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MODELLING INDIVIDUAL MIGRATION PATTERNS USING
A BAYESIAN NONPARAMETRIC APPROACH
FOR CAPTURE-RECAPTURE DATA
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We present a Bayesian nonparametric approach for modelling wildlife
migration patterns using capture—recapture (CR) data. Arrival times of indi-
viduals are modelled in continuous time and assumed to be drawn from a
Poisson process with unknown intensity function, which is modelled via a
flexible nonparametric mixture model. The proposed CR framework allows
us to estimate the following: (i) the total number of individuals that arrived at
the site, (ii) their times of arrival and departure, and hence their stopover du-
ration, and (iii) the density of arrival times, providing a smooth representation
of the arrival pattern of the individuals at the site. We apply the model to data
on breeding great crested newts (Triturus cristatus) and on migrating reed
warblers (Acrocephalus scirpaceus). For the former, the results demonstrate
the staggered arrival of individuals at the breeding ponds and suggest that
males tend to arrive earlier than females. For the latter, they demonstrate the
arrival of migrating flocks at the stopover site and highlight the considerable
difference in stopover duration between caught and not-caught individuals.

1. Introduction. Many wildlife populations migrate between their overwin-
tering sites and breeding sites twice a year. In recent years, several species have
been observed to change their phenology with populations spending less time at
their overwintering sites and moving earlier to their breeding sites than in the past.
These changes are mostly attributed to the warming climate [see, e.g., Bauer et al.
(2008), Van Buskirk, Mulvihill and Leberman (2009), Sullivan et al. (2015)]. We
note here that phenology is defined by the Oxford English dictionary as “The study
of cyclic and seasonal natural phenomena, especially in relation to climate and
plant and animal life”’, and hence we use the term to refer to migration and breed-
ing patterns, which are of course interlinked.

As Seebacher and Post (2015) state, “. .. (the) global geographical scale (of mi-
gration) makes migrating individuals particularly vulnerable to climate change,
and at the same time, the process of migration has fundamental impacts on eco-
logical processes and biodiversity”. According to Both et al. (2009), changes in
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climate have in some cases led to a mismatch between the peak food availability
and phenology, which has resulted in declines of numbers in some species.

Hence, it is crucial to monitor phenology of populations, as well as the duration
of time that individuals spend at the site(s), termed stopover duration, and popula-
tion sizes. This information can be useful in assessing, for example, the importance
of a particular site or in informing about the effect of, or need for, conservation
strategies.

The work in this paper is motivated by capture-recapture (CR) data, such as the
data represented in Figure 2(a), that are often collected at sites of interest. CR data
result from repeatedly sampling a population and uniquely marking newly caught
individuals before releasing them back into the population. We consider two case
studies:

(i) CR data on great crested newts (GCN) (Triturus cristatus) collected in the
UK (Section 3.1). GCN are a European protected species. They overwinter away
from water, and in late winter they migrate to ponds in order to breed, their phe-
nology influenced by weather conditions [Lewis (2012)];

(i) CR data on reed warblers (RW) (Acrocephalus scirpaceus) collected in
Switzerland (Section 3.2). RW overwinter in Africa, and migrate to Europe by trav-
elling short distances at a time and utilising stopover sites along the way. Kovacs
et al. (2012) reported that in Hungary spring migration of RW has in recent years
shifted a week earlier while autumn migration a week later, agreeing with patterns
reported for migrating species in general.

CR data can be analysed using Jolly-Seber (JS)-type models [Jolly (1965),
Seber (1965), Schwarz and Arnason (1996), Pledger et al. (2009), Matechou et al.
(2013b)] which account for the sampling scheme and for new individuals arriving
into the population, as well as for individuals leaving the population [Cormack
(1964), Lebreton et al. (1992)]. Typically fitted using a frequentist approach, JS
models are not built at the individual level so as to avoid dealing with a large
number of latent variables, which is challenging. Instead, they are built at the pop-
ulation level, and hence estimate the proportion of individuals that were new ar-
rivals at each sampling occasion instead of individual arrival times. Any inference
drawn is restricted to the population as a whole. But as Charmantier and Gien-
app (2014) note, it is the information at the individual level that will allow us to
study and understand any changes in phenology. Additionally, arrival is modelled
in discrete time and the total number of individuals that became available for detec-
tion at least once, termed the “super-population”, is estimated instead of the total
number of individuals that visited the site. Hence, inference does not account for
individuals that had shorter stopover durations and departed before ever becoming
available for detection. Therefore, the population size estimates obtained by these
models can be different depending on the length of the intervals between sampling
occasions, an undesirable feature similar to the issue of length-biased sampling in
survival analysis.
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More recently, Bayesian formulations of the JS model have also been consid-
ered, as in Royle, Dorazio and Link (2007) and Lyons et al. (2016). These can
be used to estimate individual arrival times, but they still model arrival in discrete
time, and hence share some of the limitations of their frequentist predecessors. In
addition, since the population size is unknown and possibly updated at each it-
eration of the algorithm used to fit the model, transdimensional algorithms, such
as reversible jump Markov chain Monte Carlo (MCMC) [Green (1995)] or data-
augmentation techniques [Royle and Young (2008)], are employed to deal with
the changing dimensions of the model. However, the former can be difficult to set
up and tune, and the latter requires the specification of an upper bound for the
population size, which is not typically known.

