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For professional basketball, finding valuable and suitable players is the
key to building a winning team. To deal with such challenges, basketball
managers, scouts and coaches are increasingly turning to analytics. Objec-
tive evaluation of players and teams has always been the top goal of basket-
ball analytics. Typical statistical analytics mainly focuses on the box score
and has developed various metrics. In spite of the more and more advanced
methods, metrics built upon box score statistics provide limited information
about how players interact with each other. Two players with similar box
scores may deliver distinct team plays. Thus professional basketball scouts
have to watch real games to evaluate players. Live scouting is effective, but
suffers from inefficiency and subjectivity. In this paper, we go beyond the
static box score and model basketball games as dynamic networks. The pro-
posed continuous-time stochastic block model clusters the players according
to their playing style and performance. The model provides cluster-specific
estimates of the effectiveness of players at scoring, rebounding, stealing, etc.,
and also captures player interaction patterns within and between clusters. By
clustering similar players together, the model can help basketball scouts to
narrow down the search space. Moreover, the model is able to reveal the sub-
tle differences in the offensive strategies of different teams. An application to
NBA basketball games illustrates the performance of the model.

1. Introduction. For decades, basketball data analysis has gained enormous
attention from basketball professionals and basketball enthusiasts from various
fields. The top goal has always been to better understand how players and teams
play, and conduct evaluations more efficiently and objectively. Over the last few
years, the explosion of available data, the growth of computer power and the de-
velopments of statistical models have made complex modeling of basketball data
possible. A revolution is happening in the field of basketball data analysis.

The traditional approaches focus on the box score, which lists the statistics of
players and teams of each game, for example, number of field goals attempted,
field goals made, rebounds, blocks, steals, plus-minus (+/−) and other snapshot
statistics. By combining the box score statistics, empirically or through regression
analysis, various metrics have been developed to evaluate players and team perfor-
mances [Oliver (2004); Shea and Baker (2013)]. However, “there is no Holy Grail
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of player statistics” [Oliver (2004)]. As pointed out by Shea and Baker (2013), the
metrics are either “bottom up” or “top down.” Bottom-up metrics mostly focus on
the individual performance, whereas top-down metrics put emphasis at the team
level. Traditional box score metrics mostly fail to take into account two important
factors of basketball: the interaction of players and the fact that a basketball play
is a real-time process.

Recently, researchers have started to investigate basketball games from these
two perspectives. By treating player positions (point guard, shooting guard, small
forward, power forward and center) as network nodes and ball passes as network
edges, Fewell et al. (2012) advocate “Basketball is not a game, but a network.”
They illustrate ball transition patterns of different teams by their basketball net-
works. Additionally, they quantitatively analyze basketball games and teams by
calculating network properties such as degree centrality, clustering coefficient, net-
work entropy and flow centrality. However, when building the networks, Fewell et
al. (2012) only consider the cumulative passes of games. Hence, the networks are
not able to capture details of basketball plays; neither can they describe players’
individual performances. In 2013, the National Basketball Association (NBA) in-
stalled optical tracking systems (SportVU technology) in all thirty courts to collect
real-time data. The tracking system records the spatial position of the ball and the
positions of all players on the court at any time of the game. It also records all
actions of the games. Using such comprehensive data, Cervone et al. (2016) model
the evolution of a basketball play as a complex stochastic process. Their model
reveals both offensive and defensive strategies of players and teams. Ultimately,
the model estimates the expected scores an offensive team can make at any time
of the play. The two approaches above certainly provide more insights and more
accurate evaluations of players, teams and basketball plays.

In the NBA, teams obtain new players through trades, free agency and the an-
nual draft. There are so many potential players, especially college players, that no
scout is able to keep close track on all of them. Clustering players to a number of
groups, according to their performances and playing styles, can efficiently narrow
down the search space. When searching for players, basketball managers, scouts
and coaches always hope that the new player can quickly fit in the current team.
Therefore, how players interact with teammates is of great importance. This must
be taken into account during the clustering procedure.

In this paper, we propose a Continuous-time Stochastic Block Model (CSBM)
to address the problem of player clustering. We model basketball games as trans-
actional networks and a basketball play as an inhomogeneous continuous-time
Markov chain. The CSBM clusters the players according to their performances
on the court. It also effectively reveals the players’ play styles and the teams’ of-
fensive strategies.

The remainder of the paper is organized as follows. In Section 2, we present
our view of basketball games as transactional networks and show the data format.
In Section 3, we introduce the standard stochastic block model and construct the
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FIG. 1. An undirected static network (left) and its adjacency matrix (right).

continuous-time stochastic block model. An EM algorithm and a complementary
algorithm are developed in Section 4. We illustrate our model by an application to
NBA basketball games in Section 5. In the end, we summarize our contributions.

2. Basketball networks. We begin with a brief introduction to some typical
networks, before moving to basketball networks.

A static network is a graph G = (V ,E), consisting of a set of vertices (or nodes)
V and a set of edges E. A network with n vertices can be represented by an n × n

adjacency matrix, A = [Aij ], where Aij = 0 or 1 indicates the absence or presence
of the i → j edge. Figure 1 shows a simple undirected network (Aij = Aji for all
i and j ) with four vertices and four edges. The relations between pairs of nodes
do not have to be binary-valued. When entries of the adjacency matrix take values
other than 0 or 1, the network is called weighted or multiedged.

Under certain circumstances, instead of observing an edge between two nodes,
we observe a series of transactions, for example, phone calls among a number of
people in a period of time. Such networks are transactional networks. The corre-
sponding data, as shown in Table 1, simply records the senders, the recipients and
the time of transactions.

We now look at basketball, a team game. Players pass the ball to each other
and form networks, with players as vertices and passing as transactions on edges.
A basketball game is made of basketball plays. Generally, a basketball play starts
with inbounding, rebounding or stealing the ball. During a play, the team with the

TABLE 1
A transactional network

From To Time of transaction

1 4 03/29/2015, 08:27
1 7 03/29/2015, 09:01
3 1 03/30/2015, 17:11
...

...
...
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FIG. 2. A basketball play. The ball is inbounded to player r at time 0; r passes the ball to i at time
t1; i passes the ball to j at time t2; . . . ; player i receives the ball at time tm−1 and passes it to r at
time tm; the play ends when player r scores 2 points at time T < 24 seconds.

ball plays offense and the other team plays defense. A play ends when the offensive
team shoots the ball (scores or misses but the ball hits the rim), makes a turnover
or the offensive player is fouled when shooting the ball, etc. In the NBA, the time
limit for one play is 24 seconds. Figure 2 illustrates one basketball play.

In a 48-minute NBA game, a team obtains about 90–110 plays. Fewell et al.
(2012) model basketball games as weighted networks by counting the frequencies
of ball transitions among the starts/ends of plays and the five positions of bas-
ketball players (point guard, shooting guard, small forward, power forward and
center). Figure 3, which is taken from Fewell et al. (2012), displays the overall
weighted network of 16 NBA games between 16 teams they have studied. The net-
work illustrates play patterns and strategies on a game level. Fewell et al. (2012)
compare the teams by investigating their networks. However, such network cannot
capture any detail of real-time basketball play.

We explore basketball games at the play level and take into account the time
effect. More specifically, we regard basketball games as a transactional network.
Table 2 illustrates our data, from games 1 and 5 of the 2012 NBA eastern confer-

FIG. 3. Weighted basketball network of 16 NBA games between 16 teams [Fewell et al. (2012)].
Circles represent the five positions (point guard, shooting guard, small forward, power forward and
center), and rectangles represent start or end points of a play. The width of the edge is proportional
to the frequency of the corresponding ball transitions. The most frequent transition directions, which
sum up to 60%, are colored red.
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TABLE 2
Two plays from game 1 of the 2012 NBA eastern conference finals between the Boston Celtics and
the Miami Heat. The top three lines show one play for the Boston Celtics. The ball is inbounded to

C#9 (Rajon Rondo) at time 0; Rondo dribbles the ball and passes it to C#5 (Kevin Garnett) at
second 11; Garnett misses a 2-pointer shot at second 12. Lines 4 to 9 illustrate one play for the

Miami Heat

From To Time (s) Players on the court

Inbound C#9 0 C#9, C#20, C#30, C#34
C#9 C#5 11 C#5, C#9, C#20, C#30, C#34
C#5 Miss 2 12 C#5, C#9, C#20, C#30, C#34

Rebound H#6 0 H#3, H#6, H#15, H#21, H#31
H#6 H#3 7 H#3, H#6, H#15, H#21, H#31
H#3 H#15 8 H#3, H#6, H#15, H#21, H#31
H#15 H#3 9 H#3, H#6, H#15, H#21, H#31
H#3 H#6 12 H#3, H#6, H#15, H#21, H#31
H#6 Miss 3 17 H#3, H#6, H#15, H#21, H#31

ence finals between the Miami Heat and the Boston Celtics. We manually collected
the data by watching the videos of the games.

In a basketball game, only ten players, five from each team, are on the court at
one time. This means that a basketball game is subject to many player substitutions.
The last column of Table 2 records the players from the offensive team who are on
the court at the events. Such information is necessary for our model. Note that the
player inbounding the ball is treated as being off the court at the time of that event.
For example, in Table 2, C#5 is inbounding the ball and not listed as being on the
court.

As indicated earlier and shown in Figure 3, there are various ways to start and
end a play. A play mostly starts with one of the three initial actions: inbound-
ing, rebounding and stealing the ball. However, a play technically may end with
about fifteen different outcomes. For simplicity, we combine the outcomes to six
categories: making a 2-pointer (Make 2), making a 3-pointer (Make 3), missing a
2-pointer (Miss 2), missing a 3-pointer (Miss 3), being fouled (Fouled) and making
a turnover (TO). Scoring and being fouled at the same time is simply counted as
scoring. Catching an air ball is counted as rebounding. All possible ways of giving
up the possession of the ball such as direct turnover, being out of bounds and an
offensive foul are regarded as a turnover. We do not consider rare events such as a
jump ball. We simply discard the rows corresponding to the rare events.

Although we group events into plays in Table 2, the model developed later in
Section 3 will treat each event as an individual occurrence, ignoring which play it
belongs to, that is, the data in Table 2 will be seen as 9 isolated events (each with
a timestamp), rather than 3 events in one play and 6 events in another play.
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3. Models. Our goal is to model the basketball network and cluster players
into different groups, so that players in the same group have similar playing styles,
while those in different groups play the game in more distinct ways. We propose a
continuous-time stochastic block model. The main idea is to adopt the stochastic
block model framework and model basketball plays as Markov chains.

3.1. Stochastic block models. The Stochastic Block Model (SBM) [Snijders
and Nowicki (1997); Holland, Laskey and Leinhardt (1983); Wang and Wong
(1987)] is an important framework for model-based community detection in static
networks. Many recent works have generalized the model [Airoldi et al. (2008);
Karrer and Newman (2011)] and explored its theoretical properties [Bickel and
Chen (2009); Rohe, Chatterjee and Yu (2011); Zhao, Levina and Zhu (2012); Choi,
Wolfe and Airoldi (2012)]. The standard SBM assumes that each node belongs to
an underlying block or community. Nodes in the same block are stochastically
equivalent. The distribution of an edge between two nodes is governed by the
blocks to which they belong. Moreover, given the block affiliations of the nodes,
all edges are conditionally independent.

Mathematically, recall that a network with n vertices can be represented by an
n × n adjacency matrix, A = [Aij ], where Aij = 0 or 1, respectively, indicates the
absence or presence of the edge, i → j . The SBM specifies that, given K blocks
and the block labels of all the nodes, e = {e1, e2, . . . , en}, where ei ∈ {1,2, . . . ,K},
the conditional distribution of these Aij ’s has the form

(1) L(A|e) = ∏
1≤i �=j≤n

P(Aij |ei, ej ),

where P(Aij |ei, ej ) is the conditional probability that there is an edge from i to j

given their block labels ei and ej , typically modeled by a Bernoulli distribution,
that is,

(2) P(Aij |ei, ej ) = P
Aij
eiej (1 − Peiej

)1−Aij ,

where {Pkl : k, l = 1,2, . . . ,K} are the K2 parameters of the model.
Given a network and a fixed number of blocks, K , the best label configuration

e can be obtained by maximizing the profile likelihood function [Bickel and Chen
(2009)]. However, finding the optimal solution is NP-hard. Heuristic algorithms
are available [Bickel and Chen (2009); Karrer and Newman (2011); Zhao, Levina
and Zhu (2012)]. The model can also be fitted with an EM algorithm [Snijders and
Nowicki (1997)].

