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The Brown–Resnick max-stable process has proven to be well suited for
modeling extremes of complex environmental processes, but in many appli-
cations its likelihood function is intractable and inference must be based on a
composite likelihood, thereby preventing the use of classical Bayesian tech-
niques. In this paper we exploit a case in which the full likelihood of a Brown–
Resnick process can be calculated, using componentwise maxima and their
partitions in terms of individual events, and we propose two new approaches
to inference. The first estimates the partitions using declustering, while the
second uses random partitions in a Markov chain Monte Carlo algorithm. We
use these approaches to construct a Bayesian hierarchical model for extreme
low temperatures in northern Fennoscandia.

1. Introduction. Extreme events such as heat or cold waves have major im-
pacts on human health and ecological sustainability. Motivated by the pressing
need for better risk assessment, inference for spatial extremes has developed
rapidly during the last decade [e.g., Davison, Huser and Thibaud (2013), Davison,
Padoan and Ribatet (2012), de Haan and Ferreira (2006), Ribatet (2013)]. Max-
stable processes are the only possible nondegenerate limits for rescaled pointwise
maxima of random processes, thus motivating their use in modeling spatial ex-
tremes.

Flexible max-stable models have been developed for inference on spatial ex-
tremes. Over a variety of applications, the Brown–Resnick process [Brown and
Resnick (1977), Kabluchko, Schlather and de Haan (2009)] has proven to be a
valuable model for extremes of environmental variables, such as rainfall, tempera-
ture, wind speed and river discharge [see, e.g., Asadi, Davison and Engelke (2015),
Buhl and Klüppelberg (2016), Davison, Huser and Thibaud (2013), Engelke et al.
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(2015)]. It is built using Gaussian processes and its dependence structure is de-
termined by a variogram, and so well-established ideas from classical geostatis-
tics may be exported to the extremal context. The greater challenge is inference,
since the full likelihood of the Brown–Resnick process is tractable only in rela-
tively low-dimensional settings [Castruccio, Huser and Genton (2015), Huser and
Davison (2013)]. Composite likelihood techniques have been successfully used
to fit max-stable models to block maxima or threshold exceedances, but with re-
duced estimation efficiency. More efficient procedures based on full, possibly cen-
sored, likelihoods [Engelke et al. (2015), Thibaud and Opitz (2015), Wadsworth
and Tawn (2014)] have been developed for threshold exceedances, allowing the
construction of more elaborate models for spatial extremes.

Bayesian hierarchical models are appealing in spatial statistics because of the
flexibility with which they can track the spatial variation of marginal distribu-
tions. Casson and Coles (1999), Cooley, Nychka and Naveau (2007) and Sang and
Gelfand (2009) constructed hierarchical models for extremes assuming conditional
independence of extreme occurrences. Such models may have flexible margins
but cannot produce realistic simulations of extreme events [Davison, Padoan and
Ribatet (2012)]. Sang and Gelfand (2010) and Fuentes, Henry and Reich (2013)
used hierarchical models that model spatial dependence using Gaussian processes,
a somewhat restrictive class of models that are asymptotically independent and
thus may underestimate potential dependence at the most extreme levels [Davison,
Huser and Thibaud (2013)]. Ribatet, Cooley and Davison (2012) and Shaby (2014)
proposed the use of composite likelihoods in Markov chain Monte Carlo (MCMC)
algorithms and applied them for Bayesian inference on max-stable models, but
these methods present computational challenges and do not yield exact simulation
from the posterior distribution. Shaby and Reich (2012) constructed a max-stable
spatial model based on a hierarchical representation of logistic extreme-value dis-
tributions [Stephenson (2009)].

In this paper we propose a Bayesian hierarchical model based on the Brown–
Resnick process, which exploits a special case for which the full likelihood of such
a process can be calculated, using the joint distribution of componentwise maxima
and their partitions in terms of individual events [Stephenson and Tawn (2005)].
We discuss the difficulties of using the partitions in practice, and we propose a new
Bayesian approach to fitting max-stable processes without fixed partitions.

Our work is motivated by the changing climate of northern Fennoscandia. In
northern regions of Norway, Finland, Russia and Sweden, extreme low temper-
atures play a central role in ecological sustainability by limiting the extent of
outbreaks of forest pests such as the autumnal moth Epirrita autumnata, whose
larvae have caused serious damage by defoliating mountain birch. Forests in the
region have mostly been protected from this pest by extreme low winter tempera-
tures, since its eggs cannot survive below −36◦C [Virtanen, Neuvonen and Nikula
(1998)]. Winter minimum temperatures are often below this threshold, but in recent
years they have increased and projections suggest they will increase even more in



BAYESIAN INFERENCE FOR THE BROWN–RESNICK PROCESS 2305

the future [IPCC (2013), Section E.1]. Although temperature is not the only factor
limiting the spread of the moth, it is one of the most important, and thus plays a
central role in the ecology of northern Fennoscandia. In Section 4.5 we discuss the
possible changes in winter minimum temperatures in the region, focusing on the
probability that they will be less than −36◦C.

Motivated by recent disastrous heat wave events over the world, max-stable
processes and related methods have been used to model temperature extremes
and their potential changes in time. Davison and Gholamrezaee (2012) used the
so-called Schlather (2002) process to model annual maximum temperatures in
Switzerland. They used latitude, longitude and elevation to estimate response sur-
faces for the marginal parameters of extremes. Fuentes, Henry and Reich (2013)
describe a Bayesian spatial model for annual maximum temperatures in the US
based on mixtures of Gaussian distributions. Shaby and Reich (2012) used a
Bayesian max-stable model to model extreme temperature data over Europe.

