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BAYESIAN NONPARAMETRIC MULTIRESOLUTION ESTIMATION
FOR THE AMERICAN COMMUNITY SURVEY

BY TERRANCE D. SAVITSKY

U.S. Bureau of Labor Statistics

Bayesian hierarchical methods implemented for small area estimation fo-
cus on reducing the noise variation in published government official statistics
by borrowing information among dependent response values. Even the most
flexible models confine parameters defined at the finest scale to link to each
data observation in a one-to-one construction. We propose a Bayesian mul-
tiresolution formulation that utilizes an ensemble of observations at a variety
of coarse scales in space and time to additively nest parameters we define
at a finer scale, which serve as our focus for estimation. Our construction
is motivated by and applied to the estimation of 1-year period employment
totals, indexed by county, from statistics published at coarser areal domains
and multi-year periods in the American Community Survey (ACS). We con-
struct a nonparametric mixture of Gaussian processes as the prior on a set of
regression coefficients of county-indexed latent functions over multiple sur-
vey years. We evaluate a modified Dirichlet process prior that incorporates
county-year predictors as the mixing measure. Each county-year parameter
of a latent function is estimated from multiple coarse-scale observations in
space and time to which it links. The multiresolution formulation is evalu-
ated on synthetic data and applied to the ACS.

1. Introduction. The Local Area Unemployment Survey (LAUS) program of
the U.S. Bureau of Labor Statistics (BLS) publishes employment and unemploy-
ment totals for local areas across all states in the U.S. The local areas include
counties and municipal civil divisions (MCDs), the latter of which are sub-county
areas located in New England. The LAUS program utilizes estimated total employ-
ment for all counties and MCDs, published annually in the American Community
survey, to construct a percentage of the total state employment for each local area.
These ratios are applied to state-level employment totals, published monthly in
the Current Population Survey (CPS), to render a synthetic (allocated) estimate
of the employment totals for the local areas. This two-step process of estimating
percentages-of-state total employment from the ACS for the local areas and their
multiplication into CPS state-level estimates reflects the relatively small sample
sizes and sparse coverage for local geographies in the CPS sample, which pre-
vents stable (below some threshold for the coefficient of variation) employment
total estimates for most local areas (directly from the CPS in one step). The ACS
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is a national survey conducted by the U.S. Census Bureau (Census) with dense
geographic coverage and sufficiently large sample sizes to permit inference about
local areas on many variables. The ACS provides annually updated estimates for
many variables formerly only published in the decennial census long form.

Each ACS sample of households in a local area, such as a county, is realized un-
der a sampling design that assigns probabilities of inclusion to all households in the
sampling frame under a known sampling design distribution (which describes the
distribution over the space of all possible samples). The ACS publishes sampling-
weighted “direct estimates” of population-level quantities from many variables,
such as the total employment, for each local area by summing over sampling-
weighted household responses in the observed sample taken from that population
to construct a (model-free) unbiased estimate for the entire local area. The ACS
publishes a variance statistic (estimated with respect to the sampling design distri-
bution in a nonmodel-based fashion) for each direct estimate of an area that may be
interpreted as a measure of quality [see Särndal, Swensson and Wretman (1992)],
and so the ACS publishes both a direct estimate and an associated variance for each
area that are computed from the sampled household-level observations in that area.
Särndal, Swensson and Wretman (1992) provide general approaches for comput-
ing the variance of the (population-level) direct estimate that is composed from
the set of sampling-weighted household observations in a fashion that accounts for
dependencies (e.g., under sampling without replacement) among household ob-
servations induced by the sampling design, and so the direct estimate is not an
observation, but an estimate taken under the sampling design distribution from a
collection of sampled household responses; therefore, we refer to the direct area
estimates of total employment as “estimates” to distinguish them from (household)
observations.

Employment (total) estimates are published at 1-, 3- and 5-year time periods
(which we denote as “periods”) for each of a wide variety of geographic domains.
The longer time periods enable the collection and pooling of more household sam-
ples to improve the estimation precision expressed as a coefficient of variation
(CV); hence, each period estimate corresponds to a single time interval computed
from the total sample of households collected during that period. For example, if
we fix an area and some time period, there is an unknown total employment for
the population in that area in that time period we wish to estimate from a partial
sample of households taken from that area. We don’t observe the whole popu-
lation, but only a sample of it. The population total estimate is constructed with
the above-noted sampling-weighted summation using only those observations in-
cluded in the sample. As the sample size grows, the information in the sample
becomes progressively more representative of the population (and the variance of
the sampling weights decrease). Under repeated sampling from the sampling de-
sign distribution, we would expect the variance of total employment estimates for
the population in the focus area and chosen time period, estimated from the col-
lection of repeated samples, to then decrease as the sample size (used for all of
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the repeated samples) increases. The Census determines which periods and area
domains to publish estimates in the ACS based on the supporting population size
in each area domain in order to ensure an acceptable CV; for example, 1-year pe-
riod estimates are published for all area domains with populations > 65,000, while
3-year period estimates are provided for populations > 20,000 and 5-year period
estimates are otherwise provided. A domain for which 1-year period estimates are
published will also have published 3- and 5-year period estimates, while a domain
for which 3-year period estimates are published will also have published 5-year
period estimates. Most counties and MCDs in the U.S. are relatively small, such
that only 26% of all counties have published ACS 1-year period estimates. In ad-
dition to pooling household observations across years into multi-year periods, the
ACS also aggregates counties into larger geographic domains, such as metropoli-
tan or micropolitan areas, to achieve a larger sample size that allows publication
of 1-year period estimates.

The LAUS program is forced to use only the 5-year period estimates to compute
the allocation proportions in order that employment total estimates be available for
all counties and MCDs under the same (pooled) set of years. The multi-period ACS
estimates are published each year; for example, the 5-year period estimate pub-
lished in 2012 includes a pooled estimate for the period of 2008–2012, while the
5-year period estimate published in 2013 represents a pooled estimate for 2009–
2013. Although new sample observations are added to the 5-year published esti-
mates with each year, the resulting pooled, multi-year interval estimate is, however,
lagged and possibly overly smoothed, which may result in a failure of the alloca-
tion proportion scheme to capture near-term changes in economic conditions, such
as the recent Great Recession, that may dramatically alter the estimated propor-
tions from one year to the next. The modeling approach we devise for this paper
utilizes the ACS estimates published at multiple combined geographic and time
period scales that are coarser than county-by-year to estimate latent, 1-year pe-
riod employment totals for all counties and MCDs in the U.S. The LAUS program
may then employ these model-based county-year employment total estimates to
construct their local allocation proportions for all counties and MCDs in lieu of
lagged, 5-year period ACS estimates.

