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Prediction of aboveground biomass, particularly at large spatial scales,
is necessary for estimating global-scale carbon sequestration. Since biomass
can be measured only by sacrificing trees, total biomass on plots is never
observed. Rather, allometric equations are used to convert individual tree di-
ameter to individual biomass, perhaps with noise. The values for all trees on a
plot are then summed to obtain a derived total biomass for the plot. Then, with
derived total biomasses for a collection of plots, regression models, using ap-
propriate environmental covariates, are employed to attempt explanation and
prediction. Not surprisingly, when out-of-sample validation is examined, such
a model will predict total biomass well for holdout data because it is obtained
using exactly the same derived approach.

Apart from the somewhat circular nature of the regression approach, it
also fails to employ the actual observed plot level response data. At each plot,
we observe a random number of trees, each with an associated diameter, pro-
ducing a sample of diameters. A model based on this random number of tree
diameters provides understanding of how environmental regressors explain
abundance of individuals, which in turn explains individual diameters.

We incorporate density dependence because the distribution of tree diam-
eters over a plot of fixed size depends upon the number of trees on the plot.
After fitting this model, we can obtain predictive distributions for individual-
level biomass and plot-level total biomass. We show that predictive distri-
butions for plot-level biomass obtained from a density-dependent model for
diameters will be much different from predictive distributions using the re-
gression approach. Moreover, they can be more informative for capturing
uncertainty than those obtained from modeling derived plot-level biomass
directly.

We develop a density-dependent diameter distribution model and illustrate
with data from the national Forest Inventory and Analysis (FIA) database. We
also describe how to scale predictions to larger spatial regions. Our predic-
tions agree (in magnitude) with available wisdom on mean and variation in
biomass at the hectare scale.
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1. Introduction. Forests influence the flow of carbon between land and at-
mosphere, which identifies forests as a carbon sink. This process in aboveground
live biomass in forests is defined by the net storage of carbon within trees after ac-
counting for losses from tree mortality and respiration [Pan et al. (2011)]. A wide
range of estimates is reported for carbon sinks in forests, making assessment of
associated uncertainty critical. For instance, the estimated annual carbon sink for
eastern North America ranges from 0.21 to 0.25 petagrams of carbon per year (Pg
C/yr) [Pan et al. (2011)]. Thurner et al. (2014) estimated total carbon in boreal
and temperate forests in North America at 28.7 Pg C, with upper and lower 95%
confidence limits at ± 10.8 Pg C. Biomass per unit area for areal units is never
directly measured because it requires sacrificing trees. Hence, assigning statistical
model-based uncertainty to these estimates of biomass offers a novel challenge.
This is further complicated by the fact that uncertainty in the estimates of biomass
does not scale with area.

Predicting total aboveground biomass in response to climate at the plot level
or, of greater interest, at the hectare scale, is difficult because biomass is never
measured at plot level or at larger spatial scales. Direct observations of biomass
per unit area would require sacrificing and measuring every tree on a sample plot.
Instead, allometric equations are applied to the diameter of each tree on the plot to
obtain derived noiseless (or noisy if error is added to the allometry) biomass per
tree. These per-tree values are summed to obtain derived noiseless (or noisy) total
biomass for the plot. Derived biomass per plot or per area, which are not actual
data, are treated as response variables in regression models to explain and pre-
dict geographic variation. Differences in derived biomass over successive inven-
tories are used to estimate aboveground net primary production (ANPP). These
regression models can appear attractive when out-of-sample validation is exam-
ined. They will predict total biomass well for holdout data because the holdout
data is obtained using exactly the same derived approach. Apart from the some-
what circular nature of the regression approach, it also fails to employ the actual
observed plot-level response data. At each plot, we observe a random number of
trees, each with an associated diameter, producing a sample of diameters.

Remote sensing techniques also provide estimates of total biomass. They em-
ploy broad spatial coverage but require ground-based estimates for scale [Baccini
et al. (2012), Dong et al. (2003), Saatchi et al. (2011)]. For example, Saatchi et al.
(2011) develop a power-law functional relationship between biomass and forest
height to predict biomass using satellite imagery (e.g., Lidar) of forest structure.
Malhi et al. (2006), Blackard et al. (2008) and Wilson, Woodall and Griffith (2013)
propose using various imputation methods (e.g., k-nearest neighbor weighted aver-
ages) for obtaining continuous coverage of biomass estimates between sampled in-
ventory plots. However, the inventory plots used in these analyses are often small,
and the implications of extrapolation and scaling of biomass estimates and uncer-
tainty are unclear. McRoberts et al. (2015) investigate the uncertainty in large-area
estimation of tree volume using a Monte Carlo simulation approach and show that
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the uncertainty in individual tree volume predictions can have significant effects on
large-area volume estimates of uncertainty. Schliep et al. (2016) develop a model
for derived total biomass using plot-level covariate data. They model derived total
biomass statically at two time points and predict the change in total biomass by
differencing.

Our contribution is a process-driven model specification for the observed set of
tree diameters at breast height (henceforth diameter) on a plot of a given abundance
(the number of trees on the plot). When plots are all of equal size, abundance is
equivalent to plot density. We observe a random number of trees and, for each, an
associated diameter. Our process-driven model incorporates density dependence,
acknowledging that, in addition to the environmental covariates for the plot, the
number of individuals on the plot is needed to explain the distribution of diameters
on the plot. From a model for diameters, we can obtain predictive distributions for
individual-level biomass and plot-level total biomass post-model fitting.

