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COX REGRESSION WITH EXCLUSION FREQUENCY-BASED
WEIGHTS TO IDENTIFY NEUROIMAGING MARKERS RELEVANT

TO HUNTINGTON’S DISEASE ONSET
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Biomedical studies of neuroimaging and genomics collect large amounts
of data on a small subset of subjects so as to not miss informative predictors.
An important goal is identifying those predictors that provide better visual-
ization of the data and that could serve as cost-effective measures for future
clinical trials. Identifying such predictors is challenging, however, when the
predictors are naturally interrelated and the response is a failure time prone
to censoring. We propose to handle these challenges with a novel variable
selection technique. Our approach casts the problem into several smaller di-
mensional settings and extracts from this intermediary step the relative im-
portance of each predictor through data-driven weights called exclusion fre-
quencies. The exclusion frequencies are used as weights in a weighted Lasso,
and results yield low false discovery rates and a high geometric mean of sen-
sitivity and specificity. We illustrate the method’s advantages over existing
ones in an extensive simulation study, and use the method to identify relevant
neuroimaging markers associated with Huntington’s disease onset.

1. Introduction. In studies of neuroimaging [Tabrizi et al. (2013)] and ge-
nomics [Witten and Tibshirani (2010)], the emergence of new technologies allows
scientists to collect a copious amount of data on a small number of subjects. A ma-
jor interest in such studies is identifying predictors truly relevant to a response
of interest. These predictors are generally more cost-effective measures in future
clinical trials, provide better understanding and visualization of the data, and im-
prove predictions of a response. Identifying relevant predictors in large data sets
is challenging especially when the response is a failure time prone to censoring.
In this paper, we propose a new variable selection technique that casts the prob-
lem into several smaller dimensional settings and extracts from this intermediary
step the relative importance of each predictor through data-driven weights called
“exclusion frequencies” (formal definition in Section 2.2). We show that using the
exclusion frequencies as weights in the adaptive Lasso [Zhang and Lu (2007)] im-
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proves variable selection accuracy, decreases false discovery rates [Storey (2003)],
and has high geometric mean of sensitivity and specificity.

Our method is motivated by a neuroimaging study of Huntington’s disease (HD)
where the goal is to identify brain regions that impact age of motor onset. HD is
a genetically inherited, neurodegenerative disease that results in motor and cogni-
tive impairments, and eventual death. Its cause is an unstable expansion of the CAG
trinucleotide repeat in the huntingtin gene [Huntington’s Disease Collaborative Re-
search Group (1993)], and research is ongoing to identify biomarkers for disease
tracking and therapy development. A recent study, PREDICT-HD [Paulsen et al.
(2008)], has collected numerous measures on brain regions to better understand
HD development. Earlier analyses have identified some neuroimaging measures
(e.g., striatal volume) that can discriminate individuals at risk for HD from healthy
controls [Aylward et al. (2011), Tabrizi et al. (2012)]. These analyses, however,
evaluated each measure individually, which can ignore correlation between vari-
ables, and did not account for potential censoring of the onset ages. In this paper,
we propose a survival-based, variable selection procedure that handles censoring
and accounts for interrelationships between neuroimaging measures by simultane-
ously assessing all variables. For PREDICT-HD, both the number of variables, p,
and the sample size, n, are in the hundreds, but our method is general enough to
deal with larger and smaller n’s and p’s.

Current variable selection methods for time-to-event outcomes extend from
methods proposed for linear models. These include stepwise selection, best subset
selection, bootstrap methods [Sauerbrei and Schumacher (1992)], and Bayesian
approaches [Faraggi and Simon (1998), Ibrahim, Chen and MacEachern (1999)].
An approach favoring sparsity is one pioneered by Tibshirani (1997): a Lasso es-
timator applied to the Cox (1972) proportional hazards model. Fan and Li (2002)
showed, however, that the Lasso estimator does not possess the oracle property,
and instead proposed a smoothly clipped absolute deviation method (SCAD) for
the Cox model which does. But the SCAD estimator can be difficult to solve and
may be numerically unstable because it involves optimizing a nonconvex penalty.
As an improvement, Zhang and Lu (2007) proposed an adaptive Lasso for the Cox
model which involves weighing each predictor with the inverse of the maximizer
of the log partial likelihood. The estimator possesses the oracle property and is
numerically stable.

By design, weights in the adaptive Lasso for Cox models (and linear models)
are based on learning from the full data: all n rows and p columns of the data
matrix are used in an initial analysis to construct the weights. Other data-driven
weights, however, have been shown to significantly improve variable selection
accuracy. For example, Bergersen, Glad and Lyng (2011) showed that weights
constructed from external genetic information to their study led to improved vari-
able selection. Of course, external information is not always available and internal
data can be used instead. For linear models, Garcia et al. (2013) and Garcia and
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Müller (2014) showed improved variable selection using internal data. They con-
structed weights by regressing the response of interest on each predictor and tak-
ing as weights measures of significance of the predictor (i.e., t-statistic, p-value,
q-value). They showed that using such weights in the adaptive Lasso improved the
accuracy of the variables selected in a linear model. We propose to build on this
idea in two ways. First, we will generate internal data weights for survival mod-
els. Second, we will construct weights by repeatedly learning from subsets of the
columns of the design matrix to form exclusion frequencies defined as a variable’s
irrelevance to the model. Such frequencies are, in some sense, the intermediate
and more general case of two “boundary” cases: the adaptive Lasso which uses the
full data to construct feature weights, and the methods in Garcia et al. (2013) and
Garcia and Müller (2014) which use one variable at a time.

Our motivation for exclusion frequencies stems from inclusion frequencies
[Gong (1982, 1986)] which are measures of a predictor’s relevance to a model. In-
clusion frequencies are derived through repeatedly perturbing the data [Yu (2013)]
and computing how often each predictor is selected after applying a variable selec-
tion procedure to the perturbed data. Well-established data perturbations involve
resampling the n rows of the data matrix using the jacknife, cross-validation, or
bootstrap. For example, Gong (1982) applied repeated forward logistic regression
to the resampled data matrix after an initial screening of the most important vari-
ables. These ideas were further developed in Cox regression [Chen and George
(1985), Sauerbrei and Schumacher (1992)] and Poisson regression [Buckland,
Burnham and Augustin (1997)]. The notion has motivated other resampling pro-
cedures to gain a better understanding of selection method stability. For stability
selection when p < n, Müller and Welsh (2010) proposed a bootstrap approach,
and, when p > n, Meinshausen and Bühlmann (2010) proposed a leave-�n/2�-out
cross-validation resampling and Shah and Samworth (2013) proposed two consec-
utive cross-validation subsamples for improved resampling. In all aforementioned
examples, selected “stable” variables are those which have inclusion frequencies
exceeding a chosen (data-adaptive) threshold. However, such thresholding may ig-
nore correlation between variables [Garcia et al. (2013)].

In contrast to the existing literature for inclusion frequencies, our idea is to
compute and use exclusion (equivalently, inclusion) frequencies as follows:

1. Rather than perturbing the data by resampling the n rows of the data ma-
trix, we will repeatedly subsample among the p columns of the design matrix. Our
repeated column perturbations is novel to the variable selection literature, and it
allows us to cast the problem into more familiar settings. Specifically, we will ana-
lyze only those p∗ predictors in each subsample where p∗ is much smaller than the
sample size n. In these smaller dimensional problems, we will apply standard vari-
able selection procedures (i.e., exhaustive best subset selection, stepwise selection)
and compute how often each predictor is excluded (or included) in the procedure.
The exclusion (inclusion) frequency weights are thus learned from these simpler,
smaller dimensional problems.
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2. Rather than select predictors individually based on those whose exclusion
(inclusion) frequencies are less than (exceed) a prespecified threshold, predictors
will be selected from a modified version of the adaptive Lasso applied to all pre-
dictors. Specifically, we will apply the adaptive Lasso such that its weights are
the exclusion frequencies computed from the smaller dimensional settings. This
technique allows us to avoid arbitrarily selecting a threshold where variations in
its value can potentially result in different selections. Applying this new adaptive
Lasso to all predictors simultaneously also helps to assess the impact of multiple
predictors on the response.

We show that the adaptive Lasso with exclusion frequency weights yields
more accurate model selections than when using other data-driven weights or ap-
proaches such as backward selection, Bolasso [Bach (2008)], and random Lasso
[Wang et al. (2011)]. Due to the intractability of theoretical results, we demon-
strate this accuracy empirically via simulation. Theoretical justification when sub-
sampling columns of the design matrix might be achievable in future research, but
we expect that this will require different methods to when subsampling rows [as
in Meinshausen and Bühlmann (2010)]. Also, to the best of our knowledge, the
Bolasso and random Lasso were implemented for the first time in the context of
Cox regression in this article.

Section 2 describes the construction of exclusion frequency weights and its fea-
tures. In Section 3, we demonstrate the effectiveness of these weights compared to
seven alternative methods, five of which were considered for the first time in the
context of Cox regression. In Section 4, we apply our method to PREDICT-HD to
identify those brain measures that impact age of motor onset. Section 5 concludes
the paper with generalizations of exclusion frequency weights to other regression
models and penalization forms. An R implementation of the proposed procedure
is available upon request.