Section 2 describes the data we study. Section 3 summarizes some extreme
value ideas and introduces the inference methods for the Brown–Resnick model.
The hierarchical model and the application are discussed in Section 4.

2. Extreme temperatures in northern Fennoscandia.

2.1. Dataset. We use temperature data from 20 meteorological stations lo-
cated in northern regions of Finland, Norway and Sweden; see Figure 1. The small-
est and largest distances between two stations are 26 and 471 km. Daily minimum
temperatures are available from 1960 to 2013, but with data missing. In view of
the motivation for our application, inference is needed only for the winter minima.
We focus on modeling minimum temperatures in the months December–March,
and we use the daily data to investigate their co-occurrences.

Missing daily data censor the winter minima. Winter minimum values for the
20 stations are shown in Figure 2. Our dataset has at least 26 winter minima for
each station, and each year has values of winter minimum for at least 15 of the 20
stations.

Mean winter minimum temperatures depend on local geography and topogra-
phy, and we shall model this nonstationarity in their marginal distributions using
covariates and random effects, which will also allow us to extrapolate results to
ungauged sites.

We derived covariates that are known to influence minimum temperature in
northern Fennoscandia [Aalto, le Roux and Luoto (2014)]. We supplemented the
coordinates of the stations with their absolute elevation above sea level and el-
evation relative to the surrounding areas (calculated on a 2 km × 2 km spa-
tial moving average), a proximity index to the Arctic Ocean, calculated with a
160 km × 160 km moving window assuming that the effect of the ocean reaches
80 km inland, and a lake cover index, which expresses the proportion of area cov-
ered by lakes in a 3 km × 3 km window [see Aalto, le Roux and Luoto (2014)].
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FIG. 1. Locations of the 20 weather stations in the northern regions of Finland, Norway and Swe-
den. The dashed lines shows the convex hull of the stations, which will be our region of interest for
simulation.

2.2. Temporal stationarity. In Figure 2 it is difficult to see the presence of
a temporal trend with only 53 years of noisy data, but the figure suggests that
minima may generally be slightly less extreme from 1990 onward. The inclusion
of a temporal effect in the model will help to assess this.

2.3. Serial dependence. Since we focus on modeling the winter minima, tem-
poral dependence in the daily temperatures is not of interest in itself. But our ap-
proach requires us to partition minima in terms of independent generating events,
which is complicated by the presence of temporal dependence in the daily data; see
Section 4.2.3. Cold waves stay over the region for several days, and so minimum
temperatures tend to be very dependent from day to day. Preliminary analysis [see
the Supplementary Material, Thibaud et al. (2016)] showed that the dependence is
strong for the first few days and vanishes after approximately five to ten days at
each location.

2.4. Spatial dependence. We expect winter minimum temperatures to be de-
pendent over large regions, and this is the case in our data. Figure 2 suggests that
the minima for the 20 stations behave similarly for the 53 years: the years 1966
and 1999 were very cold at all 20 locations, whereas 1973, 1993 and 2007 are
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FIG. 2. Winter minimum temperature (◦C) at the 20 stations (a different color for each station).
The horizontal line shows the −36◦C threshold.

warmer at all locations. It appears that most of the minima occurred on the same
day or only a few days apart, and so they may correspond to the same event, which
suggests strong spatial dependence.

Results from a preliminary analysis [see Thibaud et al. (2016)] suggest that pair-
wise distributions are asymptotically dependent and max-stable. After accounting
for differences in the marginal distributions, we will use a stationary isotropic max-
stable model for modeling spatial dependence.

3. Max-stable processes and inference for spatial extremes.

3.1. Generalities. Let Y = {Y(s)}s∈S be a random process with continuous
sample paths defined over a compact subset S of R

m, and let Y1, Y2, . . . be
independent replicates of Y . If there exist sequences of continuous functions
{an(s)}s∈S > 0 and {bn(s)}s∈S such that we have the distributional convergence{

an(s)
−1[

max
{
Y1(s), . . . , Yn(s)

} − bn(s)
]}

s∈S → {
Z(s)

}
s∈S, n → ∞,

where Z = {Z(s)}s∈S is a nondegenerate random process, we say that Y lies in the
max-domain of attraction of the process Z. Then the process Z must be max-stable
[de Haan and Ferreira (2006)] and its marginals are of generalized extreme-value
(GEV) form,

Pr
{
Z(s) ≤ z

} = exp
(−[

1 + ξ(s)σ (s)−1{
z − μ(s)

}]−1/ξ(s)
+

)
, s ∈ S,

denoted Z(s) ∼ GEV{μ(s), σ (s), ξ(s)}, with x+ = max(0, x), and real loca-
tion μ(s), scale σ(s) > 0 and shape ξ(s) parameters; throughout the paper,
the case ξ(s) = 0 is defined as the limit for ξ(s) → 0. Every max-stable pro-
cess with marginal parameters μ(s), σ(s) and ξ(s) can be written as μ(s) +
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σ(s)ξ(s)−1{Z(s)ξ(s) − 1}, where Z is a simple max-stable process with unit
Fréchet margins, that is, μ(s) = σ(s) = ξ(s) = 1. Thus, it suffices to consider
simple max-stable processes, henceforth denoted by Z.