To illustrate the importance of density dependence in modeling total biomass,
we offer an illustration comparing our process-based approach with a regression
model for total biomass. Predictors include plot-specific covariates such as stand
age, mean annual temperature, soil moisture, deficit and possible interactions. For
the process-based model, we obtain a posterior predictive distribution of total de-
rived biomass given the observed data, that is, given the numbers of individuals on
each plot and the associated set of diameters. For the regression model, it is un-
clear exactly what “data” we should use for model fitting, again demonstrating our
discomfort with this approach and the difficulty of objective comparison via a data
set. Should we use derived noiseless total biomass? If we add noise, then inference
depends upon which set of realizations of derived biomass are used. Again, this
seems to argue for a model to explain what is observed, the abundances and the
associated sets of diameters. In any event, for the regression in the comparison be-
low, we generated 100 noisy total biomass datasets and summarize the inference
based upon their compilation.

Figure 1 shows predictive distributions of total biomass for two out-of-sample
plots using the regression model and the density-dependent model proposed in this
work. These two plots are examples of the scenario where similar total biomass
(vertical lines at approximately 120 t/ha) results from different combinations of
density and tree diameters. Plot 1 has high plot density with 750 trees relative to
plot 2 with 507 trees. The predictive distributions from both models agree on the
predictive median of total biomass, but disagree on the uncertainty because the
regression model has no information on plot density. The predictive distribution
from the model developed here has low uncertainty at high plot density. In addition
to improved inference associated with the process model, our approach benefits
from information on both tree density and diameters. Explicit comparison of the
predictive distributions of biomass using the regression model and the density-
dependent model proposed in this work is given in Section 4.3.
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FIG. 1. Predictive distributions for derived total biomass for two out-of-sample plots using a re-
gression model (solid curves) and the density-dependent model (dashed curves) developed here.
Plot 1 (grey) has 750 trees, whereas plot 2 (black) has 507 trees. The two plots have similar median
total biomass, denoted by the vertical lines, despite having different plot densities. The uncertainty
in the predictive distributions from the regression model is the same for the two plots, but differs for
our model.

Unlike the traditional approach, the process-driven model for the density-
dependent sample of diameters is generative. At the first stage we specify a Poisson
distribution for the number of trees on the plot. At the second stage we assume con-
ditionally independent diameters where the distribution for the diameters depends
upon the number of trees observed on the plot. More precisely, the observable
data will be of the form {Ni,X i ,Wi , i = 1, . . . , I }, where Ni is the number of
stems observed on plot i, X i = {Xi,1, . . . ,Xi,Ni

} is the observed set of diameters,
and Wi are plot-level covariates. Because each sample plot in our analysis has the
same area, we refer to Ni as the density of plot i, which is abundance per plot area.
We model Ni given Wi as Poisson distributed. Then we model the Ni diameters
to be conditionally independent (see below in this regard). Using bracket notation
for distributions, when we condition on Ni , this takes the form [Xi,j |Ni,Wi]. Ad-
justing for possible left truncation, we model Xi,j |Ni,Wi as Gamma distributed.
The modeling is presented in full detail in Section 3.

Typically, estimates of biomass are needed for larger areas than represented by
a sample plot. For example, a Forest Inventory and Analysis (FIA) plot in the
eastern United States is too small to be of general interest due to the sporadic
occurrence of large trees in such small plots. Forest biomass is typically reported
at the more relevant scale of metric tons per hectare (t/ha), despite the fact that
there are not even derived biomasses at the hectare scale. We indicate how our
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modeling approach can be used to scale biomass prediction from smaller plots to
the hectare scale. Large variance in biomass is expected from small plots due to
the considerable variability in the number of individuals on these plots and the
resultant implications of density dependence on diameter distribution. However,
such uncertainty would not apply to larger areas.

In Section 2 we summarize the national Forest Inventory and Analysis (FIA)
program data used in these analyses along with plot-level covariates. In Section 3
we outline the density-dependent distribution model for diameters. We specify the
model, provide model inference on diameters, and formally investigate the behav-
ior of total biomass at the plot level as a function of observed plot density. We
define the first-stage Poisson distribution for the number of trees observed in Sec-
tion 4 and investigate the behavior of plot biomass conditionally and marginally
with respect to N . We also formalize the regression approach to biomass. Then,
upon marginalizing our model, we can explicitly show the difference between pre-
dictive distributions for total biomass. In Section 5 we apply the density-dependent
model to predict biomass at the hectare scale. We conclude in Section 6 with a
summary and directions for future work.

2. FIA and climate data. We analyze data obtained from FIA plots in the
eastern United States, consisting of 23,028 plots and roughly 1 million trees. Due
to various management and harvesting efforts across the region, only plots that
were coded as “natural stands” in the FIA database were used in the analysis.
Natural stands are defined as those which have no clear evidence of artificial re-
generation. Between 1997 and 2011, each plot in the region is surveyed twice. In
this analysis, we used the second survey. Stand age is included in the FIA data and
is used in the model as a plot-level variable.

FIA applies a nationally consistent sampling protocol using a quasi-systematic
design covering all ownerships across the United States, resulting in a national
sampling intensity of one plot per 2428 hectares [Bechtold and Patterson (2005)].
An FIA plot consists of four circular subplots each having a radius of 7.32 meters
(m). The distance between subplot centroids is 35.58 m. The aggregate area of
the four subplots is 673.34 m2 or ≈0.067 hectares (ha). Trees greater than 12.7
centimeters (cm) in diameter are included in the survey. Stems less than 12.7 cm
are measured in subsets of subplots, but they contribute little to biomass per plot.
Therefore, the analyses presented here contain only measurements of stems greater
than 12.7 cm. We consider the observed plot density and the sample of diameters
to include trees observed on all four subplots.

