its competitors separately (e.g., with respect
to each �tc

sa), or for a treatment against the totality of its competition (e.g., with
respect to �t∗

sa ). Again, sets of credible subgroup pairs may be constructed inde-
pendently or simultaneously. If using admissibility inferences corrected for multi-
plicity as in (2), a similar multiplicity adjustment may be made for many arms by
taking, for weak and strong admissibility, respectively,

(3) Dt∗
wa = ⋂

(t,c)∈E(t)

Dtc
wa, Dt∗

sa = ⋂
(t,c)∈E(t)

Dtc
sa.
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2.4. Implementation via credible subgroups. We now develop in detail the im-
plementation of the general approach for the adjustment for multiple endpoints
and multiple treatment comparisons when the underlying model is the report of
credible subgroup pairs as proposed in Schnell et al. (2016). This implementa-
tion is particularly interesting because it simplifies the form of certain probability
statements by adjusting for multiplicity not only of endpoints and treatments, but
covariate points as well.

The function of a credible subgroup pair is to attempt to bound the bene-
fiting subgroup by two credible subgroups, one that is contained in the bene-
fiting subgroup and one that contains it. Formally, an exclusive credible sub-
group D and an inclusive credible subgroup S constitute a credible subgroup
pair (D,S) if the posterior probability that D ⊆ B ⊆ S is at least 1 − α, that
is, P(D ⊆ B ⊆ S|data) ≥ 1 − α. This is analogous to the definition of credi-
ble intervals in one-dimensional space: P(L ≤ θ ≤ U |data) ≥ 1 − α. The gen-
eral procedure for constructing the credible subgroup pair (D,S) in the univari-
ate case is to perform a regression of the personalized treatment effect �(z) on
the predictive covariates z, construct simultaneous credible bounds for the regres-
sion surface, and take as D points where the lower bound exceeds the threshold
δ and as S those where the upper bound exceeds δ. When considering multi-
ple endpoints and many treatments, the probability statements satisfied by the
construction are P(Dtc

k ⊆ Btc
k ⊆ Stc

k |data) ≥ 1 − α for independent pairs, and
P(∀(k, (t, c)) ∈ {1, . . . ,K} × E,Dtc

k ⊆ Btc
k ⊆ Stc

k |data) ≥ 1 − α for simultaneous
pair sets.

We illustrate the general derivation of simultaneous sets of credible subgroups
for treatment effects of the form �tc

k (z) on a restriction C of the covariate space.
This is the most general class presented, whence other classes discussed previously
can be seen as special cases.

A simultaneous set of credible subgroup pairs is derived from the joint dis-
tribution of many treatment effects corresponding to various covariate points,
endpoints, and treatment comparisons. Let �̂tc

k (z) = E[�tc
k (z) | data]. Simultane-

ous credible bands for the �tc
k (z) on C may be constructed, by an extension of

Uusipaikka (1983), as

(4) �tc
k (z) ∈ �̂tc

k (z) ±
√

W ∗
α Var

[
�tc

k (z)
]
,

where W ∗
α is the 1 − α quantile of the distribution of

(5) W = sup
(z,k,(t,c))

{�tc
k (z) − �̂tc

k (z)}2

Var[�tc
k (z)]

and [z, k, (t, c)] ranges over C × {1, . . . ,K} × V . The value of W ∗
α may be esti-

mated from a sample from the joint posterior of the �tc
k (z).
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The use of (4) is most appropriate when the posterior distributions of the �tc
k (z)

are continuous and differ only by a scale parameter. When discontinuous poste-
rior distributions are present, for instance that of �sa(z) in (1), a quantile-based
credible band may be more appropriate. Let F(y) = P[Y ≤ y], F−1(p) = inf{y :
p ≤ F(y)}, G(y) = P[Y < y], and G−1(p) = sup{y : p ≥ G(y)}. If W ∗

α is the α

quantile of the distribution of

(6) W = inf
(z,k,(t,c))

min
{
F�tc

k (z)

[
�tc

k (z)
]
,1 − G�tc

k (z)

[
�tc

k (z)
]}

,

then

(7) �tc
k (z) ∈ [

F−1
�tc

k (z)

(
W ∗

α

)
,G−1

�tc
k (z)

(
1 − W ∗

α

)]
is a 1 − α simultaneous credible band [Schnell et al. (2017), Theorem 3]. Distri-
bution functions and W ∗