In this paper we adopt a Bayesian nonparametric approach for modelling the
arrival of individuals into the population in continuous time using a flexible mix-
ture model. We propose a CR model which allows us to estimate the total number
of individuals that visited the site and to reconstruct the unknown presence his-
tories of individuals, that is, to estimate their times of arrival and departure, and
hence the total amount of time they spent at the site. This allows us to compare
estimated arrival times and stopover duration between individuals that were even-
tually caught and those that were never caught, as well as between individuals
with different characteristics, such as sex. Additionally, the use of our proposed
mixture model to represent the arrival pattern enables us to overcome the issue of
length-biased sampling mentioned above since individuals that arrived at the site
but never became available for capture are also accounted for in the population. Fi-
nally, we propose an elegant MCMC update for the population size using forward
simulation from the model which is an alternative to data-augmentation techniques
commonly employed in similar models.

We treat the data as generated by a marked Poisson process which consists of
three parts: the arrival, departure, and capture processes. For the arrival process,
we model the unknown arrival times of individuals as a shot-noise Cox process
[Wolpert and Ickstadt (1998), Brix (1999), Mgller (2003)]. More precisely, arrival
times are assumed to be drawn from a Poisson process whose intensity is itself
random, and modelled by a mixture [L.o and Weng (1989), Kuo and Ghosh (1997),
Nieto-Barajas and Walker (2004), Ishwaran and James (2004), Kottas and Sansé
(2007), Taddy and Kottas (2012)]. We allow for an unknown number of mixing
components and, to accommodate them, we assume that the intensity takes the
form of an infinite mixture of normal distributions, whose mixing distribution is a
gamma process [Wolpert and Ickstadt (1998), Brix (1999)]. We derive an MCMC
sampler for posterior inference on the size of the population as well as on the ar-
rival and departure times of individuals; importantly, due to the analytic properties
of our Bayesian nonparametric model, the sampler does not require designing ex-
plicit transdimensional moves [Green (1995)], which, as mentioned above, may be
difficult to tune.
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The marked Poisson process model for CR data is described in Section 2 with
more details about the gamma process given in Appendix A. The hierarchical rep-
resentation of the model is given in Appendix B, and an MCMC algorithm for
posterior inference is given in the Supplementary Material [Matechou and Caron
(2017a)]. The two case studies are presented in Section 3, and a comparison of the
results to those obtained by an existing JS-type model is presented in the Supple-
mentary Material [Matechou and Caron (2017b)].

2. Model.

2.1. Data. Data are collected at the defined study site on K sampling occa-
sions, which are assumed to be instantaneous, taking place attimes t) <t < --- <
tx andindexed by k =1, ..., K. On each of these sampling occasions, the popula-
tion is sampled appropriately, for example, using nets or traps, and all newly caught
individuals are uniquely marked and then released back into the population.

Let N be the unknown population size and D < N the observed number of in-
dividuals caught at least once. We use i to index individuals with i =1,..., N.
We denote by H; € {0, 1}X the capture history of individual i, with an entry of 1
denoting that individual i was caught on that particular sampling occasion and 0
otherwise. The N — D individuals that were never caught share the capture history
with all entries equal to 0. The data set D consists of all the D capture histories
with at least one non-0 entry. We note here that N does not correspond to the to-
tal number of individuals that became available for capture at least once during
the study, which is the definition of the “super-population” size in, for example,
Schwarz and Arnason (1996) and other JS-type models. Instead, in our case indi-
viduals that arrived and departed without ever becoming available for capture are
also accounted for.

For an example of a CR data set the reader is directed to Figure 2(a).

2.2. Marked Poisson process. Each of the N individuals entered and exited
the study site during one of the

Tp = (—00,11), Ty =[t1, 1), Tx = [tg, +00)

intervals. Note that if an individual exited in Ty or entered in Tk, or entered and
exited in the same interval, then it never became available for capture. Individuals
that were already present at the start of the study entered in 7y, while individuals
that were still present after the end of the study exited in Tk .

The arrival time of individual i is denoted by ¢;, with ; € R. We denote by b; €
{0, 1,..., K} the index of the interval in which individual i entered the population
and by d; the index of the interval in which it departed, with b; <d; € {0, ..., K}.