The covariates included in our model are stand age, mean annual temperature,
soil moisture and hydrothermal deficit. Stand age affects the distribution of diam-
eters and productivity [Camarero et al. (2015)]. The Moderate Resolution Imaging
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Spectroradiometer (MODIS)2 and Parameter-elevation Regressions and Indepen-
dent Slopes Model (PRISM)3 were used to derive climate variables that can have
important impacts on forest growth [Brzostek et al. (2014)]. Specifically, we used
20-year climate normals for the years 1990–2010 for mean annual temperature.
Hydrothermal deficit is a regional climate variable that summarizes the intensity
and duration of stress caused by moisture. It is calculated as the number of degree
hours accumulated for months with a negative water balance. While we recognize
that there is uncertainty in these model-obtained covariates, there is also uncer-
tainty in both the climate that a plot experiences and how it responds to climate,
and this uncertainty is unknown. Since there is no way of determining whether
they are relevant for plots, the climate variables provide a rough index and are
assumed error-free. Soil moisture is obtained from the FIA soil quality database4

and is based on land form, topographic position, and soil.

3. Density-dependent diameter distributions and their implications for
biomass prediction. Following the Introduction, we propose a generative model
in the form

(3.1) [Ni |Wi][X i |Ni,Wi],
where [Ni |Wi] is the conditional distribution of plot density, Ni , given covariate
information, Wi , and [X i |Ni,Wi] is the distribution of diameters conditional on
both plot density and covariates.

Suppressing i and the covariates, we make the assumption that diameters are
conditionally independent given N . Thus, we only need to specify a diameter dis-
tribution of the form [Xj |N, θx] after which the joint distribution for the diam-
eters becomes �{Xj∈X }[Xj |N, θx]. With regard to the conditional independence
assumption, while tree diameters may be spatially dependent, we only have a col-
lection of diameters with no spatial referencing. We have no information upon
which to attempt to model dependence between the observed diameters. It is the
case that geo-coded locations of individuals are available for some FIA plots, but,
since the plots are small and are comprised of four noncontiguous subplots, model-
based dependence between individuals seems beyond our ability to assess. The re-
mainder of this section is devoted to exploring the behavior of biomass under a
density-dependent diameter distribution.

The general intuition associated with density dependence is that, with increas-
ing N , we expect small trees and less variation in tree diameters, or, with N de-
creasing, larger trees are expected with more variability in tree diameters. Again,

2Wan, Z., S. Hook and G. Hulley. 2015. MOD11A1 MODIS/Terra Land Surface Tempera-
ture/Emissivity Daily L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC.
http://doi.org/10.5067/MODIS/MOD11A1.006.

3PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 4 Feb
2004.

4http://www.fia.fs.fed.us/program-features/indicators/soils/index.php.

http://doi.org/10.5067/MODIS/MOD11A1.006
http://prism.oregonstate.edu
http://www.fia.fs.fed.us/program-features/indicators/soils/index.php
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the data consist of a set of tree diameters for each plot over a collection of plots
all of the same plot area. To avoid specifying an upper bound on the diameter,
that is, for a model defined over [0,∞], a natural choice is the Gamma distri-
bution. Ignoring covariates for the moment, consider a Gamma(α,β) distribu-
tion. Suppose that α is free of N but β depends on N , that is, β(N). Then, if
β(N) is increasing in N , it is immediate under the Gamma distribution that we
will achieve the desired behaviors for [X|N]. For example, suppose β(N) = βNδ

with δ > 0 yielding EN(X) = α
βNδ . Then EN(X) = O(N−δ). Similarly, we have

VarN(X) = O(N−2δ).

3.1. Assessing the Gamma model. Here, we assess the performance of a
Gamma distribution model for tree diameter. Because some data sets have a mini-
mum sampling diameter, a left truncation may be appropriate. If so, then one could
apply a translation g : [L,∞] → [0,∞] defined as

(3.2) X̃ = g(X) = X − L,

where L is the lower threshold for diameter.
The sample of truncated diameters for plot i, X̃i , given plot density and covari-

ate information, is modeled using a Gamma regression model; that is, for diameter
X̃i,j ∈ X̃i ,

(3.3) X̃i,j |Ni,Wi ∼ Gamma(α,βi).

Here, α is specified globally and βi is a plot-specific parameter given a regression
form. The regression model is specified as

(3.4) log(βi) = δ log(Ni) + νi + W′
iφ,

where δ controls the amount of density dependence exerted by Ni , νi is a plot
random effect, Wi is a set of plot-level covariates, and φ is a vector of coefficients.
Again, the diameter distribution is expected to be concentrated at small values
when plot density is high and more diffuse across diameters when plot density is
low. Alternative specifications are possible. However, the choice above captures
expected behavior and fits the observed diameter data well.

Inference for the Gamma regression model is obtained in the Bayesian frame-
work. To complete the Bayesian specification, we assign prior distributions to the
remaining model parameters and obtain posterior inference using Markov chain
Monte Carlo (MCMC). Conjugate, weak priors are assigned when possible. The
shape parameter of the Gamma distribution, α, is assigned a vague Gamma prior
with shape = 1 and rate = 1/2. The parameter δ, which controls the behavior of
the distribution of individual diameters as a function of plot density, is assigned
a noninformative normal prior distribution with mean 0 and variance 1002 and
φ ∼ MVN(0,1002Ip), where p is the number of covariates in Wi and Ip is a

p × p identity matrix. The plot random effects are modeled as νi
i.i.d.∼ N(μν, σ

2
ν )
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TABLE 1
Posterior mean estimates and 95% credible intervals for the

density-dependent diameter model

Parameter Mean Credible interval

α 1.066 (1.063,1.070)

δ 0.241 (0.235,0.248)

μν −3.081 (−3.103,−3.058)

σ 2
ν 0.096 (0.093, 0.099)