2. Proposed exclusion frequency variable selection.

2.1. Overview of the weighted Lasso. For i = 1, . . . , n, we denote the ob-
served data as (Si, δi,vi). Here, Si = min(Ti,Ci), where Ti denotes the failure
time and Ci the censoring time which is assumed independent of Ti . The censor-
ing indicator is δi = I (Ti ≤ Ci) and vi are p-dimensional predictors. Without loss
of generality, we assume the vi predictors are standardized to have mean zero and
sample variance one. For the PREDICT-HD study (Section 4), we have n = 839
genetically at-risk subjects, the failure time T corresponds to age of motor on-
set, and there are p = 352 predictors of volume and surface area measurements
of different brain regions. Such a p is too large for exhaustive search algorithms,
however, regularization methods can be used to economically parse through the
large model space.
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To model the relationship between failure times and predictors, we use the Cox
(1972) proportional hazards model, though other survival models such as the addi-
tive hazards regression [Lin and Lv (2013)] could also be used. For a Cox model,
regularization-based variable selection can be achieved using the adaptive Lasso
[Zhang and Lu (2007)]. The solution is the minimizer of

Qcox(β) = −1

n

n∑
i=1

δi

[
βT vi − log

{
n∑

j=1

I (Sj ≥ Si) exp
(
βT vj

)}]
(2.1)

+ λ

p∑
k=1

wk|βk|,

with respect to β = (β1, . . . , βp)T , the coefficient vector. The first term in Qcox(β)

is the partial log-likelihood of the data; λ > 0 is a regularization parameter; and
wk > 0, k = 1, . . . , p, are weights. Minimization of Qcox(β) can be achieved by
transforming the predictors as vik �→ vik/wk = v∗

ik and defining γk = wkβk . The
minimizer β̂ is found by minimizing

Qcox(γ ) = −1

n

n∑
i=1

δi

[
γ T v∗

i − log

{
n∑

j=1

I (Sj ≥ Si) exp
(
γ T v∗

j

)}]
+ λ

p∑
k=1

|γk|,

with respect to γ̂ , and then transforming back via β̂k = γ̂k/wk . Solving for γ̂ is
easily achieved using procedures for nonweighted, L1 penalization [Zhang and Lu
(2007), Simon et al. (2011)], which are available in software such as R.

2.1.1. Use of weights. A key advantage of the adaptive Lasso [Zhang and Lu
(2007)] over the Lasso [Tibshirani (1997)] is its utility of weights which aid to
yield numerical stability. For example, when using wk = 1/|β̃k|, where β̃k is the
maximizer of the model’s log partial likelihood, the oracle property is achieved
since the term |βk|/|β̃k| converges to I (βk 	= 0).

Recent work from Bergersen, Glad and Lyng (2011), Garcia et al. (2013), and
Garcia and Müller (2014) has shown that other data-driven weights can further
improve variable selection accuracy. This results by defining weights that appro-
priately measure the predictors’ relevance in relation to the response of interest as
described next.

For ease in presentation, we refer collectively to all predictors as v’s and denote
the design matrix as V = [v1, . . . ,vp] ∈ mat(n,p). For a fixed regularization pa-
rameter λ in (2.1), it is well known [Garcia and Müller (2014)] that those columns
vk with large weights will generally be excluded from the model (i.e., β̂k = 0),
whereas variables with small weights will generally be included in the model (i.e.,
β̂k 	= 0). Thus, we aim to define small weights for relevant predictors and large
weights for irrelevant ones.

To determine the relevance of each predictor, we consider a general situation
where predictors belong to one of two groups: those that are indeed relevant to the
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model (so-called “designed predictors”), and those that are subject to selection (so-
called “candidate predictors”). Such a setting arises primarily in biological studies
where certain phenomena warrant that some variables (the designed predictors) are
known to act on the response, whereas the effect of others (the candidate predic-
tors) is unknown. For example, when analyzing the age of onset of Huntington’s
disease, a designed predictor is the number of CAG repeats in the huntingtin gene,
as it is known that longer repeats lead to earlier onset [Ross and Tabrizi (2010)];
candidate predictors are volume measures from different brain regions which are
unknown a priori to have an effect on age of onset. See Garcia et al. (2013) and
Garcia and Müller (2014) for other biological examples with designed and can-
didate predictors. For applications with no a priori information, the model would
only have candidate predictors, and the weighting scheme for designed predictors
below would be ignored.

For the general scenario, we denote the designed predictors as z’s and candi-
date predictors as x’s. Specifically, we let m0 be the number of designed predictors
denoted as v1 := z1, . . . ,vm0 := zm0 . We let m1 be the number of candidate pre-
dictors denoted as vm0+1 := x1, . . . ,vm0+m1 := xm1 . We have that p = m0 + m1
and p is potentially larger than n. When m0 = 0 there are no designed predictors
and all columns of V are subject to selection.

We will place very small weights on the designed predictors z’s such as w1 =
· · · = wm0 = 0. This will ensure that the z’s are in the final model. As the relevance
of the x’s to the model is not known a priori, we propose to define their weights
based on information obtained in smaller dimensional settings (see Section 2.2).
When m0 	= 0, the weights for the x’s will also reflect their relevance to the failure
times after accounting for the designed predictors z’s. Weights that ignore the z’s
have been found to be inferior to unit weights on the x’s; see the simulation study
of Garcia et al. (2013).

Our proposed weights are based on exclusion frequencies constructed from two
steps performed repeatedly. The first step involves partitioning the columns of the
design matrix corresponding to the x’s. The second step involves applying a stan-
dard variable selection method (e.g., stepwise regression) and tracking which pre-
dictors are not retained by the method. An overview of this algorithm is presented
below with details given next (see Algorithm 1).

2.2. Partitioning the candidate predictors. Our first step in forming exclusion
frequencies involves partitioning the candidate predictors into J different groups.
While the choice of J depends on n, m0, and p, we write J and not J (n,m0,p)

for notational ease. When n < p, we aim that, in each partition, n exceeds the
number of candidate predictors in the partition plus the number of designed pre-
dictors (m0). Having this requirement allows us to apply nonregularized variable
selection techniques to each partition and learn about the relevance of each can-
didate predictor. When p is already smaller than n but still very large, we show
via simulation that partitioning has an advantage in these p < n scenarios as well.
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Algorithm 1 (Exclusion frequency weighted Lasso algorithm): Let z1, . . . , zm0

denote designed predictors known to be in the model, and I = {x1, . . . ,xm1}
denote the predictors that are subject to selection. Choice of tuning parameters
B,J,λ are discussed in Section 2.4.

Step 1: For b = 1, . . . ,B:
(a) Partition I into nearly equal-sized, disjoint groups I(b)

1 , . . . ,I(b)
J either with

random partition (Section 2.2.1) or structured partition (Section 2.2.2).
(b) On each partition group, j = 1, . . . , J , apply a stepwise regression to (S, δ)

on I(b)
j ∪ {z1, . . . , zm0}, specifying that {z1, . . . , zm0} are always in the final

model. The final model is selected using the Bayesian information criterion
(BIC). (Selection methods other than stepwise could be used, but we do not
pursue these in this article.)

(c) The stepwise regressions will yield estimates β̂
(b)
1 , . . . , β̂

(b)
m1 corresponding

to the variables x1, . . . ,xm1 . Compute E
(b)
k = I (β̂

(b)
k = 0) which tracks if

candidate predictor xk is excluded from the stepwise regression.
Step 2: Form the exclusion frequency weight for xk as wm0+k = ∑B

b=1 E
(b)
k /B .

Step 3: For a fixed λ, solve the Cox regression weighted Lasso in (2.1) with
weights w1 = · · · = wm0 = 0 for z1, . . . , zm0 to ensure that these designed

predictors are in the final model, and weights wm0+k = ∑B
b=1 E

(b)
k /B for xk ,

k = 1, . . . ,m1.

For example, in the Huntington’s disease study where p is in the 100s and p < n,
partitioning reduces the number of variables to the low 10s in each partition.

Two natural questions about partitioning emerge. First, how does one select J ?
Second, how does one form the partition? The first question is addressed in Sec-
tion 2.4 where we discuss the selection of all tuning parameters. To address the
second question, we propose two types of partitions: the first uses randomization
(Section 2.2.1) and the second uses different structuring of the predictors (Sec-
tion 2.2.2). For ease in notation, let the candidate predictors be collected in the set
I = {x1, . . . ,xm1}.

2.2.1. Random partition. Random partitioning involves randomly splitting I
into J groups I1, . . . ,IJ . To ensure that each group has roughly equal size, we
require that the size of group Ij , denoted as rj = |Ij |, satisfies

J∑
j=1

rj = m1,

⌊
m1

J

⌋
≤ rj ≤

⌈
m1

J

⌉
, rj + m0 < n, j = 1, . . . , J.

The first requirement ensures that the partitions include all candidate predictors.
The second requirement ensures that partition sizes are roughly equal. The last
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requirement ensures that the total number of predictors (designed plus candidate
ones) is less than sample size n.

Earlier work has shown random partitioning to be less robust than so-called
structured partitioning in the variable selection literature [Müller and Welsh (2005,
2009)] when subsetting rows and not the columns as in this article. Therefore, we
suggest different structured ways to partition the columns of the design matrix in
the next subsection.

2.2.2. Structured partition. Structured partition is one directed by a measure
of “similarity” among the predictors. We define “similarity” using a distance mea-
sure on the estimates from Cox ridge regression of (S, δ) on {z1, . . . , zm0} ∪ I .
Letting β̃k , k = 1, . . . ,m1, denote the ridge regression estimates, we define the
similarity of the predictors according to three measures: (i) those with similar mag-
nitudes of β̃k ; (ii) those whose estimated ridge estimates are in the same “k-means”
clusters; and (iii) those whose estimated ridge estimates are in the same sample
quantile group.

