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The Survey of Income and Program Participation (SIPP) is a survey with
a longitudinal structure and complex nonignorable design, for which correct
estimation requires using the weights. The longitudinal setting also suggests
conditional-independence relations between survey variables and early- ver-
sus late-wave employment classifications. We state original assumptions jus-
tifying an extension of the partially model-based approach of Pfeffermann,
Skinner and Humphreys [J. Roy. Statist. Soc. Ser. A 161 (1998) 13–32], ac-
counting for the design of SIPP and similar longitudinal surveys. Our as-
sumptions support the use of log-linear models of longitudinal survey data.
We highlight the potential they offer for simultaneous bias-control and re-
duction of sampling error relative to direct methods when applied to small
subdomains and cells. Our assumptions allow us to innovate by showing how
to rigorously use only a longitudinal survey to estimate a complex log-linear
longitudinal association structure and embed it in cross-sectional totals to
construct estimators that can be more efficient than direct estimators for small
cells.

1. Introduction.

1.1. Motivation and goal. For the past three decades, survey statisticians have
actively researched methods for estimating characteristics of “small area” pop-
ulations [Ghosh and Rao (1994); Rao and Molina (2015)] that are individually
too small for traditional direct methods. Lopez-Vizcaino, Lombardía and Morales
(2015) and Molina, Saei and Lombardía (2007) used small area methods to model
survey data and estimate cross-sectional labor force participation for small areas
through multinomial regression involving demographic covariates and a random
effect structure. We exploit multinomial structure in a related but different frame-
work, cross-classifying data at higher geographic levels, such as the state level
in the U.S. While fitting to larger areas, by primarily design-based methods, we
propose modeling fine-grained classifications which incorporate a longitudinal as-
pect. Based on the models, we estimate aggregates corresponding to marginal cells
coarser than the finest cross-classified cells. This is a nontraditional form of small-
area estimation in which some marginal total estimates are design-based and others
model-based, in terms of conditional probabilities.
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The Survey of Income and Program Participation (SIPP) is an essential longitu-
dinal survey in the U.S. federal statistical system, enabling researchers to study life
changes and also to track many administrative variables [Haber (1985); Abowd et
al. (2005)]. SIPP is invaluable because of these longitudinal and multivariate fea-
tures. It also lends itself naturally to enhancements through integration of cross-
sectional information, which is increasingly available through administrative lists.
In this paper, we propose methodology for producing accurate and relatively bias
free estimates of aggregates of interrelated small cells. SIPP estimates are impor-
tant both as an ultimate goal and for demonstration of our method of estimating
small cell totals.

In the SIPP context, we define a fine-grained classification of the population
of a state by a time-dependent multivariate cross-sectional variable e, jointly for
labor force status and health insurance coverage, where ei is the value of e for
person i. The e classification is further refined by another vector variable f that
includes the same classifying variables embedded in e at an earlier point in time,
as well as some demographic variables. We view the coordinate variables of f as
“post-stratifiers.” Then (ei ,f i ) defines cell membership for unit i, and wi is the
sampling weight or inverse inclusion probability for that unit. The finer classifi-
cation (e, f ) and its corresponding cells are termed the “working” classification,
while the partition into e-defined cells is called the “target classification.” The finer
cells are instances of “gross flows,” which decompose the population according to
participation in the labor force at multiple points in time.

This paper focuses on the accurate estimation of small interrelated target cells.
The motivation and payoff for doing this is substantial. High-quality large-area
statistics such as gross flows, which share the same state totals as other population
decompositions such as those defined by health-care coverage, are of great interest
for researchers and policy makers. The role of the log-linear model in this work
is to parameterize cell probabilities in the working classification by identifying
the salient interactions between e and f while at the same time integrating the
design of the survey into the model. We advocate a “small-cell model,” leading
to a method for partially design-based analysis incorporating administrative data,
using log-linear models for conditional probabilities [Fienberg (1980)].

1.2. Related work. Log-linear models in small-area estimation seem to have
appeared first in structure preserving estimation (SPREE), a synthetic estimation
method due to Purcell and Kish (1979, 1980), succinctly presented in Rao and
Molina (2015). Early versions of SPREE relied on iterative proportional fitting
(IPF) to combine an interaction structure derived from a census with main effects
computed from a survey. The original idea behind SPREE is that log-linear in-
teractions are more stable through time than main effects, which need updating
from contemporary survey estimates. Purcell and Kish [(1979), Section 9.5] point
to Purcell’s thesis (1979) and a conference paper, Chambers and Feeney (1977),
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as early examples of categorical data methods in small-area estimation, the lat-
ter proposing to apply the “association structure” model (what we term below the
conditional-probability specification given the stratifiers) fitted by IPF on census
data and assumed to persist in a later sample survey in synthetic estimates for the
sample survey.