Bayesian hierarchical modeling is extensively used in small area estimation
applied to survey direct estimates published as official statistics by government
agencies with the goal to reduce estimation uncertainty by borrowing informa-
tion among parameters indexed by spatial area and often time period [Ghosh et al.
(1998)]. The use of hierarchical modeling facilitates the borrowing of estimation
strength by shrinking all or some subset of domain-period parameters to a common
mean.

Even the most sophisticated small area modeling approaches, however, param-
eterize each regression mean to be linked one-to-one with an observed data point
[Hawala and Lahiri (2012)]. These models may not be used to extract denoised,
single year employment estimates for over 74% of those counties and MCDs
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that don’t have available 1-year period ACS estimates. While the recent works
of Bradley, Wikle and Holan (2014, 2015) appear to develop estimates for small
domains from larger ones, they allocate or apportion larger domain estimates. [See
the definition of h(A, i) ≡ |A ∩ Bi |/|A| just below Equation (5) on page 7 of
Bradley, Wikle and Holan (2015), where Bi is on a finer grid than A for which
there exists an estimate that is allocated to Bi .] They don’t attempt to estimate la-
tent values for finer areas nested within coarser ones that are viewed to generate
the observed coarse estimates. Their prior is constructed to focus on inference and
prediction under a spatial (adjacency-based) prior construction, while our approach
intends to induce a more general data-adaptive dependence structure.

In the sequel, we construct parameters to be indexed on a fine scale and nest
within one or more coarse-scale observations in space and time. A parameter is
defined for each county-by-year to represent the total employment, and the set
of by-year parameters for each county are, together, viewed as a function. There
are typically multiple 1- and/or 3-year period (employment total) estimates pub-
lished for coarser spatial domains. This collection of published employment total
estimates from the ACS may be used to provide information about each county-
by-year parameter based on the spatial nesting relationship of each county in a
domain (such as a metropolitan area) and the inclusion (nesting) of each year in a
multi-year period.

We devise a flexible nonparametric mixture formulation for estimation of re-
gression coefficients used to construct a latent continuous function of years for
county. The nonparametric mixture allows the data to shrink together the county-
indexed functions with similar (though not exactly equal) by-year trends. This
data-induced dimension reduction permits identification of the functions estimated
from the coarser set of estimates that nest them. We refer to our approach as a
“multiresolution” formulation because it utilizes observations defined at varied
areal or time period resolutions for estimation of the fine-scale, by-county func-
tions.

We specify the parameterization for our multiresolution likelihood in Section 2,
followed by a set of priors that, along with the likelihood, construct a nonpara-
metric clustering (mixture) model in Section 3. This model is extended into a
predictor-assisted clustering formulation in Section 4. We present estimated results
for the collection of county/MCD-year parameters from the ACS in Section 5. We
perform a simulation study to assess the accuracy of the ACS estimates in Section 6
and offer a concluding discussion in Section 7. A brief overview of our algorithm
to sample the set of full conditional posterior distributions defined by our model is
discussed in a Technical Supplement [Savitsky (2016)].

2. Multiresolution likelihood. We begin by introducing the parameterization
of the 1-year employment totals for counties and municipal civil division (MCD)
domains and how they sum into multi-period and aggregate area employment total
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estimates to formulate our likelihood. We will subsequently introduce the nonpara-
metric prior distributions that specify two alternative probability models, both of
which employ this likelihood construction.

2.1. Multiresolution parameterization. In the sequel, we will use “county” as
a generic label to denote county and MCD, the latter of which is a New Eng-
land township designation where MCDs are nested within counties. Let f�j de-
note the (latent) employment total for � = 1, . . . , (N = 4751) counties over years,
j = 1, . . . , (T = 5) (for the ACS published survey years of 2008, . . . ,2012 that we
use). The counties are geographically nested in larger core-based statistical areas
(CBSAs), such as metropolitan (metro) and micropolitan (micro) areas, combina-
tions of those larger areas (called core statistical areas or CSAs), including balance
of states that subtract out all larger CBSAs and CSAs from each state. Larger states
generally have both metro and micro areas, as well as larger combinations of these.
(The Census defines all CBSAs and CSAs to fully nest within a state). Smaller
states may have only one-to-a-few micro areas and no larger CSAs, other than the
balance of the state estimate that subtracts away the micro areas. We denote all
areas that geographically nest counties (which includes the counties themselves)
by the term “group,” b = 1, . . . ,B , and all counties geographically nest in one or
more groups. We use published employment total estimates for B = 6074 ACS
groups (that include the N = 4751 counties). We write that a county “links” to
a group if it geographically nests in that group. The definitions of counties and
groups remain fixed throughout the 2008–2012 time period so that the geographic
county-to-group links are fixed. A single county may link to multiple groups be-
cause it may (geographically) nest within a group which is, in turn, nested within
other groups. Figure 1 presents an example for Amesbury Town, Massachusetts,
which links to 4 other groups through successive nestings. Approximately 75% of
the N counties link to 3–5 groups (including themselves), and the remaining 25%
link to 6–7 groups. We have so far defined how a county, �, links to or nests within
larger geographic groups, b. By extension, a 1-year period (e.g., 2008) is indexed
by j and is linked to or nests within multi-year period, q . We index the multi-year
periods by q = 1, . . . ,Q, where each index value links a particular set of years.
Table 1 presents the set of years, j = 1, . . . , (T = 5) (indexing the columns), that
link with each period (row), q , where 1 denotes a link and 0 not.