φ1 stand age −0.318 (−0.323,−0.312)

φ2 temperature −0.150 (−0.157,−0.143)

φ3 deficit 0.022 (0.017,0.028)

φ4 moisture 0.006 (0.001,0.012)

φ5 stand age2 0.077 (0.074,0.081)

φ6 stand age × deficit 0.010 (0.004,0.018)

φ7 stand age × moisture 0.015 (0.009,0.020)

φ8 deficit × moisture 0.042 (0.035,0.048)

φ9 temperature × moisture −0.092 (−0.097,−0.087)

for i = 1, . . . , I . We assign μν and σ 2
ν conjugate, noninformative prior distribu-

tions, where μν ∼ N(0,1002) and σ 2
ν ∼ IG(2,2). This specification is a form of

hierarchical centering [Gelfand, Sahu and Carlin (1995)] to enhance convergence
of the sampling algorithm. The MCMC algorithm is a Metropolis-within-Gibbs al-
gorithm where the parameters α, δ, νi and φ are each updated using a Metropolis–
Hastings step, and μν and σ 2

ν are sampled directly from their full conditional dis-
tribution.

Of the 23,028 plots in the FIA dataset, 90% were used for model fitting, and the
remaining 10% were used for out-of-sample prediction. Stand age, mean annual
temperature, soil moisture, and hydrothermal deficit were included as plot-level
main effects in the model, each of which is centered and scaled. We also included
a quadratic term for stand age to allow for nonlinear relationships. Interactions
included in the model were stand age × moisture, stand age × deficit, moisture ×
deficit, and temperature × moisture. Because FIA omits trees with diameters less
than 12.7 cm, diameters were truncated at this value.

We fitted the Gamma regression model to the FIA data given the Nis and Wis.
The MCMC was run for 20,000 iterations. The first 10,000 iterations were dis-
carded as burn-in. Due to the conditional independence of diameters on a plot and
the linear structure of the model, issues of convergence for the MCMC are not an-
ticipated. Standard diagnostics, such as the Gelman and Rubin R statistic, confirm
this. Table 1 gives the posterior mean and 95% credible interval estimates for the
Gamma model parameters. The posterior mean estimate of δ is 0.24, indicating
that the distribution of diameters is more concentrated at small values when N

is large. Negative regression coefficients indicate that diameter is increasing with
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FIG. 2. Posterior mean fitted Gamma densities for three random plots with observed diameters.

increases in the covariate, whereas positive regression coefficients indicate that
diameter is decreasing with increases in the covariate. Therefore, in general, diam-
eter is increasing with stand age for young stands and decreasing with stand age for
old stands. Additionally, the distribution of diameters is more concentrated at small
diameters for stands with high temperature, low moisture, and low deficit. Figure 2
shows the posterior mean distribution of diameters with the observed samples for
three randomly chosen plots representing low plot density, moderate plot density,
and high plot density. The posterior mean distribution of diameters is obtained
by averaging the Gamma density functions across 1000 draws from the posterior
distribution of α and βi for each plot. In each, the fitted distribution appears to
capture the observed diameters. The diameter distribution for the high density plot
with 83 stems is very concentrated at small values, whereas the plots with fewer
stems have much broader distributions to match their observed empirical behavior.

Figure 3 shows the posterior mean predictive distribution of diameters with the
observed diameter samples for three randomly selected out-of-sample plots, again
representing low, moderate, and high plot density. These figures show that the

FIG. 3. Posterior mean predicted Gamma densities for three random out-of-sample plots with ob-
served diameters.
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model predicts out-of-sample reasonably well. In particular, the high density plot
with N = 103 stems is highly concentrated around smaller values, matching the
empirical set of diameters for the plot.

3.2. The behavior of biomass. To obtain a derived biomass for a tree, we use
an allometric model, which transforms a diameter to biomass. The literature here
is substantial [e.g., Henry et al. (2013), Jenkins et al. (2003), Lambert, Ung and
Raulier (2005), Picard, Saint-André and Henry (2012), Whittaker and Woodwell
(1968)]. We work with the widely used allometric form aXb. More precisely, for
each random diameter, we create the random variable Y = aXb, where a and
b are known allometric coefficients. For now, assume these coefficients are the
same for all species. We can interpret Y as the noiseless derived random tree-level
biomass associated with the random diameter, X. In practice, this will not be the
actual biomass because there is error in the allometry. If we write the allometric
model on the log scale, it is customary to introduce error additively (and inde-
pendently), yielding log(Y ) = log(a) + b log(X) + ε. Variances for ε have been
extracted [Jenkins et al. (2003), Lambert, Ung and Raulier (2005), Molto, Rossi
and Blanc (2013), Ung, Bernier and Guo (2008)] from the limited data collected

on trees from allometric studies. The coefficient of variation, defined as
√

var
mean , is

one such metric for reporting uncertainty and discussed with regard to total de-
rived biomass in Chave et al. (2004) and Chave et al. (2014). Uncertainty at the
tree level has been investigated in terms of measurement error, allometric model
specification, the sampling protocol of stems in a plot, and the representativeness
of small plots for a forest landscape [Chave et al. (2004, 2014)]. Therefore, on the
original scale, we might specify Y = aXbe with lognormal error e = expε . We will
refer to such Y s as noisy tree-level biomasses.

Under the Gamma model specified above for diameter, we are interested in the
implications for mean and variance of biomass as N grows large, that is, the order
of EN(Y ) and VarN(Y ). First, consider the case with no ε such that e = 1 w.p. 1.
Then EN(Y ) = aEN(Xb). Standard moment calculations for the Gamma distribu-
tion reveal that EN(Y ) = O(N−bδ) and VarN(Y ) = a2 Var(Xb) = O(N−2bδ).