α may be estimated from a sample from the joint posterior
of the �tc

k (z).
Given simultaneous credible bands such as those in (4) and (7), the exclu-

sive credible subgroups Dtc
k and inclusive credible subgroups Stc

k are constructed
by comparing the upper and lower bounds of the bands to δtc

k . In the case of
(4), the exclusive credible subgroup Dtc

k and inclusive credible subgroup Stc
k are

givenby

(8)
Dtc

k =
{
z ∈ C : �̂tc

k (z) −
√

W ∗
α Var

[
�tc

k (z)
]
> δtc

k

}
,

Stc
k =

{
z ∈ C : �̂tc

k (z) +
√

W ∗
α Var

[
�tc

k (z)
] ≥ δtc

k

}
,

and P(Dtc
k ⊆ Btc

k ⊆ Stc
k |data) ≥ 1 − α. The loose inequality is used for Stc

k so that
if δtc

k = 0 = δct
k then Dct

k = (Stc
k )

c. Credible subgroups derived from the form (7)
are constructed similarly.

Once the (Dtc
k ,Stc

k ) are available, credible subgroups for admissibility may be
constructed through the following analogs of equations (2) and (3):

(Dwa,Swa) =
({

K⋃
k=1

Dk

}
∪

{
K⋂

k=1

D′
k

}
,

{
K⋃

k=1

Sk

}
∪

{
K⋂

k=1

S′
k

})
,(9)

(Dsa,Ssa) =
({

K⋃
k=1

Dk

}
∩

{
K⋂

k=1

D′
k

}
,

{
K⋃

k=1

Sk

}
∩

{
K⋂

k=1

S′
k

})
.(10)

(
Dt∗

wa,St∗
wa

) =
( ⋂

(t,c)∈E(t)

Dtc
wa,

⋃
(t,c)∈E(t)

Stc
wa

)
,

(11) (
Dt∗

sa,St∗
sa

) =
( ⋂

(t,c)∈E(t)

Dtc
sa,

⋃
(t,c)∈E(t)

Stc
sa

)
.
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3. Results.

3.1. Simulations. We perform a simulation study to evaluate certain frequen-
tist properties of each method for finding credible subgroup pairs. We are primar-
ily concerned with the properties of our four different types of admissibility: weak
and strong, each estimated via the fully adjusted and direct methods. Our oper-
ating characteristics of primary interest are the average sensitivity and specificity
of the exclusive credible subgroup D under increasing numbers of endpoints and
treatment arms.

Each simulated data set is produced with A arms, N = 100 patients per arm, K

endpoints, and P = 3 covariates. For patient i in arm a, xai = (1, xai2, xai3) is a
prognostic covariate vector where xai2 and xai3 are discrete covariates randomly
drawn from {−2,−1,0,1,2} with probabilities {1/16,1/4,3/8,1/4,1/16}, re-
spectively. The same vector is used as the predictive covariate vector: zai = xai .
The following model is used to produce the simulated data:

(12) Yaik|ηaik, σ
2
k ∼ Normal

(
ηaik, σ

2
k

)
, ηaik= x′

aiβk + z′
aiγ

(a)
k ,

where Yaik is the response in the kth endpoint for patient i in arm a, βk ≡ (1,1,1)

for all k, and the γ
(a)
k are determined as follows: γ

(a)
1 = (0,1/3,0) for 1 < a < A,

γ
(A)
1 = (0,1,0), all other γ

(a)
k = (0,0,0). The scenarios tested were A = 2 − 8

with K = 1, and K = 1 − 8 with A = 2. We simulated 1000 data sets per scenario,
constructing 50% credible subgroup pairs.

The model used to fit the simulated data is the same, with priors σ 2
k ∼

InverseGamma(10−4,10−4), βkp ∼ Normal(0,104) for all k, p, and γ
(1)
kp = 0,

γ
(a)
k1 ∼ Normal(0,104), γ

(a)
kp ∼ Normal(0,1) for a > 1 and all k, p. The model

was fit using the NIMBLE R package [NIMBLE Development Team (2015)] for
100 burn-in iterations and an additional 1000 recorded iterations for each simu-
lated data set. Credible subgroups were constructed using (7).

We also compare the fully adjusted and direct methods to a “naive” method for
determining admissibilities. We use the above regression model without treatment-
covariate interactions to estimate an average treatment effect independently for
each endpoint-treatment combination. For each draw from the joint posterior of
the average treatment effects, we compute draws of weak and strong admissibil-
ity, then use the posteriors of the admissibilities to make inferences at the 50%
level. The direct method reduces to the naive method when there are no treatment-
covariate interactions.