We construct a likelihood statement for each group-period estimate published
in the ACS data, ybq , by summing over parameters indexed by counties, (�), that
nest in group, b, and years, (j), that nest (are included) in associated period, q ,
with

ybq |(f�j )�∈b,j∈q
ind∼ N

(∑
�∈b

∑
j∈q

f�j , σ
2
bq

)
,(1)

f�j = x′
�jβ�j ,(2)
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FIG. 1. Example of group nesting structure for Amesbury Town, Massachusetts.

where the associated group-period sampling variances (of the direct estimate),
{σ 2

bq}, are known because they are published by the Census in the ACS, as dis-
cussed in Section 1. Since ybq is the employment total estimate from the ACS for
group, b, and period, q , the (f�j ) in Equation (1) are defined to represent latent
employment totals for those counties, �, and years, j , nested in (group, period),
(b, q). Equation (1) constructs the (latent) mean of ybq by summing the latent
county-year employment totals, (f�j ), that jointly nest within group, b, and pe-
riod, q . A P × 1 set of predictors, x�j , defined at the county-year (fine) scale,
is incorporated into the model for the function, f�j , with associated P × 1 coef-
ficients, β�j . We construct the county-year predictors, x�j , with an intercept and
a set of predictors available for all counties (� = 1, . . . ,N ) and 1-year periods

TABLE 1
Period, q = 1, . . . , (Q = 9) links to years, j = 1, . . . , (T = 5)

(representing 2008–2012 calendar years)

Year

Period, q 2008 2009 2010 2011 2012

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1

6 1 1 1 0 0
7 0 1 1 1 0
8 0 0 1 1 1

9 1 1 1 1 1
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(j = 2008, . . . ,2012) from administrative data. The Quarterly Census of Employ-
ment and Wages (QCEW) is a census instrument targeted to business establish-
ments (rather than households targeted by the ACS) that collects employment to-
tals (on a monthly basis), which we aggregate to county and year. Our QCEW
county-year predictors are employment totals for 12 “super sectors” defined in the
North American Industry Classification System (NAICS): 1. Agricultural; 2. Natu-
ral resources and mining; 3. Construction; 4. Manufacturing; 5. Trade, transporta-
tion, utilities; 6. Information; 7. Financial activities; 8. Professional and business
services; 9. Leisure and hospitality; 10. Other services; 11. Public administration;
12. Unclassified. We intend these 12 predictors, together, to describe the com-
position of the economic activity for each county by year. We also include state
records of individual unemployment claims aggregated to counties in our predic-
tor set as a measure of economic health. Our predictors will be critical to identify
the regression coefficients and to regulate the borrowing of information for their
estimation (through shrinkage). QCEW predictors are published at the county-year
level, though disclosure limitations cause some values to be suppressed for small
counties. Those values were available to us, however, in our analysis (though they
may be imputed).

We believe that similarities in the trends of employment (and unemployment)
totals among counties are generally not adjacency induced, but driven by under-
lying similarities in the economies between counties; for example, a rural county
directly abutting or near to an urban area would be expected to express very differ-
ent employment total trends, while yet being similar to a rural county in another
state. Perhaps we may see a higher adjacency-based localized dependence as the
area resolution decreases (e.g., for census tracts), though our focus is on counties.
Our likelihood construction that estimates a latent by-county total using coarser
areas in which it nests is an alternative approach to capturing spatial association,
but one that may be more flexible than adjacency. Two counties that nest in the
same group (e.g., a metropolitan area) are not required to have a similar size for
total employment, only that their sum be coherent with the response value for each
larger group in which they together nest.

The likelihood of Equation (1) sums the latent county-year employment totals,
(f�j ), nested in each group-period estimate, ybq . Conversely, there are multiple
employment total estimates from the American Community Survey (indexed by
group-period) that link to each county-year parameter and provide some infor-
mation to support the estimation of that parameter. Fix a county, “�,” linked to
a group, “b,” where group b, in turn, includes published observations for 3- and
5-year periods, but is not large enough (in population) to include 1-year period
estimates. Suppose we are interested to recover the published employment total
estimates for group b that are linked to the �-2010 county-year. The rows labeled
6–9 in Table 1 show that there are 4 available ACS employment total estimates for
group b, which provide information for 2010 to estimate f�2010. There will poten-
tially be many published estimates used to estimate f�2010 in the case that it nests
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in multiple groups. The implication is that each f�j may appear in the likelihood
statements for multiple (ybq). The (ybq) are drawn as conditionally independent in
Equation (1), given the collection of county-year latent function parameters, (f�j ),
because the dependence among the (ybq) is encoded by shared (f�j ) under our
model formulation so that unconditionally [e.g., by marginalizing over the (f�j )]
the (ybq) are dependent.

We next define the prior distributions that permit flexibility in the borrowing of
information for shrinkage in the estimation of the county-year regression coeffi-
cients.

3. Clustering model, (Y |X). We next specify the probability model as the
likelihood and set of prior distributions for our conditional regression and follow
by discussing the selected prior formulations:

Likelihood

(3) ybq |(f�j )�∈b,j∈q
ind∼ N

(∑
�∈b

∑
j∈q

f�j , σ
2
bq

)
.

Regression formulation

(4) f�j = x′
�jβ�j .

Conditional prior on coefficients

(5)
P×T

B� = (
P×1
β�1 , . . . ,β�T )

ind∼ 0 +NP×T

(P×P

�−1
y,�,C(κ�)

)
.

Gaussian process covariance function

T ×T

C(κ�) ≡ C� = (Cβ�pj ,β�pk
)j,k∈(2008,...,2012), � = 1, . . . ,N,(6a)

Cβ�pj ,β�pk
= 1

κ�,1

(
1 + (tij − tik)

2

κ�,2κ�,3

)−κ�,3

.(6b)

Dirichlet process (DP) prior for covariance parameters

�� = {
�y,�,κ� = (κ�,1, κ�,2, κ�,3)

}
,(7a)

�1, . . . ,�N |G ∼ G,(7b)

G|α,G0 ∼ DP(α,G0),(7c)

G0 = W(�y,�|P + 1, IP ) ×
D=3∏
d=1

Ga(κ�,d |a, b).(7d)
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3.1. Prior on functions. We collect the P × T matrix of coefficients, B� =
(β�1, . . . ,β�T ), indexed by county, � = 1, . . . ,N , on which we impose a condi-
tional matrix variate Gaussian prior in Equation (5), using the notation of Dawid
(1981), where the P ×P,�y,�, represents the precision matrix for the set of P × 1
columns of B� and the T ×T ,C(κ�), denotes the covariance matrix for the rows of
B�. The P × T mean matrix of zeros for B� is denoted by 0. The county-indexed
covariance matrix, C�, is parameterized by κ�. This specification is equivalent to
the T P ×T P covariance matrix constructed as �−1

y,� ⊗ C(κ�) under a multivariate
Gaussian prior on the vector obtained by stacking the rows of B�. The separable
or tensor form we use for the covariance matrix reflects parsimony relative to a
general T P × T P covariance matrix.