For each similarity measure, our idea is to initially partition I into J ′ groups,
such that each partition Cj ′ , j ′ = 1, . . . , J ′, has similarly behaving predictors. Then
we will randomly sample from these J ′ partitions to form partitions I1, . . . ,IJ so
that each Ij , j = 1, . . . , J , has predictors representative of the different similarity
groups. This two-stage partitioning is easy to program (R code is available upon
request) and, in our empirical experience, choosing J ′ = J yields similar results
as when J ′ 	= J .

We describe this two-stage partitioning in more detail below:

(a) Sorted partition: One structured partition uses the sorted magnitudes of the
ridge parameter estimates. Let |β̃(1)| ≥ |β̃(2)| ≥ · · · ≥ |β̃(m1)| denote the ordered
ridge estimates. First, we divide the predictors in I into J ′ clusters C1, . . . ,CJ ′
such that C1 contains the predictors associated with |β̃(1)|, . . . , |β̃(k)|, C2 contains
the predictors associated with |β̃(k+1)|, . . . , |β̃(2k)|, and so on for k = m1/J

′� for
the first J ′ − 1 partition groups; the remaining predictors are placed in the J ′th
partition. Second, we randomly select elements from each C1, . . . ,CJ ′ to form J

disjoint groups I1, . . . ,IJ . We aim to ensure that each Ij contains at least one
element from each C1, . . . ,CJ ′ , but this may not always be the case since the size
of each Cj may be too small. However, because we repeat this procedure repeatedly
and randomly, the collective set of partitions Ij will capture the behavior of the
predictors.

(b) Means and Quantile partitions: An alternative partition involves means and
quantiles of the ridge parameter estimates. First, we separate I into J ′-clusters
C1, . . . ,CJ ′ based on J ′-means clustering or J ′-quantiles of the estimates
{β̃1, . . . , β̃m1}. Second, we randomly select elements from each C1, . . . ,CJ ′ to form
J disjoint groups I1, . . . ,IJ such that each Ij contains at least one element from
each C1, . . . ,CJ ′ .
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After forming the partition (either random or structured), we then form the exclu-
sion frequencies by applying a variable selection method to each partition group
and keeping track of which predictors are not selected. The procedure is described
next.

2.3. Forming and using exclusion frequencies. On each partition group
j = 1, . . . , J , we apply a variable selection procedure to the set of predictors
Ij ∪ {z1, . . . , zm0} such that the predictors {z1, . . . , zm0} are always in the fi-
nal model. Given that n exceeds the number of predictors in Ij ∪ {z1, . . . , zm0},
nonregularization-based variable selection procedures can be used, such as step-
wise, subset, forward, or backward regression. Among such methods, we propose
to use stepwise regression and have the final model selected based on the Akaike
information criterion (AIC) or Bayesian information criterion (BIC). In the simu-
lation studies of Section 3, we show the results of both and explain our preference
for BIC. There is a myriad of alternatives to using AIC or BIC, and for a recent
review we refer to Müller and Welsh (2010). However, exploring what criterion or
what other variable selection method is optimal is beyond the scope of this article.

After applying stepwise regression to each partition group, we will obtain esti-
mates β̂1, . . . , β̂m1 corresponding to the variables {x1, . . . ,xm1}. For k = 1, . . . ,m1,
we then define Ek = I (β̂k = 0), which tracks if candidate predictor xk is ex-
cluded from the final model of the stepwise regressions. The procedure of par-
titioning the candidate predictors and computing the frequencies Ek is done re-
peatedly B-many times. The exclusion frequency for xk , k = 1, . . . ,m1, is then
wm0+k = ∑B

b=1 E
(b)
k /B .

Having formed the exclusion frequencies, we then use them as weights in equa-
tion (2.1). Specifically, for a fixed λ, we solve (2.1) with weights w1 = · · · =
wm0 = 0 for z1, . . . , zm0 to ensure that these designed predictors are in the fi-

nal model, and weights wm0+k = ∑B
b=1 E

(b)
k /B for the candidate predictor xk ,

k = 1, . . . ,m1. Solving (2.1) can be quickly achieved using the glmnet package
in R [Simon et al. (2011)].

2.4. Selection of tuning parameters. Our algorithm involves several tuning pa-
rameters: the number of partitions J (and J ′ for structured partition), how often
partitions are formed (B), and the regularization parameter λ in equation (2.1).

We found that the exact choice of J minimally changed the performance in
empirical studies. In Table 1, we report the false discovery rates [FDR, Storey
(2003)] and the geometric mean of sensitivity and specificity G ≡ (specificity ×
sensitivity)1/2 [Kubat, Holte and Matwin (1998)] of 500 simulated survival data
sets with 50% censoring (see Section 3 for details of the design). Here, specificity
is the proportion of irrelevant predictors that were not selected among irrelevant
predictors, and sensitivity is the proportion of relevant predictors that are selected
among relevant predictors. The ideal partition size will lead to low FDR (ideal is 0)
and high G-score (ideal is 1).
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TABLE 1
Effect of number of partitions when exclusion frequencies formed using J -quantile structured

partition and stepwise regression with BIC applied to the partitions; 50% censoring,
500 simulations, B = 100 replicates. Observed false discovery rate (FDR; low FDR is ideal)

and G-score (balance between sensitivity and specificity; high G-score is ideal) when n = 120,
p = 61. Covariates are either uncorrelated or correlated with corr(xi ,xj ) = ρ|i−j |

Number of
partitions

Covariates
uncorrelated

Covariates correlated

ρ = 0.3 ρ = 0.5 ρ = 0.7

Method FDR G FDR G FDR G FDR G

J -quantile, J = J ′ = 15 0.09 0.97 0.08 1.00 0.12 0.97 0.16 0.71
BIC J = J ′ = 10 0.12 0.98 0.12 0.99 0.18 0.97 0.22 0.74

J = J ′ = 6 0.03 0.98 0.01 1.00 0.01 0.96 0.01 0.69
J = J ′ = 4 0.02 0.97 0.00 1.00 0.00 0.95 0.00 0.67

Overall, when n = 120 and p = 61 (m0 = 1,m1 = 60) and predictors are uncor-
related, the G-score (i) varies little and is between 0.96 and 0.98 whether J = 4,
J = 6, J = 10, or J = 15; (ii) is unimodal over the range of considered values; and
(iii) is largest for the two intermediate values J = 6 or J = 10. When the predictors
are highly correlated, the G-score lowers slightly but remains stable for different
J values. In general practice, we recommend choosing J so that there are 10 pre-
dictors on average in each partition. However, choosing the number of partitions
is naturally driven by computational limitations. For example, one should choose
J large enough so that there is a sufficiently large number of predictors in each
partition and such that variable selection is computationally feasible when having
to do this repeatedly on the resampled partitions. We encourage having enough
predictors in each partition since we found that when there is only one predictor
per partition group, then more irrelevant predictors are incorrectly selected than
when having sufficiently large partition groups.

For B , we recommend B = 100 as a balance between learning appropriate data-
driven exclusion frequency-based weights and computational demand. We found
that using B-many partitions to form the exclusion frequencies has the additional
advantage that highly correlated predictors are infrequently in the same partition
group, which helps to avoid issues of multicollinearity.

Last, for the regularization parameter λ in (2.1), we recommend using the cross-
validation procedure in the R glmnet package [Simon et al. (2011)].

3. Simulation studies.

3.1. Simulation design. We evaluated our proposed method and existing ones
in a simulation study mimicking the Huntington’s disease (HD) study in Section 4.
The goal of the HD study is to determine which neuroimaging measures impact
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age of motor onset after accounting for the known effect of a patient’s disease pro-
gression level on onset age. A standard for measuring HD progression is through
the CAG-Age-Product score [Zhang et al. (2011), CAP]: a product of the number
of CAG repeats in the huntingtin gene and age at study entry. Higher CAP scores
(≥368) are associated with a patient having a high probability of experiencing HD
onset, and lower scores (≤290) are associated with a patient having a low proba-
bility of experiencing onset. Without loss of generality, we consider the CAP score
and all neuroimaging predictors as standardized to have mean zero and variance 1.

To replicate the effect of CAP scores, we generated a uniformly distributed, de-
signed predictor z (i.e., m0 = 1). This predictor will act on the failure time (i.e., age
of motor onset) and be correlated with other predictors to mimic the potential effect
of disease progression on other neurological measures. To replicate the neuroimag-
ing measures, we generated xk , k = 1, . . . ,m1, such that the first 75% of x’s depend
on the designed predictor z, and the remainder do not. Specifically, for i = 1, . . . , n

and k = 1, . . . ,0.75m1, we set xik = x∗
ik + zisk , and for k = 0.75m1 + 1, . . . ,m1,

we set xik = x∗
ik . Here, sk are independent uniform (0.25,0.5) random variables,

and x∗
ik are generated to reflect different correlation structures between the x’s;

that is, we considered (i) x∗
ik are independent uniform (0,1) random variables so

that x’s are uncorrelated, and (ii) x∗
ik are normally distributed with mean zero and

corr(x∗
ik, xi�) = ρ|k−�| for ρ = 0.3,0.5,0.7. Higher values of ρ incur larger corre-

lations, and hence increase the problem complexity.
The relationship between the predictors z,x1, . . . ,xm1 and failure time T is then

through the Cox model

T = �−1
0

[
− log(U) exp

{
−

(
β0z + β1x1 + β2x2 + β3x3

+
m1−1∑
k=4

βkxk + βm1xm1

)}]
,

where U is uniform(0,1) and the cumulative baseline hazard function is �−1
0 (t) =

t/γ for γ > 0. In all settings, we set β = (4.5,3,−3,−3,0T
m1−4,3)T with 0m1−4

an (m1 − 4)-dimensional vector of zeros, and γ = 0.025. We also generated inde-
pendent, uniformly distributed censoring times C to yield 50% censoring. Last, for
n and m1, we considered two settings: the first where n = 40 and m1 = 100 (i.e.,
total number of predictors is p = m0 + m1 = 101), and the second where n = 120
and m1 = 60 (i.e., total number of predictors is p = m0 + m1 = 61). The former
has n < p and the latter has n > p and is reminiscent of the HD study (Section 4)
where the number of candidate predictors is large but still less than the sample
size.