As a consequence of max-stability, for every set of locations s1, . . . , sD ∈ S,

Pr
{
Z(s1) ≤ z1, . . . ,Z(sD) ≤ zD

}
= exp

{−V (z1, . . . , zD)
}
, z1, . . . , zD > 0,

(1)

where the so-called exponent function V is homogeneous of order −1, that is,
V (tz1, . . . , tzD) = t−1V (z1, . . . , zD), t > 0, and satisfies V (z,∞, . . . ,∞) = z−1

for any permutation of its arguments. In particular,

Pr
{
Z(s1) ≤ z, . . . ,Z(sD) ≤ z

} = exp(−θ/z), z > 0,

where θ = V (1, . . . ,1) ∈ [1,D] is known as the extremal coefficient of Z relative
to s1, . . . , sD . The extremal coefficient can be interpreted as the effective number
of independent variables among Z(s1), . . . ,Z(sD) and is useful for model check-
ing, since it can be estimated nonparametrically.

As they appear as limits for rescaled pointwise maxima of random processes,
max-stable processes are natural models for observed block maxima. More-
over, the equality min{Y1(s), . . . , Yn(s)} = −max{−Y1(s), . . . ,−Yn(s)} shows
that such processes also provide natural models for block minima.

Several parametric max-stable models have been proposed. The Smith (1990)
process was the first to be considered, but its realizations are too smooth for
realistic modeling of complex extremes. The Schlather (2002) process is con-
structed from stationary Gaussian processes and provides more realistic realiza-
tions controlled by different correlation functions. The extremal-t process ex-
tends the Schlather process by introducing an additional shape parameter [Opitz
(2013)]. Here we focus on the Brown–Resnick process [Brown and Resnick
(1977), Kabluchko, Schlather and de Haan (2009)], which appears to be a good
model for extremes of environmental processes.

3.2. Brown–Resnick process. Kabluchko, Schlather and de Haan (2009) con-
structed a stationary max-stable process, called the Brown–Resnick process, as

(2) Z(s) = max
i=1,2,...

Q−1
i Wi(s), Wi(s) = exp

{
εi(s) − σ(s)2/2

}
, s ∈ S,

where the Qi’s are the points of a unit rate Poisson process on (0,∞) and the εi

are independent replicates of an intrinsically stationary centered Gaussian process
ε with variance function σ(s)2 = E{ε(s)2}. The dependence structure of Z is inher-
ited from that of ε, which is controlled by the variogram 2γ (h) = E[{ε(s + h) −
ε(s)}2]. Without loss of generality, we suppose that ε(0) = 0 with probability one,
and so σ(s)2 = 2γ (s). A large class of models may be obtained by choosing dif-
ferent variograms. Later we use the stable variogram 2γ (h) = 2(‖h‖/λ)κ , with
λ > 0 and κ ∈ (0,2].
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The exponent function of a Brown–Resnick process is [Nikoloulopoulos, Joe
and Li (2009)]

V (z1, . . . , zD) =
D∑

j=1

z−1
j 	D−1

{
log(z−j /zj );

�−j,j ,�−j,j 1′
D−1 + �j,−j 1D−1 − �−j,−j

}
,

(3)

where 	p(·;μ,�) is the cumulative distribution function of a p-dimensional
Gaussian distribution with mean vector μ and covariance matrix �, 1D−1 =
(1, . . . ,1)′ ∈ R

D−1, � = {γ (sj1 − sj2)}1≤j1,j2≤D , �−j,j denotes the (D − 1) × 1
vector consisting of the j th column of � without its j th component, �−j,−j de-
notes the matrix � without its j th row and j th column, and so forth.

Let Z = {Z(s1), . . . ,Z(sD)} be a vector stemming from a simple max-stable
process Z. Differentiation of (1) shows that the full likelihood contribution for one
realization (z1, . . . , zD) of Z may be written as

(4)
∑

π=(π1,...,πK)∈P

[
K∏

k=1

{−Vπk
(z1, . . . , zD)

}]
exp

{−V (z1, . . . , zD)
}
,

where P denotes the set of all partitions of {1, . . . ,D} and the subscript πk on
Vπk

denotes the partial derivative of the function V with respect to the com-
ponents in the subset πk . Although the likelihood has a closed-form expression
for the Brown–Resnick process [Wadsworth and Tawn (2014)], the size of P
equals the Bell number and is larger than 105 for D ≥ 10, making full likeli-
hood inference computationally unattainable in many situations. Hence, inference
for max-stable processes has typically been based on composite likelihoods using
lower-order densities [Castruccio, Huser and Genton (2015), Padoan, Ribatet and
Sisson (2010)]. Not only do composite likelihoods result in a loss of efficiency
compared to full likelihood estimation, they also increase the computational bur-
den when employed in a Bayesian analysis because the composite likelihood does
not directly yield a posterior which appropriately accounts for parameter uncer-
tainty [Ribatet, Cooley and Davison (2012), Shaby (2014)]. Engelke et al. (2015),
Wadsworth and Tawn (2014) and Thibaud and Opitz (2015) developed full like-
lihood inferences for threshold exceedances of processes in the max-domain of
attraction of a Brown–Resnick process, which, while challenging, have lower com-
putational burdens than does (4).