We fix a particular county, �, and introduce a Gaussian process covariance
formulation in Equation (6) that we construct for each of the P,T × 1 rows of
B� = (β�1, . . . ,β�T )′ in Equation (5). The parameters, κ� = (κ�,1, κ�,2, κ�,3), are
used to specify a rational quadratic covariance formula in Equation (6b) for each
cell of C(κ�). The vertical magnitude of surfaces rendered from a GP with the ra-
tional quadratic covariance formula is directly controlled by κ�,1, while κ�,2 con-
trols the mean length scale or period, and κ�,3 controls smooth deviations from the
mean length scale, which allows estimation of local, as well as global, features in
the time-indexed functions, (f�) [Rasmussen and Williams (2006)]; see Savitsky,
Vannucci and Sha (2011) for more background on the Gaussian process covari-
ance formulations. The P × P precision matrix, �y,�, allows the data to estimate
a dependence among the P sets of T × 1 functions, each drawn from the Gaussian
process.

3.2. Clustering the distributions of the coefficients, (B�). We specify a Dirich-
let process (DP) prior for (��) in Equations (7), where (��)�=1,...,N receive a
random distribution prior, G, drawn from a Dirichlet process (DP), parameter-
ized with a concentration parameter, α, a precision parameter that controls the
amount of variation in G around prior mean G0. The base or mean distribution
G0 = W(P + 1, IP ) × ∏D=3

d=1 Ga(a, b), a P -dimensional Wishart distribution for
the P × P,�y,�, and a product of Gamma priors for the D = 3 parameters in the
rational quadratic specification for the parameter vector, κ�, that parameterize the
T × T covariance matrix, C, respectively.

Equations (5) and (7) together define a marginal mixture prior of the form

B|G i.i.d.∼ ∫
0 + NP×T (�y,C(κ))G(d(�y,κ)), where G is the mixing measure.

The DP prior imposed on �� allows the data to estimate probabilistic clusters
such that those counties, (�), whose (��) are assigned to the same cluster will
draw their coefficients, (B�), from the same Gaussian mixture component. Draw-
ing coefficients under the same mixture component offers more flexility than di-
rectly clustering the (B�), which we do because we don’t expect any of the coeffi-
cients [and associated T × 1 functions, (f�)] to be exactly equal. Rather, we expect



2166 T. D. SAVITSKY

subsets of functions to be “similar,” which we define as drawing their coefficients
(assigned to the same cluster) from the same Gaussian distribution.

We write the unknown measure G constructively in the (stick-breaking) form
as a set of weighted locations [Sethuraman (1994)],

(8) G =
∞∑

h=1

phδ�∗
h
,

where G is a countably infinite mixture of weighted point masses (or “spikes”)
with “locations,” �∗

1, . . . ,�
∗
M , in the support of G indexing the unique values

for the (��), where M ≤ N (the total number of counties from the finite popu-
lation). We record cluster memberships of counties with s = (s1, . . . , sN), where
s� = � denotes �� = �∗

� so that {s, (�∗
m)} provides an equivalent parameteriza-

tion to (��) and we recover �� = �∗
s�

. The weight ph ∈ (0,1) is composed as

ph = vh

∏h−1
k=1(1 − vk), where vh is drawn from the beta distribution, Be(1, α).

This construction provides a prior penalty on the number of mixture components,
but we also see that a higher value for α will produce more clusters (unique loca-
tions). Since each location is drawn from G0, as the number of unique locations
increases, the estimated G approaches the base distribution G0. We place a fur-
ther gamma prior on α to allow posterior updating in recognition of the relatively
strong influence it conveys on the number of clusters formed [Escobar and West
(1995)].

Although we believe county-indexed dependence for total employment is not
generally adjacency-related, we, nevertheless, tested inclusion of a spatial (adja-
cency) random effects term in our models, but found it induced over-smoothing
and deteriorated the quality of the fitted, (f�j ). Our likelihood in Equation (1)
does, however, encode spatial information by nesting the county-year parameters
in groups and periods. Additionally, the existence of a true local dependence be-
tween any two counties, (�, �′), that is not explicitly modeled may, nevertheless,
produce a high posterior probability for their sharing of a common mixture com-
ponent (cluster) under the DP mixture prior on (B�).

4. Predictor-assisted clustering model, (Y,X). Our estimation task is chal-
lenging because the latent county-year employment totals, (f�j ), are at a finer res-
olution that than the group-period indexed ACS estimates, (ybq), and so we would
like to borrow the maximum amount of information provided in our data by in-
corporating the predictor values into the prior probabilities for the co-clustering of
the county covariance parameters of (B�). If the P × T matrix of predictors, X�,
for county, �, is very similar to X�′ for county, �′, then we would like to define a
higher prior probability for �� = �′

� = �∗
m.

We modify an approach of Müller, Quintana and Rosner (2011) to allow the
definition of a DP prior construction that incorporates the predictors, (X�)�=1,...,N ,
into the clustering prior distribution. We will treat the P × T predictor matrices,
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(X1, . . . ,XN), as though they were random (though we believe they are not ran-
dom) as a computational device to induce the utilization of the predictors in the
construction of the prior probability for the N × 1 cluster assignments, s. We next
construct the details of how to incorporate the (X�) into the prior for cluster as-
signments by constructing a model for the (X�) that treats them as random (even
though they are fixed) as a computation device.

We specify a probability model for the joint likelihood (Y, (X�)) to include
values for the predictors in the determination of cluster assignments:

Conditional likelihood for (Y|(X�))

(9) ybq |(x�j ,β�j )�∈b,j∈q
ind∼ N

(∑
�∈b

∑
j∈q

x′
�jβ�j , σ

2
bq

)
.

Mixture formulation for X� to induce predictor-dependent clustering prior

P×1
x�j

ind∼ NP

(
δ�j ,H−1

x

)
,(10a)

P×T

�� = (δ�1, . . . , δ�T ),(10b)

��
ind∼ 0 +NP×T

(P×P

�−1
x,�,

T ×T

Q(x, �)−1)
,(10c)

Hx ∼ W(P + 1, IP ),(10d)

T ×T

Q(x, �) = τx,�(Dx − ρx,��x,�).(10e)

Mixture formulation for regression coefficients, B�, in model for (Y|(X�))

(11)
P×T

B�
ind∼ 0 +NP×T

(P×P

�−1
y,�,C(κ�)

)
.