We consider that the points {(¢;, d;, H;)};=1,.... n are the points of a marked Pois-
son process [Kingman (1993), Daley and Vere-Jones (2003)]. Specifically, the ar-
rival times (¢;);=1,....n are drawn from a nonhomogeneous Poisson process of in-
tensity v(¢|G), and for i =1, ..., N the marks (departure d; and capture H;) are
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generated from
dilgi ~Pr(d;l&i, y),
H; |¢i, di, B~ Pr(H; [¢, di, B),

where (G, B, y) is a set of hyperparameters. We present the details on the arrival,
departure, and capture processes in the following sections.

2.3. Arrival process. The unknown intensity function v tunes the arrival pat-
tern of the individuals at the study site. Note that the Poisson process construction
implies that the population size N is drawn from a Poisson distribution with rate
w=/ fooo V(¢ |G)d¢, the overall intensity level.

Arrivals of migrating individuals tend to be synchronised, with individuals ei-
ther travelling together towards specific sites or arriving in a synchronised manner
because their migration is triggered by common environmental or individual fac-
tors. Hence, we assume that individuals become part of the population by enter-
ing the study site in clusters, which can potentially overlap in their arrival times.
Specifically, we consider that the positive intensity function v takes the form of a
mixture of normal distributions, parametrized by an unknown mixing distribution
G, which is an (unnormalized) random measure,

@.1) w616 = [ [N (e o) G (dp. do?),

where N (¢; i, 02) denotes the probability density function (pdf) of a normal ran-
dom variable with mean 1 and variance o2 evaluated at ¢ . The choice of a normal
pdf for representing the arrival pattern leads to an efficient MCMC algorithm and
allows us to reveal the major patterns in the arrival process.

We adopt a Bayesian nonparametric approach and assume that G is infinite-
dimensional, drawn from a gamma process [Kingman (1993)]. The gamma process
is parametrized by two parameters o > 0, T > 0 and a probability measure G¢. Pa-
rameters & and t both tune the overall intensity level, w, with ® ~ Gamma(e, 1),
where Gamma(a, b) denotes the standard gamma distribution of shape a > 0 and
inverse scale b > 0. « also tunes the variability of the relative sizes of the differ-
ent clusters, with lower values corresponding to higher variability. Note that the
overall intensity w and thus the population size N are both almost surely finite.

Gy is a prior distribution on the means, w, and variances, o2, of the arrival
times of each cluster. For computational convenience, we set G to be a normal
inverse gamma distribution, which is a conjugate prior for the normal distribution:
(u, o2) ~ G stands for

(2.2) wlo? ~ N (mo, a% /i),
2.3) 1/02 ~ Gamma(vg, Ag),

where mg € R, kg > 0, Lo > 0, and vy > 0 are tuning parameters.
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The parameters « and t are themselves considered to be unknown, with
o ~ Gamma(ay, by), T ~ Gamma(a;, by).

Details on the setting of the hyperparameters for the applications considered in
this paper are given in Section 2.7, while more details on the gamma process are
given in Appendix A.

2.4. Departure process. We assume that each individual i departs from the
study site with a piecewise constant hazard rate A(z),

K
(2.4) A@) =) ldg (1),

k=0

where 14(t) =1 if t € A and O otherwise and, for k =0, ..., K,
(2.5) M = log(1 + exp(—x]y)),

where x; € R? is a vector of covariate values associated to interval k =0, ..., K
and y € R? is a vector of coefficients with y ~ N'(0y, ;). Hence, given arrival
time ¢; € Tj,, the probability that individual i departs in interval d; is

Id;+1

Pr(dilgi, y) = e i AOU(1 i MO

)
di—1
e~ Wi+1=8)p; |: 1_[ e—(tk+1—lk)?~k:|[1 _ e—(tdi+1—td,~)?»dl-]

k=b;+1
if dl' > b,‘,
1 — ¢~ (a+1=8)2q; ifd; = b;.

Defining d)“"“ ~H) — e=(t1=10% a3 the probability of surviving from time f
to time #x41, we obtaln
(2.6)
(:b +1—8i) { 1—[ ¢(lk+1 lk)} d)gdﬁrl_tdi)} ifd; > b;,
Pr(dili,y) = k=b;+1
¢gd +1—8i) if di — bi.

We note that this expression is similar to those used in JS-type models, such as
the Pledger et al. (2009) model, and it allows us to consider a range of parameteri-
sations for ¢, which can be, for example, considered to be constant for the duration
of the study or dependent on time-varying covariates.
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2.5. Capture process. 1f X eN]R‘7 is a vector of covariate values on sampling
occasion k=1, ..., K and B € RY is a vector of coefficients with B ~ N 0z, 17),
then the probability that the kth entry H;; of the observed capture history H; is
equal to 1, that is, the probability that individual i was caught on sampling occasion
k is

1
Pr(Hix = 115, dj, B) = | 1 +exp(=X[ )
0 otherwise.

itb; <k <d,

We note here that we have chosen the prior variance-covariance matrices for
both y and § to be the identity matrices, but we show in the Supplementary Mate-
rial [Matechou and Caron (2017a)] that our inference is not affected by the choice
of prior in this case since we obtain the same posterior distributions for these pa-
rameters when we specify the diagonal of these matrices to be 10 or even 1002.