Noble, Haslett and Arnold (2002) cite Marker (1999) as the first to observe ex-
plicitly that SPREE can be formally expressed as a log-linear model, and they and
Zhang and Chambers (2004) extend SPREE through log-linear and generalized
linear models. But all of these authors preserve the SPREE idea of fitting the “as-
sociation structure” model on census (or other aggregated) data and then applying
it synthetically to a current sample survey.

Our approach is distinguished from this synthetic method by viewing the log-
linear model as a way to specify and fit conditional probability relationships on
the current sample survey from which small-area estimates are to be produced.
We know of no other paper that uses log-linear models to generate small-area
estimates from current survey data alone, without an external source and synthetic
assumption. Our application of log-linear models to complex survey data exploits
a likelihood structure factoring into a marginal saturated multinomial likelihood
and a parametric-model likelihood for the conditional probabilities. The survey
data (SIPP, in our case) are modeled directly, without assuming that they share an
externally (census-) derived set of model parameters. However, complex surveys
like SIPP do make use of current Population Estimates through their nonresponse-
adjusted calibrated weights.

We begin by reviewing previous published uses of conditional probabilities in
longitudinal surveys, and of survey weighting of sampled data assumed to sat-
isfy a log-linear model. We then present the high-level features of our approach
using log-linear-model-assisted design-based analysis. The dependence structure
of the log-linear models we have in mind has been developed through Markov
and semi-Markov modeling in an extensive body of work on the National Crime
Victimization Survey (NCVS). Fienberg (1980) showed how to construct a lon-
gitudinal transition matrix for a discrete or continuous time Markov process to
model victimization. Conaway and Lohr (1994) studied such processes to iden-
tify the most salient factors related to repeated victimization. In the same context,
Saphire (1984) and Ybarra and Lohr (2002) proposed various estimators based on
discrete-time conditional probabilities which we extend in greater generality.

Fienberg and Stasny (1983) presented conceptually simple assumptions for a
model of a probabilistic longitudinal survey design measuring gross flows and al-
lowing sampling to be outcome dependent. Stasny (1987) modeled both the tran-
sition probabilities and the nonresponse mechanism for gross flows. Her models
go beyond the scope of this paper, in which we do not consider nonresponse or
attrition. The framework of Fienberg and Stasny (1983) underlies our methods in
this paper. However, these authors and the others cited above ignored pre- and
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post-survey weighting, while we emphasize the use of survey weights and design-
based analysis together with log-linear models. We regard as essential the follow-
ing: (i) the definitions of sampling strata and analysis post-strata may not coincide,
(ii) in general, the modeled conditional probabilities are not specified to be homo-
geneous between sampling strata or within analysis post-strata, and (iii) the final
survey weights may embed exogenous information, such as information from a
census, not reflected in the survey data. We state simple assumptions that allow
us to simplify the framework of Fienberg and Stasny and take advantage of the
weighting structure, and integrate parametric models and design information to-
gether into “hybrid” estimators.

2. Motivating the methodology. Pfeffermann, Skinner and Humphreys
(1998) show how to merge conditional probabilities modeled through multiple
separate logistic regressions and to weight aggregates to correct estimates for mea-
surement error. They motivate their analysis via a comprehensive “noninformative
sampling” assumption. Our somewhat different objective is to reduce the sampling
variability of the estimators, which we do through the automatic sharing of param-
eters across cells that is inherent to hierarchical log-linear models for the frame
population and the sample.

In our formulation, the population is regarded as an identically and indepen-
dently distributed sample from a “superpopulation” [Fuller (2009), p. 128], [Fuller
and Isaki (1981)] with categorical descriptors. Our version of the superpopula-
tion model and noninformative sampling assumption of Pfeffermann, Skinner and
Humphreys (1998) makes essential use of multidimensional categorical variables
ei , f i for sampled units. Our assumptions restrict the joint distributions of these
variables.

A1. The finite population from which data are sampled, together with their sam-
pling weights (inverse inclusion probabilities), is an i.i.d. sample of vectors
(ei ,f i ,wi), and the categorical vectors ei , f i jointly follow a log-linear
model within which the marginal models of ei and of f i are each saturated,
and specified interactions between ei , f i are absent.

A2. The sampling weights wi are conditionally independent of ei given f i .

Under these assumptions, ignoring the sampling weights when deriving the
maximum likelihood estimators (MLEs) of conditional probabilities from the log-
linear model leads to approximately unbiased hybrid estimators for the subdomains
of the population defined by the characteristics ei , f i , and for population ratio pa-
rameters. Throughout the paper, we refer to the subdomains of the population or
sample defined by {i : f i = f } as post-strata.

Assumption A1 is restrictive in asserting that a model holds for the finite pop-
ulation based on suppression of a specified set of higher-order interactions of the
saturated log-linear model. The suppressed interactions depend on the logic of the
dependence structure (longitudinal, in our main example) that is plausible for a
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particular survey. The restriction is imposed in settings where the survey sample
is not large enough to allow detection and estimation of all high-order interactions
within the log-linear model. Under the submodel, approximately unbiased esti-
mators are found for the population sufficient statistics for the submodel, in turn
enabling derivation of estimators of conditional probabilities and of totals based on
them. Assumption A2 means that estimated conditional probabilities derived from
the log-linear model are unrelated to the sampling weights within the post-strata.
When A2 holds, the residual weight variability within the post-strata is ancillary
and can be ignored.