Dirichlet process (DP) prior for covariance parameters of Y that now includes
(X�)

�� = {�y,�,κ�,�x,�, τx,�, ρx,�},(12a)

�1, . . . ,�N |G ∼ G,(12b)

G|α,G0 ∼ DP(α,G0),(12c)

G0 = W(�y,�|P + 1, IP )

×W(�x,�|P + 1, IP )(12d)

×
D=3∏
d=1

Ga(κ�,d |a, b) × Ga(τx,�|a, b) × U(ρx,�|−1,1).

We have expanded our probability model of Section 3 to now include a model
for the predictors. The precision matrix, Q(x, �), for the prior on the T × 1 rows
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of the coefficient matrices, (��), of the model for (x�j ) in Equation (10e) is con-
structed as conditional autoregressive (CAR) [Rue and Held (2005)] that is similar
in idea to the GP prior on B�, but tends to render rough, nondifferentiable surfaces,
rather than the smooth surfaces generated by a GP prior. We use the CAR prior be-
cause it is computationally faster to draw posterior samples than the GP, and we
are not concerned with generating denoised functions from X�, but rather to model
X� as a computational device for inserting information about predictors into the
prior probability of co-clustering. The CAR precision matrix is composed with a
T × T , Dx , a diagonal matrix that sums the rows of the T × T , �x , a similarity or
adjacency matrix between pairs of time points (with zeros for the diagonal values),
and so each entry in Dx expresses the relative influence or precision for each time
point. The parameter τx,� ∼ Ga(a = 1, b = 1), which we set to be a priori weakly
informative, controls the scale and ρx,� ∼ U(−1,1) controls the degree of autocor-
relation. The CAR prior may be heuristically thought of as a local, random walk
smoother with a fixed length scale (unlike the GP, where the data estimate the
length scale); see Savitsky and Paddock (2013) for more details about the CAR
prior.

The construction of the parameter vector, ��, on which the Dirichlet process
prior is imposed in Equation (12) to induce a prior over partitions or clusterings
is expanded to now include parameters from the model for predictors X�. We next
show that treating (X�) as random inserts them into the prior for cluster assign-
ments, s. The covariance parameters for the predictors, {�x,�, τx,�, ρx,�}, are now
included in an augmented �� = {�y,�,κ�,�x,�, τx,�, ρx,�} under the DP prior of
Equations (7) to incorporate information about X� into the prior over clusterings.
We can see how the predictors under Equations (9)–(12) influence cluster assign-
ments by examining the conditional prior distributions for cluster assignments,
s = (s1, . . . , sN), after marginalizing over the random measure G:

(13) f
(
s� = s|s−i ,�

∗
s , α,B�,��

) ∝

⎧⎪⎪⎨
⎪⎪⎩

n−�,s

n − 1 + α
L(��) if 1 ≤ s ≤ M−,

α/c∗

n − 1 + α
L(��) if s = M− + h,

where the (��) convey the information about the (X�) in

L(��) =
T∏

j=1

NP

(
x�j |δ�j ,H−1

x

) ×NP×T

(
��|�∗

x,s,Q
(
τ ∗
x,s, ρ

∗
x,s

))
,

where we recall from Section 3 that the ∗ superscript indexing the covariance/
precision parameters indicates they are the unique locations where we sample
{s, (�∗

m)m=1,...,M}. The terms involving �� reflect the insertion of X� into the DP
prior because the X� are fixed, not random. Information about X� is solely used in
the prior for cluster assignments, s, and not in the model for regression coefficients,
(B�), and so we otherwise discard X� and focus our inference on the conditional
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distribution for Y|(X�), but with the prior distribution for cluster assignments now
updated to include predictor information.

We have incorporated information about the predictors in determination of clus-
ter assignments by treating them as random under an augmented version of our DP
scale mixture formulation. We do not, however, believe the predictors, (X�), are
random, and we employ the probability model for (X�) solely as a computational
device to create a new prior for cluster assignments that incorporates the predictor
values in a predictor-dependent Dirichlet process mixture formulation. We zoom
out from the detailed modeling, discussed above, for incorporating predictors (X�)

into the prior for assignment to clusters and now show an equivalent summary
comparison for the joint prior for cluster assignments, s, excluding and including
the predictors.

The joint prior cluster assignments under the clustering prior of Equation (7) is
stated with

(14) f (s1, . . . , sN) ∝ αM−1
M∏

m=1

(nm − 1)!,

after marginalizing out the random measure G, where nm = ∑N
�=1 I(s� = m) de-

notes the number of counties assigned to cluster m. The predictor-assisted ap-
proach, which parameterizes a joint distribution for Y, (X�)�=1,...,N , adjusts Equa-
tion (14) to add information about the predictors with

(15) f (s1, . . . , sN |P×T

X1 , . . . ,XN) ∝ αM−1
M∏

m=1

g
(
X∗

m

)
(nm − 1)!,

where our notation conditions on the (X�) for emphasis, though this prior doesn’t
treat them as random. They are fixed. We define

(16) g
(
X∗

m

) =
∫ ∏

�:s�=m

f (X�|��,Hx)f
(
��|�∗

x,m

)
f

(
�∗

x,m

)
d�� d�∗

x,m dHx,

where �∗
x,m = {�∗

x,m, τ ∗
x,m,ρ∗

x,m} are the unique locations. The integration is per-
formed numerically in our MCMC procedure. Equation (15), with (X∗

m) defined
in Equation (16), is directly derived from the conditional formulation in Equa-
tion (13) for any vector of cluster assignments s. We have only modeled the X�

as a computational device for inserting the predictors into the prior where two
establishments, � and �′, with similar values of X� and X�′ are more likely to co-
cluster a priori because the (X�) are fixed. What is especially satisfying is that
we have estimated a complicated predictor-dependent Dirichlet process mixture
model with a much simpler Dirichlet process model through imposing a probabil-
ity model on the predictors. The insertion of predictor information into the prior
for cluster assignments can reduce prior uncertainty for the cluster assignments
of establishments who share similar predictor values with a large number of other
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establishments; nevertheless, as the number of predictors grows, the prior uncer-
tainty will grow because it is defined on the space of predictor values, and so care
is warranted in the choice of which and how many predictors to use for indexing
the prior for cluster assignments.