3.2. A continuous-time stochastic block model. We generalize the standard
SBM to a continuous-time SBM for basketball networks. During a basketball play
(Figure 2), an initial action (e.g., inbounding) first transfers the ball to a player;
the ball then moves among the players; finally, a play outcome is reached (e.g.,
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the attacking team scores a 2-pointer). Hence, the ball moves among three types
of nodes (see Section 2): a set of nodes S = {inbounding, rebounding, stealing}
that designate different initial states, a total of n nodes that are players themselves
and a set of nodes A = {Make 2,Miss 2,Make 3,Miss 3,Fouled,TO} that desig-
nate different outcomes. In addition, we assume that there are K blocks, and each
player only belongs to one block. The initial actions and the play outcomes are
observable, but the blocks to which the players belong are not. Again, denote the
block labels of the players by e = {e1, e2, . . . , en}, where ei ∈ {1,2, . . . ,K}. These
block labels are latent. Following the conditional independence assumption of the
SBM, the transactions among the nodes are independent given the block labels of
the players. The conditional distribution for the entire basketball network, which
includes all basketball plays, can be written as

(3) L(T|e) =
[∏

s∈S

n∏
i=1

LI (Tsi |e)
]

·
[ ∏

1≤i �=j≤n

LP (Tij |e)
]

·
[

n∏
i=1

∏
a∈A

LO(Tia|e)
]
,

where Tsi denotes the transactions from an initial action s to player i; Tij denotes
the transactions from player i to player j ; and Tia denotes the transactions from
player i to an outcome a. The conditional distribution (3) contains three natural
components: LI , the distribution of all transactions from initial actions to play-
ers; LP , the distribution of all passes among players; and LO , the distribution of
all transactions from players to play outcomes. In the following subsections, we
specify the details of these components one by one.

3.2.1. Transactions from initial actions to players. Define P = {Psk : s ∈
S;k = 1,2, . . . ,K}, where each Psk is the probability that the basketball moves
from initial action s to a player in block k. These probabilities are subject to the
constraint that

(4)
K∑

k=1

Psk = 1 for any s ∈ S.

Given the block labels of all players, e = {e1, e2, . . . , en}, the distribution of the
transactions from initial action s to players i is defined as

(5) LI (Tsi |e) =
msi∏
h=1

Psei
· 1

Gsih
ei∑K

k=1(Psk · I (Gsih
k > 0))

,

where msi is the total number of times that a play goes from initial action s to
player i. The quantity Gsih

k , denotes the total number of “eligible receivers” be-
longing to block k for this particular play (from s to i), where “eligible receivers”
are those players (including i here) who are on i’s team and also physically on the
basketball court (as opposed to sitting on the bench) at the hth time that a trans-
action takes place from initial action s to player i. In general, we use the notation
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G
�
k to indicate the number of “eligible receivers” in block k at the time of an event

indexed by �. Quantities of this kind will appear a few more times in the next few
sections.

The definition (5) implies that players in the same cluster are stochastically
equivalent. The probability that player i receives the ball from an initial action
s is governed by the block-level probability Psei

and individual-level probability
1/Gsih

ei
, where we have assumed that all eligible receivers in the same cluster have

an equal chance to receive the ball. The individual-level probability is needed in
addition to the block-level probability because there is only one ball at all times
and only one player can receive it.

Recall that we consider three initial actions: inbounding, rebounding and steal-
ing. While rebounding and stealing both guarantee a new play, inbounding can
start a new play or happen in the middle of a play. For example, a team may call
a time-out in the middle of a play, and the play is resumed from the stoppage time
by inbounding the ball. Another common situation is when an offensive player is
fouled without being awarded free throws; the play is paused and resumed by in-
bounding the ball. We treat all inbounding events as initial actions and account for
them in this part (LI ) of the probability distribution.

Before concluding this section, we introduce a simplification to (5). For our
NBA application, we pick K = 3 or 4, so all clusters have players on the court in
most of the time. This implies that almost all normalization terms in (5), that is,∑K

k=1(Psk ·I (Gsih
k > 0)) for all s, i and h, are equal to one. Hence, we approximate

(5) by ignoring the normalization terms, giving

(6) LI (Tsi |e) =
msi∏
h=1

(
Psei

· 1

Gsih
ei

)
.

3.2.2. Transactions among players. Intuitively, in a basketball play, what hap-
pens next mostly depends on the current situation, for example, who has the ball at
the moment, which players are on the court, and so on. Therefore, we model each
basketball play as an inhomogeneous Markov chain. Players are treated as regu-
lar states; initial actions are treated as initial states; and play outcomes are mod-
eled as absorbing states. We discussed transactions from initial states to regular
states in Section 3.2.1. In this section, we focus on the regular states and construct∏

1≤i �=j≤nLP (Tij |e)—the second component in (3), the conditional distribution
of transactions among players, given the cluster labels e.

Inhomogeneous Poisson process. Before doing so, we digress momentarily to
look at the distribution of a inhomogeneous Poisson process, often used in event
history analysis [Cook and Lawless (2007)]. Figure 4 shows a Poisson process with
m events, happening at times t1 < · · · < tm over the interval [t0, tm]. Suppose that
our observation of the process stops at time tm. Let ρ(t) denote the rate function
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FIG. 4. A Poisson process.

of this inhomogeneous Poisson process. The distribution is of the form [Cook and
Lawless (2007), page 30]

(7) L =
m∏

i=1

L
(
(ti−1, ti]) =

m∏
i=1

(
ρ(ti) · exp

(
−

∫ ti

ti−1

ρ(u)du

))
.

The time intervals {(ti−1, ti], i = 1,2, . . . ,m} are independent. For each time in-
terval (ti−1, ti], the distribution consists of two parts: the part for the actual event,
ρ(ti), and the part for the time gap between events, exp(− ∫ ti

ti−1
ρ(u)du). The

derivation of (7), especially showing why the part for the time gap has this par-
ticular form, is given in Appendix A; it can also be found in Cook and Lawless
(2007).

Components of LP (Tij |e). We now derive LP (Tij |e), the conditional distribu-
tion of transactions from player i to j . To start, we revisit the basketball play
shown in Figure 2 and isolate the segments related to the i → j process. For sim-
plicity, suppose that player j is on the court during the entire play. As shown in
Figure 5, player i first receives the ball at time t1 and passes it to player j at time
t2, so the time period (t1, t2] clearly belongs to the i → j process. Next, player
i gains possession of the ball again at time tm−1 and the ball is passed to player
r �= j at time tm. Although player i does not make this pass to player j , he has the
potential to do so. Hence, the time period (tm−1, tm) is also related to the i → j

process. In fact, aside from the time point t2 itself, there is no difference between
the segments (tm−1, tm) and (t1, t2) in terms of being part of the i → j process—as
long as i has possession of the ball, the segment is related to the i → j process,
regardless of whether i actually passes the ball to j or not at the end of the seg-
ment. In Figure 5, the segments related to the i → j process are highlighted by
solid points and segments. Any solid point indicates an actual pass going from i

to j . Any solid segment means that, during that time period, an i-to-j pass has the
potential to happen.

Given the cluster labels e, we model each i → j process as pieces of a Poisson
process. In addition, since each play is independent of one another, we can pool
together all the “solid segments” and “solid points” (again, see Figure 5) from

FIG. 5. Segments of a play that are related to the i → j process. The i → j process consists of the
solid point and the solid segments.
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different plays. Instead of K2 scalar parameters for the standard SBM, for the
continuous-time SBM we now have K2 rate functions, {ρkl(t) : k, l = 1,2, . . . ,K},
where each ρkl(t) is the rate that the ball moves from a player in cluster k to a
player in cluster l at time t . By equation (7), the distribution of transactions from i

to j is

LP (Tij |e)

=
[mij∏

h=1

(
ρeiej

(tijh) · 1

G
ijh
ej

)]
︸ ︷︷ ︸

LP1 (Tij |e)

(8)

·
[

Mi∏
h=1

exp
(
−

∫ tih

t−ih
ρeiej

(t) · I ih
j

Gih
ej

dt

)]
︸ ︷︷ ︸

L̃P2 (Tij |e)

,

where:

• mij is the total number of passes from i to j ;
• tijh is the time of the hth pass from i to j ;

• G
ijh
ej is the number of “eligible receivers” belonging to block ej for the hth pass

between i and j , with “eligible receivers” being those players (excluding i here)
who are on i’s team and also physically on the basketball court at the time of
this pass;

• Mi is the total number of times that player i has possession of the ball;
• (t−ih, tih) is the hth time interval in which player i has possession of the ball;
• Gih

ej
is the number of “eligible receivers” belonging to block ej for the hth pass

from player i (regardless of whether j is the recipient or not); and
• the indicator I ih

j is defined as

I ih
j =

{
1, if player j is an “eligible receiver” for the hth pass from i;

0, otherwise.

Note that the quantities, Gih
ej

and I ih
j , are both constant on any interval (t−ih, tih],

since the rules of the game prevent player substitutions during any such time inter-
val. In addition, we have defined

(9) LP1(Tij |e) ≡
mij∏
h=1

(
ρeiej

(tijh) · 1

G
ijh
ej

)

but written L̃P2 for the second component (rather than LP2 ) because it can be
simplified further (more details below) and this here is not the final expression we
shall use.
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In (8), the first term contains information about all passes from i to j , and the
second term contains the information that i does not make a pass to j during all
those time gaps in which i has possession of the ball. The overall rate function for
the i → j process consists of two distinctive parts. First, the rate function ρeiej

(t)

captures the rate of passing the ball at a cluster level. Second, similar to the fraction
in (6), the fractions

1

G
ijh
ej

and
I ih
j

Gih
ej

,

are the probabilities that player j is the actual receiver of the ball in group ej . As
in Section 3.2.1, we have assumed that all eligible receivers in the same cluster
have an equal chance to receive the ball.

Notice that, if player j is off the court for a particular pass from i or if j is on
the opponent team playing against i, then the fraction I ih

j /Gih
ej

is automatically

0 by the definition of I ih
j . In this way, time intervals (t−ih, tih) in which j is not

an “eligible receiver” do not contribute to the i → j process, as one intuitively
would expect. Furthermore, if Gih

ej
= 0, it means there is no “eligible receiver”

in block ej —this can only happen if player j is not eligible itself, that is, when
I ih
j = 0, because otherwise Gih

ej
is at least one since player j (always) belongs to

block ej . We define 0/0 = 0. Finally, all time points, {tijh : i, j = 1,2, . . . , n;h =
1,2, . . . ,mij } and {t−ih, tih : i = 1,2, . . . , n;h = 1,2, . . . ,Mi}, take values on the
interval [0,24] (see Section 2).

Further simplification of L̃P2 . So far, we have derived the (conditional) distribu-
tion of transactions from player i to player j , LP (Tij |e). The conditional indepen-
dence assumption means the (conditional) distribution of transactions between all
pairs of players is simply∏

1≤i �=j≤n

LP (Tij |e) =
[ ∏

1≤i �=j≤n

LP1(Tij |e)
]

·
[ ∏

1≤i �=j≤n

L̃P2(Tij |e)
]
.

The second term above can be simplified further. In particular,

∏
1≤i �=j≤n

L̃P2(Tij |e) = ∏
1≤i �=j≤n

Mi∏
h=1

exp
(
−

∫ tih

t−ih
ρeiej

(t) · I ih
j

Gih
ej

dt

)

=
n∏

i=1

Mi∏
h=1

∏
j �=i

exp
(
−

∫ tih

t−ih
ρeiej

(t) · I ih
j

Gih
ej

dt

)

=
n∏

i=1

Mi∏
h=1

exp
[
−

∫ tih

t−ih

∑
j �=i

(
ρeiej

(t) · I ih
j

Gih
ej

)
dt

]
(10)
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=
n∏

i=1

Mi∏
h=1

exp

[
−

∫ tih

t−ih

K∑
l=1

∑
j �=i
ej=l

(
ρei l(t) · I ih

j

Gih
l

)
dt

]

=
n∏

i=1

Mi∏
h=1

exp

[
−

∫ tih

t−ih

K∑
l=1

(
ρei l(t) · ∑

j �=i
ej=l

I ih
j

Gih
l

)
dt

]
.

Notice that, on the set ej = l, whenever Gih
l = 0 (i.e., nobody in block l is an

eligible receiver), we must have I ih
j = 0 as well (i.e., player j cannot be an eligible

receiver, either, since ej = l means player j belongs to block l). Therefore,

∑
j �=i
ej=l

I ih
j

Gih
l

= I
(
Gih

l > 0
)
.