Our approach is original in directly modeling the longitudinal conditional transi-
tion probabilities using a hierarchical log-linear model with parameters shared be-
tween different strata in conjunction with direct survey-weighted estimates of post-
stratum sizes, generalizing the approach of Pfeffermann, Skinner and Humphreys
(1998), whose separate multinomial regressions did not share parameters. The
formulation of Assumptions A1 and A2 is also new, providing a setting where
design-based and model-assisted use of a log-linear-submodel yield large-sample
model-consistent inferences for small domains, with improved accuracy over the
purely design-based Horvitz–Thompson (HT) estimator. It commonly arises that
HT estimators are insufficiently precise, for example, when the contingency ta-
bles derived from the survey data are relatively sparse, and that conditional-
independence assumptions justifying suppression of high-order interactions are
tenable.

The hybrid approach is conceptually similar to post-stratification except for the
important caveat that stratum sizes are unknown. The research of Reilly, Gelman
and Katz (2001) on post-stratification with unknown stratum sizes involved com-
bining several samples and modeling the stratum sizes as MA(1) processes to sta-
bilize variances. Their approach brings the experimental situation closer to that of
traditional post-stratification with known stratum sizes. Instead of modeling stra-
tum sizes, we share parameters across strata with unknown sizes.

Section 3 provides notation for defining hybrid estimators. Section 4 provides
background on SIPP. Section 4.2 introduces the main example involving labor
force characteristics and health care coverage in SIPP. Section 5 presents the multi-
nomial log-linear models for which we derive MLEs of the conditional probabil-
ities that underlie our approach. Section 5.2 develops our evaluation methodol-
ogy, based on Balanced Repeated Replication (BRR) for variance estimation, and
presents the main numerical results for the SIPP data. Section 6 summarizes the
results and draws conclusions regarding the benefits of our approach. We include
a web supplement containing theoretical details on the estimability of conditional
probabilities for our constrained log-linear models, along with simulation results
supporting BRR as a tool for variance estimation.

3. Modeling conditional probabilities in complex surveys. Our strategy is
to estimate categorical conditional probabilities, which are easy to express in
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log-linear models, under restrictions defined by linear constraints on the condi-
tional log-odds of a multinomial distribution [Agresti (2013), page 345]. Simi-
larly, Slavković, Zhu and Petrović (2015) formulated survey nondisclosure prob-
lems directly in terms of conditional rather than the more usual cell probabili-
ties, and investigated the distributions of the ancillary statistics, conditional on
the sufficient statistic, problems and methods beyond the scope of this paper. In
the literature on log-linear modeling, as here, the exponential family structure en-
sures that estimates of conditional probabilities are based on sufficient count statis-
tics.

In this section, we define notation for a specific class of estimators which we call
hybrids because they combine a design consistent with a model-based component.
Let e = (e1, . . . , eA)′ and f = (f1, . . . , fB)′ be vectors of indices or classifying
variables, where ea = 1, . . . ,Ea is the ath variable used to define domains, and
fb = 1, . . . ,Fb is the bth variable used to define post-strata, for a = 1, . . . ,A and
b = 1, . . . ,B . We want to estimate domain and subdomain totals within the frame
population U from a probability sample survey with inverse inclusion probabilities
as weights. To that end, consider the full classification of the population by cells
E1 × · · · × EA × F1 × · · · × FB , and let Yef = |{i ∈ U : ei = e,f i = f }| be the
population count for cell e1, . . . , eA, f1, . . . , fB . Then the population count for
post-stratum f is

(3.1) Y+f = ∑
e∈E

Yef .

Similarly, let E = E1 × · · · × EA be the full set of values for the e index A-tuples,
define the population domain total for domain e by

(3.2) Ye+ = ∑
f ∈F

Yef ,

and let F = F1 × · · · × FB be the set of values for the f index B-tuples. Denote
by Ye(g) the population total for the subdomain restricting e to the specific value
fB = g for the last post-stratum index, that is,

(3.3) Ye(g) = ∑
f ∈F(g)

Yef ,

where F(g) = F1 × · · · × FB−1 × {g}. We also consider the case of a subdomain
restricted by two stratification variables, fB−1 = g and fB = h, to obtain

(3.4) Ye(g,h) = ∑
f ∈F(g,h)

Yef ,

where F(g,h) = F1 × · · · × FB−2 × {g} × {h}. The subdomains whose totals are
defined in (3.3) and (3.4) are the “target cells,” and are defined by a combination
of domain and post-stratum indices.
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We use uppercase Y modified by subscripts to denote population counts in the
frame population U , while weighted sample subtotals are denoted by lowercase
letter y with subscripts. Hats are used to designate estimators of population counts
based on sampled data, a single hat (as in Ŷ with subscripts) to denote Horvitz–