We ran our sampling chains for 30,000 iterations, discarding half as burn-in,
and thinning each chain by saving every 20th draw. Convergence of the sampler
was assessed by employing a fixed width estimator with Monte Carlo standard
errors (MCSE) computed using the consistent batch means (CBM) method [Jones
et al. (2006)]. We further computed the scale reduction factor, R̂, of Gelman and
Rubin (1992), which is composed as the square root of the ratio of a weighted
average of between-chain and within-chain variances divided by the within-chain
variance. The statistic of Gelman and Rubin (1992) is computed from multiple
chains for each parameter of interest. We achieve a value of R̂ very near to 1, which
indicates convergence. Our general experience is that the fixed width estimator
produces stopped chains about twice as long as the Gelman and Rubin (1992)
statistic; please see the Technical Supplement in Savitsky (2016) for details of
the posterior sampling schemes used for both models and the resulting mixing
performance.

5. Results for the ACS. We next illustrate estimation results for our model by
comparing the fitted function for a selected county with the collection of ACS esti-
mates to which it is linked at each time point. To make the comparison meaningful,
we only want to include the portion of each published estimate that provides in-
formation about that county; for example, if a county is nested, along with other
counties, in a metropolitan area for which we have an ACS estimate, ybq , we’d like
to extract from the estimate only the portion of the observed employment total that
provides information about that county. We compute a “pseudo” statistic, ỹbq,�j ,
in Equation (17) for each group, b, and period, q , linked to a latent, county-year
function parameter, f�j = x′

�jβ�j , by subtracting away from estimate ybq (to which
county-year, �-j , is linked) all other model-estimated county-year function values
(besides that for �-j ) for which ybq also provides information [including years
(j∗) other than j for county �]. The quantity β̂�∗j∗ in Equation (17) represents the
posterior mean of the sampled values from our MCMC,

(17) ỹbq,�j = ybq − ∑
�∗�=�∈b

∑
j∈q

x′
�∗j β̂�∗j − ∑

j∗�=j∈q

x′
�j∗ β̂�j∗ .

We will plot the pseudo-statistics to demonstrate that the posterior for each ma-
trix of P × T coefficients, B�, weights the contribution of each estimate, ybq , in
proportion to its precision (inverse variance), such that (ACS) estimates associated
to group-periods closer in geography (that nests relatively fewer counties) and time
exert more influence on the model-estimated result. Our presentation of results, to
follow, will illustrate the fit mechanism by plotting each pseudo-statistic, ỹbq,�j for
county-year, �-j , with the size of the displayed point in proportion to its precision.
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The figures that follow display fitted estimates from the conditional model of
Section 3. Figure 2 displays the fitted function (in the pink line), along with the
collections of pseudo-statistics in each year for a randomly selected county with
1-year period ACS observations. The size of each pseudo-statistic is in proportion
to its precision, with 1-year period estimates colored in red, 3-year period estimates
in green and 5-year period estimates in blue. Fixing a year, one may observe how
densely this county is nested in areas of similar size by examining whether there
are many pseudo-statistics of similarly large precision values; for example, exam-
ining the pseudo-statistics for j = 2012, we note the largest pseudo-statistic is the
1-year period estimate for DuPage County. The 1-year period statistic for DuPage
County is embedded in a set of somewhat lower precision statistics, indicating that
DuPage County nests in a group of larger areas (e.g., such as metropolitan areas),
which we know because the pseudo-statistics for these areas are colored in red
so that they are 1-year period estimates and because their precisions are smaller,
indicating that they are larger areas that nest DuPage County. The green pseudo-
statistic above this group of red, 1-year period pseudo-statistics indicates there is
a relatively high precision 3-year period estimate available for DuPage County
that provides information about f�j for � = DuPage County and j = 2012. Sim-

FIG. 2. Estimated function vs. pseudo-data for 1-year county: Fitted function (pink line) compared
to the collection of pseudo-data points in each year, 2008–2012, for a large-sized (by population)
county, DuPage County, IL, with published 1-year period estimates. Each hollow circle represents a
pseudo-statistic, and its size is proportional to its estimated precision. Each hollow circle is colored
based on the period of the data point; red denotes a 1-year period, green denotes a 3-year period
and blue denotes a 5-year period.
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ilarly, the blue-colored pseudo-statistic below the group of 1-year period pseudo-
statistics is a 5-year period pseudo-statistic for DuPage County of relatively large
precision that influences the modeled estimate. All to say, the collection of the rela-
tively high-precision pseudo-statistics together influence the estimation of f�j , for
� = DuPage County and j = 2012, with their estimation influence in direct pro-
portion to their precisions. The remaining, relatively farther away pseudo-statistics
of small precision provide relatively little information in the estimation of DuPage
County because their population sizes are much bigger than DuPage County and
likely nest many other counties. Since DuPage County has observed 1-year period
estimates, those will be the most precise (and hence largest in size) for estimating
this county. Nevertheless, we see that while the fitted trend is similar to that ex-
pressed by the 1-year estimates, it differs because the fitted values are influenced by
pseudo-statistics representing other groups and periods in which the county-years
nest. These values lie below the 1-year values and pull down the fitted function
away from the 1-year period estimate.

We may not use these pseudo-data plots to assess the fit quality, however, pre-
cisely because the pseudo-statistics are convolved with the estimation procedure.
We may, nevertheless, comment on the coherence or closeness among estimated
pseudo-statistics with relatively larger precision values, which offers comment on
the strength of estimation.

Figure 3 displays the estimated function compared to pseudo-statistics for a
county with 3- and 5-year period observations, but not 1-year period observations.
We see a good coherence between estimated by year 1- and 3-year pseudo-statistics
constructed from near in size groups in which this county nests and also among the
pseudo-statistics constructed from 3- and 5-year period estimates that nest each
year in the figure.

Figure 4 presents an MCD for which only a single 5-year period estimate is
available. These results also express a good coherence between the pseudo-statistic
in each year constructed from the 1-year period estimate of the county in which
the MCD nests and the pseudo-statistic in each year constructed from the 5-year
period estimate for the focus county.

We observe in these figures that some of the pseudo-statistics are very large in
magnitude—highly positive or negative—though their small precisions result in
their exerting little to no influence in the estimation of the (parameters for the)
functions, (f�j ). The overly high magnitude values occur in those cases where a
county is nested in an area far different in size than itself, for example, nested in a
balance of metropolitan areas, which will potentially include hundreds of counties.
While a state-level estimate may be relatively precise for estimating a large, state-
level quantity, it is highly imprecise for estimating a small, constituent piece. Thus,
there is almost no information borrowed from a group that is far larger in size than
a constituent county, reflecting a limitation in the ability of the model to borrow
information.