In summary, we evaluated 8 data settings formed by the combination of the two
choices for n,m1 and four correlation structures for the x’s. For each setting, we
generated 500 independent data sets. Based on our data generation, the predictors
x1, . . . ,xm1 divide into four distinct categories:
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Group 1. x1,x2,x3 depend on z and act on T ;
Group 2. x4, . . . ,x0.75m1 depend on z and do not act on T ;
Group 3. x0.75m1+1, . . . ,xm1−1 neither depend on z, nor act on T ;
Group 4. xm1 does not depend on z, but acts on T .

The ideal variable selection procedure will thus largely select predictors in Groups
1 and 4, and disregard predictors in Groups 2 and 3.

3.2. Methods evaluated. We applied 12 different methods to the 8 data genera-
tion settings: 3 existing variable selection procedures in the literature, the weighted
Lasso with 5 different exclusion frequency-based weights, and the weighted Lasso
with 4 other data-driven weights.

3.2.1. Existing methods. We considered 3 existing variable selection meth-
ods: backward selection, Bolasso [Bach (2008)], and random Lasso [Wang et al.
(2011)]. The latter two methods were originally presented for linear models, and
we adapted them to a Cox model.

(I) Backward selection: (Only applicable when n > p). Models with p−1 vari-
ables are initially fitted (i.e., one variable is removed at a time), and the model with
the smallest AIC or BIC is retained. Successive reduced models are fitted applying
the same rule until all remaining variables are statistically significant, and the final
model has the smallest AIC or BIC. Both AIC and BIC criteria are considered.

(II) Bolasso: The Bolasso [Bach (2008)] is a multi-step procedure as follows:
(a) Bootstrap the samples B-many times (i.e., randomly select among the rows of
the design matrix without replacement). (b) For each bootstrap sample, find the
minimizer of equation (2.1) for a fixed λ and weights wz = 0 for z and w1 = · · · =
wm1 = 1 for x1, . . . ,xm1 . This ensures that z is in the final model. (c) Variable xk ,
k = 1, . . . ,m1, is said to be in the final model if β̂

(b)
k 	= 0 for all b = 1, . . . ,B .

Based on the recommendations from Bach (2008), we set B = 200 and choose
λ in Step (b) using cross-validation.

(III) Random Lasso: The random Lasso [Wang et al. (2011)] is also a multi-step
procedure that involves two sets of bootstrap replicates. In the first set, importance
measures for the coefficients are generated, and, in the second set, variables are
selected as follows:

(a) Generate importance measures.
(i) Bootstrap the samples B-many times (i.e., randomly select among the

rows of the design matrix without replacement).
(ii) For each bootstrap sample, randomly select q1 candidate variables among

{x1, . . . ,xm1}, and apply the Cox Lasso, ensuring that z is always in the
final model. Retain estimates β̂

(b)
k , where the estimate is zero if the cor-

responding variable was not selected by the Cox Lasso or not among the
randomly selected q1 variables.
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(iii) Compute the importance measure for xk as Lk = |∑B
b=1 β̂

(b)
k /B|, k =

1, . . . ,m1.
(b) Select variables.

(i) Draw another set of bootstrap samples B-many times (i.e., randomly se-
lect among the rows of the design matrix without replacement).

(ii) For each bootstrap sample, randomly select q2 candidate variables among
{x1, . . . ,xm1} proportional to the importance measures L1, . . . ,Lm1 . Ap-
ply the weighted Cox Lasso with weights also proportional to the impor-
tance measures. Retain estimates β̂

(b)
k , k = 1, . . . ,m1, where the estimate

is zero if the corresponding variable was not selected by the weighted
Cox Lasso or not among the randomly selected q2 variables.

(iii) Compute the final estimator β̃k as β̃k = ∑B
b=1 β̂

(b)
k /B . A variable is said

to be selected if |β̃k| > 1/n.
As recommended by Wang et al. (2011), we evaluated different choices of
q1, q2 similar to the partition sizes used for the exclusion frequency weights
(see Table 3). The regularization parameters in the Cox Lasso of Steps (a)(ii)
and (b)(ii) were chosen using cross-validation, and we set B = 200 in both
bootstrap sets.

3.2.2. Exclusion frequency weights. We considered 5 different exclusion
frequency-based weights constructed as follows:

(IV) Random partition, AIC and BIC: Variables in I = {x1, . . . ,xm1} are ran-
domly partitioned into J groups according to the method described in Sec-
tion 2.2.1. On each partition, a stepwise regression is applied and the selected
model is the one yielding smallest AIC or BIC (both criteria are considered).

(V) Sorted partition, AIC and BIC: Process is the same as in (IV), except that
the partitions of I are obtained by first organizing the ridge regression parameter
estimates associated with x’s in order of similar magnitude as described in Sec-
tion 2.2.2, part (a).

(VI) Means partition, AIC and BIC: Process is the same as in (IV), except that
the partitions of I are obtained by first dividing the x’s by J ′-means clustering of
the ridge regression parameter estimates as described in Section 2.2.2, part (b). We
take J ′ = J .

(VII) Quantile partition, AIC and BIC: Process is the same as in (IV), except
that the partitions of I are obtained by first dividing the x’s into J ′-quantile groups
of the ridge regression parameter estimates as described in Section 2.2.2, part (b).
We take J ′ = J .

(VII) Fixed partition, AIC and BIC: We considered a so-called fixed partition
not yet defined: We randomly partitioned the elements in I as in Section 2.2.1, but
we ensure that each partition contains at least one of the truly relevant predictors
(i.e., a predictor with nonzero coefficient). Such a structured partition is only for
testing purposes because in a real application we do not know the truly relevant
predictors.
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Exclusion frequencies are formed based on B = 100 replicates. When n =
40,m1 = 100, we set J = J ′ = 10, and when n = 120,m1 = 60, we set J = J ′ = 6
so that each partition will have about 10 candidate predictors.

3.2.3. Other data-driven weights. Last, we considered the weighted Lasso
with unit weights and three other data-driven weights similar to those studied by
Garcia and Müller (2014) for linear models.

(IX) Unit weights: wm0+k = 1, k = 1, . . . ,m1. The importance of all candidate
predictors is considered equal, and the weighted Lasso may not be able to pick up
the more relevant predictors.

(X) p-Values: wm0+k = pk on xk , k = 1, . . . ,m1, where pk are the p-values
obtained from the individual Cox regressions of S on (z,xk) and it will always
be clear from the context whether p is referring to a p-value or the number of
variables. A statistically significant xk tends to have a small p-value and a nonsta-
tistically significant xk has a large p-value. Weighing each xk with its correspond-
ing p-value will generally lead to including statistically significant x’s in the final
model.

(XI) Benjamini–Hochberg (BH) Adjusted p-Values: wm0+k = pBH
k on xk , k =

1, . . . ,m1, where pBH
k are the Benjamini–Hochberg [Benjamini and Hochberg

(1995)] adjusted p-values obtained from the individual Cox regressions of S on
(z,xk). The BH adjusted p-value accounts for the multiplicity of the m1 tests com-
pared from the m1 Cox regressions. Still, the impact of BH adjusted p-values is
similar to that for p-values since a statistically significant xk will have a small BH
adjusted p-value even after the adjustment, and a statistically nonsignificant xk

will have a large BH adjusted p-value.
(XII) q-Values: wm0+k = qk on xk , k = 1, . . . ,m1, where qk are the q-values

[Storey and Tibshirani (2003)] obtained from the individual Cox regressions of S
on (z,xk). Q-values are a monotone transformation of p-values designed to control
the false discovery rate. As with p-values and BH adjusted p-values, predictors
with small q-values are generally relevant to the model, whereas predictors with
large q-values are not.

3.3. Simulation results. All methods were evaluated using numerical and
graphical measures. For numerical measures, we computed the observed false dis-
covery rate (FDR) and the geometric mean of sensitivity and specificity G [Kubat,
Holte and Matwin (1998)] as defined in Section 2.4. The ideal variable selection
procedure will have small FDR (ideal is 0) and large G value (ideal is 1).