Thompson (HT) weighted-total estimators and a double hat (as in ˆ̂
Y with sub-

scripts) for our hybrid estimator. Throughout, subscripts of arrays Y and y are
replaced by +’s to indicate that those subscripts are summed out, for example,
Y+k+mn = ∑2

j,l=1 Yjklmn. Then the HT estimators Ŷ+f , Ŷe+, Ŷe(g) and Ŷe(g,h)

are defined by replacing the population cell totals Yef by their HT estimators Ŷef

in (3.1)–(3.4).
Let Pe|f be a conditional probability expressed in terms of the parameters of

a log-linear probability model for the indices (e,f ) of a randomly (equiproba-
bly) sampled member of the population. Let P̂e|f be the MLE for this conditional
probability Pe|f , and define the hybrid estimators by

ˆ̂
Ye+ = ∑

f ∈F

(P̂e|f )Ŷ+f ,(3.5)

ˆ̂
Ye+(g) = ∑

f ∈F(g)

(P̂e|f )Ŷ+f ,(3.6)

ˆ̂
Ye+(g,h) = ∑

f ∈F(g,h)

(P̂e|f )Ŷ+f .(3.7)

The accuracy of ˆ̂
Ye+, ˆ̂

Ye+(g) and ˆ̂
Ye+(g,h) relies on the (design and model) un-

biasedness of Ŷ+f , which is fundamental to our technique. This kind of estimator
can be useful whenever log-linear models for Pe|f have fewer degrees of freedom
than the saturated model, and may lead to reduced variances of the estimators in
(3.6) and (3.7) at the subdomain level. The hybrid estimators in (3.5)–(3.7) can be
unweighted or weighted according to whether the estimator P̂e|f is. When P̂e|f is
unweighted, it is the MLE for a log-linear model. The weighted version of P̂e|f
leads to a pseudo-MLE [Skinner (2011)].

4. Application to survey of income and program participation.

4.1. Background on SIPP. SIPP collects information on the income and well-
being of the U.S. population through longitudinal panels with a complex design.
From 1983 to 2013, SIPP was a panel survey consisting of 4-month waves of data
collection, each wave staggered over four calendar months. The sample was di-
vided into 4 rotating groups approximately equal in size. At each of the 4 calendar
months in a wave, data for one of the 4 rotating groups was collected. The refer-
ence period for each monthly data collection was the 4 previous months. In 2013,
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SIPP was redesigned and now has yearly installments, with 12 rotating groups.
Although the redesigned survey is simpler, weights reflecting the probability sam-
ple design, post-survey adjustments and oversampling of low-income strata con-
tinue to be produced every month, and the methods of this paper still apply. An
important feature of the SIPP design is a low-income stratum defined from infor-
mation collected through the 2000 Census long and short forms [U.S. Bureau of
the Census (2009)]. In the 2004 panel, the low-income stratum was oversampled
at a 1.48 rate relative to the high income stratum. Thus the design is “informative,”
and analyses that ignore it are generally incorrect. The (cross-sectional) analy-
sis weights (or “final weights”) computed by the Census Bureau for each month
of SIPP convey rich information beyond the data collected. The computation of
these weights involves several nonresponse adjustments [Scott (2005)] to the de-
sign “base weights.” Furthermore, after the first-stage nonresponse adjustments
mentioned above, the SIPP weights are raked to demographic control totals de-
rived from the 2000 decennial Census and administrative information. The process
of producing final weights for the calendar months of wave 2 and beyond differed
from that of wave 1 through further nonresponse adjustments. Again, this means
that the weights contain necessary information, and discarding them may directly
lead to estimation errors.

We illustrate with data reported from the first two waves of the 2004 SIPP panel.
For purpose of illustration we simplify, retaining only the data describing the most
recent reference month relative to the interview for each of the 4 rotating groups
at wave 1 and 2. The implicit “within wave stationarity” assumption is that, for
j = 1, . . . ,4, the conditional probabilities for variables in month j of the second
wave given variables in month j of the first wave do not depend on j .

We model only the population within the labor force in both waves, thus restrict-
ing to a “closed universe,” as did Pfeffermann, Skinner and Humphreys (1998).
An “open universe” would account for persons entering and leaving the labor
force or population, as proposed by Fienberg and Stasny (1983). We use the same
wave 1 weights for computing the HT estimators as for our hybrids. We are in-
terested only in the population in the labor force initially identified at wave 1
that remains in wave 2. This means that the weighted sufficient statistics involved
in the log-linear models will coincide with HT estimators of the wave-specific
population domains (those defined by variables e or f in the notation of Sec-
tion 3).