In general, we find that the super sector employment total predictors from the
Quarterly Census of Employment and Wages (QCEW), available at the county-
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FIG. 3. Estimated function vs. pseudo-data for 3-year county: Fitted function (pink line) compared
to the collection of pseudo-data points in each year, 2008–2012, for a medium-sized (by population)
county, Lawrence County, SD, with published 3-year (but not 1-year) period estimates. Each hollow
circle represents a pseudo-statistic and its size is proportional to its estimated precision. Each hollow
circle is colored based on the period of the data point.

year resolution, helps to identify the county-year functions by providing magni-
tude information that stabilizes the estimation of by-county regression coefficients
since the county employment totals span vast differences in the size of their labor
markets. Yet, the resulting modeled estimate is typically quite different in level
and trend (not shown) than the total of the QCEW super sector employment val-
ues. We are not surprised because the QCEW provides place-of-work employment
obtained from business establishments, while the ACS is a household survey pro-
viding place-of-residence employment.

Our estimation model entirely focuses on estimating fine-level, county-year pa-
rameters, using groups and periods that nest them. A question arises about the
quality of estimation at the state level composed by summing over the county-
year parameters nested in each state-year. The roll-up of estimated functions to
the states produces estimates for all states that are within 1–2% of 1-year period
state-level estimates in the ACS. Figure 5 shows the estimated summed functions
compared to the observed data points for three randomly selected states, which il-
lustrates the estimation of latent functions at the county-year level provides a good
estimation for state-level, 1-year period observations.

We may not directly assess the fit performance of the estimated county-year
functions for 3- and 5-year counties due to the absence of observed 1-year data
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FIG. 4. Estimated function vs. pseudo-data for 5-year county: Fitted function (pink line) compared
to the collection of pseudo-statistics in each year, 2008–2012, for a small-sized (by population)
township (MCD), Hadley, Hampshire County, MA, with published 5-year (but not 1- or 3-year) period
estimates. Each hollow circle represents a pseudo-statistic, and its size is proportional to its estimated
precision. Each hollow circle is colored based on the period of the data point.

FIG. 5. County-year fitted values summed to state level (pink line) versus data values (hollow cir-
cles) for randomly selected states. The gray shading represents the 95% credible intervals.
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FIG. 6. Comparison of model-estimated values for a 1-year county (Craven County, NC) when
excluding 1-year data values. The bottom plot panel provides results for the predictor-assisted clus-
tering model [which we label (Y,X)], while the plot in the top panel excludes predictors in the prior
for cluster assignments [which we label (Y |X)]. The solid, pink line in each plot panel presents the
posterior mean fitted function when excluding the 1-year data points, while the dashed, blue line
presents the posterior mean when including the 1-year data points. The gray shading represents
the 95% credible intervals as estimated on the models excluding 1-year data points. The associated
pseudo-statistics are also estimated from the models excluding 1-year data points. The solid pink
diamonds plot the 1-year data points.

values. An indication of fit quality may, however, be provided by holding out or ex-
cluding the (five) 1-year data values for a county with available 1-year data values
and comparing how the models—that exclude or include predictors in the prior dis-
tributions for cluster assignments—estimate the county-year function to when the
1-year values are included. Figure 6 presents estimated county-year function pa-
rameters for Craven County, North Carolina. The bottom panel displays estimated
results under the predictor-assisted, dependent clustering model of Section 4, while
the top panel displays the same under the clustering model that excludes predic-
tors (in the prior for assignment to clusters) of Section 3. The solid, pink line in
each plot panel presents the posterior mean fitted function when excluding the 1-
year data values, while the dashed, blue line presents the same when including
the 1-year values. The gray shading displays the associated 95% credible intervals
under exclusion of the 1-year data values, and the associated pseudo-statistics are
also constructed using the fitted functions under exclusion of these values. Finally,
the pink, diamond points display the 1-year data values.
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We explored a number of 1-year counties at random and found a high degree
of similarity between the estimated county-year functions with and without inclu-
sion of the 1-year data values under both models. Craven County is something of a
worst-case result (due to its relatively small size) that provides clearer differentia-
tion between the performances of the two models. We see that both models amplify
the estimated employment decline from 2008–2009 when the 1-year data values
are excluded, which increases the influence of the other groups containing Craven
County. Yet, the model excluding predictors in assigning clusters well captures
both the increasing trend from 2010–2011 and the decreasing trend from 2011–
2012. The predictor-assisted clustering model expresses a slightly steeper decline,
followed by a more rapid recovery. The predictors appear to have induced co-
clustering among counties with this pattern during the Great Recession, causing an
overemphasis on this period. The fitted results under both models may be sensitive
to the choice of the county-year predictors because they are below the resolution
of the observed data; for example, perhaps if we include additional predictors that
provide information about poverty concentration or education achievement, then
the predictor-assisted model may or may not outperform, and so predictors should
be carefully chosen based on their ability to comment on the economic conditions
of each county. The larger credible intervals for the predictor-assisted clustering
model reflects the large space of partitions or clusterings induced when including
the predictors in the prior for the mixing measure. These results generally suggest
that the spatial and temporal nesting construction that underpin our models may
provide reasonable estimates because we have shown that the models well repro-
duce the denoised, by-year functions that would be estimated under inclusion of
the 1-year ACS estimates when the 1-year ACS estimates are excluded from the
models. Under exclusion of the 1-year estimates, the models must rely on both
coarser period estimates for Craven County, as well as the information provided
by other areas in which Craven County nests.

Our primary modeling goal is not merely to fit the observed data, (ybq), but
to discover true employment trends at resolutions lower than the observed data.
We, nevertheless, conduct posterior predictive checks for both models fitted to
the observations, (ybq), by computing the Bayesian posterior predictive p-value,

pB = P(T (yrep, (f�j )) ≥ T (y, (f�j ))|Y), using T (y, (f�j )) = ∑B
b=1

∑Q
q=1(ybq −∑

�∈b

∑
j∈q f�j )

2/σ 2
bq , the Pearson chi-squared statistic [Gelman et al. (2015)].