2.6. Model fitting. The hierarchical representation of the whole model is given
in Appendix B, and details on the MCMC algorithm for posterior inference on
the model parameters are given in the Supplementary Material [Matechou and
Caron (2017a)]. The accompanying R code [R Core Team (2014)] is available in
Matechou and Caron (2017b).

For both applications considered in this paper, we run three chains of the algo-
rithm, using starting values for the parameters randomly generated from the pa-
rameter space. We discarded 50,000 iterations and thinned the chains by keeping
one every 300 samples. We concluded convergence by visual inspection of trace
plots and by the Gelman—Rubin diagnostic plot produced using the R-package
coda [Plummer et al. (2006)]. These diagnostics are presented in the Supplemen-
tary Material [Matechou and Caron (2017a)].

2.7. Hyperparameter settings. The parameters of G have to reflect our prior
beliefs and understanding about the arrival process of the population. We expect
the arrival times of clusters to be mostly within the study limits, by study design,
as the populations are nonresident and the sampling period is expected to encom-
pass the residency period. Hence, we have chosen the parameters of G to reflect
that, while also allowing for values outside that range to be proposed with a lower
frequency. The arrival times of each cluster are not expected to span more than a
few sampling occasions, with clusters potentially arriving in short, abrupt bursts.
We chose to set vg = 4 and Ao = 1 so that 95% of the distribution mass for the
standard deviation of arrival times is between 0.3 and 0.96. This prior is flexible
enough to allow for the creation of clusters with arrival times which span anything
between one and a few (e.g., four) sampling occasions. We set o = tx /2 and
chose the value for xqg so that, a priori, roughly 95% of the arrival times simulated
from Gy fall within the study limits, which is expected when studying migrating
populations. In particular, for the example shown in Section 3.1 we set ko = 0.01,
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while for the example in Section 3.2 we set ko = 0.03. Finally, we chose improper
priors for parameters « and t and set ay, = by, = ar = b, =0.

3. Applications.

3.1. Great crested newts. The data set, collected by the Durrell Institute of
Conservation and Ecology, University of Kent, concerns a small population of
GCN that breeds in eight artificial ponds that are located on the university campus
[Lewis (2012)]. GCN hibernate on land and migrate to ponds in spring in order
to breed. Once their breeding is complete, they return to land to overwinter. Indi-
vidual GCN are uniquely identifiable by their belly patterns, and male GCN are
distinguished from females by the crest on their backs. During the breeding season
of 2012, D = 30 adult GCN were caught at least once in K = 22 weekly sampling
occasions. Here, fy=landt;, — 1 =1, k=2,..., K.

We assume that capture probability is a function of the number of traps placed
in the ponds, which is either 6 or 8, and that survival probability varies by calendar
time, as all of the GCN will leave the ponds by the end of the breeding season, and
we use a logistic regression model with standardised week number, 1-22, as the
covariate to represent that dependence.

We estimate that the probability that all of the GCN present that season were
caught is less than 20%, while the probability that more than 5 GCN were missed is
~5% [Figure 1(a)]. The posterior mean for capture probability is equal to 0.40 with
(0.30, 0.49) 95% posterior credible interval (PCI) when the number of traps is 8.
This is similar to summaries obtained when the number of traps is 6 [mean = 0.39,
95% PCI = (0.33, 0.46)], which is due to the fact that the number of individuals
that can be caught each week is not limited by the number of traps. Note that the
PCI around capture probability in the second case is marginally narrower since
more samples where collected using 6 rather than 8 traps.

Figure 1(b) plots posterior draws of the normalized intensity, or density of the
arrival times ¢, at 500 randomly chosen iterations of the algorithm, shown by the
gray lines, as well as the posterior mean normalized intensity, shown by the black
line. The mean normalized intensity for { provides a smooth representation of the
arrival pattern of the GCN at the breeding site and suggests an almost continuous
flow of arriving individuals, at least for the first half of the season. The boxes at
the bottom of the plot represent the values of ¢ that fall in the 95% highest pos-
terior density (HPD) interval, constructed using R package “hdrcde”. The figure
suggests that a high proportion of GCN were already present at the start of the
study (roughly 47%). Almost 95% of GCN are estimated to have arrived by week
12. Weeks 2 and 15-22 are outside the 95% HPD interval of arrival times, suggest-
ing possibly two major arrival groups with migration to the ponds concluding by
roughly the middle of the season.