Next, consider total derived biomass, B , where B = ∑N
j=1 Yj and the Yj are

conditionally independent. From the above calculations, EN(B) = O(N1−bδ) and
VarN(B) = O(N1−2bδ). We can also obtain the large N behavior of the coefficient

of variation (CV); that is, CVN(B) =
√

N VarN(Y )
NEN(Y )

= N−1/2 O(N(1−2bδ)/2)

O(N1−bδ)
= O(N−1).

As a function of plot density, we therefore anticipate various “large” N behav-
iors for mean, variance, and CV of total derived biomass.5 In particular, if bδ < 1,
then we expect to see increasing total derived biomass in N , while if bδ > 1, we

5For these asymptotics to apply in practice, we either need L = 0 in (3.2) or else to consider

X̃ = X − L. Otherwise, Y ≥ aLb , and so B ≥ NaLb .
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expect decreasing total derived biomass. The latter is not a contradiction. With in-
creasing plot density, we expect smaller trees on average, and thus total derived
biomass need not increase with N . Similar remarks apply to the variance in total
derived biomass. Now, if 2bδ < 1, variance increases in N , but if 2bδ > 1, variance
decreases in N . As N increases, we expect plots containing smaller trees with less
variability between the plots. Interestingly, for the CV, we expect O(N−1) behav-
ior regardless of δ.

The analysis of the previous section suggests estimates for δ with regard to the
diameter distribution. The allometry suggests estimates for b. Together, we can
infer about the mean and variance behavior of total derived biomass as a function
of plot density, N .

Returning to the case where error is introduced in the allometry, if e is indepen-
dent of X (and the distribution of e does not depend upon N ), then the order results
are unaffected by including e. However, it is often assumed that the errors depend
upon X such that bigger diameters produce bigger errors in the allometry. This
suggests Var(e) to be of the form τ 2(X) where, say, τ 2(X) = Xψτ 2 with ψ > 0.
Now, EN(Y ) = aE(Ee|X(Xbe)) will still be O(N−bδ) with, say, E(e) = 1. How-
ever, VarN(Y ) = a2(EN(Var(Xbe|X)) + VarN(E(Xbe|X))) = a2(EN(X2b+ψ) +
Var(Xb)). Here, the first term will be O(N−(2b+ψ)δ), while the second will be
O(N−2bδ). Since ψ > 0, the order of the variance will still be O(N−2bδ). Evi-
dently, the order behavior of CV will also be unchanged.

In the literature, other allometric forms exist, for example, log(Y ) = b0 +
b1 log(X) + b2(log(X))2. Alternatively, sometimes tree height, h, is introduced
(though it is acknowledged that height is less accurately measured and less affected
by competition than diameter) to yield a form log(Y ) = a(X2h)b; that is, biomass
is derived from the volume of the trunk. A long list of allometric forms relating the
variables is supplied in the GlobAllomTree manual (http://www.globallometree.
org/media/cms_page_media/6/tarifs_en_web_May23_1.pdf) in Table 5.1, page
105. Similar large N calculations to the above can be attempted for some of these
allometric forms.

3.3. Predicting total biomass. We employ the allometric model that depends
only on diameter such that

(3.5) log(Y ) = log(a) + b log(X) + ε,

where ε has mean zero normal error with constant variance that is independent
of X and N . Here, X is diameter given in centimeters (cm) and Y is noisy
biomass given in kilograms, which we convert to metric tons (t). In the FIA data
for natural stands in the eastern United States, hardwoods are the most common
and, among them, hard maple/oak/hickory/beech are the most prevalent species
group. For this species group, Jenkins et al. (2003) provide coefficient estimates
of log(â) = −2.0127, b̂ = 2.4342 and a variance estimate of 0.0559. These al-
lometric model estimates are used in the remainder of this work for all biomass
calculations.

http://www.globallometree.org/media/cms_page_media/6/tarifs_en_web_May23_1.pdf
http://www.globallometree.org/media/cms_page_media/6/tarifs_en_web_May23_1.pdf
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FIG. 4. Posterior predictive distribution of individual biomass, Y, (left) and total biomass, B, (right)
reported in metric tons (t) for FIA size plots with N = 20,100, and 400. In each distribution, the
covariates, W, are set to their centered values.

Figure 4 (left) shows the posterior predictive distribution of [Y |N,W] for var-
ious values of N and W fixed. The distribution of Y becomes concentrated at
small values of Y for large N ; that is, individual biomass becomes much smaller
and more localized as the density of the plot increases. Figure 4 (right) shows the
posterior predictive distribution of [B|N,W] again for various N and fixed W.
Estimates of total biomass at the plot level tend to increase as N increases, as well
as uncertainty, although the rate of the increase decreases with N .

Figure 5 shows the behavior of EN(B), VarN(B), and CVN(B) as N increases.
The asymptotic behavior of both the mean and variance of biomass are computed
using the posterior mean estimate of δ. To capture sensitivity to b, we show the
behavior using the minimum and maximum species group-specific coefficient es-
timates, b̂, of the allometric models in Jenkins et al. (2003) corresponding to the
species groups in the FIA data. Specifically, the coefficient estimates used are
b̂ = 2.2592 and 2.4835, which are for cedar/larch and mixed hardwood, respec-
tively. In terms of asymptotic behavior, there is little difference due to the allom-
etry coefficients. Because δb̂ < 1, the order of EN(B) increases with N , whereas
since 2δb̂ > 1, the order of VarN(B) is decreasing in N . Thus, for large N , the
increase in expected total biomass at the plot level that results from adding a tree
to a plot more than offsets the decrease in expected total biomass at the plot level
as a result of the negative shift in the density-dependent diameter distribution. This
difference between the increase and decrease, however, decreases with N .