Continuing with (10), this means∏
i≤1�=j≤n

L̃P2(Tij |e)
(11)

=
n∏

i=1

Mi∏
h=1

exp

[
−

∫ tih

t−ih

K∑
l=1

(
ρei l(t) · I (

Gih
l > 0

))
dt

]
︸ ︷︷ ︸

LP2 (Ti |e)

.

Decomposition of LP (Tij |e). Putting all the pieces together, the conditional dis-
tribution of all transactions among players, given the block labels, is of the form

(12)
∏

1≤i �=j≤n

LP (Tij |e) =
[ ∏

1≤i �=j≤n

LP1(Tij |e)
]

·
[

n∏
i=1

LP2(Ti |e)
]
.

The first component,
∏

i �=j LP1(Tij |e), contains information about all passes from
i to j . The second component,

∏n
i=1 LP2(Ti |e), contains information about all

the time gaps in which player i has possession of the ball—although, admittedly,
denoting all these time gaps here by Ti is a slight abuse of notation.

In equation (11), the indicator I (Gih
l > 0) is important for two reasons. First, if

node i is the only member in group l or if group l is empty, then it is impossible
for i to pass the ball to group l, so intuitively the rate function ρei l(t) should not
contribute any information to this part of the probability distribution. Indeed, in
either situation, we have Gih

l = 0, and this indicator effectively “annihilates” the
contribution of ρei l . Second, we can see from (11) that, overall, player i has a rate
of

∑K
l=1(ρei l(t) · I (Gih

l > 0)) to pass the ball at time t . Given ρkl(t), when there
are fewer groups for player i to pass the ball to, its overall rate of passing the ball
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is automatically reduced by this indicator, which agrees with our intuition about
how basketball games are played.

Notice that in (8), the terms G
ijh
ej and Gih

ej
, which count the number of eligi-

ble receivers, depend on the cluster labels of other on-court players. The expres-
sion in (6) has a similar dependence. Hence, the likelihood (3) is really a pseudo-
likelihood [Besag (1975)].

3.2.3. Transactions from players to play outcomes. The play outcomes are
modeled as absorbing states of the Markov chain. Given a set A of different play
outcomes, we define additional rate functions {ηka(t) : k = 1,2, . . . ,K;a ∈ A},
where ηka(t) is the rate that a play goes from group k to absorbing state a at
time t .

Whenever player i has possession of the ball, there exists a possibility that the
ball is “passed” to an absorbing state, a. Analogous to (8), the distribution of trans-
actions from player i to an absorbing state a can be written as

(13) LO(Tia|e) =
[

mia∏
h=1

ηeia(tiah)

]
·
[

Mi∏
h=1

exp
(
−

∫ tih

t−ih
ηeia(t)dt

)]
,

where mia is the total number of times that the ball goes from node i to absorb-
ing state a; and tiah is the time of the hth event from i to a—except that we no
longer need to multiply the rate function ηeia(·) by an additional individual-level
probability (such as 1/Giah

ei
), since there are not multiple options within an ab-

sorbing state as there can be multiple players in a cluster. As in (8), the first term
contains information about the event times, and the second term contains the in-
formation that player i does not “cause” the play to end in absorbing state a while
in possession of the ball.

Even though being fouled does not always end a play, we still consider being
fouled as an “outcome” and take account of all fouls in this part (LO ) of the prob-
ability distribution.

3.2.4. A Markov chain. Here is a brief recapitulation of how we have modeled
basketball networks (Sections 3.2.1, 3.2.2 and 3.2.3) conditional on the cluster la-
bels of the players. There are three types of nodes in the network: special nodes
that designate initial actions, regular nodes that are players themselves and termi-
nal nodes that designate play outcomes. If we isolate any two regular nodes, or a
regular node and a terminal node, transactions between those two nodes have been
modeled as an inhomogeneous Poisson process. Each basketball play, however,
will consist of a sequence of transactions—typically starting from a special node,
traveling across multiple regular nodes, and ending in a terminal node. Each play
is thus an inhomogeneous, continuous-time Markov chain, of which the players
are regular states and outcomes are absorbing states.



566 L. XIN, M. ZHU AND H. CHIPMAN

3.2.5. Nonparametric modeling of rate functions. We model the rate functions
nonparametrically by cubic B-splines:

ρkl(t) =
P∑

p=1

eβklpBp(t) for k, l = 1,2, . . . ,K,(14)

ηka(t) =
P∑

p=1

eψkapBp(t) for k = 1,2, . . . ,K and a ∈A,(15)

where {B1(t),B2(t), . . . ,BP (t)} are basis functions; and β = {βklp : k, l =
1,2, . . . ,K;p = 1,2, . . . ,P }, ψ = {ψkap : k = 1,2, . . . ,K;a ∈ A;p = 1,

2, . . . ,P } are coefficients. We use exponentiated coefficients, eβklp and eψkap , to
ensure that all rate functions are nonnegative. We use 15 cubic B-spline basis
functions in the NBA applications below.

3.3. Related models. Vu et al. (2011) also adopted event history models to
deal with transactional networks, but they did not consider block structures. There
are also a number of studies about transactional networks in the framework of
SBMs. For example, Shafiei and Chipman (2010) focused on the number of trans-
actions, but did not consider the time factor. Ho, Song and Xing (2011) and Xu
and Hero (2014) studied networks at discrete time points and used state space
models to describe intertemporal dynamics. DuBois, Butts and Smyth (2013) had
some ideas similar to ours; they focused on generic transactional networks and
parameterized the rate/intensity function using a linear model of various network
statistics, but their model could not be applied directly to basketball networks.

4. An EM+ algorithm. Since the cluster labels, e = (e1, e2, . . . , en), are un-
known, we introduce latent variables and adopt the Expectation-Maximization
(EM) algorithm to fit the continuous-time SBM. Due to the complexity of the
model, we have found in our experience that the EM algorithm alone can some-
times be trapped in various local optima. Running the EM algorithm with many
random starting points helps, but it is quite inefficient. Instead, we have added a
complementary heuristic algorithm to run after the EM algorithm. We refer to the
complementary algorithm as the “Plus algorithm” and call our overall algorithm
an “EM+ algorithm.” Empirically, we have found that the EM+ algorithm often
reaches a nice optimal point with fewer starting points than does the EM algorithm
itself.

4.1. EM algorithm. Let zi = (zi1, zi2, . . . , ziK) denote a latent label indicator
for node i, such that

(16) zik =
{

1, if node i belongs to cluster k;

0, otherwise.
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Marginally,

z1,z2, . . . ,zn
i.i.d.∼ multinomial(1,π) where π = (π1, . . . , πK).

We shall use � = {P,β,ψ,π} to denote all parameters and Z = {zi : i =
1,2, . . . , n} to denote all latent indicators. The complete likelihood of the
continuous-time SBM is simply the joint distribution of (T,Z) viewed as a func-
tion of �. To simplify our notation as well as to make more direct references to
the models we described in Section 3, in this section we will often suppress � and
still write L(T,Z) instead of L(�;T,Z) for the likelihood function. Hence, the
complete likelihood is

(17) L(T,Z) = L(T|Z) ·L(Z).

The conditional likelihood L(T|Z) is simply a latent-variable-coded version of
L(T|e) (3), that is,

L(T|Z)

=
[∏

s∈S

n∏
i=1

LI (Tsi |Z)

]
·
[ ∏

1≤i �=j≤n

LP (Tij |Z)

]
·
[

n∏
i=1

∏
a∈A

LO(Tia|Z)

]
(18)

=
[∏

s∈S

n∏
i=1

LI (Tsi |Z)

]
·
[ ∏

1≤i �=j≤n

LP1(Tij |Z) ·
n∏

i=1

LP2(Ti |Z)

]

·
[

n∏
i=1

∏
a∈A

LO(Tia|Z)

]
,

where the second step above is due to (12). More specifically, the components of
(18) are simply latent-variable versions of (6), (9), (11) and (13):

LI (Tsi |Z) =
K∏

k=1

[
msi∏
h=1

(
Psk · 1

Gsih
k

)]zik

,(19)

LP1(Tij |Z) =
K∏

k=1

K∏
l=1

[mij∏
h=1

(
ρkl(tijh) · 1

G
ijh
l

)]zikzjl

,(20)

LP2(Ti |Z) =
K∏

k=1

[
Mi∏
h=1

exp

(
−

K∑
l=1

∫ tih

t−ih
ρkl(t) · I (

Gih
l > 0

)
dt

)]zik

,(21)

LO(Tia|Z) =
K∏

k=1

[
mia∏
h=1

ηka(tiah) ·
Mi∏
h=1

exp
(
−

∫ tih

t−ih
ηka(t)dt

)]zik

.(22)

The marginal likelihood of Z is

(23) L(Z) =
n∏

i=1

K∏
k=1

π
zik

k .
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4.1.1. E-step. In the E-step, we compute E(logL(T,Z)|T;�∗), the condi-
tional expectation of the log-likelihood given the observed network T under the
current parameter estimates (denoted by �∗). The conditional expectation is with
respect to the latent variables Z. From (19)–(22) it is clear (details in the Ap-
pendix B.1) that there are three types of conditional expectations to evaluate:

• E(zik|T;�∗), from logLI (Tsi |Z), logLO(Tia|Z) and logL(Z), respectively;
• E(zikzjl|T;�∗), from logLP1(Tij |Z); and
• E(zik · I (Gih

l > 0)|T;�∗), from logLP2(Ti |Z).

After taking logarithms, the terms involving 1/Gsih
k and 1/G

ijh
l in (19) and (20)

are additive “constants” that depend only on the latent variables Z but contain no
information about the parameters �; they can be omitted for the EM algorithm.
The quantity

Gih
l = ∑

j �=i

(zjl · I ih
j )

and hence the indicator I (Gih
l > 0) are both functions of the latent variables. Here,

we see more clearly why the further simplification of LP2 —equation (11)—is use-
ful. Due to the interactions of the players, the latent variables are conditionally
dependent and an exact calculation of the conditional expectations above is NP-
hard. For instance, in order to calculate E(zik|T;�∗), one needs to marginalize the
cluster labels over all nodes that interact with i. We use a Gibbs sampler to draw
samples from L(Z|T;�∗), and use the corresponding sample means to approxi-
mate E(zik|T;�∗), E(zikzjl|T;�∗) and E(zik · I (Gih

l > 0)|T;�∗).

Gibbs sampler. Let Z−i = {zj : j �= i} denote the latent cluster indicators of all
players other than i. The idea of the Gibbs sampler is to draw

z1 ∼ L
(
z1|Z−1,T;�∗)

,

z2 ∼ L
(
z2|Z−2,T;�∗)

,

...

zn ∼ L
(
zn|Z−n,T;�∗)

,

z1 ∼ L
(
z1|Z−1,T;�∗)

,

z2 ∼ L
(
z2|Z−2,T;�∗)

,

...

repeatedly until the stationary distribution is reached. (In our application, a handful
of repetitions are often sufficient.) Under the current parameter estimate �∗, the
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conditional distribution of zi given Z−i and T is

(24) L
(
zi |Z−i ,T;�∗) = L(T,Z;�∗)∑

zi
L(T,Z;�∗)

,

a multinomial distribution which is easy to sample from. More explicitly, suppose
that, at the current step, zjcj

= 1 for j �= i—this means ej = cj for all j �= i or
that cj is the current group label for player j . Then the conditional probability of
player i belonging to cluster k is

P
(
zik = 1|Z−i ,T;�∗)

= P
(
ei = k|{ej = cj : j �= i},T;�∗)

(25)

= L(T, e = (c1, c2, . . . , ci−1, k, ci+1, . . . , cn);�∗)∑K
l=1 L(T, e = (c1, c2, . . . , ci−1, l, ci+1, . . . , cn);�∗)

.

4.1.2. M-step. In the M-step, we update the parameters � by maximizing
E(logL(T,Z)|T;�∗). We have closed-form solutions for π , the marginal prob-
abilities of Z, and for P, the transition probabilities from initial states:

πk =
∑n

i=1 E(zik|T;�∗)∑n
i=1

∑K
l=1 E(zil|T;�∗)

=
∑n

i=1 E(zik|T;�∗)
n

,(26)

Psk =
∑n

i=1[msiE(zik|T;�∗)]∑K
k=1

∑n
i=1[msiE(zik|T;�∗)] ,(27)

for k = 1,2, . . . ,K and s ∈ S ; detailed derivations are given in Appendix B.2.
However, there are no closed-form solutions for β and ψ , the (log)-coefficients for
the rate functions. We use the quasi-Newton method with L-BFGS-B updates—
more specifically, we use the optim function in R including the analytic form of
the gradient.