For graphical measures, we compared the observed average percentages of time
variables in Groups 1, 2, 3, and 4 were selected compared to the ideal percent-
ages. (Groups are defined in Section 3.1). Ideally, variables in Groups 1 and 4
are selected 100% of the time, and variables in Groups 2 and 3 are selected 0%
of the time. Therefore, the best method has (nearly) null differences between the
observed percentages and ideal percentages. In Figure 1 we display curves rep-
resenting these differences. The curves are called difference curves, and the best
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FIG. 1. Difference curves between ideal and observed percentages of time variables in Groups
1, 2, 3, and 4 are selected when predictors are uncorrelated. Best method has null differences and
thus lowest difference curve. Results shown for exclusion frequency-based weights when stepwise
regression uses BIC criterion; 50% censoring, 500 simulations, n = 40,p = 101, J = J ′ = 10 (Set-
ting 1) and n = 120,p = 61, J = J ′ = 6 (Setting 2). Curves shown are 1: J -quantile partition, BIC
(preferred); 2: J -means partition, BIC; 3: Sorted partition, BIC; 4: Random partition, BIC; 5: Fixed
partition, BIC; 6: J -quantile partition, AIC; 7: J -means partition, AIC; 8: Sorted partition, AIC; 9:
Random partition, AIC; 10: Fixed partition, AIC; 11: Bolasso; 12: Random Lasso; 13: Backward se-
lection, BIC; 14: Backward selection, AIC; 15: Unit weights; 16: p-values; 17: BH-adjusted p-values;
18: q-values.
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method corresponds to the lowest curve (i.e., null differences between the observed
and ideal percentages in all groups).

We first discuss results when the x’s are uncorrelated and then discuss the impact
of correlation in Section 3.3.3.

3.3.1. Choice of exclusion frequency weights. We first empirically explored
the impact of random and structured partitions when forming the exclusion fre-
quency weights in terms of variable selection performance.

Figure 1 (first row) displays difference curves from exclusion frequencies con-
structed by different partitioning forms with stepwise regression using a BIC crite-
rion applied to the partitions. When n > p (Setting 2), all partitioning forms yield
equally good results: all difference curves are less than 2.5%. When n < p (Set-
ting 1), the difference curve corresponding to the J -quantile partitions is lowest.
This suggests that exclusion frequencies formed from J -quantile partitions result
in largely selecting the relevant predictors in Groups 1 and 4, and ignoring irrel-
evant ones in Groups 2 and 3. Its performance leads to the highest G-score and
a lower false discovery rate among all methods considered (see Table 2). There-
fore, among the partitioning forms, our empirical results suggest that J -quantile
partitions are preferred.

A second interest of exclusion frequencies is whether the choice of AIC or BIC
in the stepwise regression affects the results. It is well known that the AIC gen-
erally yields larger models compared to the BIC. As such, we expect AIC-based
exclusion frequencies to have more correct selections in Groups 1 and 4, but more
incorrect selections in Groups 2 and 3. This phenomenon is indeed observed in Fig-
ure 1 (row 2): differences between the ideal and observed percentages are lower
in Groups 1 and 4, but the differences are higher in Groups 2 and 3 for all AIC-
based curves particularly when n > p (Setting 2). Having AIC-based exclusion
frequencies make more incorrect selections in Groups 2 and 3 also produce higher
false discovery rates. In Table 2, the AIC-based exclusion frequencies sometimes
have false discovery rates 1.5 times larger than those from the BIC-based exclu-
sion frequencies, and a minimal increase in the G-scores. To ensure a conservative
solution and still obtain reasonable G-scores, we recommend using BIC-based ex-
clusion frequency weights and, in particular, J -quantile BIC.

3.3.2. Comparison with competing methods. Our preferred exclusion fre-
quency weight is formed from J -quantile partitions with BIC stepwise regression.
We compared this preferred method to existing methods (Backward selection, Bo-
lasso, random Lasso) and the weighted Lasso with other data-driven weights (unit
weights, p-Values, BH adjusted p-Values, and q-values).

Figure 1 (row 3) shows difference curves for our preferred exclusion frequency
method and Backward selection, Bolasso, and random Lasso. Whether n < p (Set-
ting 1) or n > p (Setting 2), our preferred method has the lowest difference curve,
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TABLE 2
Comparison of variable selection procedures in terms of observed false discovery rate (FDR; low
FDR is ideal) and G-score (balance between sensitivity and specificity; high G-score is ideal) for
n = 40,p = 101 (Setting 1) and n = 120,p = 61 (Setting 2). Covariates are uncorrelated, 50%
censoring, 500 simulations. Exclusion frequency weights are formed from B = 100 replicates

with variables partitioned into J = J ′ = 10 groups (Setting 1) or J = J ′ = 6 groups
(Setting 2), and stepwise regression with AIC/BIC criterion applied to partitions.

Ideal method is bold-faced and has small FDR and large G-score

Setting 1 Setting 2

Method FDR G FDR G

Exclusion J -quantile, BIC 0.28 0.39 0.03 0.98
frequency J -means, BIC 0.16 0.31 0.05 0.98
weights Sorted, BIC 0.18 0.33 0.03 0.98

Random, BIC 0.17 0.33 0.03 0.96
Fixed, BIC 0.15 0.32 0.04 0.98

J -quantile, AIC 0.36 0.44 0.17 0.99
J -means, AIC 0.25 0.3 0.18 1.00
Sorted, AIC 0.27 0.39 0.14 0.99

Random, AIC 0.27 0.39 0.17 0.99
Fixed, AIC 0.25 0.38 0.19 0.99

Existing Bolasso — 0.00 0.00 0.87
methods Random Lasso 0.97 0.30 0.95 0.39

Backward selection, AIC NA NA 0.88 0.94
Backward selection, BIC NA NA 0.60 0.99

Other Unit weight — 0.00 — 0.00
weights p-values 0.07 0.21 0.05 0.93

BH-adjusted p-values 0.00 0.04 0.01 0.72
q-values 0.00 0.04 0.01 0.74

indicating that this method closely captures the ideal percentages in Groups 1, 2,
3, and 4.

Backward selection had a reasonably low difference curve when n > p (Set-
ting 2), but was not as competitive as our preferred method and is not even appli-
cable when n < p (Setting 1).

The Bolasso is most competitive to our preferred method particularly when
n > p (Setting 2): the Bolasso difference curve is low, but still higher than that
from our preferred method. When n > p (Setting 2), the Bolasso has an ideal false
discovery rate of 0 and a G-score of 0.87, but the G-score is still lower than our
preferred method’s G-score of 0.98 (see Table 2, Setting 2). When n < p (Set-
ting 1), the Bolasso does not make any correct selections in Groups 1 and 4, and
thus the difference curve is high (Figure 1, row 3) and the resulting G-score is 0
(see Table 2, Setting 1).
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TABLE 3
Effect of number of candidate variables selected in the random Lasso; 50% censoring, 500

simulations, B = 100 replicates. Observed false discovery rate (FDR; low FDR is ideal) and
G-score (balance between sensitivity and specificity; high G-score is ideal) when n = 120,

p = 61. Covariates are either uncorrelated or correlated with corr(xi ,xj ) = ρ|i−j |

Number of
variables

Covariates
uncorrelated

Covariates correlated

ρ = 0.3 ρ = 0.5 ρ = 0.7

Method FDR G FDR G FDR G FDR G

Random q1 = q2 = 4 0.95 0.40 0.95 0.41 0.95 0.39 0.95 0.40
Lasso q1 = q2 = 6 0.95 0.39 0.95 0.40 0.95 0.39 0.95 0.39

q1 = q2 = 10 0.95 0.39 0.95 0.39 0.95 0.39 0.95 0.39
q1 = q2 = 15 0.95 0.36 0.95 0.37 0.95 0.37 0.95 0.38
q1 = q2 = 30 0.95 0.35 0.95 0.36 0.95 0.36 0.95 0.36

The random Lasso performed poorly when n < p (Setting 1) and n > p (Set-
ting 2). This does not imply that the random Lasso is an inferior method per se.
Wang et al. (2011) proposed the random Lasso as a model selection method to
cope with two situations, including when the number of truly nonzero regression
coefficients is larger than n, which is not our simulation setting. For our simula-
tion setting, the random Lasso chooses predictors in Groups 1, 2, 3, and 4 about
50% of the time on average. This behavior continued regardless of the choice of
q1, q2 (i.e., the number of candidate predictors randomly selected to generate im-
portance measures and select predictors). From Table 3, the false discovery rate
and G-score are steady for different choices of q1, q2 when the predictors are cor-
related or not.

Our preferred method also outperformed the weighted Lasso with other data-
driven weights. Table 2 shows that unit weights led to no predictors being selected,
and thus weights that ignore the relevance of each predictor (i.e., unit weights)
are inferior to weights that account for the relevance. An improvement to unit
weights is the p-value, which is a meaningful measure of a predictor’s relevance
and one that led to the most correct selections among the other data-driven weights
considered. P -value weights led to the highest G-score and low false discovery
rate (Table 2), as well as the lowest difference curve (Figure 1, row 4). However,
our preferred exclusion frequency method still remained preferable: it had higher
G-score, lower false discovery rate, and lower difference curve. This suggests that
exclusion frequencies capture the relevance of the predictors better than p-values
or any of its transformations (i.e., BH-adjusted p-values or q-values).

3.3.3. Impact of correlation. When the predictors were correlated, all meth-
ods behaved similarly as when the predictors were uncorrelated but with some de-
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terioration in performance. The J -quantile BIC exclusion frequency weights con-
tinued to perform optimally with the lowest difference curve (not shown) among
the choice of exclusion frequency weights. In addition, while the number of par-
titions, J,J ′, did not alter the performance of this preferred exclusion frequency
method, the increased correlation did lead to higher false discovery rates and lower
G-scores as seen in Table 1. As expected, when the predictors were most corre-
lated [i.e., corr(xi ,xj ) = 0.7|i−j |], the G-scores were lowest and varying between
0.69 and 0.71. This contrasts considerably from the higher G-scores of 0.97 to
0.98 when the predictors are completely uncorrelated.