4. Completing the diameter distribution model. We complete the density-
dependent diameter distribution model by specifying a first-stage Poisson distribu-
tion for the random number of trees observed on a plot. The generative model has
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FIG. 5. Order of EN(B) = O(N1−δb̂), VarN(B) = O(N1−2δb̂), and CVN(B) = O(N−1) versus
N using the minimum and maximum species group-specific coefficient estimates b̂ of the allometric
model (3.5) and the posterior mean value of δ from Table 1.

the form

[Ni |Wi , ηi, θ][X̃ i |Ni,Wi , α, δ, νi,γ ]
= [Ni |Wi , ηi, θ]�{X̃i,j∈X̃ i}[X̃i,j |Ni,Wi , α, δ, νi,γ ],(4.1)

where [Ni |Wi , ηi, θ] is the conditional distribution of plot density, Ni , given co-
variate information, Wi . We specify a Poisson regression model with plot specific
intensity,

Ni |Wi , ηi, θ ∼ Poisson(λi)

log(λi) = ηi + W′
iθ .

(4.2)

The regression model is defined with random effect, ηi , and coefficient vector, θ .
Since the Ni are given, the model for plot density and the model for diameter in
(4.1) can be fitted separately.

4.1. Marginalizing over N . In practice, we want to predict total biomass for
a plot of a particular size experiencing a particular set of environmental covari-
ates. To address this, we would not specify an explicit number of trees on the
plot. Rather, given a distribution for the number of trees, N , we would marginalize
over N to obtain predictive distributions for (marginalized) plot-level biomass.
Formally, in the previous section we considered [B|N,W, α, δ, ν,γ ]. Now we
investigate [B|W, α, δ, ν,γ , η, θ] = ∑

N [B|N,W, α, δ, ν,γ ][N |W, η, θ]. We are
interested in the behavior of total biomass given the model parameters; we are not
marginalizing over the model parameters as we would do in predictive inference.

Figure 6 shows the distribution of total biomass conditionally (given N ) and
marginally for three constant values for λ in (4.2). The covariates, W, and random
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FIG. 6. Distributions of total biomass (t) both conditionally and marginally with respect to plot
density, N , for three different values of λ; that is, we compare [B|λ] and [B|N ].

effect, ν, in the Gamma regression model have been set to their centered values,
and α and δ are set to their posterior mean estimates (Table 1). For each value of λ,
the distribution of total biomass is shown conditionally for three plausible values
of N . The distribution of total biomass depends on N both in terms of the number
of trees on the plot and the distribution of diameters.

For each value of λ, the marginal and conditional distributions are similar when
N = λ. However, the variance of the marginal distribution is larger than the vari-
ance of the conditional distribution and the difference decreases with λ. When
N < λ, the mean of the conditional distribution of total biomass tends to be less
than that of the marginal distribution, while when N > λ, the mean of the con-
ditional distribution of total biomass tends to be larger. Additionally, the mean of
total biomass increases with N and, for large N , the variance in total biomass de-
creases with N , which agrees with the asymptotic theory presented in Section 3.2.

4.2. Poisson model inference. We assign prior distributions to the model pa-
rameters in (4.2) and obtain posterior inference. The plot random effects are mod-

eled as ηi
i.i.d.∼ N(μη, σ

2
η ) for i = 1, . . . , I , where μη ∼ N(0,1002) and σ 2

η ∼
IG(2,2). The coefficient vector θ is assigned MVN(0,1002Ip).

The model is fitted using the same 90% of FIA plots as in Section 3. We obtain
posterior samples using MCMC. The chains are run for 20,000 iterations, and the
first half are disregarded as burn-in. Standard diagnostics resulted in no issues with
convergence. Table 2 gives the posterior mean and 95% credible intervals for the
parameters of the plot density model. The estimates of θ indicate that, in general,
the number of stems on a plot is increasing with temperature, moisture, and stand
age for young stands, while decreasing with deficit and stand age for old stands.

4.3. Predictive distribution of total biomass. For a new plot with covariates
Wnew, we consider the predictive distribution of total biomass, Bnew. Let �P and
�G denote the parameters of the Poisson regression model and Gamma regression
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TABLE 2
Posterior mean estimates and 95% credible intervals for the

Poisson regression model for plot density

Parameter Mean Credible interval

μη 3.389 (3.381,3.397)

σ 2
η 0.230 (0.224,0.235)

θ1 stand age 0.101 (0.096,0.109)

θ2 temperature 0.027 (0.019,0.033)

θ3 deficit −0.033 (−0.043,−0.026)

θ4 moisture 0.008 (0.001,0.016)

θ5 stand age2 −0.066 (−0.071,−0.061)

θ6 stand age × deficit −0.090 (−0.097,−0.084)

θ7 stand age × moisture 0.035 (0.026,0.042)

θ8 deficit × moisture 0.029 (0.020,0.038)

θ9 temperature × moisture 0.022 (0.013,0.031)

model, respectively, defined in the previous sections. The predictive distribution of
stand density, Nnew, is of the form

[
Nnew|Wnew, {Ni}, {Wi}] =

∫
[Nnew|Wnew,�P ][�P |{Ni}, {Wi}]d�P .

Then, given Nnew, the density-dependent predictive distribution of truncated diam-
eters X̃new,j for j = 1, . . . ,Nnew can be written

[
X̃new,j |Nnew,Wnew, {X̃i}, {Ni}, {Wi}]

=
∫

[X̃new,j |Wnew,Nnew,�G][�G|{X̃i}, {Ni}, {Wi}]d�G.