4.1.3. Remarks. Here, we make a few important remarks about the EM algo-
rithm. The conditional probabilities driving the Gibbs sampler turn out to be fairly
close to 0 or 1, that is, in equation (25), one of the K terms being summed in the
denominator is significantly larger than the others. The reason is that each player
is involved in many transactions. As far as the likelihood function is concerned,
these transactions act as if they were repeated measurements, which reinforce the
assignment of the player to a particular group. The Gibbs sampler thus converges
very quickly to a singular probability mass. This essentially reduces the EM algo-
rithm to a K-means algorithm: the E-step reassigns the players to different groups,
and the M-step re-estimates the parameters. Overall, the EM algorithm converges
in just a few iterations. But the EM algorithm can sometimes be trapped in a local
optimum. The typical way to avoid these traps is to use different starting points,
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run the EM algorithm for a few times and pick the one giving the largest likeli-
hood value. This “standard” procedure alone could be quite inefficient. Instead,
we introduce another heuristic algorithm, which we refer to as the Plus algorithm
(Section 4.2), as a complement to the EM algorithm. Sometimes, for example,
when the EM solution is already quite good, the Plus algorithm may not find any
further improvement.

4.2. The Plus algorithm. This algorithm is inspired by the heuristic algorithm
used by Karrer and Newman (2011) for the so-called degree-corrected SBM. The
main idea is to evaluate all neighbors of the current labeling configuration and
move to the best neighbor whether the likelihood improves or not. A neighbor of a
labeling configuration e = (e1, e2, . . . , en) is defined as the one with only one entry
being different. Thus, if e′ and e are neighbors, then there exists some 1 ≤ i ≤ n

such that ei �= e′
i , but otherwise ej = e′

j for all j �= i. Given n nodes and K clusters,
one labeling configuration has n(K − 1) neighbors. The steps of the algorithm are
as follows:

1. Start with r = 0.
2. Repeat the following steps until convergence, or for a fixed number of steps.

(a) Given a labeling configuration e(r) and parameter �(r) estimated under e(r),
calculate the likelihood of all neighboring configurations, using the same
parameter estimate, �(r).

(b) Let e(r+1) be the neighbor that gives the largest likelihood.
(c) Re-estimate the parameters using e(r+1), and denote the result by �(r+1).

3. Choose the best configuration among e(0), e(1), e(2), . . . .

We use the result from the EM algorithm as the starting point e(0) to run the
Plus algorithm. The Plus algorithm converges when there exists a set of configura-
tions e1, e2, . . . , eq such that e1 is the best neighbor of e2, e2 is the best neighbor
of e3, . . . , and eq is the best neighbor of e1. Often, this happens for q = 2, but
sometimes it can happen for q > 2. Note that, while e(r+1) in step 2(b) gives the
largest likelihood among all neighbors of e(r), it may still give a smaller likelihood
than does e(r) itself, but the Plus algorithm “accepts” e(r+1) nonetheless. This is
the main reason why the Plus algorithm can help the EM algorithm avoid local
optima. On the other hand, the Plus algorithm itself moves very slowly—in any
given iteration, only one node label is changed, so it is quite inefficient to use it as
a standalone algorithm, but we have found it to work well as a complement to the
EM algorithm.

5. Application to NBA data. In this section, we apply our Continuous-time
Stochastic Block Model (CSBM) to a few NBA basketball games that we have
annotated ourselves. The games are: the 2012 NBA eastern conference finals be-
tween the Miami Heat and the Boston Celtics, games 1 and 5; and the 2015 NBA
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finals between the Cleveland Cavaliers and the Golden State Warriors, games 2
and 5. For each game, we only consider the first three quarters to avoid having to
deal with garbage time or irregular playing strategies (such as committing fouls on
purpose), which are both common in the last quarter. In Section 5.1, we present
some further model simplifications and corresponding adjustments to the EM+ al-
gorithm. In Sections 5.2 and 5.3, we present results for the 2012 games between
the Heat and the Celtics, and those for the 2015 games between the Cavaliers and
the Warriors, respectively. In Section 5.4, we compare the 2012 Miami Heat with
the 2015 Cleveland Cavaliers, while paying special attention to the performance
of LeBron James as he played with these two different teams in those two series.

5.1. Model simplifications and adjustments of the EM+ algorithm. In prac-
tice, the general model is complex, with K(K + |A|) rate functions to estimate.
For applications to NBA data, we further simplify the general form by defining

ρkl(t) = λk(t) · Pkl,(28)

ηka(t) = λk(t) · Pka,(29)

such that λk(t) is the rate function of the ball leaving a player in group k; Pkl and
Pka are transition probabilities that the ball goes to group l and absorbing state a,
respectively. The transition probabilities are subject to the constraint

(30)
K∑

l=1

Pkl + ∑
a∈A

Pka = 1 for any k = 1,2, . . . ,K.

By making such simplifications, we assume that, whenever the ball leaves cluster
k, the rates to other clusters and absorbing states are formed by a common rate and
proportionality constants. In reality, the transition probabilities may change over
time, but we believe that the simplified model still contains sufficient information
to cluster players and reveal important patterns. The results in next section provide
convincing evidence.

The rate function simplifications lead to modifications in the EM+ algorithm.
Recall that for the general model, we update the marginal and initial probabilities
by (26) and (27), respectively, in the M-step. Meanwhile, we update the rate func-
tions by the quasi-Newton method. Under the simplified model, (26) and (27) still
apply because the marginal and initial probabilities remain unchanged. Neverthe-
less, the K(K +|A|) rate functions reduce to K rate functions and a K ×(K +|A|)
transition matrix. We still adopt quasi-Newton for the rate functions, but have
closed-form solutions for the transition probabilities (see Appendices B.3–B.4),

Pkl =
∑

1≤i �=j≤n(E[zikzjl|T;�∗] · mij )∑n
i=1

∑Mi

h=1(E[zikI (G−i
l (tih) > 0)|T;�∗] · ∫ tih

t−ih
λk(t)dt) + ζk

,(31)

Pka =
∑n

i=1(E[zik|T;�∗] · mia)∑n
i=1

∑Mi

h=1(E[zik|T;�∗] · ∫ tih

t−ih
λk(t)dt) + ζk

,(32)
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for k, l = 1,2, . . . ,K and a ∈ A. The parameter ζk is the Lagrange multiplier,
which can be easily solved by finding the root of

∑K
l=1 Pkl + ∑

a∈A Pka = 1 with
the R function uniroot.

For this simplified model, all probability parameters including marginal prob-
abilities πk , initial probabilities Psk and transition probabilities Pkl and Pka have
closed-from updates. Hence, to make the EM+ algorithm more efficient, we par-
tition the parameter set � into two groups: �fast = {πk,Psk,Pkl,Pka}, consisting
of all parameters with closed-form updates, and �slow = {λk(t)}, consisting of all
parameters that we must update with quasi-Newton. Instead of updating all � only
in the M-step of the EM algorithm and Step 2(c) of the Plus algorithm, parame-
ters belonging to �fast are always updated instantaneously “on the fly”—meaning
that they are updated whenever there is a change in Z or the cluster labels e. More
specifically, �fast are updated when calculating each likelihood function in the
Gibbs sampler (25) of the EM algorithm and Step 2(a) of the Plus algorithm.

For completeness, we note that the simplification of (5) to (6) in Section 3.2.1
was also motivated by the NBA application. It was introduced earlier to simplify
subsequent derivations.

5.2. Miami heat versus Boston celtics in 2012. In the 2012 NBA eastern con-
ference finals, eleven players from the Heat and ten players from the Celtics played
in the first three quarters of their 1st and 5th games. We omit two Celtics players,
Ryan Hollins and Marquis Daniels, because they each touched the ball only once
in those quarters. The data, which have been illustrated in Table 2, consist of 283
plays (142 for the Heat and 141 for the Celtics) and 1205 transactions (657 for the
Heat and 548 for the Celtics). We fit three different CSBMs—one to the Heat’s
transactions alone, one to the Celtics’ transactions alone and another one to trans-
actions from both teams pooled together. In what follows, we discuss in detail our
clustering results, initial probability estimates, fitted rate functions and transition
probability estimates. Given our data size (11 Heat players and 8 Celtics players),
we picked a moderate number of clusters (K = 3). In practice, since the main
purpose of our model is to cluster players and narrow down the search space for
basketball scouts, the choice of K will mostly depend on the size of the basketball
network and how elaborate one wants the clustering results to be.

Clustering results. The cluster labels for the players are reported in Table 3.
Recall that basketball players play in five different positions: point guard (PG),
shooting guard (SG), small forward (SF), power forward (PF) and center (C). Gen-
erally speaking, the heights of the players are PG < SG < SF < PF < C.

Considered separately, players on the two teams are clustered in similar man-
ners. Point guards are in cluster 1; two perimeter players—{Wade, James} from the
Heat and {Allen, Pierce} from the Celtics—are in cluster 2; and the other players
are in cluster 3. Roughly speaking, players with similar heights and close positions
are clustered into the same group. Point guards certainly play in a different style
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TABLE 3
Clustering results for the 2011–2012 Miami Heat and Boston Celtics (K = 3). Cluster labels are
C1, C2, C3. Three different clustering results are presented (two under “Alone” and one under

“Together”). Player positions are included for reference only; they are not used by the clustering
algorithm

Alone Together

Team Player Position C1 C2 C3 C1 C2 C3

Heat Mario Chalmers PG X X
Norris Cole PG X X

Dwyane Wade SG X X
LeBron James SF X X
James Jones SG X X
Shane Battier SF X X
Mike Miller SF X X
Chris Bosh PF X X

Udonis Haslem PF X X
Ronny Turiaf C X X
Joel Anthony C X X

Celtics Rajon Rondo PG X X
Keyon Dooling PG X X

Ray Allen SG X X
Paul Pierce SF X X

Mickael Pietrus SF X X
Brandon Bass PF X X
Kevin Garnett C X X

Greg Stiemsma C X X

than those of power forwards and centers. Shooting guards and small forwards are
both perimeter players and often play in similar styles. In our case, Wade, James,
Allen and Pierce are different than the other perimeter players, because they are
stars. They have extraordinary offensive skills, so they can carry the ball longer and
shoot more often. By contrast, the shooting guards and small forwards in cluster 3
play without the ball for most of the time.

When the two teams are pooled together, only one player (Brandon Bass from
the Celtics) switches from cluster 3 to cluster 2. Actually, he is a “mini” PF, who
has a typical PF’s weight and strength but the height of an SF; thus, his playing
style is in between those of a typical SF and a typical PF. When compared only
with other Celtics players, he is more similar to those in cluster 3. However, when
players from the Heat also are included in the comparison, he starts to look more
similar to LeBron James (a strong SF) and very different than those in cluster
3 who are on the Heat, for example, in terms of rebounding, cutting, and post
playing; thus, he is re-clustered into cluster 2.
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TABLE 4
Estimated transition probabilities (Psk ) from each initial action to clusters C1, C2, C3, for three

different clustering models of the 2011–2012 Miami Heat and Boston Celtics

C1 C2 C3

Heat Inbound 0.716 0.194 0.090
Rebound 0.109 0.375 0.516

Steal 0.333 0.333 0.333

Celtics Inbound 0.868 0.059 0.073
Rebound 0.188 0.208 0.604

Steal 0.375 0.500 0.125

Together Inbound 0.793 0.133 0.074
Rebound 0.143 0.357 0.500

Steal 0.364 0.454 0.182

In our subjective assessment, players in cluster 1 tend to dribble the ball a lot but
do not shoot very often, those in cluster 2 both carry and shoot the ball, whereas
those in cluster 3 are mostly responsible for catching rebounds and shooting, but
not so much for carrying the ball. In what follows, we will see these differences of
the three clusters reflected in the different parameters of the CSBM.

Initial probabilities. Table 4 displays the estimated transition probabilities
from each initial action to the three clusters. Most inbounds go to point guards,
because they usually are the ones to carry the ball from the back court to the front
court. The Heat inbound more often to cluster 2 than the Celtics do, because Le-
Bron James (in cluster 2) sometimes plays like a point guard. More than half of
the rebounds are caught by cluster 3, the tall players. For the Celtics, their cluster
1 players catch almost as many rebounds as those in their cluster 2, because the
starting point guard, Rajon Rondo (in cluster 1), is an excellent rebounder. Regard-
ing steals (a relatively rare event), the three clusters contribute equally within the
Heat but somewhat differently within the Celtics.