Compared to the competing methods of Bolasso, random Lasso, and Back-
ward selection, the preferred exclusion frequency method continued to be com-
petitive as the correlation between predictors increased. Introducing correlation
actually resulted in Backward selection unable to converge even when n > p (Set-
ting 2). Correcting this issue would require fine-tuning the implemented conver-
gence/singularity criteria, which is beyond the scope of the paper. We were thus
only able to compare the preferred method to Bolasso and random Lasso in Fig-
ure 2. Overall, with larger correlation, difference curves for all methods became
higher, reflecting the increased difficulty of variable selection under large correla-
tion. Still, when n < p (Setting 1) and n > p (Setting 2), the difference curve for
our preferred method was lowest with some overlap with the Bolasso difference
curve in Setting 2.

Our method also had lower difference curves than those from the weighted
Lasso with other data-driven weights. In summary, introducing correlation be-
tween predictors incurred a performance degradation in all methods, with the pre-
ferred exclusion frequency method performing optimally overall.

3.3.4. Thresholding with exclusion frequency weights. Up to now, we have
used exclusion frequencies as weights to drive the selection of the weighted Lasso.
One could also consider a variable selected if its corresponding exclusion fre-
quency is less than a certain threshold (i.e., less than 0.15, say)—an approach
similar in spirit to thresholding inclusion frequencies [Meinshausen and Bühlmann
(2010), Shah and Samworth (2013)]. We report in Table 4 the variable selection
results from thresholding the exclusion frequencies at 0.15. The results initially
appear promising in that the G-scores were higher than when exclusion frequen-
cies are used as weights in a weighted Lasso (Table 2). However, thresholding had
false discovery rates at least double of those when using exclusion frequencies
as weights in a weighted Lasso (compare Tables 2 and 4). Similar limitations of
thresholding have been previously observed in a linear model context. Garcia et al.
(2013) and Garcia and Müller (2014) showed that, for similar false discovery rates,
the thresholding procedure often selected Groups 2 and 3 more often than did the
weighted Lasso. This suggests then that thresholding is not competitive to using
exclusion frequencies as weights in the weighted Lasso.
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FIG. 2. Difference curves between ideal and observed percentages of time variables in Groups 1,
2, 3, and 4 are selected when covariates are correlated with corr(xi ,xj ) = ρ|i−j |. Best method
has null differences and thus lowest difference curve. Results shown for existing variable selec-
tion methods compared to preferred exclusion frequency method; 50% censoring, 500 simulations,
n = 40,p = 101, J = J ′ = 10 (Setting 1) and n = 120,p = 61, J = J ′ = 6 (Setting 2). Curves
shown are 1: J -quantile partition, BIC (preferred); 11: Bolasso; 12: Random Lasso.

4. Application to PREDICT-HD study of neuroimaging measures for
Huntington’s disease.

4.1. Clinical research problem. We applied our method to PREDICT-HD,
a large, 12-year, observational study of potential neurobiological markers of Hunt-
ington’s disease (HD). The study included n = 839 subjects at risk for developing
HD (i.e., subjects had an expanded CAG trinucleotide repeat in the huntingtin
gene). Among these 839 subjects, 13.9% experienced HD motor onset during the
study period (i.e., they developed extrapyramidal signs unequivocally associated
with HD), and 86.1% did not (i.e., onset ages were right censored).
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TABLE 4
Results from thresholding exclusion frequencies at α = 0.15; predictors uncorrelated, 50%

censoring, 500 simulations. Observed false discovery rate (FDR; low FDR is ideal) and G-score
(balance between sensitivity and specificity; high G-score is ideal) for n = 40,p = 101 (Setting 1)
and n = 120,p = 61 (Setting 2). Exclusion frequency weights are formed from B = 100 replicates
with variables partitioned into J = J ′ = 10 groups (Setting 1) or J = J ′ = 6 groups (Setting 2),

and stepwise regression with AIC/BIC criterion applied to partitions

Setting 1 Setting 2

Method FDR G FDR G

Thresholding J -quantile, BIC 0.59 0.60 0.19 0.99
exclusion J -means, BIC 0.54 0.57 0.18 1.00
frequency Sorted, BIC 0.55 0.59 0.16 0.99
weights Random, BIC 0.55 0.58 0.19 0.98

Fixed, BIC 0.54 0.57 0.13 0.99

J -quantile, AIC 0.73 0.69 0.56 0.99
J -means, AIC 0.70 0.70 0.56 0.99
Sorted, AIC 0.70 0.70 0.54 0.99

Random, AIC 0.71 0.69 0.56 0.99
Fixed, AIC 0.70 0.67 0.53 0.99

A key interest in PREDICT-HD is identifying brain regions associated with age
of motor onset to better understand HD progression and define biomarkers for
future clinical studies. In our modeling context, the outcome of interest is age of
motor onset (T ), and the predictors are the m1 = 352 volume and surface area mea-
surements of different brain regions taken at baseline. Because subjects enter the
study at different disease phases, we included a designed predictor z to quantify the
disease progression. Specifically, z is the CAG-Age-Product (CAP) score [Zhang
et al. (2011)] defined by the product of CAG repeats and age at baseline. The CAP
score has been shown to reliably quantify HD progression [Zhang et al. (2011)],
and including it in the model ensures calibrating the subjects’ disease severity.

Based on the empirical performance in Section 3.2, we applied five variable
selection procedures. First, we applied the weighted Lasso with the best empiri-
cally performing exclusion frequency weights: those constructed using J -quantile
partitions and a BIC criterion. We set J = J ′ = 20 so that each partition con-
tained roughly 17 candidate brain measures, and exclusion frequencies were com-
puted using B = 100 replicates. Second, we applied the competing existing meth-
ods: Backward selection, Bolasso, and Random Lasso. In Bolasso and Random
Lasso, bootstrap replicates were set to B = 200 and all regularization parame-
ters were chosen via cross-validation. Third, we applied the weighted Lasso with
p-value weights as representative of the most competitive choice of other data-
driven weights (Section 3.2.3). Implementation details of these methods are in
Section 3.2.
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4.2. Results. Of the 352 candidate brain measures, our preferred exclusion
frequency-based method identified the following as being highly associated with
age of motor onset: volumes for the left thalamus proper, left and right caudate
nucleus, left and right ventral pallidum, right putamen, and the surface area of the
right-hand side temporal transverse gyri.

Backward selection did not select any regions, as the method could not con-
verge. Lack of convergence occurred because of the high correlation between
neuroimaging predictors, and correcting this issue would require fine-tuning the
implemented convergence/singularity criteria which is beyond the scope of the pa-
per. Bolasso identified one region, the surface area of the right-hand side temporal
transverse gyri. This single selection is reflective of Bolasso’s conservative perfor-
mance in that it minimizes the number of false positives but also may ignore rel-
evant features (see Figure 1, row 3). In stark contrast, the Random Lasso selected
76, including the caudate nucleus and putamen. However, based on the empirical
performance and high false discovery rates of the Random Lasso, the majority of
the 76 regions identified may actually be chosen in error. Last, the weighted Lasso
with p-value weights selected two additional regions beyond those identified by
our preferred exclusion frequency-based method. The overlapping selections be-
tween the weighted Lasso with p-value weights and with the preferred exclusion
frequency weights are expected particularly when p < n. From Figure 1 (row 4),
the difference curves of these two methods are similar when p < n, suggesting
similar selections will be made as so happens for PREDICT-HD.

The preferred method selecting the thalamus proper, caudate nucleus, ventral
pallidum, and putamen is reasonable since these areas are part of the basal gan-
glia: a region linked to two abilities most affected by HD, motor movements, and
cognition [Ross et al. (2014)]. The results agree with those found by Paulsen et al.
(2010) and Younes et al. (2014) who also identified the volumes for the thalamus
proper, caudate nucleus, and putamen to be associated with age of motor onset.
Though Paulsen et al. (2010) did find other associative brain measures (total brain
tissue, white matter, cerebral spinal fluid, and cortical grey matter), the discrepan-
cies with our findings are expected since their studies used estimated ages of onset
[Langbehn et al. (2004)], whereas we use actual ages of onset (or their censored
values). In addition, Paulsen et al. (2010) used pairwise t-tests with Bonferroni-
corrections to individually identify significantly different brain measures between
prodromal patients and those not at-risk (i.e., healthy controls). This essentially
resorts to thresholding p-values, which has been shown to make more false dis-
coveries (Section 3.3.4).

The caudate nucleus and putamen have been repeatedly found to be associated
with age of motor onset [Aylward et al. (2012), Younes et al. (2014)], which agrees
with other studies that found atrophy in the caudate nucleus and putamen as the
most prominent neuropathological changes in HD [Aylward et al. (2012), Wassef
et al. (2015)]. In prodromal HD subjects alone [Hobbs et al. (2010)], significant
decreases of these volume measures have been observed over time. Consequently,
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volume measures of the caudate and putamen, collectively known as the dorsal
striatum, have been proposed as a potential biomarker for HD [Aylward (2007)].
Our findings agree with this proposed suggestion, in addition to considering the
three other regions: thalamus, pallidum, and temporal transverse gyri.