The results of the simulation study are displayed in Figure 1. In most cases,
sensitivity falls and specificity remains high as the number of arms or endpoints
increases, with the exception that the specificity of direct weak admissibility de-
creases as endpoints are added. Additionally, detection of strong admissibility is
more difficult than detection of weak admissibility, and adjusting for multiplicity
in the estimation of admissibilities (i.e., using the fully adjusted instead of direct
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FIG. 1. Simulated sensitivity (left column) and specificity (right column) for a study with A = 2
arms and varying number of endpoints (top row) and a study with K = 1 endpoints and a varying
number of arms (bottom row). In most cases, sensitivity falls and specificity remains high as more
arms or endpoints are added.

method) reduces sensitivity. The naive approach retains very high sensitivity and
very low specificity for weak admissibility in all presented scenarios, and very
low sensitivity and very high specificity for strong admissibility in all presented
scenarios.

3.2. Application to Alzheimer’s disease data set. We illustrate the extended
credible subgroups methods on a data set derived from a clinical trial of an
Alzheimer’s disease treatment explored by AbbVie. Three doses (low, medium,
high) of an experimental treatment are to be compared to active control and to a
placebo. Baseline measurements for disease severity, age, sex, and carrier status of
a genetic biomarker constitute covariates. After 24 weeks of treatment, two end-
points are of interest: improvement (negative change in disease severity) as the
efficacy endpoint, and the reporting of at least one adverse event indicated by the
attending physician to be possibly related to the treatment. We consider only those
patients who have complete observations, which yields a data set of 331 patients.
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All covariates and the efficacy outcome are standardized for the analysis and dis-
played in their original units.

Let a = 0,1,2,3,4 denote the placebo, low, medium, and high doses of the test
treatment, and active control treatment arms, respectively. For patient i, let Yik for
k = 1,2 denote the change in severity (continuous) and adverse event occurrence
(binary) endpoints, respectively, and xi1 = xi2 = zi1 = zi2 be the prognostic and
predictive covariate vectors for each endpoint (including intercept, all considered
as equal here). Let βk be the vector of prognostic effects for the kth endpoint,
and γ

(a)
k be the vector of predictive effects for the kth endpoint and treatment arm

a, with γ
(0)
k = 0. Also let d(a) be a scalar representing the level of activity of

the drug dose in arm a compared to the maximum dose of the same drug, with
0 = d(0) ≤ d(1) ≤ d(2) ≤ d(3) = d(4) = 1 and γ

(1)
k = γ

(2)
k = γ

(3)
k , so that, for exam-

ple, the effect of treatment a = 2 for a patient with predictive covariate vector z

is d(2)z′γ (2)
k . Assuming the outcomes are conditionally independent between pa-

tients, we use the endpoint likelihoods:

(13) Yi1|ηi1, σ
2 ∼ Normal

(
ηi1, σ

2)
, Yi2|ηi2 ∼ Bernoulli

(
logit−1 ηi2

)
,

with ηik = x′
ikβk∗ + d(ai)z′

ikγ
(ai )
k∗ . We use the prior σ 2 ∼ InverseGamma(0.001,

0.001), βkp ∼ Normal(0,104), γ
(a)
k1 ∼ Normal(0,104) for a > 0, γ

(a)
kp ∼

Normal(0,1) for a > 0 and p > 1, d(2) ∼ Uniform(0,1), and d(1)|d(2) ∼
Uniform(0, d(2)). Here, we shrink the treatment-covariate interactions to reflect
the common prior belief that such interactions are usually small, and to obtain
less variable estimates of conditional treatment effects, but leave the priors for
the prognostic effects and baseline treatment effect vague. A sensitivity analysis
without such shrinkage did not yield qualitatively different results.

Before using our proposed methods, we analyze the data through a more stan-
dard approach. We use a Bayesian model and analysis, though with noninforma-
tive priors that correspond to a frequentist analysis. Because our aim is to discuss
treatment-covariate interactions, which the study was not powered to detect, we
decrease the nominal credible level to 50%. To make the approaches comparable,
we will use the same credible level for our proposed analysis. All models are fit
with 10,000 Gibbs sampler iterations after 1000 burn-in iterations. We first test
the overall effects by removing all γ parameters from the model except the γ

(a)
k1 ,

which then correspond to the overall treatment effects versus the placebo. In this
analysis, there is a significant overall efficacy difference between the active control
and placebo, and between the test treatment and placebo. There are no significant
safety differences nor an efficacy difference between the active control and the test
treatment.