For our likelihood, we employ the result of Wadsworth and Tawn (2014), who
showed that, for the Brown–Resnick process, partial derivatives of V with respect
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to the first d indices, denoted V1:d , satisfy

−V1:d(z) = 	D−d(logz(d+1):D; τ̃ , �̃)

(2π)(d−1)/2|�1:d |1/2(1′
dqd)1/2 ∏d

j=1 zj

× exp
{
−1

2

(
1

4
σ ′

d�−1
1:dσ d − 1

4

σ ′
dqdq ′

dσ d

1′
dqd

+ σ ′
dqd

1′
dqd

− 1

1′
dqd

)}

× exp
[
−1

2

{
logz′

1:dA1:d logz1:d + logz′
1:d

(
2qd

1′
dqd

)

+ �−1
1:dσ d − qdq ′

dσ d

1′
dqd

}]
,

(5)

with �̃ = (K ′
01AK01)

−1, τ̃ = −�̃(K ′
01AK01 logz1:d + K ′

01�
−11D/1′

D�−11D),
� = {γ (sj1) + γ (sj2) − γ (sj1 − sj2)}1≤j1,j2≤D , �1:d the d × d matrix con-
sisting of the first d rows and columns of �, A = �−1 − qq ′/1′

Dq , A1:d =
�−1

1:d −qdq ′
d/1′

dqd , q = �−11D , qd = �−1
1:d1d , σ = diag(�) and σ d = σ 1:d , where

K10 =
(

I d

0D−d,d

)
, K01 =

(
0d,D−d

ID−d

)
.

3.3. The Stephenson–Tawn model. Stephenson and Tawn (2005) derived a
likelihood based on componentwise block maxima and their occurrence times that
avoids direct differentiation of (1). Let Y 1,Y 2, . . . denote independent replicates
of a random vector Y = {Y(s1), . . . , Y (sD)} ∈R

D . Without loss of generality, sup-
pose that the process Y has unit Fréchet margins and lies in the max-domain of at-
traction of a simple max-stable process Z. Let Mn = maxi=1,...,n Y i/n denote the
componentwise maxima, and let �n = (π1, . . . , πK) denote the unique partition of
{1, . . . ,D} such that {Mn,j }j∈πk

comes from the same individual observation, that
is, for each k ∈ {1, . . . ,K}, there exists ik such that {Mn,j }j∈πk

= {Yik,j /n}j∈πk
.

Then Stephenson and Tawn (2005) showed that, as n → ∞, the block maximum
and its associated partition (Mn,�n) converge in distribution to (Z,�), whose
joint density is

(6) f (Z,�) = exp
{−V (Z)

} ∏
πk∈�

{−Vπk
(Z)

}
.

This suggests using (6) as a likelihood for inference on the joint distribution of
block maxima and their occurrence times.

This approach only requires the maximum and the partition to be observed,
and thus represents a compromise between the block maximum and threshold
exceedance approaches. The relative efficiency of Stephenson–Tawn and pair-
wise maximum likelihood estimators has been investigated by Wadsworth and
Tawn (2014). Because the partition contains information about the dependence,
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the Stephenson–Tawn estimator has smaller variance than that based only on the
block maxima. However, for finite block length, the former may be more biased
because the model (Z,�) is misspecified for (Mn,�n), that is, both for the max-
imum and the partition [Wadsworth (2015)]. Use of the limiting distribution for
(Mn,�n) represents a strong assumption that can lead to poor fit, whereas ap-
proaches based on the maximum Mn alone are more robust.

A further difficulty arises from the definition of the partition for serially de-
pendent data. The partition in the Stephenson–Tawn model is defined in terms of
independent generating events. While it is natural to define the partition in terms of
the days of occurrence of the maxima when the daily observations are independent,
its estimation is harder when data show temporal dependence. In Section 4.2.3 we
propose a space-time declustering procedure to estimate the partition.

3.4. Random partition model. Although the use of the estimated fixed parti-
tion is theoretically appealing, it represents a practical challenge. First, the model
is misspecified, which affects the estimation of the max-stable model by the intro-
duction of potentially biased information. Second, the partition must be estimated
in a preliminary step, and inference based on the Stephenson–Tawn model is condi-
tional on the fixed partition and ignores the uncertainty associated to its estimation.
The partition is not always very well defined (see Section 4.2.3), and its estimation
is sensitive to measurement error. This motivates us to propose an approach to esti-
mating the parameters of the Brown–Resnick process, without fixing the partition,
which uses only the values of the maxima and can be applied when the occurrence
dates are unavailable.

Let Z = {Z(s1), . . . ,Z(sD)} be a vector stemming from a Brown–Resnick pro-
cess Z. To overcome the intractability of the likelihood (4), we propose to augment
the data with the unknown partition � that generates Z in terms of the functions
Pi = Q−1

i Wi(s) in (2), that is, � = (π1, . . . , πK) is defined such that the points
Z(sj ) in the same set πk come from the same function Pi . The joint distribution
of (Z,�) is (6).

We impute the unknown partition � in an MCMC algorithm, using ideas simi-
lar to Dombry, Éyi-Minko and Ribatet (2013), who considered the partition in the
context of conditional simulation from max-stable processes. The partition is im-
puted from its conditional distribution given the observed value of Z. From (6) we
have

(7) Pr(� = π | Z = z) = f (z, π)∑
π̃∈P f (z, π̃)

.

However, the number of partitions of the set {1, . . . ,D} is the Dth Bell number,
and so (7) is intractable for large D. We use a Gibbs sampler to update the partition.
For a partition π = (π1, . . . , πK), we choose a location sj at random, and let π−j

denote the restriction of π to {s1, . . . , sD} \ {sj }. The size of π−j is K , or (K − 1)

if {sj } is itself a partitioning set of π . Given π−j , the partition is updated by
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attributing the location sj either to an existing set of π−j or to a new set, giving
at most K + 1 choices. The conditional probability for a new partition π∗ with
π∗−j = π−j is

(8) Pr
(
� = π∗ | �−j = π−j ,Z = z

) = f (z, π∗)∑
π̃∈P:π̃−j=π−j

f (z, π̃)
.