To the best of our knowledge, our study is the first to identify the pallidum
and transverse gyri to be associated with age of motor onset. Georgiou-Karistianis
et al. (2013) recently found that pallidum volumes significantly differentiated pre-
symptomatic HD subjects from healthy controls, but the study did not consider the
effects of pallidum volumes on age of motor onset. However, pallidum volumes
affecting age of motor onset are feasible since reductions in pallidum volumes are
associated with increased clinical severity [Jurgens et al. (2008)] and oculomotor
problems [Hicks et al. (2010)], both of which contribute to increased motor impair-
ment. The transverse temporal gyri is in the temporal lobe, a region that has never
been specifically associated with disease progression in HD. Further replication
and exploration of this region is needed to validate this find.

Our results suggest that potential biomarkers linked to age of motor onset are
volume measures of the thalamus proper, caudate nucleus, ventral pallidum, puta-
men, and the surface area of the temporal transverse gyri. In some cases, our pre-
ferred method selected only the right or left portions of these regions, but this
may be a consequence of using only L1 penalization. To date, there are no clinical
studies to suggest that only one-sided regions of the brain contribute to HD pro-
gression and onset. As such, a future work could be to simultaneously consider the
right-left portions of brain measures by using combinations of L2 and L1 penal-
izations in the objective function in (2.1); the analysis would be along the lines of
a sparse-group Lasso [Garcia et al. (2014), Simon et al. (2013)].

The analysis conducted was on the third version of PREDICT-HD data. As more
data becomes available, other brain regions could be discovered because of larger
sample sizes and more brain regions measured. Our results here still provide a
meaningful avenue for future clinical investigations, and we will redo our analysis
on future data to provide a more current answer.

5. Discussion. We present a novel variation of the weighted Lasso where
weights are defined by exclusion frequencies, a data-driven weight formed by
repeatedly partitioning the data matrix columns and computing how often each
predictor is selected after applying a simple stepwise regression to the partition
groups. Our method is shown to be useful for censored data, which is an important
complication for which practitioners need appropriate analytic tools, especially
when the objective is to identify features in a large p setting. In particular, we
showed the utility of our method in a neuroimaging study of Huntington’s disease
(HD). Our method revealed that the thalamus proper, caudate nucleus, putamen,
ventral pallidum, and temporal transverse gyri are associated with age of motor
onset after controlling for HD progression through the CAP score. The first three
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regions have been validated in earlier clinical studies as having an effect on mo-
tor onset, but the ventral pallidum and temporal tranverse gyri have never been
identified as effects on motor onset. While these findings could be spurious effects
(our method, like all variable selection procedures, are prone to false discoveries),
they do stimulate further clinical research with the aim to confirm these two new
potential association regions.

We developed our method in the context of a Cox model with L1 penalization to
appropriately handle the neuroimaging data from PREDICT-HD. Our method does
extend to generalized linear regression and other penalty types. First, our method
applies to other convex, nonlinear models. In this case, the partial log-likelihood
in Qcox(β) from equation (2.1) is replaced by − logL(β), where L(β) is a log-
concave likelihood function for some model of interest. Second, our method can
be adapted to handle L2 or SCAD penalties by simply modifying the penalty term
in Qcox(β).

Our focus for partitioning the columns of the design matrix was to assess the
predictors in smaller dimensional problems. Partitioning the data into J parti-
tions is also attractive when p is computationally too large, such as in ultrahigh-
dimensional data. Although this article is not about introducing a new screening
method, a possible screening method that could be explored in future work is as
follows: (1) choosing J such that p � p/J > n and that the number of variables in
each partition group is of manageable size; (2) applying a regularization and vari-
able selection method to each partition group repeatedly and obtaining exclusion
frequency weights; (3) thresholding the variables by keeping those with small-
est exclusion frequency for further analysis. Doing so would aid to decrease the
ultrahigh-dimensional problem to a high-dimensional one with p∗ > n and the p∗
predictors being the most relevant among the original p predictors. For this more
manageable data set, one could then apply the methods discussed in this paper to
the p∗ > n problem to identify those features most relevant to the response of in-
terest. While such an approach may not be appropriate for the PREDICT-HD study
which has a reasonable sample size and number of neuroimaging measures, this
proposed screening could certainly be useful for larger neuroimaging studies with
finer measurements, or in large genomic studies.

Last, a limitation of our method is its computational intensiveness in that we are
repeatedly analyzing partitioned data. While this does incur a numerical burden,
it is also beneficial in that the analyst can learn information from many small-
dimensional problems. In our experience, the computational intensity increased
with the number of partitions, but, in general, the computation time was similar to
that of the Bolasso.

Acknowledgments. Both authors contributed equally to this work.
The authors thank Dr. Elizabeth Aylward (University of Washington) and Dr.

Karen Marder (Columbia University) for their invaluable feedback on the neu-
roimaging results. The authors also thank the Editor and two anonymous referees



2154 T. P. GARCIA AND S. MÜLLER

for their insightful and constructive feedback which greatly improved the quality
of the paper.

Samples and/or data from the PREDICT-HD Study, which receives support
from the National Institute of Neurological Disorders and Stroke and was collected
by the PREDICT-HD investigators, were used in this study. The authors thank the
PREDICT-HD investigators and coordinators who collected data and/or samples
used in this study, as well as participants and their families who made this work
possible.

REFERENCES

AYLWARD, E. H. (2007). Change in MRI striatal volumes as a biomarker in preclinical Huntington’s
disease. Brain Res. Bull. 72 152–158.

AYLWARD, E. H., NOPOULOS, P. C., ROSS, C. A., LANGBEHN, D., PIERSON, R. K.,
MILLS, J. A., JOHNSON, H., MAGNOTTA, V., JUHL, A., PAULSEN, J. S. and THE PREDICT-
HD INVESTIGATORS AND COORDINATORS OF THE HUNTINGTON STUDY GROUP (2011).
Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neu-
rosurg. Psychiatry 82 405–410.

AYLWARD, E. H., LIU, D., NOPOULOS, P. C., ROSS, C. A., PIERSON, R. K., MILLS, J. A.,
LONG, J. D., PAULSEN, J. S. and THE PREDICT-HD INVESTIGATORS, AND COORDINA-
TORS OF THE HUNTINGTON STUDY GROUP (2012). Striatal volume contributes to the predic-
tion of onset of Huntington disease in incident cases. Biological Psychiatry 71 822–828. PMID:
21907324, PMCID, PMC3237730.

BACH, F. (2008). Bolasso: Model consistent Lasso estimation through the bootstrap. In Proceedings
of the 25th International Conference on Machine Learning, Helsinki, Finland. 2008.

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

BERGERSEN, L. C., GLAD, I. K. and LYNG, H. (2011). Weighted lasso with data integration. Stat.
Appl. Genet. Mol. Biol. 10 Art. 39, 31. MR2837183

BUCKLAND, S. T., BURNHAM, K. P. and AUGUSTIN, N. H. (1997). Model selection: An integral
part of inference. Biometrics 53 603–619.

CHEN, C. H. and GEORGE, S. L. (1985). The bootstrap and identification of prognostic factors via
Cox’s proportional hazards regression model. Stat. Med. 4 39–46.

COX, D. R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34 187–220.
MR0341758

HUNTINGTON’S DISEASE COLLABORATIVE RESEARCH GROUP (1993). A novel gene containing
a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell
72 971–983.

FAN, J. and LI, R. (2002). Variable selection for Cox’s proportional hazards model and frailty model.
Ann. Statist. 30 74–99. MR1892656

FARAGGI, D. and SIMON, R. (1998). Bayesian variable selection method for censored survival data.
Biometrics 54 1475–1485. MR1671590

GARCIA, T. P. and MÜLLER, S. (2014). Influence of measures of significance based weights in the
weighted lasso. J. Indian Soc. Agricultural Statist. 68 131–144. MR3242570

GARCIA, T. P., MÜLLER, S., CARROLL, R. J., DUNN, T. N., THOMAS, A. P., ADAMS, S. H., PIL-
LAI, S. D. and WALZEM, R. L. (2013). Structured variable selection with q-values. Biostatistics
14 695–707.

GARCIA, T. P., MÜLLER, S., CARROLL, R. J. and WALZEM, R. L. (2014). Identification of impor-
tant regressor groups, subgroups and individuals via regularization methods: Application to gut
microbiome data. Bioinformatics 30 831–837.

http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=2837183
http://www.ams.org/mathscinet-getitem?mr=0341758
http://www.ams.org/mathscinet-getitem?mr=1892656
http://www.ams.org/mathscinet-getitem?mr=1671590
http://www.ams.org/mathscinet-getitem?mr=3242570


EXCLUSION FREQUENCY DRIVEN VARIABLE SELECTION 2155

GEORGIOU-KARISTIANIS, N., SCAHILL, R., TABRIZI, S. J., SQUITIERI, F. and AYLWARD, E.
(2013). Structural MRI in Huntington’s disease and recommendations for its potential use in
clinical trials. Neurosci. Biobehav. Rev. 37 480–490.

GONG, G. D. (1982). Cross-validation, the jacknife, and the bootstrap: Excess error estimation in
forward logistic regression. Technical Report 192, Dept. of Statistics, Stanford Univ., 1–82.

GONG, G. (1986). Cross-validation, the jacknife, and the bootstrap: Excess error estimation in for-
ward logistic regression. J. Amer. Statist. Assoc. 81 108–113.