From this, we can derive the predictive distribution of individual biomass, Ynew,j ,
using the allometric model (3.5), and total biomass for the stand, Bnew, by sum-
ming Ynew,j for j = 1, . . . ,Nnew; that is, we can obtain [Bnew|Nnew,Wnew, {X̃i},
{Ni}, {Wi}].

Marginalizing over Nnew, the predictive distribution of total biomass becomes

[
Bnew|Wnew, {Xi}, {Ni}, {Wi}]

=
∫ [

Bnew|Nnew,Wnew, {Xi}, {Ni}, {Wi}][Nnew|Wnew, {Ni}, {Wi}]dNnew.
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Inserting the above predictive distributions, we obtain the marginal predictive dis-
tribution of total biomass as[

Bnew|Wnew, {Xi}, {Ni}, {Wi}]
=

∫ ∫ (∫
[Bnew|Nnew,Wnew,�G][Nnew|Wnew,�P ]dNnew

)

× [
�G|{Xi}, {Ni}, {Wi}][�P |{Ni}, {Wi}]d�G d�P

=
∫ ∫

[Bnew|Wnew,�G,�P ]
× [

�G|{Xi}, {Ni}, {Wi}][�P |{Ni}, {Wi}]d�G d�P ,

(4.3)

where

[Bnew|Wnew,�G,�P ] =
∫

[Bnew|Nnew,Wnew,�G][Nnew|Wnew,�P ]dNnew.

The regression model discussed in the Introduction which uses derived total
biomass as the response variable can also be used to obtain predictive distributions
of total biomass. Letting �R denote the parameters of the regression model, the
model for total biomass can be written in the form

∏
i[Bi |Wi ,�R]. With a prior

on �R , we obtain [�R|{Bi}, {Wi}] and the predictive distribution of biomass for
a new plot as

(4.4)
[
Bnew|Wnew, {Bi}, {Wi}] =

∫
[Bnew|Wnew,�R][�R|{Bi}, {Wi}]d�R.

The predictive distributions for Bnew shown in (4.3) and (4.4) are functionally very
different and will be different in practice as well (Figure 1).

5. Biomass prediction at the hectare scale in the eastern US. Prediction of
biomass at the hectare scale, for example, metric tons per hectare (t/ha), is of inter-
est because it represents an area large enough to depict a range of diameter classes.
Shugart, Saatchi and Hall (2010) highlight that aggregating from 0.1 ha plots to
1 ha plots provides a significant amount of variability reduction in biomass infer-
ence. FIA plots are small, yielding inference too noisy for developing conservation
and management decisions. Note that the scaling is additive; that is, we infer about
biomass for a plot of area k|A| from plots of area |A| by summing the biomass of
k independent plots of area |A|. In particular, since FIA plots are approximately
0.067 hectares, summing over 16 plots will give us predictive biomass at roughly
one hectare scale.

5.1. Estimation at the hectare scale. We create aggregate one hectare area
observations of tree densities and diameter distributions using k-means clustering.
The FIA plots are clustered based on stand age and the climate variables introduced
in Section 2. The result of k-means clustering is a partition of n observations into k
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FIG. 7. Estimates of total biomass (t/ha) for 20 randomly chosen out-of-sample hectare plots.
Dashes indicate upper and lower limits of the 95% credible intervals, and the circles indicate derived
total biomass computed by applying the error-free allometric model to the observed diameters for
the plot and summing over all trees.

clusters which minimize the distance in covariate space between each observation
and the cluster mean. Using this algorithm, we created 500 clusters, of which 483
had 16 or more FIA plots. We then approximate hectare area observations by com-
bining 16 FIA plots (yielding 1.072 ha) from a cluster. When clusters contain many
plots, we can create multiple one hectare areal units per cluster. Upon truncation,
the observed set of diameters become an aggregated sample of diameters on R

+;
that is, they consist of the total number of trees, again referred to as plot density,
and the empirical diameter distribution for the roughly one hectare areal unit. Since
the clustering is done in covariate space, the covariates within each set of 16 FIA
plots will be very similar. The covariates at the hectare scale are computed as the
mean of the 16 FIA plot-level covariate values.

5.2. Results. The clustering described above resulted in 1212 hectare area
plots, where 1090 were used for fitting the model and the remaining 122 were
withheld for out-of-sample prediction. Parameter inference was obtained using
MCMC. The model was run for 50,000 iterations, and the first 10,000 were dis-
carded as burn-in.

Predictive distributions of total biomass are obtained from the density-depen-
dent diameter distribution model as outlined in Section 4.3. Figure 7 shows box-
plots of the posterior predictive distribution of total biomass for 20 randomly cho-
sen out-of-sample hectare plots. The bounds of the 95% credible intervals of the
predictive distributions are also shown. The × indicates the noiseless derived to-
tal biomass computed by applying the error-free allometric model to the observed
diameters for the hectare plot and summing over all trees.

We present estimates of total biomass over climate space in Figures 8 and 9. Pos-
terior mean estimates and pointwise 95% credible intervals are shown in Figure 8
versus each of the covariates, assuming all other covariates are at their average
value. The range of values along the x-axis spans the range of the variable in the
observed data shown by the histogram. These figures indicate that total biomass is
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FIG. 8. Estimates of total biomass (t/ha) versus the covariates stand age, temperature, deficit and
moisture. The solid line indicates the posterior mean, and the dashed indicates the upper and lower
95% pointwise credible interval.

increasing with stand age for young stands and decreasing with stand age for old
stands. Total biomass is also increasing with temperature while decreasing with
deficit. Finally, we anticipate a very small increase in total biomass with moisture.