The discrete distribution (8) has support on a set of size at most K + 1, and so a
new partition π∗ can easily be simulated.

In practice, inference is based on independent replicates Z1, . . . ,ZN , and
the MCMC algorithm independently updates the corresponding latent partitions
�1, . . . ,�N . Given the observed values of the Zi and the simulated �i , the
marginal and dependence parameters of the model are updated from the joint dis-
tribution of the (Zi ,�i), which is a product of terms of the form (6).

4. Modeling extreme temperatures in northern Fennoscandia.

4.1. Exploratory analysis. We first fitted GEV distributions separately at each
of the 20 stations; see Thibaud et al. (2016). The estimates for the scale and shape
parameters were not significantly different from site to site, but variation in the
location parameter estimates suggested use of a nonstationary GEV model with
spatially varying location parameter and constant scale and shape parameters.

We then fitted nonstationary marginal models at the 20 locations by maximiz-
ing the independence likelihood, which assumes the independence of the temper-
atures from site to site. Nonstationarity was modeled using trend surfaces defined
from the covariates mentioned in Section 2.1 and temporal trends in the location
and scale parameters. We used the R package SpatialExtremes [Ribatet (2015)] to
fit these models, which were compared using the Takeuchi information criterion,
an equivalent of the Akaike information criterion for misspecified models. Our
best model had all six covariates for the location surface, constant scale and shape
parameters, and a temporal trend in the location only. Its fit was assessed using
marginal QQ-plots: departure from the 95% confidence intervals was observed for
five stations. This suggests that the trend surface model is not flexible enough to
model the variability in the location parameters over the 20 stations. Inclusion of
additional covariates did not improve the fit, motivating the use of a more flexible
approach using random effects in a Bayesian hierarchical model.

4.2. Hierarchical model.

4.2.1. Definition. We consider two Bayesian hierarchical models based on
the Brown–Resnick process. The first uses the Stephenson–Tawn model and es-
timates the partitions in a preliminary step through space-time declustering; see
Sections 3.3 and 4.2.3. The second imputes the partitions in the MCMC algorithm;
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see Section 3.4. Here we describe the part of the hierarchical model for the data
conditional on the partitions, which is common to both approaches.

Let yi = (yi1, . . . , yiD) (i = 1, . . . ,N ) denote the observed minimum temper-
atures for the N years of data, let s1, . . . , sD denote the D = 20 locations of the
stations such that yij = yi(sj ), let tij ∈ R denote the covariate for the day of occur-
rence of the winter minimum yij , defined as the number of years from 1 January
2000, and, finally, let πi = (πi1, . . . , πiKi

) denote the partitions of {1, . . . ,D} for
each year. When data are missing, the dimension of yi is lower than D and so
is the size of the corresponding partition. The first level of the hierarchical model
gives the probability density of the observed minima and the partitions π1, . . . , πN ,
conditional on the marginal and dependence parameters ψ , as

L
({yi}, {πi} | ψ)

=
N∏

i=1

(
exp

[−V
{
fi1(−yi1), . . . , fiD(−yiD)

}]

×
Ki∏
k=1

[−Vπik

{
fi1(−yi1), . . . , fiD(−yiD)

}] D∏
j=1

f ′
ij (−yij )

)
,

(9)

where

fij (y) = {
1 + ξij σ

−1
ij (y − μij )

}1/ξij

+
denotes the marginal transformation to the standard Fréchet scale for ξij �= 0 and
the prime denotes the derivative with respect to y; the negative signs for the yij ’s
in (9) correspond to modeling negated winter minima.

The second level of the hierarchical model specifies the models for the exponent
measure V and the GEV parameters. We define a space-time model for μ with
the covariates discussed in Section 2.1, with a linear temporal trend, and with a
Gaussian prior distribution as

μ(s, t) ∼ GP
{
X(s)β, τ 2ρ

} + αt,

where X(s) denotes the vector of the intercept and covariates at location s, and
GP{x(s), τ 2ρ(·)} denotes a Gaussian process with mean x(s), variance τ 2 and
correlation function ρ(h) = exp(−‖h‖/δ). The random effect allows the location
parameters to vary smoothly over space, in addition to any effect of the covariates.
We kept σ and ξ constant over space and time because this appeared to suffice for
a good fit. Thus, μij = μ(sj , tij ), σij = σ , and ξij = ξ for each pair of replicate
and location indices (i, j), and the marginal GEV distributions of the model at the
observed data can be written as

−yij ∼ GEV(Uj + αtij , σ, ξ),

where U = (U1, . . . ,UD) is a Gaussian vector with mean Xβ , where X is a D × 7
matrix with rows X(sj ), and covariance matrix {τ 2ρ(sj1 − sj2)}1≤j1,j2≤D . We use
a Brown–Resnick process with variogram 2γ (h) = 2(‖h‖/λ)κ as a model for the
exponent function V .
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4.2.2. Prior distributions. Prior distributions are assigned to the variables at
the last level of a hierarchical model. We used vague priors for all parameters ex-
cept those of the latent Gaussian field; see Thibaud et al. (2016). The prior distri-
butions for β and τ 2 were chosen to obtain conjugate full conditional distributions
for these parameters.

4.2.3. Space-time declustering. The use of the Stephenson–Tawn model in-
volves choosing the partitions in (9), whose sets should correspond to independent
individual events. Several approaches have been proposed to identify clusters in
univariate time series [e.g., Beirlant et al. (2004), Chapter 10, Chavez-Demoulin
and Davison (2012)]. In the multivariate case, declustering techniques have been
proposed by Coles and Tawn (1991) and Nadarajah (2001). Here we follow Coles
and Tawn (1991), who identified clusters of storm surges by assuming that events
separated by a fixed time lag are independent.