The estimates of individual arrival times of GCN caught at least once suggest
that male GCN arrive at the breeding ponds earlier than females, agreeing with
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FIG. 1. Great crested newt data. (a): Posterior distribution of N. (b): Draws from the normalized
intensity of the arrival times ¢ obtained at 500 randomly selected iterations of the algorithm (gray
lines), with the black line showing the mean normalized intensity and the tick marks on the x-axis
indicating sampling occasions. The position of the boxes on the x-axis indicates the values of ¢
that fall in the 95% HPD interval while their height is equal to the lowest density value in the
interval. (c): Posterior mean and 95% PCI of ¢ = e M as a function of week number, k =1, ...,22.
(d): Number of individuals caught each week together with summaries of values simulated from the
model.

the literature on the ecology of the species [Jehle, Thiesmeier and Foster (2011)].
Specifically, almost 60% of caught males are estimated to have been present when
the study commenced, while the corresponding proportion for females is around
10%. Additionally, males are estimated to be present at the start of the study on
average, while females arrive much later, on average between weeks 5 and 6.

As expected, survival probability is estimated to decrease considerably over
time [Figure 1(c)]. The 95% PCI for d includes weeks 4-22 and has posterior
mean equal to 15.5 with only around 1% of GCN estimated to still be present at
the end of the study period, that is, with d > 22.
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Finally, to check the fit of the model, we generated CR data from the recon-
structed presence histories obtained at a random sample of iterations of the algo-
rithm, and plotted the observed number of individuals caught each week together
with the means and 95% percentile intervals of the simulated values [Figure 1(d)].
The model provides a satisfactory fit to the data, as it is able to reconstruct the
overall trend in the data, with numbers peaking around the middle of the study and
gradually decreasing towards the end as the GCN are leaving the ponds.

3.2. Reed warblers. We consider the data set on migrating RW collected in a
river delta in southern Switzerland and analysed by Schaub et al. (2001). Captures
took place over 70 days, but the data were pooled over 5-day periods, resulting
in 14 capture occasions and 567 birds caught at least once. Hence, t{ = 1 and
1 —te=1,k=2,..., K. Arepresentation of the data set is given in Figure 2(a).

Schaub et al. (2001) used the recruitment approach of Pradel (1996) to estimate
stopover duration before the time of first capture for each individual and standard
survival analysis [Lebreton et al. (1992)] to estimate stopover duration after the
time of first capture. They found that recruitment was time-dependent, while sur-
vival and capture probability were constant.

Following Schaub et al. (2001), we assume that both ¢ and p are constant. The
posterior means and 95% PCI for ¢ and p are found to be 0.39 (0.32, 0.45) and
0.21 (0.15, 0.29), respectively. We estimate that the population size was substan-
tially greater than the sample size [Figure 2(b)] with posterior mean equal to 2957
[95% PCI = (2345, 3719)]. The density plot of ¢, presented in Figure 2(c), shows
that arrival times span the whole study duration with sampling occasions 3, 6, 11,
and 14 outside the 95% HPD interval for ¢. The estimated arrival pattern clearly
demonstrates the arrival of around four or five waves or flocks of birds at the breed-
ing site. The synchronous arrival of migrating birds at stopover sites is the result of
favourable weather, for example, wind and rain [Erni et al. (2002), Schaub, Liechti
and Jenni (2004)], which is typically synchronous over large spatial scales. This
results in migration waves, such as the ones shown in Figure 2(c). Finally, the fit
of the model is assessed in Figure 2(d) using the posterior predictive distribution.

To estimate the average stopover duration, we can use the reconstructed pres-
ence histories, as obtained at each iteration of the algorithm. The proportions of
the estimated difference between d and b for marked and unmarked individuals are
given in Table 1. It can be seen that over 50% of marked birds are estimated to have
spent at least 10 days at the site, while 44% of unmarked birds have d — b = 0.
Since the interval between sampling occasions is equal to 5 days, we use the mid-
point of each interval as an approximation to the number of days birds that de-
parted in that interval spent at the site. We note here that since we model arrival
in continuous time, we could instead use the average individual estimated ¢, but
this way our results for marked birds are directly comparable to those obtained
by Schaub et al. (2001). For example, birds that have d = b spent on average 2.5
days at the site, birds with d — b = 1 spent on average 7.5 days, etc. The average
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FIG. 2. Reed warbler data. (a): Representation of the data with black blocks indicating captures
and white noncaptures. Individuals are ordered first by the number of times they were caught, in
decreasing order, and subsequently by the time of their first capture. (b): Posterior distribution of N .
(¢): Density estimates for ¢ obtained at 500 randomly chosen iterations of the algorithm (gray lines),
with the black line showing the mean density and the tick marks on the x-axis indicating sampling
occasions. The position of the boxes on the x-axis indicates the values of ¢ that fall in the 95%
HPD interval while their height is equal to the lowest density value in the interval. (d): Number of
individuals caught each week together with summaries of values simulated from the model.