Rate functions. Figure 6 contains the fitted rate functions {λk(t) : k = 1,2,3}
for the ball leaving a player in group k. Overall, these functions are quite different
for the three clusters. For the same cluster, the rate functions from different teams
are similar in general, but have considerable differences at certain time points. Be-
low, we compare the patterns of the rate functions over four distinct time periods:
t ∈ (0,5), t ∈ (5,10), t ∈ (10,15) and t > 15.

At the beginning of a play, it usually takes about five seconds for a point guard
to dribble the ball from the back court to the front court. Players in cluster 2
sometimes do that instead of point guards. Therefore, λ1(t) and λ2(t) are low for
t ∈ (0,5). However, for both teams their λ3(t) has a high and sharp peak around
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FIG. 6. Fitted rate functions for the 2011–2012 Miami Heat and Boston Celtics, λ1(t), λ2(t) and
λ3(t), each describing the rate with which the ball leaves a player in cluster 1, cluster 2 and cluster 3,
respectively.

t ≈ 2, because players in cluster 3 often catch rebounds and start new plays by
quickly passing the ball to those in the other two clusters.

After the ball arrives at the front court, the players spend about 5 seconds to
settle down to their offensive layout. During this time period, that is, t ∈ (5,10),
the two teams have different strategies. For the Heat, the point guards usually pass
the ball to either James or Wade and let them handle the ball, so we can see a small
peak in the Heat’s λ1(t) function. For the Celtics, their point guards—especially
Rondo—usually continue to hold the ball and organize the offense, so the Celtics’
λ1(t) function even declines a little right after t > 5. The two teams’ λ3(t) func-
tions exhibit significant difference over this time period. For the Heat, their players
in cluster 3 mostly play as transit ports, that is, they get the ball and pass it out soon.
For the Celtics, their players in cluster 3—especially Kevin Garnett—have more
opportunities to handle the ball. That is why in the right panel, the Heat’s λ3(t)

function has a peak around t ≈ 7, while the Celtics’ λ3(t) has a local minimum
between 5 < t < 6.

For t ∈ (10,15), if the play still keeps going, players start to pass the ball more
frequently and seek scoring opportunities. This is indicated by higher values in
λ1(t) and λ2(t) as well as a local peak in λ3(t) on t ∈ (10,15). During this time
period, both teams play in a similar style, and their rate functions almost overlap.

Due to the 24-second time limit for each play, both team increase their offensive
pace after t > 15. However, when time reaches about t ≈ 20, the two teams start
to show highly distinctive playing patterns. For the Heat, all three of their rate
functions rise rapidly, which means that all of their players tend to release the
ball quickly, either passing it on to others or shooting. For the Celtics, their λ2(t)

and λ3(t) also rise, but not as much as those of the Heat. The Celtics appear to
play with more patience. An unusual phenomenon is that, for the Celtics, their rate
function λ1(t) actually decreases after t > 17. This is because the starting point
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TABLE 5
Estimated transition probabilities (Pkl and Pka ) for the 2011–2012 Miami Heat and Boston Celtics

(K = 3). Rows are originating clusters and columns are receiving clusters and play outcomes

C1 C2 C3 Make 2 Miss 2 Make 3 Miss 3 Fouled TO

Heat C1 0 0.564 0.296 0.035 0.014 0 0.042 0.021 0.028
C2 0.188 0.262 0.225 0.103 0.087 0.008 0.032 0.063 0.032
C3 0.226 0.426 0.090 0.052 0.064 0.039 0.064 0.013 0.026

Celtics C1 0.175 0.332 0.327 0.031 0.083 0.010 0.016 0.005 0.021
C2 0.270 0.066 0.262 0.065 0.172 0.033 0.066 0.041 0.025
C3 0.304 0.177 0.094 0.191 0.149 0 0.014 0.057 0.014

Together C1 0.119 0.479 0.250 0.032 0.053 0.006 0.026 0.012 0.023
C2 0.220 0.210 0.211 0.097 0.124 0.014 0.039 0.056 0.029
C3 0.262 0.341 0.083 0.110 0.087 0.023 0.045 0.030 0.019

guard, Rajon Rondo (in cluster 1), is not the best jump shooter. Close to the end of
the time limit and against the tough defense from the Heat, he typically struggles
a bit trying to pass or shoot, so the ball stays in his hands for a little longer.

In Appendix C, we provide an expanded version of Figure 6 which includes
95% confidence bands for these rate functions.

Transition probabilities. The estimated transition probabilities for events orig-
inating from the three different clusters are presented in Table 5. We will focus on
the transition probabilities of each team alone. When the two teams are pooled
together, the estimated transition probabilities simply appear to be averages of the
individual team results.

First, we look at passes among clusters. For the Heat, James and Wade (both in
cluster 2) are the absolute key players for the team, so players from both cluster 1
and cluster 3 tend to pass the ball to them (cluster 2) with very high probabilities
(56.4% and 42.6%, respectively). James and Wade also pass the ball more often to
each other than to the other clusters (26.2% vs. 18.8% and 22.5%, respectively).
The two players in cluster 1, Chalmers and Cole, do not pass to each other in our
data because they are never on the court at the same time during those games. The
Celtics, on the other hand, tend to move the ball more evenly among the three
clusters. Their clusters 1 and 2 each has almost equal probabilities to pass the ball
to the other two clusters. Their transition probabilities are lower within each cluster
than between different clusters.

Next, we discuss shooting choices. For the Heat, the overall probabilities of
shooting the ball (sum of Make 2, Miss 2, Make 3 and Miss 3) are 9.1% for clus-
ter 1, 23% for cluster 2 and 21.9% for cluster 3. Meanwhile, the corresponding
numbers for the Celtics are 14.0% for cluster 1, 33.6% for cluster 2 and 35.4%
for cluster 3. Relatively speaking, when releasing the ball, the Heat players have
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lower chances to take a shot than the Celtics players do, but higher chances to pass
the ball to their teammates. This shows the offense of the Heat involves more in-
teractions among players. For both teams, the respective shooting probabilities for
clusters 2 and 3 are more than twice as high as those for cluster 1. Let us look into
these probabilities in even greater detail. James and Wade (cluster 2, Heat) shoot
many more 2-pointers than 3-pointers, and incredibly, they score more than half
of their 2-pointer shots. Indeed, James and Wade are outstanding at penetration,
but not great 3-point shooters. By contrast, Pierce and Allen (cluster 2, Celtics) are
better balanced. They shoot and make more 3-pointers than James and Wade do. In
the offensive end, Pierce has been regarded as one of the most well-rounded play-
ers (as of 2012), because of his ability to score from almost any location. Allen
is an extraordinary 3-point shooter—actually one of the best in the entire NBA
history. Unfortunately, Pierce and Allen miss many 2-pointers in these two games.
For the Heat, both their cluster 1 and cluster 3 shoot many 3-pointers (almost as
many as 2-pointers), since one of their main strategies is for James and Wade to
attract the defense from their opponents while their other players seek open-shot
opportunities (mostly 3-pointers). For the Celtics, their clusters 1 and 3 mostly
shoot 2-pointers, and their main attacking areas are close to the hoop.

Finally, we examine the probabilities of drawing a foul and committing a
turnover. Note that “drawing a foul” means being fouled by the opposing team,
often after fooling them with fake moves. For the Heat, James and Wade draw
fouls with much higher probability than do their teammates in cluster 1 and clus-
ter 3 (6.3% vs. 2.1% and 1.3%). The reason is that James and Wade are often the
ones to penetrate, while their teammates usually play “catch and shoot.” For the
Celtics, players in their cluster 3 have the highest probability of drawing fouls, be-
cause those players, for example, Kevin Garnett, are very aggressive when playing
close to the hoop; players in their cluster 2 are also good at drawing fouls, as Pierce
is a master at doing so. Overall, the Celtics are more capable of drawing fouls, but
they make fewer turnovers than the Heat, because they play at a slower pace and
make fewer passes.

5.3. Cleveland cavaliers versus Golden State Warriors in 2015. We now ana-
lyze two games in the 2015 NBA finals between the Cleveland Cavaliers and the
Golden State Warriors—in particular, games 2 and 5. Again, we consider only the
first three quarters. These two games are particularly interesting case-study ma-
terials for us because there was a fascinating change in the Warriors’ lineup in
between. After losing both games 2 and 3 of the series, Steve Kerr, the head coach
of the Warriors, decided to change their regular lineup to a small lineup, which
meant that they stopped playing centers. This was an unconventional strategy but
it successfully turned the series around, and the Warriors went on to win the cham-
pionship that year by winning three consecutive games.

These two teams have very different styles of play to start with. The aforemen-
tioned change in the Warriors’ lineup meant there was a big change in how the
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two teams played these two particular games as well. Thus, unlike in the previ-
ous section, in this section we simply fit four CSBMs separately for each team
and each game, and no longer fit a pooled model combining the two teams and
the two games together. Overall, there are four data sets. For game 2, the Cava-
liers have eight players, 84 plays and 290 transactions, while the Warriors have
ten players, 75 plays and 307 transactions. For game 5, the Warriors have eight
players, 79 plays and 296 transactions, whereas the Cavaliers have eight players,
81 plays and 291 transactions. As in the previous section, in what follows we give
detailed discussions about the clustering results, initial probability estimates, fitted
rate functions and transition probability estimates, in that order.

Clustering results. The cluster labels of the players for the two games are re-
ported in Table 6. As in the previous section, we set K = 3 here as well.

For the Cavaliers, the results from the two games are similar, except their two
shooting guards—Iman Shumpert and J. R. Smith—switch clusters. It is not sur-

TABLE 6
Clustering results for the 2014–2015 Cleveland Cavaliers and Golden State Warriors (K = 3).
Cluster labels are C1, C2, C3. Four different clustering results are presented (two teams × two

games). Player positions are included for reference only; they are not used by the clustering
algorithm

Game 2 Game 5

Alone Alone

Team Player Position C1 C2 C3 C1 C2 C3

Cavaliers Matthew Dellavedova PG X X
Iman Shumpert SG X X

J. R. Smith SG X X
LeBron James SF X X
James Jones SF X X
Mike Miller SF X X

Tristan Thompson PF X X
Timofey Mozgov C X X

Warriors Stephen Curry PG X X
Shaun Livingston PG X X
Klay Thompson SG X X
Leandro Barbosa SG X X
Harrison Barnes SF X X
Andre Iguodala SF X X

Draymond Green PF X X
David Lee PF Did Not Play X

Andrew Bogut C X Did Not Play
Festus Ezeli C X Did Not Play

Marreese Speights C X Did Not Play
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prising that LeBron James is in a cluster by himself. In these two games, he is the
only core player of the Cavaliers since their other two superstars, Kyrie Irving and
Kevin Love, are both absent due to injuries. Without support from other superstar
teammates, James has to take charge of a large amount of ball handling, pass-
ing and scoring; he simply does it all. Indeed, James is one of the most versatile
players in the history of the NBA. With James being the only primary ball han-
dler of the Cavaliers, their cluster 2 consists of secondary ball handlers: the point
guard, Matthew Dellavedova, for both games; and a shooting guard—Shumpert for
game 2 and Smith for game 5. In general, both Shumpert and Smith can dribble
and shoot. Shumpert handles the ball more often than does Smith in game 2, but
their roles are reversed in game 5. Other than Smith (in game 2) and Shumpert (in
game 5), their cluster 3 consists of {James Jones, Mike Miller}, both catch-and-
shoot players, and {Tristan Thompson, Timofey Mozgov}, both inside (the paint)
players. Overall, the Cavaliers are a team built around a single key player, LeBron
James.

The Warriors, on the other hand, play the two games in fairly different styles.
First of all, the active rosters are different: all three centers—Andrew Bogut, Fes-
tus Ezeli and Marreese Speights—play in game 2 but not in game 5; meanwhile,
David Lee does not play in game 2, but does play in game 5. We already explained
the reason behind these changes in their lineup at the beginning of this section
(Section 5.3). Beyond the clear change of rosters, our CSBM reveals more insight
into the different playing styles of the Warriors in these two games. Unlike the Cav-
aliers, the Warriors have 4 primary ball handlers and distributors: Stephen Curry
(PG), Shaun Livingston (PG), Andre Iguodala (SF) and Draymond Green (PF). In
game 2 under their regular lineup, our model clusters these four players together.
The two shooting guards, Klay Thompson and Leandro Barbosa, are clustered in
one cluster. The three centers together with a small forward, Harrison Barnes, form
the last cluster. In game 5 under their small lineup, our model divides their 4 pri-
mary ball handlers into two clusters—the two point guards, Curry and Livingston,
are in one cluster; the two forwards, Iguodala and Green, are in another. All re-
maining players are in a separate cluster. Note that, although both Barnes and Lee
are forwards, their roles in the team are considerably less important than those of
Iguodala and Green.