4.2. Example: Gross flows and health care coverage for California. Our ex-
ample involves the sample counts for the state of California for waves 1 and 2 of
the 2004 panel (from public-use data available at www.census.gov/sipp). Table 1 is
a cross-classification of the surveyed persons within the labor force both at waves 1
and 2 by two qualitative variables, employment status (employed vs. unemployed)
and medical insurance coverage (covered vs. not covered) for each wave. These

http://www.census.gov/sipp
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TABLE 1
Cross-Classification of SIPP 2004 Sample Units for California

Wave 2

Employed Unemployed

Wave 1 Covered Not covered Covered Not covered

No college degree
Employed Covered 1252 44 8 4

Not covered 82 604 2 13
Unemployed Covered 20 2 13 1

Not covered 4 40 1 25

College degree
Employed Covered 1451 22 10 2

Not covered 38 181 0 6
Unemployed Covered 12 2 11 0

Not covered 2 14 1 11

respondents were screened to remove cases subject to unit nonresponse at either
wave.

In the notation of Section 3, with e = (jk),f = (lmn) and ef = (jklmn),
Y(jk)(lmn) or Yjklmn denotes the frame-population count of individuals with ed-
ucation n, labor status m and coverage l at wave 1, and labor status k and coverage
j at wave 2. Values of educational level n are 1 for no college degree and 2 for col-
lege degree. Labor status values are 1 for employment and 2 for no employment,
and medical insurance levels are 1 for coverage and 2 for lack of coverage. We
have A = 2,B = 3, and the other terms in formulas (3.5)–(3.7) are given by

Y+f = Y++lmn =
2∑

j,k=1

Yjklmn,

Ye+ = Yjk+++ =
2∑

l,m,n=1

Yjklmn,

Ye(g) = Yjk(g) = Yjk++g =
2∑

l,m=1

Yjklmg,

Ye(g,h) = Yjk(g,h) = Yjk+gh =
2∑

l,l=1

Yjklgh,

Pe|f = Pjk|lmn.

The population counts Ye(g), Ye(g,h) and corresponding estimators denote all
the necessary population and estimated target classifications.
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5. Log-linear models for estimation.

5.1. Models. In this section, we present two log-linear model parameteriza-
tions in order to define conditional probabilities on a finite population. These mod-
els, indexed by j , k, l, m, n as above, are specifically tailored to the SIPP example.
The second log-linear model is a parametric reduction or submodel of the first,
with a lower-dimensional sufficient statistic.

Consider the following ANOVA-like log-linear multinomial model for r multi-
nomially sampled observations classified into cells with the vector of cell proba-
bilities π = (π11111, π21111, . . . , π22222)

′, subject to explicitly parameterized inter-
actions as follows:

log(πjklmn) = α + βlmn + δJ
j + δK

k + ηJK
jk + ηJL

j l + ηJN
jn

(5.1)
+ ηJM

jm + ηKM
km + ηKN

kn + υJKM
jkm ,

where the unknown parameters on the right-hand side satisfy constraints

2∑
l,m,n=1

βlmn = 0,(5.2)

2∑
j=1

δJ
j =

2∑
k=1

δK
k = 0,(5.3)

2∑
j=1

ηJK
jk =

2∑
k=1

ηJK
jk =

2∑
j=1

ηJL
j l =

2∑
l=1

ηJL
j l =

2∑
j=1

ηJM
jm =

2∑
m=1

ηJM
jm = 0,

(5.4)
2∑

j=1

ηJN
jn =

2∑
n=1

ηJN
jn =

2∑
k=1

ηKM
km =

2∑
m=1

ηKM
km =

2∑
k=1

ηKN
kn =

2∑
n=1

ηKN
kn = 0,

2∑
j=1

υJKM
jkm =

2∑
k=1

υJKM
jkm =

2∑
m=1

υJKM
jkm = 0.(5.5)

The term βlmn is saturated like the vector of probabilities of a cell partition,
with eight index levels and seven degrees of freedom, since it satisfies the single
constraint (5.2). Thus, the cell counts based on the f indices (l,m,n) obey a fully
saturated multinomial model, while the ef cell counts obey a conditional model
given f , with high-order interactions suppressed. Most of the third-order and some
second-order interactions (those between J and M) have been suppressed in the
model (5.1). The parameter dimension of this model is 16, with the e|f conditional
probability parameters accounting for 9. This entails considerable sharing of de-
grees of freedom across conditional cell probabilities since the saturated model for
these e|f probabilities has dimension 31 − 7 = 24.
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The validity of the population model (5.1)–(5.5), a specific instance of assump-
tion A1, is ultimately an empirical question. It fits the SIPP data well, as we will
show, and will be assessed along with A2 for the fitted model by comparisons of
observed versus expected population margins. In particular, the third order inter-
action υJKM

jkm turns out to be crucial to a good fit, implying that the associations be-
tween coverage and employment status at each wave are not homogeneous [Agresti
(2013), page 344] and the entire historical employment sequence is informative for
insurance coverage status. We will refer to this model in the rest of the paper as
Model 1.

A simplified form of Model 1 suppresses two of the terms in (5.1):

(5.6) υJKM
111 = ηJM

11 = 0.