TABLE 1
Reed warbler data. The column names give the difference between the sampled values of d and b,
that is the difference between the indices of departure and arrival intervals. The cell entries give the
proportion of marked, first row, and unmarked, second row, of individuals with corresponding d — b

values
d—b
0 1 2 3 4 5 6
Marked 0 44 30 15 7 3 1

Unmarked 44 40 12 3 1 0
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stopover duration of caught birds is equal to 12.5 days, which is similar to the value
obtained by Schaub et al. (2001), (12.3). However, the average stopover duration
of unmarked birds is considerably lower (6.5 days), resulting in an overall aver-
age stopover duration of around 8 days. This difference in the stopover duration
between marked and unmarked birds highlights the importance of using models,
such as the one presented in this paper, that take into account the individuals that
were never caught, which are likely to be the ones with the shorter stopover dura-
tions and thus overcome length-biased sampling issues.

The reed warbler data set and code to fit the model to the data is given in
Matechou and Caron (2017b).

4. Discussion. In recent years, birds and other animals have been observed to
change their phenology as they adapt to a changing climate. At the same time, site
suitability is also changing due to increasing temperatures and other environmental
changes. As a result, the distribution of wildlife populations is changing over time
and space. It is crucial to monitor these adaptations and record changes in numbers
or behaviours of individuals. We have presented a flexible model which provides
estimates of ecologically important parameters such as population size, time spent
at the site, and density of arrival times for open nonresident populations using
CR data. The model can be fitted to data sets collected in different years and/or
at different sites to detect any potential patterns or changes and inform about the
need of policy implementation.

Our approach is an alternative to JS-type models, and we present a comparison
of our results to those obtained by the Pledger et al. (2009) parameterisation of the
JS model in the Supplementary Material [Matechou and Caron (2017a)]. The re-
sults between the two approaches are generally in agreement, but our approach has
four main advantages over the existing, frequentist, and Bayesian, JS-type meth-
ods:

1. Smooth representation of the arrival pattern. By modelling arrival of indi-
viduals in continuous time, we obtain a smooth representation of the arrival pattern
at the site. This is not only ecologically interesting, but it can be especially use-
ful when comparing analyses of data sets collected in different years, as potential
patterns or trends over time can be detected more easily by simply comparing the
posterior mean intensity function. We note here that we have treated the problem
of estimating the arrival pattern as a density estimation problem and clustering of
individuals arose in the process. However, these clusters can overlap, making in-
terpretation of the number, size, and other cluster characteristics challenging, and
hence we have not tried to interpret them from an ecological perspective.

2. Overcoming the issue of length-biased sampling. Our model allows us to es-
timate the total number of individuals that arrived at the site as opposed to the
number that became available for detection at least once. As our results in the Sup-
plementary Material [Matechou and Caron (2017a)] demonstrate, these two values
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can be considerably different if the intervals between sampling occasions are long
compared to the average stopover duration of individuals in the population. In ad-
dition, individuals that arrived but departed before the start of the study are also
accounted for, which is not the case in, for example, Lyons et al. (2016), who men-
tion that, typically, studies at stopover sites are planned so that they start before
most individuals have arrived. However, since phenology is changing in recent
years, satisfying this criterion can become increasingly more difficult. This kind of
bias is often encountered in ecological applications where detection is imperfect.
For example, Gilbert et al. (2014) state that “Estimates of survival from neonates
that are opportunistically captured might be inaccurate because some individuals
die before sampling, resulting in data that are left truncated”. Hence, our approach
could be modified for modelling time of birth instead of time of arrival to account
for individuals that never became available for detection and correct such bias.

3. Estimation of individual arrival/departure times. Since we are estimating
individual arrival and departure times, similar to Lyons et al. (2016), we are able to
estimate individual stopover durations as well as other statistics that are potentially
of interest, such as number of individuals present at any time point. However,
in contrast to Lyons et al. (2016), we do not assign an arrival time of one to all
individuals that were already present at the start of the study, as our mixture model
allows us to extend arrival to times prior to the start of the study while accounting
for the probability of remaining at the site until the start of the study. For the
applications considered in this paper, estimated individual arrival and departure
times allowed us to compare the arrival pattern of individuals of different sex as
well as the estimated stopover duration of individuals that were caught at least once
with that of individuals that were never caught. Additionally, if data for multiple
years are available, then our model enables monitoring the arrival times of specific
individuals over different years, and potentially linking them to other ecological
processes of interest.

4. Estimation of N. When updating the population size, N, the parameter vec-
tor dimension also changes. However, our approach for estimating the size of the
population does not require the use of reversible jump MCMC algorithms, or the
specification of an upper bound, as in data augmentation techniques, to perform
this update. Our proposed framework is general, and it can be applied to other
similar models when only a subset of the population is observed and updates of N
are performed as part of the estimation process. A similar, and topical, application
where data-augmentation has been considered is in the area of spatially explicit
CR models [see, e.g., Royle et al. (2009)], where the probability of detecting an
individual is a function of the (unknown) distance of the trap from the centre of its
home range.