Initial probabilities. The estimated transition probabilities from each initial
action to the three clusters are shown in Table 7.

For the Cavaliers, the probabilities of the two games are similar, except the
rebounds of LeBron James (the only player in cluster 1). James catches many
more rebounds in game 5 than he does in game 2 (42.9% vs. 26.5%). The reason
here is that, with the Warriors playing the small lineup, James becomes one of the
tallest and biggest men on the court, playing closer to the rim and catching more
rebounds. For both games, more than 90% of the inbounds go to cluster 1 and
cluster 2, with cluster 1 receiving slightly more than cluster 2. Players in cluster
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TABLE 7
Estimated transition probabilities (Psk ) from each initial action to clusters C1, C2 and C3, for four

different clustering models of the 2014–2015 Cleveland Cavaliers and Golden State Warriors

C1 C2 C3

Cavaliers Inbound 0.489 0.422 0.089
Game 2 Rebound 0.265 0.088 0.647

Steal 0.200 0.400 0.400

Cavaliers Inbound 0.500 0.409 0.091
Game 5 Rebound 0.429 0.107 0.464

Steal 0.286 0.428 0.286

Warriors Inbound 0.767 0.093 0.140
Game 2 Rebound 0.400 0.160 0.440

Steal 0.714 0.143 0.143

Warriors Inbound 0.660 0.140 0.200
Game 5 Rebound 0.185 0.296 0.519

Steal 0.250 0 0.750

2 contribute more than 40% of the steals in the two games, while the other two
clusters split the remainder.

For the Warriors, recall that their three centers, belonging to cluster 3 in game 2,
do not play in game 5, and their two forwards, Iguodala and Green, belonging to
cluster 1 in game 2, become the new cluster 3 in game 5. As a result, their inbound
probabilities change slightly, but their rebound and steal probabilities change dra-
matically. To get into more details, their players in cluster 1 have a much higher
probability of receiving an inbound than those in the other two clusters combined,
because their cluster 1 contains two point guards, Curry and Livingston. However,
this probability goes down by about 10% from game 2 (76.7%) to game 5 (66%),
whereas those of cluster 2 and cluster 3 each increases about 5%. These results
imply that, when the Warriors switch to their small lineup in game 5, players other
than those in cluster 1 also get more opportunities to receive inbounds and initiate
plays. In game 5, due to the absence of centers, who make up cluster 3 and con-
tribute 44% of the rebounds in game 2, all players start to share their contributions
to catching rebounds as well. In particular, Green and Iguodala (in cluster 3 for
game 5) now catch 51.9% of the rebounds, in contrast to <40% when they are in
cluster 1 for game 2; the contribution of cluster 2 to rebounds increases from 16%
in game 2 to 29.6% in game 5; and finally, without Green and Iguodala (now in
cluster 3), the two point guards that remain in cluster 1 (i.e., Curry and Livingston)
also manage to catch 18.5% of the rebounds. Regarding steals, the most signifi-
cant changes are a huge decrease for cluster 1 (71.4% to 25%) and a huge boost
for cluster 3 (14.3% to 75%). Once more, this is because Green and Iguodala have
“moved” from cluster 1 to cluster 3; they both are top defenders who contribute to
many steals.
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FIG. 7. Fitted rate functions for the 2014–2015 Cavaliers, λ1(t), λ2(t) and λ3(t), each describing
the rates with which the ball leaves a player in cluster 1, cluster 2 and cluster 3, respectively.

Rate functions. The fitted rate functions of the Cavaliers and the Warriors are
displayed in Figure 7 and Figure 8, respectively.

For the Cavaliers, the rate functions from the two games appear to be gener-
ally similar for each respective cluster, with some small differences. For cluster 1
(James), its rate function λ1(t) is almost the same in the two games for t < 17—
fairly flat and low. This means that James plays with almost the same style at the
beginning of a play in both games, keeping the ball in his hands and organizing
the offense. Toward the end of a play, James starts to “heat up” at around t ≈ 17
in game 2, whereas he does so slightly later in game 5, at about t ≈ 19. This is be-
cause the small lineup of the Warriors in game 5 move much more quickly, so they
can defend James more effectively in the last few seconds and delay his offense.
For cluster 2, the first big difference appears after t > 7. In game 2, λ2(t) grows
slowly to reach a peak at t ≈ 14; however, in game 5, the same function λ2(t)

FIG. 8. Fitted rate functions for the 2014–2015 Golden State Warriors, λ1(t), λ2(t) and λ3(t),
each describing the rates with which the ball leaves a player in cluster 1, cluster 2 and cluster 3,
respectively.
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grows rapidly after t > 7 and maintains a high level until t ≈ 14. Clearly, players
in cluster 2 have increased their offensive pace in game 5. On the one hand, Smith
(cluster 2 SG in game 5) does more quick-release shooting than does Shumpert
(cluster 2 SG in game 2). On the other hand, the higher defensive pressure cre-
ated by the Warriors’ small lineup has forced the Cavaliers to move the ball more
quickly. For the same reasons, toward the end of a play, players in cluster 2 also
tend to attack the rim or pass the ball slightly earlier in game 5 (at t ≈ 16) than they
do in game 2 (at t ≈ 18). For cluster 3, their rate function λ3(t) displays a simi-
lar pattern in the two games, but the one in game 5 is almost entirely dominated
by the one in game 2. Players in this cluster are big men and typically catch-and-
shoot players; they are usually not responsible for handling the ball. They catch
rebounds and start a play by passing the ball to their teammates in the other two
clusters. At around t ≈ 12, they get their first chance to touch the ball, when they
either shoot or pass it back to the ball handlers. Their second chance to touch the
ball happens near the end of a play, when they have to shoot rapidly. In game 5,
the small lineup of the Warriors can quickly cover the open shots and “double up”
to defend a big man in the paint, and that forces players in Cavaliers’ cluster 3 to
keep the ball in their hands for a slightly longer period. This is why their λ3(t) is
lower in game 5 than in game 2. Overall, the patterns displayed in the Cavaliers’
three rate functions are quite similar in the two games. The changes mostly can be
attributed to the different defensive strategies used by their opponent.

For the Warriors, though, due to the change in their lineup, their rate functions
from the two games are noticeably different. In game 2 with their regular lineup,
their rate functions (blue solid lines in Figure 8) show regular patterns—at the
start of a play, λ1(t) and λ2(t) are relatively low, while λ3(t) has high peaks. This
means that, at the start of a play, players in cluster 1 and cluster 2 tend to handle
the ball, whereas those in cluster 3 catch rebounds and pass the ball out more or
less immediately. This is the same as the playing style of the Cavaliers. However,
their rate functions have more peaks than those of the Cavaliers. Moreover, their
λ1(t) and λ2(t) in game 2 are, in general, higher than those of the Cavaliers at the
start of a play. These show that the Warriors’ offense is more flexible—the ball is
passed more frequently, so everybody gets chances to touch it, and no one holds
the ball for a very long time. In fact, this has become the Warriors’ signature team-
playing style. However, in game 5, all three of their rate functions show significant
differences. First, the two peaks of λ1(t) occur earlier in game 5 than in game 2.
Second, the rapid growth of λ2(t) also appears earlier in game 5 (at t ≈ 17) than
in game 2 (at t ≈ 22). Both differences indicate that, with a small lineup, the War-
riors have increased their offensive pace in game 5. Finally, their λ3(t) changes
dramatically between the two games; in game 5, it is much flatter at the beginning
and has a much higher peak at t ≈ 17. This is certainly because, in game 5, the
players making up cluster 3 are entirely different from the ones in game 2. From
Table 7, we know that their cluster 3 in game 5 (Green and Iguodala) catch a larger
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proportion of rebounds than do their cluster 3 in game 2 (three centers), but in-
stead of immediately passing the ball out, Green and Iguodala both often dribble
and run the play. The peak of λ3(t) at t ≈ 17 in game 5 is particularly significant,
revealing one key offensive strategy of the Warriors’ small lineup, the so-called
“high pick-and-roll.” A typical sequence of this strategy is as follows: Curry drib-
bles the ball outside the three-point line, and Green (or Iguodala) comes to set up
a screen (a “human body wall”). Thanks to Curry’s incredible three-point shooting
skills, after he dribbles around the screen both defenders of Curry and of Green
(or Iguodala) usually have to focus on covering Curry together, leaving Green (or
Iguodala) wide open, so Curry can now pass the ball to him. Green (or Iguodala)
can then shoot the ball; drive to the basket directly; or take one or two dribbles,
draw another defender, and then pass the ball to another wide-open teammate, who
is usually waiting at the three-point line on the weakly-defended side. This entire
sequence often happens very quickly within three seconds.

Overall, the estimated rate functions reveal many intricate details of a team’s
playing style. The Cavaliers play around their key superstar, LeBron James,
whereas the Warriors share the ball more evenly. It also can be easily seen that
the Warriors have played these two games quite differently and the Cavaliers have
responded with small but clear adjustments in their playing style as well.

Transition probabilities. The estimated transition probabilities of events orig-
inating from the three different clusters are displayed in Table 8, for both the Cav-
aliers and the Warriors.

TABLE 8
Estimated transition probabilities (Pkl and Pka ) for the 2014–2015 Cleveland Cavaliers and

Golden State Warriors (K = 3). Rows are originating clusters and columns are receiving clusters
and play outcomes

C1 C2 C3 Make 2 Miss 2 Make 3 Miss 3 Fouled TO

Cavaliers C1 0 0.167 0.430 0.111 0.153 0.014 0.014 0.069 0.042
Game 2 C2 0.292 0.141 0.259 0.016 0.081 0 0.114 0.032 0.065

C3 0.335 0.160 0.111 0.098 0.123 0.037 0.037 0.062 0.037

Cavaliers C1 0 0.384 0.274 0.123 0.110 0 0.027 0.027 0.055
Game 5 C2 0.296 0.181 0.261 0.024 0.036 0.059 0.107 0 0.036

C3 0.346 0.198 0.076 0.061 0.122 0.045 0.061 0.061 0.030

Warriors C1 0.357 0.233 0.194 0.037 0.037 0.007 0.060 0.030 0.045
Game 2 C2 0.380 0 0.120 0.140 0.080 0.100 0.120 0.060 0

C3 0.469 0.226 0 0.061 0.081 0 0.061 0.061 0.041

Warriors C1 0.159 0.276 0.323 0.058 0.058 0.046 0.034 0 0.046
Game 5 C2 0.151 0.097 0.285 0.151 0.166 0.015 0.015 0.060 0.060

C3 0.330 0.267 0.137 0.064 0.038 0.025 0.038 0.076 0.025
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For the Cavaliers, the overall probabilities to pass the ball (sum of the first three
columns) for the three respective clusters are {59.7%, 69.2%, 60.6%} in game 2,
and {65.8%, 73.8%, 62%} in game 5. Clearly, the Cavaliers make more passes in
game 5 than in game 2, which is due to the stronger defense by the Warriors’ small
lineup. For the same reason, in game 2 James (the only player in cluster 1) passes
more to cluster 3 (shooters and big men), whereas in game 5 he passes more to
cluster 2 (ball handlers). The respective roles of their cluster 2 and cluster 3 do
not change much in the two games—cluster 2 is the bridge between cluster 1 and
cluster 3, making almost an equal proportion of passes to each of the other two
clusters; cluster 3, however, more often passes the ball back to James (cluster 1).
The overall probabilities to shoot the ball (sum of columns 4–7) for the three re-
spective clusters are {29.2%, 21.1%, 29.5%} in game 2, and {26%, 22.6%, 28.9%}
in game 5, which do not change much. When facing the quick defense of the War-
riors in game 5, the Cavaliers have successfully created an almost equal percentage
of shots by making more passes. Regarding the probabilities of being fouled and
making turnovers, James (cluster 1) fails to draw as many fouls in game 5 as he
does in game 2 (2.7% vs. 6.9%), but he makes more turnovers (5.5% vs. 4.2%).
These can be partly attributed, again, to the stronger defense by the Warriors’ small
lineup, especially the one-on-one defense on James by Iguodala. Players in cluster
2 are not as aggressive in game 5 as they are in game 2—although they make fewer
turnovers (3.6% vs. 6.5%), they do not draw any fouls at all (0% vs. 3.2%). The
performance of cluster 3 is fairly stable in the two games in terms of drawing fouls
and making turnovers.