In our application, a difficulty arises from the use of the dates of occurrences.
Because of the measurement precision of the temperatures (0.1◦C), the same an-
nual minimum may occur on different days, affecting the estimation of the parti-
tion; this is the case for 7% of the minima, with dates of occurrences separated
by more than two days in 3% of cases. When a minimum has multiple days of
occurrences, we choose one of these days at random to define our partition.

For our temperature data, preliminary analysis suggests choosing a time lag of
five days: two observations at the same location and separated by more than five
days are assumed to be independent. To identify clusters for the 20 time series, we
use a single linkage (or friend-to-friend) method whereby a cluster is composed
of data that are dependent in pairs. Thus, if the minima occurred at time 1 for the
first series, time 4 for the second and time 7 for the third, these three minima are
considered to lie in the same cluster. With this procedure, the size of the partition
for each year is at most five, and winter temperature minima usually occurred from
widespread events that lasted for between five and ten days.

4.3. MCMC algorithm. The MCMC algorithm for our Brown–Resnick model
is nonstandard because the likelihood (9) cannot be calculated exactly but must
be estimated. The likelihood involves the function V and its partial derivatives,
which themselves involve the Gaussian cumulative distribution function in their
expressions, and thus can only be estimated. We used the approach of Andrieu and
Roberts (2009) to use a likelihood estimator in the MCMC algorithm. Under the
assumption that the likelihood estimator is unbiased, that algorithm generates a
Markov chain that has the targeted posterior distribution as stationary distribution.

We estimated the likelihood (9) by replacing the Gaussian cumulative distribu-
tion functions in its expression by Monte Carlo estimators. Our estimator is not
unbiased, but we constructed the estimator to minimize the potential bias in the es-
timation of the posterior and obtain good mixing properties for the Markov chain
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in a reasonable time; see Thibaud et al. (2016). For our dataset and the fixed par-
titions estimated in Section 4.2.3, a single estimation of the likelihood (9) takes
about one second on a single CPU.

We used a Gibbs sampler with Metropolis–Hastings steps to update the marginal
and dependence parameters of the model. To minimize the number of likelihood
estimations in the MCMC algorithm, and because some parameters were found to
be very dependent, we updated the parameters of the model in blocks; see Thibaud
et al. (2016). With our choice of blocks, one iteration of the MCMC algorithm
requires four likelihood estimations for the Stephenson–Tawn model. For the ran-
dom partition model, the Gibbs sampler for the partitions requires estimating the
probabilities (8), which increases the computational burden a bit more.

Since one iteration of the MCMC algorithm takes several seconds on a single
CPU, we used parallel computing, fitting 50 independent Markov chains each of
length 15,000 and discarding the first 5000 iterations of each chain. The result-
ing chains were merged to obtain a final chain of length 500,000. The MCMC
diagnostics are discussed in Thibaud et al. (2016). The mean of the posterior dis-
tributions were used as pointwise estimators. Credible intervals were calculated
from the quantiles of the Markov chains.

The results of a simulation study suggest that the MCMC algorithm provides
sensible inferences on the model parameters: the posterior means were close to the
true values and the empirical coverages of the credible intervals were close to the
nominal values; see Thibaud et al. (2016).

4.4. Results. We compare three nonstationary Brown–Resnick models. The
first, M1, uses the same trend surfaces as does the best marginal model discussed
in Section 4.1 and is fitted using pairwise likelihood as implemented in the R pack-
age SpatialExtremes; this is our baseline model, to which we compare our new ap-
proaches. The second, M2, is the Bayesian hierarchical model that uses the fixed
partitions from the declustering procedure. The third, M3, is the Bayesian hierar-
chical model with the random partitions.

We discuss the estimates in terms of the negated location parameter μ and
negated trend α, which correspond to the original scale of minimum temperatures.
The estimates for the three models are given in Table 1. We assessed the fit of the
marginal distributions using QQ-plots [see Thibaud et al. (2016)]. We assessed the
fit of the dependence model in terms of empirical pairwise extremal coefficients,
computed using the empirical marginal distributions of the data to avoid potential
bias due to the estimation of the marginals [Ribatet (2013)]; see Figure 3. As a
global assessment of the fit in terms of the marginals and dependence, we com-
puted the maximum of winter minimum temperatures over four different sets of
stations, for the 53 years of the dataset, and compared the observed values with the
predictions from the three Brown–Resnick models, computed by simulation using
the algorithm of Dieker and Mikosch (2015); see Figure 4. Further diagnostics for
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TABLE 1
Estimated posterior mean parameters and 95% confidence/credible intervals (in parentheses) from

the trend surface model M1, the Bayesian model based on declustering M2 and the random
partition Bayesian model M3. The second column is the estimated average location parameter

μj = μ(sj ,0) over the 20 stations

Model −μ̂j −α̂ σ̂ ξ̂ λ̂ κ̂

M1 −34.9 0.07 3.4 −0.15 371 0.40
(−35.8,−34.1) (0.03,0.11) (3.0,3.7) (−0.19,−0.10) (40,702) (0.34,0.47)

M2 −34.6 0.09 4.0 −0.11 1811 0.54
(−35.6,−33.7) (0.05,0.13) (3.6,4.6) (−0.15,−0.06) (977,3615) (0.46,0.63)

M3 −35.0 0.06 3.5 −0.10 1086 0.53
(−36.0,−33.8) (0.00,0.11) (3.0,4.1) (−0.14,−0.06) (466,3143) (0.43,0.65)

the prediction of the minimum and the averages of winter minimum temperatures
are given in Thibaud et al. (2016).