We continue with a standard subgroup analysis, returning all γ parameters to the
model and using minimally informative priors. At the 50% nominal credible level,
we find significant interactions between the test-placebo efficacy difference and
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all covariates; and between the test-placebo safety difference and baseline severity
and age. We also find significant interactions between the test-active control effi-
cacy difference and baseline severity and carrier status; and between the test-active
control safety difference and sex and age. Using a Bonferroni-corrected α-level of
0.50/4 to account for the four treatment-by-covariate interaction tests per treat-
ment and endpoint (we are not concerned with multiplicity of endpoints or treat-
ments), we are left with only the interaction of the test-placebo efficacy difference
with baseline severity and sex as significant.

We now estimate the average treatment effect of the test treatment versus the
placebo in subgroups produced according to the significant interactions (post-
Bonferroni) we identified. The treatment effect remains significant in a high-
severity (>22, sample median) subgroup and a low-severity (≤22) subgroup, but
when grouping by sex, there is a significant effect in males but not females. When
the population is divided into four subgroups according to sex × severity, both
male subgroups and neither female subgroup show a significant effect. From this
standard subgroup analysis, we get the general idea that the male patients are the
primary drivers of the treatment effect versus placebo. However, it is difficult to
precisely determine who benefits from the treatment over the placebo, and espe-
cially what treatment effect exists between the test treatment and the active control.

We now compare the high dose test treatment to the placebo and active con-
trol simultaneously with respect to the weak and strong admissibility criteria, for
example, �a∗

wa(zi ) and �a∗
sa (zi ). In the former case, the benefiting subgroup is the

population for which the test treatment is superior to both the placebo and active
control with respect to at least one endpoint or is inferior to neither the placebo nor
the active control with respect to either endpoint. In the latter case, the benefiting
subgroup is the one for which the test treatment is superior to both the placebo
and active control with respect to at least one endpoint and is inferior to neither
the placebo nor the active control with respect to any endpoint. The criteria we
select for superiority are a difference in expected change in disease severity of
greater than δ1 = 0 and a log odds ratio of adverse event occurrence of less than
−δ2 = 0. The criteria for noninferiority are a difference in expected change in dis-
ease severity of greater than ε1 = −0.5 (standard deviations of the response) and a
log odds ratio of adverse event occurrence of less than −ε2 = 0.18 (corresponding
to an odds ratio of approximately 1.20). Signs are switched for δ2 and ε2 because
we want reductions in risk. The model is fit using 100,000 MCMC iterations after
10,000 burn-in iterations. Because of the high memory requirements of construct-
ing credible subgroups over a continuous covariate space, every 10th iteration is
used for the computation.

Figure 2 shows individual single-arm single-endpoint credible subgroups plots
for each treatment-endpoint combination using α = 0.50 for illustration. Because
the thresholds for benefit differ from the thresholds for noninferiority, there are in
fact two pairs of credible subgroups for each treatment-endpoint combination—
one for benefit and one for noninferiority. Letting (D,S) and (D′,S′) be the pairs
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FIG. 2. Individual 50% credible subgroup pairs plotted over the covariate space. Each large quad-
rant contains a plot of the credible subgroup pairs for that endpoint-competitor combination, with
subgroups for noninferiority (D′,S′) and superiority (D,S) overlaid.

for benefit and noninferiority, respectively, we have D ⊆ D′ ⊆ S ⊆ S′. The upper-
left sub-figure shows that males with high disease severity tend to benefit from
the test treatment versus the placebo, but in the bottom left sub-figure we detect
more noninferiority in female and low severity patients versus the active control.
This hints that the active control and the test treatment may both favor male and
high-severity patients relative to the placebo, but that the active control does so to
a larger degree, perhaps due to more activity of a similar mechanism. The right-
hand side of the figure indicates mostly uncertainty in the relative safety profiles
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FIG. 3. Admissibility 50% credible subgroup pairs (combined endpoints, versus both placebo and
active control) plotted over the covariate space. Left: weak admissibility. Right: strong admissibility.

of the treatments, though it appears that female carriers are the most promising for
noninferiority to the active control.