This model (5.1)–(5.6), which we refer to as Model 2, reduces the dimension of
the e|f parameter to 7, and imposes additional conditional independence, saying
that conditional on labor force status at wave 2, health coverage at wave 1, and
education, coverage at wave 2 and labor force status at wave 1 are independent
(conditional on indices k, l and n, indices j and m are independent). This restric-
tion allows for much simpler algebraic development.

As with all log-linear models, the likelihoods of Model 1 and Model 2 can be
shown to have an exponential family form, and the MLEs and pseudo-MLEs of the
conditional probabilities in (3.5)–(3.7) can be obtained through traditional meth-
ods, such as iterative proportional [Bishop, Fienberg and Holland (1975), p. 83],
[Winkler (1993)] or raking. This ensures an existing strong theoretical basis for
the methods we are discussing.

The full set of unknown parameters in Model 2, (5.1)–(5.6), is given by

(5.7) β = (β111, β211, β121, β221, β112, β212, β122)

and

(5.8) θ = (
δJ

1 , δK
1 , ηJK

11 , ηJL
11, η

JN
11 , ηKM

11 , ηKN
11

)
,

and in Model 1, (5.1)–(5.5), the θ parameter has the additional two components
ηJM

11 , ηJKM
111 .

In the Web Supplement we show that, in both models, θ is a smooth one-to-one
reparameterization of the conditional e|f probabilities under the constraints of the
model. The joint MLEs θ̂ and β̂ both enter the expressions for estimators of the
desired conditional e|f probabilities. It is possible to extend log-linear models to
the situation where the joint MLE does not exist, but certain subvectors such as θ̂
do [Fienberg and Rinaldo (2012)].

This representation for the likelihood is also useful in deriving the weighted
variant of our hybrid estimator. Design-based survey estimators of superpopula-
tion parameters are often constructed as maximizers of a sample-weighted esti-
mator of the frame-level census log-likelihood. With dummy attribute-vectors zi

denoting the factor levels j , k, l, m, n for unit i in the frame population U , the
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census log-likelihood is
∑

i∈U logp(zi , β, θ), which could be defined by partition-
ing the frame population into cross-classified cells Cjklmn (or, equivalently, ef
cells). Now, in terms of a weighted sample, the HT-type estimate of the census
log-likelihood becomes

(5.9)
∑
i∈S

∑
j,k,l,m,n

I[i∈Cj,k,l,m,n]ωi logπjklmn = ∑
j,k,l,m,n

ỹjklmn logπjklmn,

where now the former array y of unweighted sample counts is replaced by the
weighted version ỹ based on sample weights ωi ,

(5.10) ỹjklmn = ∑
i∈S

I[i∈Cjklmn]ωi.

The survey-estimated census log-likelihood, also called a pseudo-log-likelihood
[Binder (1983)], has exactly the same form as the multinomial log-likelihood, ex-
cept for the replacement of the unweighted array {yjklmn} of sample counts by the
weighted sample totals (5.10). Again, any convergent IPF solution of the method-
of-moments equations setting marginal weight totals equal to weighted totals of
theoretical cell probabilities, which will always exist when the marginal totals are
all positive, is necessarily a pseudo-MLE, and is unique by concavity of the log-
likelihood as a function of the parameters. The pseudo-MLEs obtained in this way,
for the model and example of the paper, are also called weighted MLEs of (β, θ).

In general, the weighted version should be used to compute estimates of the
population MLEs from the sample. However, if the population model is correct and
our conditional independence assumption A2 holds, the weights can be dropped
for estimating the conditional probabilities in the hybrids.

5.2. Precision of hybrid estimators via balanced repeated replication. To
measure the standard error (SE) of the HT estimator and of the hybrid estimators
based on the model of Section 5, we use Balanced Repeated Replication [BRR,
Judkins (1990); Wolter (1985)]. BRR is approximately design-unbiased for the
variance of estimators which are smooth functions of survey-weighted totals. How-
ever, the numerical stability of BRR depends on the number of degrees of freedom
(df’s, roughly proportional to the number of strata) being large [Krewski and Rao
(1981)]. In California, SIPP supports only 23 estimation df’s, too small a num-
ber for comfort. In Section 6 of the Web Supplement, we present a simulation
study based on multinomial observations using the results of IPF for estimates of
the multinomial probabilities [Thibaudeau, Slud and Gottschalck (2017)]. The re-
sults indicate that BRR is relatively free of bias, but highly variable with only 23
df’s. However, the difference between two BRR estimates will have much smaller
standard error than the BRR estimates themselves if they are highly correlated.
Assuming that is the case, we employ the difference between the BRR variance
estimate of the hybrid and that of the HT estimator as a performance measure for
comparing the hybrid and HT estimators.
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TABLE 2
Gross Flows in Units ×104 SIPP 2004 CA Data—College Degree

Labor force status Weighted Unweighted

Wave 2 Wave 1 HT Model 1 Model 2 Model 1 Model 2

Estimator
Employed Employed 663.4 663.1 662.5 663.5 662.8
Employed Unemp 10.83 11.20 11.76 11.69 12.36
Unemp Employed 7.090 7.466 8.026 7.049 7.723
Unemp Unemp 9.590 9.213 8.654 8.727 8.052