For the trend surface model, M1, the marginal QQ-plots show poor fits for six
stations. Moreover, the model severely underestimates the dependence in terms of
the pairwise extremal coefficient. This can be explained by the inadequacy of the
fitted marginal distributions, which bias the dependence estimates; Ribatet (2013)
also observed this when modeling wind gust data. In terms of predicting the max-
ima over groups of stations, the model performs poorly: many points lie outside
the 95% confidence bounds. In general, this model does not predict extreme tem-
peratures well.

FIG. 3. Binned estimates of empirical pairwise extremal coefficients (black, with their 95% confi-
dence intervals in gray). Curves are from the fitted Brown–Resnick models (see Table 1): M1 (dotted),
M2 (dashed) and M3 (plain).
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FIG. 4. Model checking for the three Brown–Resnick models (see Table 1): M1 (top row), M2 (mid-
dle row) and M3 (bottom row). The QQ-plots compare the predictions and the observed maximum of
winter minimum temperatures (◦C) over some groups of stations, mi = maxj∈J yij (i = 1, . . . ,53).
The columns, from left to right, correspond to the group of stations J = {5,16,17,18,19} (western
region), J = {2,3,4,6,7,8,9,12,20} (eastern region), J = {5,6,8,9,10,11,12,13,14,15,19,20}
(northern region) and all 20 stations. Grey dashed lines are 95% overall confidence bands, and the
solid grey line indicates a perfect fit.

For the Bayesian model based on the declustering, M2, the marginal QQ-plots
show that the sample quantiles are outside the 95% confidence bands for three
stations, and underestimate them systematically at all stations; the estimated scale
parameter σ seems too large. The model overestimates the pairwise dependence
somewhat, and tends to overestimate return levels for the maxima over different
groups of stations.

For the random partition model, M3, the marginal QQ-plots show a good fit of
the GEV distributions: the empirical quantiles are in the 95% confidence bands for
all the stations. The empirical pairwise extremal coefficients agree adequately with
the curve from the model. In terms of the multivariate predictions, M3 can predict
the maximum, minimum and average of the minima better than does M2, with all
the observations within the 95% confidence bounds; see Figure 4 and Thibaud et al.
(2016). This model appears to represent both the marginal and spatial behavior of
extreme low temperatures adequately.

We further discuss the results for the random partition Bayesian model M3. Fig-
ure 5(a) shows the posterior mean of the random effects for the location parameter
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FIG. 5. Posterior mean of the random effect in the location parameter (a) and the mean of the GEV
distribution for the year 2016 (b). The scale corresponds to temperature minima (◦C).

over the convex hull of the meteorological stations (see Figure 1), and the mean of
the GEV distribution for the year 2016. We restrict our analysis to the convex hull
of the stations because extrapolation outside this region is too uncertain. The pos-
terior mean of the random effect in the location parameters shows the variability
in this parameter that cannot be explained by the covariates. The posterior mean
for the fitted GEV distributions shows lower temperatures in the inland region.
The minima decrease as latitude, longitude, relative elevation and distance from
the Arctic ocean increase, and increase as lake cover and elevation increase. Sim-
ilar covariate effects were found by Aalto, le Roux and Luoto (2014) for extreme
low temperatures in northern Fennoscandia. The estimated shape parameter, cor-
responding to Weibull—so-called light-tailed—distributions, agrees with previous
studies on extreme temperatures. The dependence parameters correspond to strong
dependence, with pairwise extremal coefficient θ̂ = 1.42 (1.34,1.50) at 400 km,
while κ̂ = 0.53 (0.43,0.65) implies that the realizations from the Brown–Resnick
process are continuous but nowhere differentiable.

4.5. Forecasts for extreme low temperatures for 2016–2030. We base our fore-
casts on the random partition Bayesian model M3. Changes in extremes are en-
tirely based on the linear trend α in the location parameter. This translates to
changes in the mean of the GEV distribution at location s and year t , which is

μ(s,0) + αt + σξ−1{
�(1 − ξ) − 1

}
, ξ < 1, ξ �= 0.

The estimate −α̂ = 0.06 (0.00,0.11) corresponds to an increase of 0.6◦C per
decade in the mean winter minimum temperature. Figure 5(b) shows the predicted
mean winter minimum temperature for 2016. Figure 6 shows the probability that
winter minimum temperatures are higher than −36◦C, the threshold needed for
protecting northern Fennoscandia forests from outbreaks of Epirrita autumnata,
for 1980, 2016 and 2030. There is a strong change in these probabilities. Over the
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FIG. 6. Probability that the winter minimum temperature is higher than −36◦C for 1980, 2016 and
2030.

region defined by the stations, the winter minimum temperatures had low proba-
bility of exceeding −36◦C before 1980, rising to about 0.54 for 2016, and then to
0.61 for 2030, according to the fitted model. The predictions must be interpreted
with care, owing to the large uncertainty in the estimation of α.

Spatial simulation of winter minimum temperatures is useful for estimating joint
return levels over certain regions, which could be useful for assessing the risks of
pest outbreaks over a region, for example. Figure 7 shows three simulations of win-
ter minima fields from M3, which show how the strong dependence in the Brown–
Resnick model results in winter minima that are either low or high throughout the
region. The spatial heterogeneity is mostly due to nonstationarity in the marginal
distributions. Conditional simulations are possible [Dombry, Éyi-Minko and Rib-
atet (2013)] and could be useful as input to models to link past pest outbreaks with
extreme temperatures, for example.