Figure 3 shows credible subgroup pairs for weak and strong admissibility (via
the direct methods) against both the placebo and active control. The left sub-figure
shows that the exclusive credible subgroup for weak admissibility primarily con-
tains younger patients, and is more present in females and carriers. The features
of the weak admissibility credible subgroup plot appear (judging by Figure 2) to
come primarily from the efficacy endpoint. The right sub-figure shows that the test
treatment is not strongly admissible over an area generally opposite to that over
which the test treatment is weakly admissible: older patients, especially males
and noncarriers. Though the credible level used is too low to claim conclusive
results (e.g., for a regulatory submission), the results provide evidence that the
treatment effect is not homogeneous, and indicate which subgroups show promise
for appropriately-powered studies in the future.

The model was also fit with spike-and-slab priors similar to George and Mc-
Culloch (1993) for variable selection: the Normal(0,1) priors for the treatment-
covariate interactions were exchanged for 1

10δ(0) + 9
10 Normal(0,104) mixture

distributions, where δ(0) is a point mass at 0. The resulting individual credible
subgroups by endpoint and arm as in Figure 2 exhibited much more homogeneity:
the test treatment was superior to the placebo for all patients with respect to effi-
cacy and indeterminate with respect to safety. Against the active control, the test
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treatment was noninferior with respect to efficacy for patients with baseline sever-
ity <31, and for women younger than 80 and men younger than 70 with respect
to safety. The test treatment was weakly admissible for all patients, and strong ad-
missibility was indeterminate for most patients, and negative for the patients with
the highest baseline severity (near 45).

4. Discussion. The medical community recognizes the need to consider the
characteristics of individual patients when deciding avenues of treatment. In addi-
tion to baseline covariates that are predictive of treatment effects with respect to
single endpoints, it is also necessary to consider differences in individuals’ prefer-
ences that may lead different patients to differentially value endpoints. For exam-
ple, one patient may pursue the most efficacious treatment while another prefers a
treatment with side effects that minimally affect quality of life.

The concept of admissibility provides a utility function-free approach to sum-
marizing treatment effects with respect to multiple endpoints, and admits a natural
extension to trials with more than two arms. In this paper, we have also examined
multiple definitions of admissibility in the clinical trial context, as well as estima-
tors which do and do not adjust for the multiplicity of endpoints so that Type I
error may be controlled. Finally, the credible subgroups method of Schnell et al.
(2016) provides a natural implementation for admissibility ideas by also adjusting
for the multiplicity of covariate points, and we generalize the previously published
method to handle settings outside of the normal linear model by requiring only
a sample from the joint posterior of personalized treatment effects, allowing the
consideration of generalized linear and other more sophisticated models.

While the confidence levels used in Figures 2 and 3 are too low for our results to
be considered definitive, it is important to note that they are based on data from a
study not powered to deliver simultaneous inference on multiple endpoints across
arbitrary subgroups defined by up to four different covariates. So while these re-
sults are far from convincing for final regulatory approval, they do provide valuable
information about the sort of enrollees that should be sought for future, more fo-
cused subgroup-confirmatory trials. For instance, the weak admissibility portion
of Figure 3 suggests younger females with more severe dementia would make
good candidates, whereas the strong admissibility portion discourages enrollment
of older patients, particularly those with less severe dementia. Used in this way,
our methods essentially become a useful tool for enrichment designs [Peace and
Chen (2010)].

Finally, the relationship between identifying admissible treatments in the de-
velopment and regulatory context treated here, and the single-patient focus of the
dynamic treatment regime context, present an interesting duality between deci-
sions made in relation to a given treatment versus a given patient. For example,
developer-sponsored clinical trials may aim to secure regulatory approval for ther-
apies in specific subpopulations, and optimal treatment regimes may subsequently
be constructed on a per-patient basis from available treatments using the concepts
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of admissibility, which are similar to the nondomination criteria used in Laber,
Lizotte, and Ferguson (2014). Attempts toward unifying development, regulatory,
and patient-care contexts may represent a promising avenue for future research.
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SUPPLEMENTARY MATERIAL

Supplement to “Subgroup Inference for Multiple Treatments and Multi-
ple Endpoints in an Alzheimer’s Disease Treatment Trial” (DOI: 10.1214/17-
AOAS1024SUPP; .zip). The online supplement contains proofs related to the con-
struction of simultaneous credible bands [as in (4) and (7)], as well as the data and
scripts required to reproduce the simulations and analyses presented above.
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