SE
Employed Employed 23.20 23.17 23.14 23.04 23.00
Employed Unemp 1.316 1.539 1.527 1.571 1.562
Unemp Employed 2.325 1.906 1.919 1.680 1.720
Unemp Unemp 1.711 1.822 1.737 1.557 1.469

Tables 2 and 3 illustrate target classifications. Table 2 gives estimates for the
size of subdomains identified by employment status at wave 1 and 2 (employed
or unemployed) for the college educated subpopulation. Table 3 gives estimates
for employment status at wave 2, insurance coverage at wave 2 and education for
the same subpopulation. The estimators are computed using five different versions
of the hybrids: the HT estimator, and both the unweighted and weighted versions
of the hybrid estimator based on the two models discussed in Section 5. In some
cases, weighting the hybrids appears to reduce the relative bias. Table 2 shows this
clearly for the subdomain of unemployed in both waves with a college education.
For both Models 1 and 2, weighting the hybrids reduces the gap between the hy-

TABLE 3
Health Coverage in Units ×104 SIPP 2004 CA Data—College Degree

Wave 2 Weighted Unweighted

Coverage Labor force HT Model 1 Model 2 Model 1 Model 2

Estimator
Covered Employed 596.0 595.8 595.6 595.1 594.9
Uncov Employed 78.24 78.48 78.62 80.09 80.24
Covered Unemp 9.468 9.714 9.855 9.147 9.308
Uncov Unemp 7.211 6.966 6.824 6.629 6.467

SE
Covered Employed 23.33 23.28 23.25 22.98 22.95
Uncov Employed 4.596 4.554 4.531 4.743 4.725
Covered Unemp 1.920 1.958 2.031 1.775 1.827
Uncov Unemp 1.851 1.773 1.708 1.563 1.520
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brids and HT substantially. However, there is a price to pay for this bias reduction:
with weighting, the variance is larger.

Our overarching goal has been to produce subdomain estimators more accu-
rately than the direct HT method, especially in cases where HT estimates are egre-
giously inaccurate due to small sample sizes. We quantify our success through
key ratios associated with the target classifications, and their relative errors. Ta-
bles 4–5 exhibit ratios of subdomain sizes in the numerators over domain sizes
in the denominators. The subdomains are the cells of a 3-way classification given
by all three variables in the tables, while the denominator domains are the 2-way
marginal cells, as indicated in Tables 4 and 5.

Define the relative error of a hybrid ratio estimator as its standard deviation
divided by the HT ratio estimator. The denominator in the relative error is chosen
to be HT, instead of the hybrid ratio estimator, because the ratio in the latter case
would be the coefficient of variation. With this choice, the difference in relative
errors between two hybrid ratio estimators will not arise solely from a lack of
stability of the ratio estimates. Because they involve the same 3-way classification
as the hybrid in Table 2, we expect the hybrid ratio estimators in Table 4 to behave
similarly to the hybrid estimator in Table 2 with respect to relative error.

In the comparison of Table 4 among weighted and unweighted hybrid estima-
tors, the unweighted hybrid based on Model 1 arguably performs best. With no
apparent increase in bias, it cuts down the largest relative errors associated with
HT from 32% to 23% for the first ratio of unemployed, 23% to 18% for the sec-
ond, and 18% to 14% for the insurance coverage ratio of unemployed with no
college degree. Again, assuming the bias is negligible, this means substantially
shorter confidence intervals when estimating the population ratios using the pre-
ferred model. Overall, the relative errors of three of the four unemployment ra-
tios and one coverage ratio are cut substantially. Most importantly, the ratios with

TABLE 4
Unemployment Rate at Wave 2: Estimators and Relative Errors, from the SIPP 2004 CA data

Wave 1 Weighted Unweighted

Labor status Education HT Model 1 Model 2 Model 1 Model 2

Wave-2 unemployment rate ×10−2

Employed College 1.05 1.11 1.19 1.05 1.15
Employed No Col 1.24 1.19 1.12 1.29 1.23
Unemp College 46.9 45.1 42.3 42.7 39.4
Unemp No Col 36.7 37.7 39.2 38.0 39.4

Relative error
Employed College 0.325 0.266 0.267 0.232 0.236
Employed No Col 0.228 0.169 0.180 0.178 0.185
Unemp College 0.113 0.135 0.129 0.117 0.110
Unemp No Col 0.146 0.128 0.123 0.126 0.121
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TABLE 5
Health Insurance Coverage Rate at Wave 2: Estimators and Relative Errors, from the SIPP 2004 CA

data

Wave 2 Wave 1 Weighted Unweighted

Labor status Education HT Model 1 Model 2 Model 1 Model 2

Wave-2 health-insurance coverage rate ×10−2

Employed College 88.3 88.3 88.3 88.1 88.1
Employed No Col 68.1 68.1 68.2 67.9 67.9
Unemp College 56.7 58.2 59.0 57.9 59.0
Unemp No Col 36.3 35.1 34.7 35.18 35.0

Relative error
Employed College 0.008 0.008 0.008 0.008 0.008
Employed No Col 0.019 0.019 0.019 0.020 0.020
Unemp College 0.117 0.108 0.108 0.109 0.110
Unemp No Col 0.189 0.139 0.139 0.147 0.145

the largest relative errors yield the most substantial reductions in relative errors,
a desirable outcome. The improved efficiency of ratios arises from the improved
estimates of subdomain totals in Tables 2 and 3.