In Figure 9, mean estimates of total biomass are shown for varying levels of co-
variates bivariately, again where all other covariates are at their average value. The
× on each plot shows the observed covariate pairs. The left panel shows stand age
versus deficit, indicating that, when all other covariates are average, total biomass
is largest for moderately old stands with small deficit. The effect of stand age
appears stronger than deficit since the increase in total biomass is greater in the
horizontal direction than the vertical direction. For moderately old stands, total
biomass doesn’t appear to vary significantly across moisture levels. The third panel
shows deficit versus standardized moisture. This reveals that, for average stand age
and temperature, total biomass is greatest when deficit is low and moisture is high.
Similarly, for average stand age and deficit, total biomass is greatest when temper-
ature is low and moisture is high. However, the variability in total biomass for the
interactions between deficit and moisture and temperature and moisture are small
relative to the interactions with stand age.

Table 3 gives the posterior means and 95% credible intervals for the model
parameters. All θ coefficients for the Poisson regression model and φ coefficients
for the Gamma regression model are significantly different from 0, as indicated
by the credible intervals. Since the covariates are centered and scaled, when all

FIG. 9. Estimates of total biomass (t/ha) versus the covariate interactions for (left) deficit and stand
age, (middle-left) moisture and stand age, (middle-right) moisture and deficit, and (right) moisture
and temperature.
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TABLE 3
Posterior mean estimates and 95% credible intervals for the
density-dependent diameter distribution model parameters

using data at the hectare scale

Parameter Mean Credible interval

α 0.992 (0.989,0.995)

δ 0.290 (0.278,0.304)

μν −4.141 (−4.228,−4.067)

σ 2
ν 0.018 (0.017,0.020)

φ1 stand age −0.302 (−0.311,−0.292)

φ2 temperature −0.150 (−0.160,−0.139)

φ3 deficit 0.028 (0.018,0.038)

φ4 moisture −0.001 (−0.010,0.008)

φ5 stand age2 0.085 (0.078,0.092)

φ6 stand age × deficit 0.015 (0.005,0.024)

φ7 stand age × moisture 0.014 (0.005,0.023)

φ8 deficit × moisture 0.041 (0.029,0.052)

φ9 temperature × moisture −0.093 (−0.104,−0.082)

μη 6.228 (6.211,6.246)

σ 2
η 0.062 (0.056,0.067)

θ1 stand age 0.095 (0.079,0.109)

θ2 temperature 0.023 (0.006,0.044)

θ3 deficit −0.022 (−0.042,−0.003)

θ4 moisture 0.018 (0.005,0.037)

θ5 stand age2 −0.068 (−0.077,−0.057)

θ6 stand age × deficit −0.100 (−0.116,−0.086)

θ7 stand age × moisture 0.041 (0.027,0.059)

θ8 deficit × moisture 0.023 (0.007,0.042)

θ9 temperature × moisture 0.024 (0.005,0.037)

covariates are at their average value (set equal to 0), the expected number of trees
per hectare is exp6.228 = 507. In terms of the main effects, when all other covariates
are at their average value, the number of trees per hectare increases with stand age
for young stands and decreases with stand age for older stands. The number of
trees per hectare also increases with temperature and moisture but decreases with
deficit. The interactions indicate that older plots will have more trees when both
deficit is low and moisture is high. Additionally, the decrease in expected number
of trees resulting from high deficit will be less for plots with high moisture.

Under the Gamma regression model, diameter increases with stand age for
young stands and decreases with stand age for older stands. Diameter also in-
creases with temperature and moisture and decreases with deficit. The negative
effect of deficit on tree diameter is less for younger stands than older stands. Ad-
ditionally, the positive effect of moisture is greater for younger stands, stands with
less deficit, and stands with greater temperature.
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6. Summary and future work. We have developed a plot-level process-
driven model for the observed number of individuals and the associated set of
diameters. Prediction of total biomass is achieved a posteriori using allometric
models. Ecological theory suggests that the distribution of diameters should be
density dependent, and thus, is incorporated into our modeling. Through simula-
tion and real data, we have demonstrated the inference performance of our total
biomass prediction. Usual regression models for total biomass may be unsatisfy-
ing since they are fitted to derived, not observed, total biomasses. Moreover, these
models are unable to use the available observed plot-level information in their
specifications.

As future work, for diameters having associated species labels, we will build
species-specific density-dependent models. We will obtain predictions of total
biomass by summing over individual biomass predictions from species-specific al-
lometric models [see, e.g., Jenkins et al. (2003), Lambert, Ung and Raulier (2005)].
In application, many species groups will not be present on many plots. However,
if some species groups tend to present larger trees while others tend to present
smaller trees and if there is consequential variation in the allometric models, then
common allometry may not predict total biomass well.

We briefly outline a strategy for addressing this problem with just two species
groups, retaining the modeling framework developed in Section 3 above. Now, for
every observed diameter Xi,j we have a binary variable, Si,j , indicating which
of the two species groups is associated with this diameter. As a result, we add a
logistic regression modeling stage for Si,j , where P(Si,j = 1) depends upon the
diameter, Xi,j , in addition to Ni and Wi . Again, biomass is predicted post-model
fitting. Now, given N and W, we first sample an X. Then we sample an S given X

and obtain a biomass, Y , according to the allometry determined by S. By summing
over the N Y s, we obtain a predicted total biomass.

Another interesting future question is whether it is sensible to introduce ex-
pected density dependence rather than observed density dependence into the di-
ameter distribution model, that is, replacing [Xi,j |Ni,Wi] with [Xi,j |E(Ni),Wi].
There is considerable variability in the Nis but much less in the E(Ni)s. Using the
latter, less variability in predicting biomass will accrue, but the predictions may
not be well centered.

Finally, an important ecological issue is change in biomass, so-called produc-
tivity, particularly in response to change in climate. We will attempt to modify our
modeling to provide prediction for change in total biomass at various temporal
scales.
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