For the Warriors, the overall passing probabilities of their three respective clus-
ters are {78.4%, 50%, 79.5%} in game 2, and {75.8%, 53.3%, 73.4%} in game 5.
Despite the drastic changes in their lineup, these probabilities do not change much.
Each of the first three columns in Table 8 contains the probabilities that the cor-
responding cluster is the receiver of the ball passed from different clusters. Here,
we can easily see that a considerable proportion of the passes have shifted from
cluster 1 to cluster 3 in game 5. This is because Green and Iguodala, two of the
four primary ball handlers, are now in cluster 3 as opposed to cluster 1, and they
receive many passes. The overall shooting probabilities (sum of columns 4–7) for
their three respective clusters are {14.1%, 44%, 20.3%} in game 2, and {19.6%,
34.7%, 13.5%} in game 5. In both games, players in cluster 2 are more likely to
shoot than those in the other two clusters. This makes sense because cluster 2 con-
tains two shooting guards, Klay Thompson and Leandro Barbosa, who both are
excellent scorers and often take on a huge responsibility in shooting the ball. It
can also be seen that, in game 5, the probability to shoot has increased for clus-
ter 1 but decreased for cluster 2. This is because the small lineup gives players
in cluster 1—especially Curry—more open space, and hence better shooting op-
portunities; by contrast, Klay Thompson (cluster 2), who is less affected by the
change in the lineup, struggles with shooting in game 5. For cluster 3, we see that
Green and Iguodala (cluster 3 in game 5) are less likely to shoot than the centers
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(cluster 3 in game 2). With regard to shooting, it is well known that the Warriors
rely on three-pointers as one of their most important scoring methods. Curry and
Thompson are arguably the best three-point shooting back-court duo in the entire
history of the NBA. From Table 8, we can clearly see that the Warriors attempt
many more three-pointers than the Cavaliers do and they also succeed more of-
ten. One surprising observation is that players in their cluster 2 shoot considerably
fewer three-pointers in game 5 than they do in game 2. Indeed, this is another
piece of evidence showing the struggle of Klay Thompson in game 5. There are
two significant differences in terms of drawing fouls and making turnovers: cluster
1 fails to draw any fouls in game 5 versus 3% in game 2; and cluster 2 makes more
turnovers in game 5 than in game 2 (6% vs. 0%).

5.4. LeBron James: Miami Heat versus Cleveland Cavaliers. Both the 2011–
12 Miami Heat and the 2014–15 Cleveland Cavaliers had LeBron James on their
teams and made him the key player. Thus, it is especially interesting for us to com-
pare the player structures of these two teams, and to see if there is any difference
in how James has played the game with these different teams. We investigate the
first question by pooling the transactions of the Heat (in their two 2012 games vs.
the Celtics) and the transactions of the Cavaliers (in their two 2015 games vs. the
Warriors), and applying the CSBM to cluster the players from both teams together.
With regard to the second question, we simply compare the individual results we
have obtained earlier for the Heat (Section 5.2) and for the Cavaliers (Section 5.3).

For the pooled CSBM, we focus primarily on the clustering results in this sec-
tion and forsake any detailed discussions of the rate functions or the transition
probabilities. Other than LeBron James, Mike Miller and James Jones are also
on both of these teams. When playing on different teams, the same player may
play in a different style, depending on his specific role for the team. Hence, for
James (and likewise for Miller and Jones, too), we create two separate avatars—
one for the games he played on the Heat and another for the games he played on the
Cavaliers—and treat them as two different “players” in the clustering algorithm.
We are especially curious whether the pooled CSBM will cluster the two avatars
of the same player into the same cluster or different clusters.

Table 9 displays the clustering results from the pooled CSBM, fitted to all trans-
actions of the Heat and the Cavaliers in the 4 games we have annotated. With a total
of 19 “players,” we now choose K = 4 instead of K = 3 as we did in the previous
two sections; this allows us to cluster the “players” with a slightly finer resolution.

Our clustering results clearly indicate that the 2011–12 Heat and the 2014–15
Cavaliers are built in a very similar way. Cluster 1 consists of point guards; cluster
2 consists of superstars—namely, LeBron James (for both teams) and Dwyane
Wade (for the Heat); cluster 3 consists of the other perimeter players—mostly
shooters and perimeter defenders; and the last cluster is made up of big men—
power forwards and centers. It also turns out that the two avatars of the same player
(whether James, Miller or Jones) are always clustered together. Indeed, both teams
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TABLE 9
Clustering results for the 2011–2012 Miami Heat and the 2014–2015 Cleveland Cavaliers together

(K = 4). Cluster labels are C1, C2, C3, C4. Players appearing with two separate avatars for the
clustering algorithm are bolded. Player positions are included for reference only; they are not used

by the clustering algorithm

Together

Team Player Position C1 C2 C3 C4

Heat Mario Chalmers PG X
Norris Cole PG X

Dwyane Wade SG X
LeBron James SF X
James Jones SG X
Shane Battier SF X
Mike Miller SF X
Chris Bosh PF X

Udonis Haslem PF X
Ronny Turiaf C X
Joel Anthony C X

Cavaliers Matthew Dellavedova PG X
Iman Shumpert SG X

J. R. Smith SG X
LeBron James SF X
James Jones SF X
Mike Miller SF X

Tristan Thompson PF X
Timofey Mozgov C X

are built around LeBron James and their playing styles are similar, also. James
is the primary ball handler and distributor for both teams. While playing for the
Heat, James has Wade as an important helper, but while playing for the Cavaliers,
he is the only superstar. We can imagine that, if Kyrie Irving, the superstar point
guard of the Cavaliers, were not injured, he might have joined James and Wade
in cluster 2. The point guards on these two teams are secondary ball handlers and
serve as bridges between the superstars and the other players. Players in cluster 3
are mainly responsible for playing defense and “catch and shoot.” The big men in
cluster 4 are mostly responsible for catching rebounds and scoring under the rim.

In the rest of this section, we revisit some individual results for the Heat (Sec-
tion 5.2) as well as for the Cavaliers (Section 5.3) in order to compare in more
detail the performance of LeBron James in those two series.

First, recall that our cluster labels (e.g., C1, C2, . . . ) are arbitrary, and that James
has been clustered into C2 with the 2011–12 Heat but into C1 with the 2014–15
Cavaliers. Comparing Figure 6 (middle panel) and Figure 7 (left panel), we find
that the Heat’s λ2(t) function has more peaks and is higher than the Cavaliers’
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λ1(t) function overall. This shows that, while playing for the Heat, James chooses
to pass the ball more often at the beginning of a play. This is mostly because of
the presence of Wade, a superstar teammate, who interacts with James more fre-
quently than the point guards. Actually, the “two-man fast break” by James and
Wade is one of the Heat’s defining features. Second, comparing Table 4 and Ta-
ble 7, we find that, while playing for the Heat, James and Wade together receive
19.4% of the inbounds, whereas, while playing for the Cavaliers, James alone re-
ceives a staggering 50% of the inbounds. The Heat mostly let their point guards
carry the ball past the half court, because they always have one of them (either
Chalmers or Cole) on the court. However, with Irving out on injury, the Cavaliers
only play one point guard (Dellavedova) in their lineup, so James has to carry the
ball more than usual. Third, while on the Heat, James and Wade together aver-
age a 23% probability to shoot, but while on the Cavaliers, James alone has an
even higher probability to shoot—29.2% and 26%, respectively, in the two games
against the Warriors. James is a great scorer as well as offensive organizer. He can
freely switch between these two modes of play depending on the situations in the
game. While playing for the 2011–12 Heat, James has stronger teammates, so he
tends to create more shooting opportunities for others. With the 2014–15 Cava-
liers, however, James must take more shots by himself due to the limited support
from his teammates.

In summary, our analysis using the CSBM shows that the player structure of the
2011–12 Heat and that of the 2014–15 Cavaliers are fairly similar. The CSBM also
reveals many subtle differences in LeBron James’ playing style in the two series.

6. Summary. In this paper, we advocate the concept that basketball games
can be analyzed as transactional networks. We have proposed a continuous-time
stochastic block model to cluster players based on their styles of handling the ball.
In particular, we model each basketball play as an inhomogeneous continuous-
time Markov chain, with transition rate functions being governed by the players’
cluster membership. We adopt B-splines to model the rate functions and an EM+
algorithm to estimate model parameters. Applications to a number of NBA games
between the 2011–12 Miami Heat and Boston Celtics and between the 2014–15
Cleveland Cavaliers and Golden State Warriors have yielded compelling evidence
that the CSBM framework is of great practical value in clustering and evaluating
basketball players.

As the popularity of basketball analytics appears to be growing in recent years, it
is perhaps helpful for us to summarize the main differences between our work and
a few recent works in this area [e.g., Fewell et al. (2012); Cervone et al. (2016)].
The key features of our work are: (i) viewing basketball games from a network
perspective, (ii) consideration of time dynamics and (iii) clustering of players at
an individual level. In what follows, we discuss how our work differs from a few
others in terms of these features; a brief summary is given in Table 10.
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TABLE 10
Summary of differences between our work and others

Network Time Model
Perspective Dynamics Objective

CSBM yes yes descriptive at individual level
Fewell et al. (2012) yes no descriptive at position level
Cervone et al. (2016) no yes predictive at individual level

(of final point outcome)

Fewell et al. (2012) certainly view basketball games from a network perspec-
tive as well, but they do not take time dynamics into account, and their treatment of
players occurs at a position level rather than an individual level. Specifically, they
pre-group players according to their on-court positions (e.g., point guard, shooting
guard and so on). Whereas our CSBM describes player differences based on the
real-time dynamics of how each basketball play unfolds, the method developed by
Fewell et al. (2012) aims to describe differences in how each of the five predefined
positions communicates with each other—and with various initial and absorbing
states—at an aggregate level, aggregated over both all players holding the same
position and all transactions during a certain time period (e.g., an entire game). In
their work, point guards are always considered together with other point guards,
and any player difference at the individual level is suppressed. While it is hardly
surprising that many players holding the same position often end up being clus-
tered together by our CSBM, this is certainly not always the case. For example, our
analysis of the two games between the 2014–15 Cleveland Cavaliers and Golden
State Warriors (Section 5.3) clearly shows that the distinctive playing style of Le-
Bron James almost calls for the definition/creation of a new on-court position, for
which some long-time basketball observers have informally suggested the name
of “point forward.” Our analysis also shows that players like Draymond Green
(a power forward) and Andre Iguodala (a small forward) are certainly playing im-
portant roles in the game beyond the traditional ones defined by their respective
on-court positions.

Cervone et al. (2016), on the other hand, do consider time dynamics, but they
do not view basketball games from a network perspective. While they track the
movement of the ball both spatially and over time, they do not view players as
nodes and passes as edges. Most importantly, their objective is fundamentally dif-
ferent from ours. Our goal is to cluster players according to their individual playing
styles as characterized by the rate functions λk(t) and the transition probabilities
Psk , Pkl and Pka , but theirs is to predict the final point value of each basketball
play/possession as the individual play unfolds. One can say that their analysis is
driven by outcome but ours is driven by style. Although rate functions for ball
passing are components of both models, their structure and role vary considerably.
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Our rate functions are smooth functions of clock time, and are used to characterize
groups of players with similar transition rates. Their rate functions are log-linear
regressions which use predictors derived from motion-capture data, forming one
component in a hierarchical model whose ultimate objective is to predict point
value. They are not used to cluster players.

Early works on the SBM [Snijders and Nowicki (1997); Holland, Laskey and
Leinhardt (1983)] are mostly concerned with static networks. Recently, Ho, Song
and Xing (2011), and Xu and Hero (2014) have used dynamic SBMs to study
social networks that evolve over time, but their works focus on discrete time
dynamics and are thus not directly applicable to network transactions (such as
basketball passes) that happen in continuous time. Although we have focused
on basketball games in this paper, one certainly can use our CSBM to analyze
any other network where exchanges take place between its nodes in continuous
time.

APPENDIX A: SOME DETAILS ABOUT INHOMOGENEOUS POISSON
PROCESSES

Consider an inhomogenous Poisson process with rate function ρ(t). We derive
the distribution of having m events arriving at time points t1 < t2 < · · · < tm ∈
[T0, T ], closely following the presentation by Cook and Lawless (2007), page 30.
Let Nt denote the number of events in the time interval [t, t +
t). By the definition
of the Poisson process, for a very small 
t ,

P(Nt = 0) = 1 − ρ(t)
t + o(
t),(33)

P(Nt = 1) = ρ(t)
t + o(
t),(34)

P(Nt ≥ 2) = o(
t).(35)

Consider a partition of [T0, T ), say T0 = u0 < u1 < u2 < · · · < uR = T . By the
“independent increment” property of the Poisson process, we have

P
([T0, T1)

)
=

R−1∏
r=0

P
([ur, ur+1)

) =
R−1∏
r=0

P(Nur )

(36)

=
( ∏

Nur =0

[
1 − ρ(ur)
ur + o(
ur)

]) ·
( ∏

Nur =1

[
ρ(ur)
ur + o(
ur)

])

·
( ∏

Nur ≥2

[
o(
ur)

])
.