6. Discussion. Our log-linear estimation can be viewed as a kind of survey
regression in terms of post-stratification variables f and classifiers e. The setting
here is analogous to that of Gelman’s (2007) treatment of ordinary linear regression
in a post-stratified setting if his sampling fractions are replaced by survey weights
and linear regression is replaced by conditional logistic regression. The conditional
logistic specification has the form, for Model 2 in (5.1)–(5.6), when 2 < j + k < 5
and 1 < l,m,n < 3,

log
(

Pjk|lmn

P11|lmn

)
= δJ

j − δJ
1 + δK

k − δK
1 + ηJK

jk − ηJK
11 + ηJL

j l − ηJL
1l

+ ηJN
jn − ηJN

1n + ηKM
km − ηKM

1m + ηKN
kn − ηKN

1n(6.1)

= ψJ
j + ψK

k + ξ JK
jk + φJL

j l + φJN
jn + φKM

km + φKN
kn .

Such a model would generally be used for sparse multinomial cross-classifications.
If the corresponding log-linear model has a unique MLE estimable through IPF, as
is true for Models 1 and 2, then the MLEs of the parameters of (6.1) derive directly
from the multinomial log-linear model MLEs.

Log-linear models are applicable within surveys where the population can be
regarded as a stratified simple random sample from an i.i.d. superpopulation, with
certain survey variables plausibly satisfying additional conditional independence
relations. We are interested in assessing the fit of the models in order to avoid



LOG-LINEAR CONDITIONAL PROBABILITIES FOR ESTIMATION 695

biased estimation of the target cells. Our hybrid model consists of the model
(6.1) for the conditional probabilities of the small cells superimposed on the satu-
rated model estimated in design-based fashion. The likelihood-ratio goodness-of-
fit statistic G2 for the model reflects the fit only of the conditional probabilities,
since the marginal probabilities for the post-strata f follow the saturated model.
According to (6.1), the conditional probabilities for e|f have parameter dimension
reduced from 24 in a fully saturated model to 7 in Model 2 so that the goodness-of-
fit test has 24−7 = 17 degrees of freedom. The likelihood is easily maximized via
IPF and the goodness-of-fit (likelihood ratio) test yields G2 = 29.1 (p ≈ 0.033),
which indicates a mediocre fit at best.

Model 1 has a representation similar to (6.1). The parameter dimension is re-
duced from the conditional probabilities of the saturated model from 24 down to
9 in Model 1, leaving 15 degrees of freedom for the goodness-of-fit test. In this
case G2 is calculated to be 15.5 (p ≈ 0.41), qualifying Model 1 as statistically ad-
equate. While Model 2 appears to perform well enough in Tables 4 and 5, its poor
G2 fit largely disqualifies it. We strongly advocate the use only of statistically ade-
quate hybrid models in making estimation of the sort studied here, which supports
although does not guarantee unbiasedness relative to HT estimates.

We showed that the log-linear Model 1 is compatible with the design due to its
saturated structure at the post-stratum level, arises naturally from the population
model due to the longitudinal nature of SIPP through a logical suppression of
interactions, and nearly allows further suppression of interactions that would lead
to the stricter parametric constraints of Model 2, which might have shown adequate
fit if the sample size had been smaller.

Goodness-of-fit tests of Rao and Scott (1984) could also have been used to
assess model fit from a design-based point of view, but the sampling variability
inherent in cross-classifications with small cells will generally give these tests low
power. Noisy survey weights overall will handicap weighted hybrids and will lead
the practitioner to prefer unweighted hybrids, as in the example of the paper. But
such a replacement needs to be motivated and assessed anew in each application.

As pointed out by a referee, nonparametric variance estimation through BRR
is essential to our approach to assessing the hybrid models. However, BRR will
suffer from insufficient degrees of freedom for small states. Our recommendation
is to model several states together to increase degrees of freedom. Then state would
be used as an additional stratifier. The hope is again that some of the parameters
defining the log-linear conditional probabilities could be shared between strata.
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SUPPLEMENTARY MATERIAL

Supplement to “Modeling log-linear conditional probabilities for estima-
tion in surveys” (DOI: 10.1214/16-AOAS1012SUPP; .pdf). Technical Supple-
ment contains three sections: Conditional Likelihood Representation; Conditional
Probability Parameterization; and Simulation to evaluate BRR vs. the Laplace
Method.
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