The p-value is rendered by generating replicate data, yrep, from our models on
each posterior sampling iterations, computing the statistic, and counting the num-
ber of times it is greater under the replicated than the real data. The intent is to
provide a baseline check on whether the estimated model generates data of a sim-
ilar structure to the real data, where values closer to 0.5 may indicate a good fit
of the model to the data. We are not surprised by posterior predictive p-values of
(0.48,0.47) for the conditional and joint models, respectively. The harder chal-
lenge is to assess the goodness of fit for estimation of county-level functions for
which we don’t have estimates. Section 6, which immediately follows, constructs
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TABLE 2
Fit performance comparison between model including
predictors in prior for cluster assignments, (Y,X), and

model excluding predictors in clustering, (Y |X).
Lower values indicate better fit performance for all

included fit statistics

(Y,X) (Y |X)

−LPML 233,517 228,181
DIC3 449,663 450,199
D̄ 444,634 446,928

synthetic data under a known truth to allow us to conduct an assessment of fit for
our model-estimated county-level functions.

We conclude this section by comparing the relative fit performances between
our two model alternatives in Table 2, where we see that the predictor-assisted clus-
tering model doesn’t produce a notably lower mean deviance, D̄, than the simpler
model to justify the added complexity. The table additionally displays the DIC3 cri-
terion [Celeux et al. (2006)] that focuses on the marginal (predictive) density f̂ (y)

in lieu of f (y| ̂parameters), which is more appropriate for mixture models. Also
shown is the log-pseudo-marginal likelihood that employs “leave-one-out” cross-
validation [Gelfand and Dey (1994)]. The similar fit statistics, combined with the
lower perturbation in the estimated functions illustrated in Figure 6, incline us to
prefer the simpler model of Section 3.2.

6. Simulation study. Our examination of results for the ACS helped pro-
vide insight on the fit performance, but perhaps does not fully address the qual-
ity of fit for counties with only 3- and 5-year data values, and so we gener-
ate known synthetic values for coefficients, (B�) from Equation (5), employing
the posterior means of covariance parameters (�̂y,�, κ̂�) from the model of Sec-
tion 3. We compute f�j = x′

�jβ�j , where X� is observed (known). We next gen-

erate ybq
ind∼ N (

∑
�∈b

∑
j∈q f�j , σ

2
bq). The same nesting relationships of (county,

year) to (group, period) from the ACS are duplicated for the simulation study so
that we are generating a synthetic version of ACS employment counts. Of course,
this simulation assumes that our spatial and temporal nesting construction is the
correct generating model, which we do not know to be the case, though the fit per-
formances on 1-year counties when excluding the 1-year data values suggests that
this assumption may be broadly reasonable.

Figure 7 presents the pseudo-statistics, fitted function (denoted by a pink line)
and associated 95% credible interval (denoted by gray shading) along with the true
function (denoted by the dashed, blue line) for a 3-year county. It reveals that our
model also does well on a county for which we have 3-year period estimates, but
not 1-year period estimates.
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FIG. 7. Fitted versus data values for simulated 3-year county.

We find similar results for counties where each has only a single 5-year pe-
riod ACS estimate [see the Technical Supplement in Savitsky (2016) for a plot]
as for those with only 3-year period estimates in that the true trend is captured,
though there is some over-smoothing for 5-year counties, particularly those that
are nested far in space into much larger areas (along with many other 5-year coun-
ties). Adding data for upcoming years will bring in additional 5-year period esti-
mates, which are expected to improve the quality of estimation for these far-nested
counties by borrowing strength over (overlapping) multi-year periods.

7. Discussion. Motivated by the use of ACS employment data at the BLS
to allocate statewide CPS employment estimates to sub-state, local areas, we have
developed a general approach to estimate fine-scale time and areal-indexed param-
eters using an ensemble of coarse-scale observations that spatially and temporally
nest the parameters. We specify the likelihood to link subsets of the parameters that
exhaustively nest each group-period observation. Our best-performing Bayesian
multiscale model of Section 3 formulates a relatively simple nonparametric mix-
ture model for estimating the latent county functions in a fashion that facilitates
the shrinking together of similar functions by the data. The flexible shrinking un-
der the Bayesian nonparametric approach, which penalizes complexity, combined
with leveraging nesting relationships to identify an ensemble of observations that
provide information about each latent parameter, provides a broadly useful ap-
proach.
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Many ACS users, such as the LAUS program in BLS, would prefer to employ
1-year period estimates for counties, but are relegated to using 5-year period pub-
lished estimates in the case where analyses are conducted across all counties in the
U.S. Results from our simulation study demonstrate that our approach performs
well to uncover the latent true county-year parameters for 3-year counties and 5-
year counties, where the 5-year counties nest within similarly sized groups (along
with few other counties). There was some notable over-smoothing of the estimated
county function (though the magnitude and global trend are captured) for 5-year
counties exclusively nested in much larger sized groups, which occurs because we
only have a single, 5-year period estimate for these counties. We expect improve-
ments in the fit accuracy for these counties as we add upcoming years to the five
years of data that we considered for our analysis because our mixtures of Gaussian
process formulations borrow strength across years. Employing an ensemble of esti-
mates published at varied resolutions even adds value for the modeling of counties
with 1-year period estimates by incorporating the additional estimates associated
to groups nesting each 1-year county. Our approach may be applied to any variable
from the ACS, as well as to other data sets that express a multiresolution structure
where a collection of latent parameters are linked to multiple observations that are
coarser in scale. It is difficult, however, to think of an example of such a data struc-
ture because the usual case is to make inference about coarser level parameters
from data observed at finer resolutions [e.g., inferring about the performance of a
teacher from the individual performances of students in their classrooms [Savitsky
and McCaffrey (2013)]. More generally, then, our multiresolution modeling for-
mulation serves as an example of what is possible for performing inference on
structured data using Bayesian hierarchical models.

Our estimates were composed using 3-year period estimates for which the Cen-
sus will discontinue publication going forward (from 2016). Leveraging historical
3-year period estimates in our nonparametric multiresolution modeling remains,
however, very useful because they continue to offer information for borrowing
of estimation strength among the (f�j ) because we retain previous years of data
when adding new years. Our modeling approach and computation are sufficiently
flexible to input data at any level of coarseness in space and time.
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SUPPLEMENTARY MATERIAL

Technical Appendices (DOI: 10.1214/16-AOAS968SUPP; .pdf). The online
supplement contains three technical appendices with detailed material on the fol-
lowing topics:

1. posterior computation;
2. posterior mixing;
3. simulation study 5-year county results.
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