We have chosen to model the unknown intensity of arrivals as a shot-noise
gamma process. There is a rather large literature on Cox processes; see for ex-
ample, Mgller and Waagepetersen (2003), Chapter 5. A standard alternative is
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the log-Gaussian Cox process, where the log-intensity is drawn from a Gaussian
process [Mgller, Syversveen and Waagepetersen (1998), Brix and Diggle (2001)].
The approach we have chosen has, however, a number of advantages over the log-
Gaussian Cox process: (i) it directly provides a prior over continuous intensity
functions, without the need for a transformation, (ii) it can naturally capture mul-
tiple modes, corresponding to the arrival pattern of different arrival groups, and
(iii) it ensures that the overall intensity w is finite almost surely, and its (gamma)
distribution is explicitly known; in the log-Gaussian process case, this intensity
may be infinite; even if finite, it is unclear how to relate the overall intensity, and
thus the number of individuals, N, to the parameters of the log-Gaussian process.

With regard to the specification of the hyperparameters of Gy (i.e., (o, k0, A0,
and vp), we note the following: our work has been motivated by data on migratory
populations where typically the study encompasses the stopover period and most
individuals arrive within the study season. Hence, we defined our prior on phenol-
ogy to reflect this, as explained in Section 2.7. However, the results on the data
set of great crested newts, where roughly 40% of the individuals are estimated
to have arrival times that are less than one, demonstrate that if the data support
it, then our model is flexible enough to allow for individuals to arrive before the
start of the study. For demonstration purposes, we present a sensitivity analysis for
the data set of great crested newts in the Supplementary Material [Matechou and
Caron (2017a)]. The analysis suggests that the results, for example, the posterior
distribution for N and the posterior mean density of arrival times, are robust with
respect to the specification of the hyperparameters of G as long as the prior dis-
tribution of arrival times does not support arrival that occurs after the end of the
study. This is because there are no data available after the end of the study, and
hence the posterior will be dominated and completely determined by the prior for
that period. As a result, the posterior mean for N will be greater because N will
include individuals that arrived after the end of the study. If this is indeed the prior
expectation, as, for example, suggested by experts, then the results will still be
valid. However, in other cases, such as in the case studies of this paper where the
expert knowledge suggests that no individuals will arrive after the end of the study,
we advise to refrain from specifications of such prior distributions. In our opinion,
it is advisable to consider hyperparameters which constrain the prior to times that
correspond within the study period, as this (1) avoids the aforementioned issue of
the posterior being dominated by the prior for times when no data are available,
and (2) does not constrain the posterior to extend to times beyond the study period,
or at least before the study commences, if the data suggest so, as demonstrated by
our analysis of the great crested newt data set and our sensitivity analysis.

Our approach is generally applicable to data collected on any nonresident
wildlife population, and our model can be extended in various ways. For exam-
ple, although the data sets we considered were obtained using only one type of
sampling, namely capture, the model can be readily extended for cases when multi-
ple types of sampling are employed, such as capture-resight data. Additionally, the



BAYESIAN NONPARAMETRIC CAPTURE-RECAPTURE 35

model can be extended for the case of integrated analysis of different (independent)
data sets [Besbeas et al. (2002), McCrea et al. (2010), Matechou et al. (2013a),
Lyons et al. (2016)], to allow for heterogeneity in capture probabilities between
individuals [Basu and Ebrahimi (2001), Rocchetti, Bunge and Boéhning (2011)]
and, potentially, to account for misidentification of individuals [McClintock et al.
(2014)] which is a feature of some noninvasive sampling techniques, such as DNA
sampling.

We have chosen to model the departure process using the assumption of a piece-
wise constant hazard rate which resulted in a modelling framework for (apparent)
survival probability similar to that established in the capture-recapture literature.
However, more flexible models, for example, using continuous kernels as functions
of covariates, could also be considered. Finally, an interesting extension would be
to relate phenology to environmental covariates. One way to address this would be
to have the base measure G, which tunes the arrival times of each cluster, to be
parametrized by these covariates. Alternatively, a different and even more flexible
approach would be to consider dependent nonparametric processes [MacEachern
(1999)].

We note that there are very few applications of Bayesian nonparametric tech-
niques in population ecology. For example, S. Basu, in an unpublished techni-
cal report [Basu (1998)] and Manrique-Vallier (2016) presented a nonparametric
Bayesian CR model with heterogeneity in capture probabilities for closed popula-
tions based on a Dirichlet process prior, while Dorazio et al. (2008) used the same
technique to account for heterogeneity in abundance between different sites. How-
ever, to our knowledge, the model we presented in this paper is the first Bayesian
nonparametric CR model for open populations, and we believe that there is great
scope for further extension of our work with a considerable range of applications.