Notice that log[1 − ρ(t)
t] = −ρ(t)
t + o(
t), so the logarithm of the first
product in (36)—the one over Nur = 0—approaches the Riemann integral,
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− ∫ T
T0

ρ(t)dt , in the limit. Thus, dividing 
ur into each respective term that corre-
sponds to the interval [ur, ur+1) and taking the limit as R → ∞ and consequently
as 
ur = ur+1 − ur → 0, we obtain that the desired distribution is

m∏
i=1

ρ(ti) · exp
[
−

∫ T

T0

ρ(u)du

]
.

APPENDIX B: SOME DETAILS FOR THE EM ALGORITHM

B.1. The conditional expectation E[logL(T,Z)|T;�∗]. First, by (3), we
have

E
[
logL(T,Z)|T;�∗]

= E
[
logL(T|Z) + logL(Z)|T;�∗]

= E

[∑
s∈S

n∑
i=1

logLI (Tsi |Z) + ∑
1≤i �=j≤n

logLP1(Tij |Z)(37)

+
n∑

i=1

logLP2(Ti |Z)

+
n∑

i=1

∑
a∈A

logLO(Tia|Z) + logL(Z)|T;�∗
]

Now, we plug in (19), (20), (21), (22) and (23), and the respective terms in (37) are
as follows. The LI part is equal to

∑
s∈S

n∑
i=1

E
[
logLI (Tsi |Z)|T;�∗]

= ∑
s∈S

n∑
i=1

E

[
log

K∏
k=1

(
msi∏
h=1

(
Psk · 1

Gsih
k

))zik

|T;�∗
]

= ∑
s∈S

n∑
i=1

K∑
k=1

E

[
zik ·

msi∑
h=1

(
logPsk − logGsih

k

)|T;�∗
]

(38)

= ∑
s∈S

n∑
i=1

K∑
k=1

(
E

[
zik|T;�∗] · msi logPsk

)

− ∑
s∈S

n∑
i=1

K∑
k=1

E

[
zik ·

msi∑
h=1

logGsih
k |T;�∗

]
.
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The LP1 part is equal to∑
1≤i �=j≤n

E
[
logLP1(Tij |Z)|T;�∗]

= ∑
1≤i �=j≤n

E

[
log

K∏
k=1

K∏
l=1

(mij∏
h=1

(
ρkl(tijh) · 1

G
ijh
l

))zikzjl ∣∣∣T;�∗
]

= ∑
1≤i �=j≤n

E

[
K∑

k=1

K∑
l=1

(
zikzjl ·

mij∑
h=1

(
logρkl(tijh) − logG

ijh
l

))∣∣∣T;�∗
]

(39)

= ∑
1≤i �=j≤n

K∑
k=1

K∑
l=1

(
E

[
zikzjl|T;�∗] ·

mij∑
h=1

logρkl(tijh)

)

− ∑
1≤i �=j≤n

K∑
k=1

K∑
l=1

E

[
zikzjl ·

mij∑
h=1

logG
ijh
l

∣∣∣T;�∗
]
.

The LP2 part is equal to
n∑

i=1

E
[
logLP2(Ti |Z)|T;�∗]

=
n∑

i=1

E

[
log

K∏
k=1

(
Mi∏
h=1

exp

(
−

K∑
l=1

∫ tih

t−ih
ρkl(t) · I (

Gih
l > 0

)
dt

))zik ∣∣∣T;�∗
]

=
n∑

i=1

K∑
k=1

E

[
zik

Mi∑
h=1

(
−

K∑
l=1

∫ tih

t−ih
ρkl(t) · I (

Gih
l > 0

)
dt

)∣∣∣T;�∗
]

(40)

= −
n∑

i=1

K∑
k=1

Mi∑
h=1

K∑
l=1

E
[
zik

∫ tih

t−ih
ρkl(t) · I (

Gih
l > 0

)
dt

∣∣∣T;�∗
]

= −
n∑

i=1

K∑
k=1

K∑
l=1

Mi∑
h=1

(
E

[
zikI

(
Gih

l > 0
)|T;�∗] ·

∫ tih

t−ih
ρkl(t)dt

)
,

where we have pulled the indicator term I (Gih
l > 0) out of the integral in the last

step of (40) because the quantity Gih
l is a constant on any (t−ih, tih], as no player

substitution can happen during that time. Finally, the LO part is equal to
n∑

i=1

∑
a∈A

E
[
logLO(Tia|Z)|T;�∗]

=
n∑

i=1

∑
a∈A

E

[
log

K∏
k=1

(
mia∏
h=1

ηka(tiah) ·
Mi∏
h=1

exp
(
−

∫ tih

t−ih
ηka(t)dt

))zik ∣∣∣T;�∗
]

(41)
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=
n∑

i=1

∑
a∈A

K∑
k=1

E

[
zik

(
mia∑
h=1

logηka(tiah) −
Mi∑
h=1

∫ tih

t−ih
ηka(t)dt

)∣∣∣T;�∗
]

=
n∑

i=1

∑
a∈A

K∑
k=1

(
E

[
zik|T;�∗] ·

(
mia∑
h=1

logηka(tiah) −
Mi∑
h=1

∫ tih

t−ih
ηka(t)dt

))
,

and the L(Z) part is equal to

E
[
logL(Z)|T;�∗] = E

[
log

n∏
i=1

K∏
k=1

π
zik

k |T;�∗
]

(42)

=
n∑

i=1

K∑
k=1

(
E

[
zik|T;�∗] · logπk

)
.

B.2. Analytic updates of π and P. In the conditional expectation of the log-
likelihood (37), the term that contains P, the transition probabilities from initial
actions to players in different groups, appears in (38). It is

(43)
∑
s∈S

n∑
i=1

K∑
k=1

(
E

[
zik|T;�∗] · msi logPsk

)
but there is a constraint

(44)
K∑

k=1

Psk = 1 for any s ∈ S.

Introducing Lagrange multipliers ζs , for each s ∈ S , we get

(45)
∑
s∈S

[
n∑

i=1

K∑
k=1

(
E

[
zik|T;�∗] · msi logPsk

) − ζs

(
K∑

k=1

Psk − 1

)]
.

Differentiating with respect to each Psk and setting the the derivatives to zero, we
get

(46)

∑n
i=1(E[zik|T;�∗] · msi)

Psk

− ζs = 0 for s ∈ S and k = 1,2, . . . ,K.

The constraint (44) implies

(47) ζs =
K∑

k=1

n∑
i=1

(
E

[
zik|T;�∗] · msi

)
.

Hence, we obtain the updating equation (27):

(48) Psk =
∑n

i=1(E[zik|T;�∗] · msi)∑K
k=1

∑n
i=1(E[zik|T;�∗] · msi)

.

The updating equation (26) for (π1, π2, . . . , πK) can be derived in a similar man-
ner; the actual derivation is omitted.
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B.3. E[logL(T,Z)|T;�∗] under model simplifications (28)–(29). In Sec-
tion 5, we introduced further simplifications to our continuous-time SBM,
namely (28) and (29), before applying it to analyze basketball games. Here,
we provide details about the changes to some of the components (38)–(42) for
E[logL(T,Z)|T;�∗] as a result of these simplifications. The components (38)
and (42) do not involve any rate functions, so they remain the same; whereas the
components (39)–(41) now become∑

1≤i �=j≤n

E
[
logLP1(Tij |Z)|T;�∗]

= ∑
1≤i �=j≤n

K∑
k=1

K∑
l=1

(
E

[
zikzjl|T;�∗]

(49)

·
(mij∑

h=1

logλk(tijh) + mij logPkl

))

− ∑
1≤i �=j≤n

K∑
k=1

K∑
l=1

E

[
zikzjl ·

mij∑
h=1

logG
ijh
l |T;�∗

]
,

n∑
i=1

E
[
logLP2(Ti |Z)|T;�∗]

(50)

= −
n∑

i=1

K∑
k=1

K∑
l=1

Mi∑
h=1

(
E

[
zikI

(
Gih

l > 0
)|T;�∗] · Pkl ·

∫ tih

t−ih
λk(t)dt

)
,

and
n∑

i=1

∑
a∈A

E
[
logLO(Tia|Z)|T;�∗]

=
n∑

i=1

∑
a∈A

K∑
k=1

(
E

[
zik|T;�∗]

(51)

·
(

mia∑
h=1

logλk(tiah) + mia logPka − Pka ·
Mi∑
h=1

∫ tih

t−ih
λk(t)dt

))
.

B.4. Analytic updates of Pkl,Pka under model simplifications (28)–(29).
Recall that, under model simplifications (28)–(29), the constraint on these transi-
tion probabilities is given by (30):

(52)
K∑

l=1

Pkl + ∑
a∈A

Pka = 1 for any k = 1,2, . . . ,K.
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Again, we introduce Lagrange multiplier ζk for k = 1,2, . . . ,K . Combining the
terms from (49)–(51) that involve these transition probabilities with the constraint
above, we obtain the Lagrangian function:

∑
1≤i �=j≤n

K∑
k=1

K∑
l=1

(
E

[
zikzjl|T;�∗] · mij · logPkl

)

−
n∑

i=1

K∑
k=1

K∑
l=1

Mi∑
h=1

(
E

[
zikI

(
Gih

l > 0
)|T;�∗] · Pkl ·

∫ tih

t−ih
λk(t)dt

)
(53)

+
n∑

i=1

∑
a∈A

K∑
k=1

(
E

[
zik|T;�∗] ·

(
mia · logPka − Pka ·

Mi∑
h=1

∫ tih

t−ih
λk(t)dt

))

−
K∑

k=1

ζk ·
(

K∑
l=1

Pkl + ∑
a∈A

Pka − 1

)
.

Differentiating with respect to each Pkl , Pka and setting the the derivatives to zero,
we get ∑

1≤i �=j≤n(E[zikzjl|T;�∗] · mij )

Pkl
(54)

−
n∑

i=1

Mi∑
h=1

(
E

[
zikI

(
Gih

l > 0
)|T;�∗] ·

∫ tih

t−ih
λk(t)dt

)
− ζk = 0,

and ∑n
i=1(E[zik|T;�∗] · mia)

Pka
(55)

−
n∑

i=1

Mi∑
h=1

(
E

[
zik|T;�∗] ·

∫ tih

t−ih
λk(t)dt

)
− ζk = 0,

from which we can solve for the transition probabilities:

Pkl =
∑

1≤i �=j≤n(E[zikzjl|T;�∗] · mij )∑n
i=1

∑Mi

h=1(E[zikI (Gih
l > 0)|T;�∗] · ∫ tih

t−ih
λk(t)dt) + ζk

,(56)

Pka =
∑n

i=1(E[zik|T;�∗] · mia)∑n
i=1

∑Mi

h=1(E[zik|T;�∗] · ∫ tih

t−ih
λk(t)dt) + ζk

(57)

for k, l = 1,2, . . . ,K and a ∈ A. Each Lagrange multiplier ζk can be solved nu-
merically as the (univariate) root to the equation

∑K
l=1 Pkl + ∑

a∈A Pka = 1 for
each k. We do this with the R function uniroot.
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FIG. 9. Rate functions displayed on top of each other in Figure 6 are displayed here individually
with 95% pointwise confidence bands.
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APPENDIX C: CONFIDENCE BANDS FOR ESTIMATED RATE
FUNCTIONS

It is possible to obtain confidence bands for the estimated rate functions condi-
tional on the cluster labels by calculating the pointwise standard errors using the
observed Fisher information matrix and the standard Delta method. As an example,
rate functions displayed on top of each other in Figure 6 (to facilitate side-by-side
comparison in Section 5.2) are now displayed individually in Figure 9 with their
respective 95% confidence bands. In all panels of Figure 9, we can see that, as
t → 24, the confidence intervals invariably widen. This is because there are fewer
transactions as the time approaches the end limit for each play, since many plays
end before reaching the full 24-second limit. Elsewhere, these confidence intervals
are narrow enough to suggest that features identified in Figure 6 and discussed in
Section 5.2 are unlikely to be merely artifacts due to noise in the data.
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