5. Discussion. Although the Stephenson–Tawn approach was found to per-
form well on simulated data when the true partitions are known, the results of our
application show that it can be inappropriate in practice. The hierarchical model for

FIG. 7. Three simulated minimum temperature fields (◦C) for 2016.
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the marginals does not give a good fit to the marginal GEV distributions, notwith-
standing the additional flexibility provided by the random effects.

We explain this by the use of the joint model for the minima and the partitions,
and the declustering. The first of these requires good agreement of the data with the
distribution of the block maxima and the partitions, and this is a strong assumption
in practice. Although the Brown–Resnick dependence structure is quite flexible
for modeling stationary isotropic dependence structures, the distribution of the un-
derlying partitions can be very different from the partitions obtained through the
declustering. In the univariate case, previous studies have shown that declustering
can bias estimators of the marginal parameters if the clusters are poorly defined,
and we can expect similar problems in the multivariate case. In our application,
assuming that data separated by more than five days are independent in pairs re-
sults in partitions of small sizes each year; see Figure 8. A similar size for the
true partitions for a Brown–Resnick process can only be obtained if the depen-
dence in the process is very strong, and this is incompatible with the empirical
extremal coefficients shown in Figure 3. Figure 8 also shows the sizes of the ran-
dom partitions in the MCMC algorithm for model M3; in several cases the size of
the partitions from the declustering procedure have low probability for the random
partition model. To further compare the partitions from the MCMC algorithm with
that from the declustering procedure, we computed the Rand index [Rand (1971)],
which is, for each year, the proportion of pairs of locations that are simultaneously
either together or separate in both partitions; we then averaged the Rand index over
the years. It varies from 0.52 to 0.63, indicating that pairwise classification agrees
for less than 63% of the pairs between M2 and M3. The size of the partitions is
typically larger in the random partitions, and the relation with the occurrence dates

FIG. 8. Estimated distributions of the partition sizes for each year. Grey boxes show the relative
probability for each size (a wider box corresponds to a higher probability), estimated from the Gibbs
sampler. The black dots show the sizes of the partitions obtained using the declustering procedure
discussed in Section 4.2.3.



BAYESIAN INFERENCE FOR THE BROWN–RESNICK PROCESS 2321

is unclear. For example, in the winter 1973–1974, the winter minima at the 16 sta-
tions with no missing data occurred on four consecutive days and the declustering
procedure finds a unique partitioning set, whereas just 7% of the partitions visited
in the MCMC run have a unique set and 37% have four partitioning sets or more.

These results suggest that a different declustering procedure must be used. We
varied the number of days used in our declustering scheme, and also considered
another scheme that forces the stations that are at least 150 km apart to be in differ-
ent clusters. The parameter estimates changed with the scheme, but the diagnostic
plots were never very satisfactory.

6. Conclusion. We have shown how Bayesian inference can be conducted for
the Brown–Resnick process, either using the occurrence times of maxima and a
declustering procedure or by including the partitions in an MCMC algorithm.

The partitions add powerful information into the model about the dependence
structure. However, our application shows that using fixed partitions can badly
bias the estimation of the marginal and dependence parameters of a max-stable
process. In a second approach we included the partitions in the MCMC algorithm
without using information on the occurrence times, and this produced superior re-
sults. A more complex approach could use the occurrence times to construct a prior
distribution on the space of the partitions to add more information into the model
and improve the efficiency of the estimation, while accounting for the uncertainty
on the partitions, but this might be rather complex. Wadsworth (2015) proposed
using second-order terms in the Stephenson–Tawn model to reduce potential bias
due to the partitions, but this seems difficult in our case because the number of
terms added to the likelihood would be huge and the MCMC algorithm would
become even slower.

Our Bayesian model can be generalized in several ways. We focused on a sta-
tionary isotropic Brown–Resnick process for simplicity, and it appears to be suffi-
cient for our application. A similar Bayesian hierarchical model can be constructed
for the extremal-t process using ideas of Thibaud and Opitz (2015), anisotropy
would be easily incorporated using the idea of Engelke et al. (2015), and so per-
haps could the work of Huser and Genton (2016) on nonstationary dependence
models for extremes. However, the generalization of the present method to more
complex models and larger datasets may be limited by computational feasibility.
Monte Carlo estimation of the likelihood is critical to keep the running times rea-
sonable, and is relatively fast and accurate in low dimensions, but with more sites,
more simulations may be needed to obtain reliable inference.

The model predicts an increase of 0.6◦C per decade in the mean winter min-
imum temperatures in northern Fennoscandia. Further work to validate the pre-
dictions from our model and to quantify the possible effects of global change on
boreal forests would be valuable. The linear trend in time provides sensible short-
term predictions, but for longer periods more complex approaches would be neces-
sary, though limited by the availability of reliable data. One possibility would be to
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link the changes in extreme temperatures to mean temperatures and use predictions
from global climate models under different scenarios as inputs to forecasting.
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SUPPLEMENTARY MATERIAL

Supplementary Material for “Bayesian inference for the Brown–Resnick
process, with an application to extreme low temperatures” (DOI: 10.1214/16-
AOAS980SUPP; .pdf). The online supplement provides additional results for the
exploratory analysis and the MCMC algorithm used to fit the two Brown–Resnick
models, and reports additional diagnostics for the fit of the three models considered
in the manuscript.
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