APPENDIX A: DETAILS ON THE GAMMA PROCESS

A draw from a gamma process is an almost surely discrete measure, and takes
the following form:

(0,0)
(A.1) sz;nj(s(ﬂ;’(,;z),
j=

where §, is the Dirac delta measure at a. Combining equations (A.1) and (2.1), we
obtain the following infinite mixture of Gaussian form for the unknown intensity v:

(A2) vZIG) =) TN (L 15,077,
j=1

The (1) j=1,2,... are positive weights which sum to one and follow a stick-breaking
process [Sethuraman (1994)] with 7; = 6; ]—[é;ll (I —6¢), where 0; ~ Beta(l, «).
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The positive scaling variable w has distribution w ~ Gamma(c, ), while the mix-
ture means and variances (u;, 0}2) are i.i.d. from Gy.

The above construction can be further simplified by the introduction of a suit-
able set of latent variables and the use of the remarkable conjugacy properties of
the gamma process. Given G, the arrival times (¢;);—. ...y are drawn from a Pois-
son process with intensity v(¢|G), or

N|G ~ Poisson(w),

.....

and, fori=1,..., N,

(A3) é‘ilGl.}fl. V(§| )
w
As the intensity v takes the mixture form (2.1), (A.3) can be alternatively rep-
resented in the following hierarchical form: fori =1, ..., N,
(A4) (ii.67)IG ~ G,
(A.5) Gil(ii, 67) ~ N (i, &),
where G = G/w and the (fi;, &i2), i =1,...,N are latent variables indicating

the mean and variance of the Gaussian component from which ¢; originated.
As G is almost surely discrete, the latent variables may have duplicate values.
[y ={A1,..., Ay} the partition (or clustering) of the N individuals, such that
individuals k and ¢ are in the same cluster iff (i, &kz) = (g, 552). J < N is the
number of different nonempty clusters.

As G is obtained by normalization of a gamma process, it is distributed from a
Dirichlet process [Ferguson (1973), Kingman (1993)]; using the conjugacy prop-
erties of the Dirichlet process [Kingman (1993), Pitman (1996)], it is actually pos-
sible to analytically integrate out G. The associated marginal distribution over the
partition Iy of the N arrival times is given by

L@ ;¢

A.6 Pr(Ily ={A1,..., A ,N) = ———— INGIR
(A.6) (My ={A; 7o, N) F(a+N)aj1;[1 (nj)
where n; =card(A;), j =1, ..., J is the size of cluster j. The generative process
for such partition is known as the Chinese restaurant process (CRP):

Pr(individual N + 1 joins an existing cluster j|I1y) = L,

a+ N
(A.7) i=1...,J,
o

Pr(individual N + 1 joins a new cluster|[1y) = .
o+ N

This marginalization is important in practice for MCMC inference, as it allows
us to perform inference with a set of parametric parameters, although the model
actually involves an infinite-dimensional parameter.
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APPENDIX B: OVERALL HIERARCHICAL MODEL

Let J be the number of clusters in [1y. Let ¢; € {1, ..., J} indicate the index of
the cluster to which individual i belongs, thatis, i € A.,. The overall model can be
described as

(B . 1) o~ Gamma(aa s ba) [Tunes the nb of clusters and overall intensity],
(B 2) T~ Gamma(af , bt) [Tunes the overall intensity],
(B.3) ﬂ ~ N(Oq, Iq) [Coefficients for capture],
(B .4) Yy~ N (Oq , q) [Coefficients for departure],
(BS) C()|Cl, T~ Gamma(a, ‘L') [Overall intensity of the arrival process],
(B.6) N|a) ~ POiSSOIl(a)) [Overall size of the population],
B.7) Iy |N , 0~ (A6) [Partition of the individuals],

forj=1,2,...,J
(B.S) ([,L j o 12) ~ Gy [Means and variances of the clusters],

and fori=1,2,...,N

B.9)  &lci, ey 08 ~ N (e, 02) [Arrival times],
(B.10) dilti,y ~Pr(d|Li, ) [Departure indices],
(B.11) H; ¢, di, B ~Pr(H; |¢&i, di, B) [Capture histories].
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SUPPLEMENTARY MATERIAL

Supplement article (DOI: 10.1214/16-AOAS989SUPPA; .pdf). We provide de-
tails on an MCMC algorithm for the model presented in this paper, convergence
diagnostics, and a comparison of results obtained using existing models for both
case studies and a sensitivity analysis to prior distributions specified for several
parameters.

Code and data (DOI: 10.1214/16-AOAS989SUPPB; .zip). The reed warbler
data and code to fit the model presented in the paper to the data.
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