HICKS, S., ROSAS, H. D., BERNA, C., SCAHILL, R., DURMAS, E., ROOS, R. A. et al. (2010).
PAW36 oculomotor deficits in presymptomatic and early Huntington’s disease and their structural
brain correlates. J. Neurol. Neurosurg. Psychiatry 81 e33.

HOBBS, N. Z., BARNES, J., FROST, C., HENLEY, S. M. D., WILD, E. J., MACDONALD, K.,
BARKER, R. A., SCAHILL, R. I., FOX, N. C. and TABRIZI, S. J. (2010). Onset and progression
of pathologic atrophy in Huntington disease: A longitudinal MR imaging study. Am. J. Neurora-
diol. 31 1036–1041.

IBRAHIM, J. G., CHEN, M.-H. and MACEACHERN, S. N. (1999). Bayesian variable selection for
proportional hazards models. Canad. J. Statist. 27 701–717. MR1767142

JURGENS, C. K., VAN DE WIEL, L., VAN ES, A. C. G. M., GRIMBERGEN, Y. M., WITJES-
ANE, M. N. W., VAN DER GROND, J. et al. (2008). Basal ganglia volume and clinical correlates
in ‘pre-clinical’ Huntington’s disease. J. Neurol. 255 1785–1791.

KUBAT, M., HOLTE, R. C. and MATWIN, S. (1998). Machine learning for the detection of oil spills
in satellite radar images. Mach. Learn. 30 195–215.

LANGBEHN, D. R., BRINKMAN, R. R., FALUSH, D., PAULSEN, J. S., HAYDEN, M. R. and IN-
TERNATIONAL HUNTINGTON’S DISEASE COLLABORATIVE GROUP (2004). A new model for
prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin.
Genet. 65 267–277.

LIN, W. and LV, J. (2013). High-dimensional sparse additive hazards regression. J. Amer. Statist.
Assoc. 108 247–264. MR3174617

MEINSHAUSEN, N. and BÜHLMANN, P. (2010). Stability selection. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 72 417–473. MR2758523

MÜLLER, S. and WELSH, A. H. (2005). Outlier robust model selection in linear regression. J. Amer.
Statist. Assoc. 100 1297–1310. MR2236443

MÜLLER, S. and WELSH, A. H. (2009). Robust model selection in generalized linear models.
Statist. Sinica 19 1155–1170. MR2536149

MÜLLER, S. and WELSH, A. H. (2010). On model selection curves. Int. Stat. Rev. 78 240–256.
PAULSEN, J. S., LANGBEHN, D. R., STOUT, J. C., AYLWARD, E., ROSS, C. A., NANCE, M.,

GUTTMAN, M., JOHNSON, S., MCDONALD, M., BEGLINGER, L. J., DUFF, K., KAYSON, E.,
BIGLAN, K., SHOULSON, I., OAKES, D., HAYDEN, M. and COORDINATORS OF THE HUNT-
INGTON STUDY GROUP (2008). Detection of Huntington’s disease decades before diagnosis:
The Predict HD study. J. Neurol. Neurosurg. Psychiatry 79 874–880.

PAULSEN, J. S., NOPOULOS, P. C., AYLWARD, E., ROSS, C. A., JOHNSON, H., MAG-
NOTTA, V. A., JUHL, A., PIERSON, R. K., MILLS, J., LANGBEHN, D. and NANCE, M. (2010).
Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res.
Bull. 82 201–207.

ROSS, C. A. and TABRIZI, S. J. (2010). Huntington’s disease: From molecular pathogenesis to
clinical treatment. Lancet Neurol. 10 83–98.

ROSS, C. A., PANTELYAT, A., KOGAN, J. and BRANDT, J. (2014). Determinants of functional
disability in Huntington’s disease: Role of cognitive and motor dysfunction. Mov. Disord. 29
1351–1358.

SAUERBREI, W. and SCHUMACHER, M. (1992). A bootstrap resampling procedure for model build-
ing: Application to the Cox regression model. Stat. Med. 11 2093–2109.

http://www.ams.org/mathscinet-getitem?mr=1767142
http://www.ams.org/mathscinet-getitem?mr=3174617
http://www.ams.org/mathscinet-getitem?mr=2758523
http://www.ams.org/mathscinet-getitem?mr=2236443
http://www.ams.org/mathscinet-getitem?mr=2536149


2156 T. P. GARCIA AND S. MÜLLER

SHAH, R. D. and SAMWORTH, R. J. (2013). Variable selection with error control: Another look at
stability selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 55–80. MR3008271

SIMON, N., FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2011). Regularization paths for Cox’s
proportional hazards model via coordinate descent. J. Stat. Softw. 39 1–13.

SIMON, N., FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2013). A sparse-group lasso. J. Com-
put. Graph. Statist. 22 231–245. MR3173712

STOREY, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value.
Ann. Statist. 31 2013–2035. MR2036398

STOREY, J. D. and TIBSHIRANI, R. (2003). Statistical significance for genomewide studies. Proc.
Natl. Acad. Sci. USA 100 9440–9445. MR1994856

TABRIZI, S. J., REILMANN, R., ROOS, R. A. C., DURR, A., LEAVITT, B., OWEN, G., JONES, R.,
JOHNSON, H., CRAUFURD, D., HICKS, S. L., KENNARD, C., LANDWEHRMEYER, B.,
STOUT, J. C., BOROWSKY, B., SCAHILL, R. I., FROST, C., LANGBEHN, D. R. and TRACK-
HD INVESTIGATORS (2012). Potential endpoints for clinical trials in premanifest and early Hunt-
ington’s disease in the TRACK-HD study: Analysis of 24 month observational data. Lancet Neu-
rol. 11 42–53.

TABRIZI, S. J., SCAHILL, R. I., OWEN, G., DURR, A., LEAVITT, B. R., ROOS, R. A.,
BOROWSKY, B., LANDWEHRMEYER, B., FROST, C., JOHNSON, H., CRAUFURD, D., REIL-
MANN, R., STOUT, J. C., LANGBEHN, D. R. and TRACK-HD INVESTIGATORS (2013). Pre-
dictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s
disease in the TRACK-HD study: Analysis of 36-month observational data. Lancet Neurol. 12
637–649.

TIBSHIRANI, R. (1997). The lasso method for variable selection in the Cox model. Stat. Med. 16
385–395.

WANG, S., NAN, B., ROSSET, S. and ZHU, J. (2011). Random Lasso. Ann. Appl. Stat. 5 468–485.
MR2810406

WASSEF, S. N., WEMMIE, J., JOHNSON, C. P., JOHNSON, H., PAULSEN, J. S., LONG, J. D.
and MAGNOTTA, V. A. (2015). T1ρ imaging in premanifest Huntington disease reveals changes
associated with disease progression. Mov. Disord. 30 1107–1114.

WITTEN, D. M. and TIBSHIRANI, R. (2010). Survival analysis with high-dimensional covariates.
Stat. Methods Med. Res. 19 29–51. MR2744491

YOUNES, L., RATNANATHER, J. T., BROWN, T., AYLWARD, E., NOPOULOS, P., JOHNSON, H.,
MAGNOTTA, V. A., PAULSEN, J. S., MARGOLIS, R. L., ALBIN, R. L., MILLER, M. I. and
ROSS, C. A. (2014). Regionally selective atrophy of subcortical structures in prodromal HD as
revealed by statistical shape analysis. Hum. Brain Mapp. 35 792–809.

YU, B. (2013). Stability. Bernoulli 19 1484–1500. MR3102560
ZHANG, H. H. and LU, W. (2007). Adaptive Lasso for Cox’s proportional hazards model.

Biometrika 94 691–703. MR2410017
ZHANG, Y., LONG, J. D., MILLS, J. A., WARNER, J. H., LU, W., PAULSEN, J. S. and THE

PREDICT-HD INVESTIGATORS OF THE HUNTINGTON STUDY GROUP, C. (2011). Indexing
disease progression at study entry with individuals at-risk for Huntington disease. Am. J. Med.
Genet., Part B Neuropsychiatr. Genet. 156B 751–763.

DEPARTMENT OF EPIDEMIOLOGY AND BIOSTATISTICS

TEXAS A&M UNIVERSITY

TAMU 1266
COLLEGE STATION, TEXAS 77845
USA
E-MAIL: tpgarcia@sph.tamhsc.edu

SCHOOL OF MATHEMATICS AND STATISTICS

UNIVERSITY OF SYDNEY

NSW 2006
AUSTRALIA

E-MAIL: samuel.mueller@sydney.edu.au

http://www.ams.org/mathscinet-getitem?mr=3008271
http://www.ams.org/mathscinet-getitem?mr=3173712
http://www.ams.org/mathscinet-getitem?mr=2036398
http://www.ams.org/mathscinet-getitem?mr=1994856
http://www.ams.org/mathscinet-getitem?mr=2810406
http://www.ams.org/mathscinet-getitem?mr=2744491
http://www.ams.org/mathscinet-getitem?mr=3102560
http://www.ams.org/mathscinet-getitem?mr=2410017
mailto:tpgarcia@sph.tamhsc.edu
mailto:samuel.mueller@sydney.edu.au

	Introduction
	Proposed exclusion frequency variable selection
	Overview of the weighted Lasso
	Use of weights

	Partitioning the candidate predictors
	Random partition
	Structured partition

	Forming and using exclusion frequencies
	Selection of tuning parameters

	Simulation studies
	Simulation design
	Methods evaluated
	Existing methods
	Exclusion frequency weights
	Other data-driven weights

	Simulation results
	Choice of exclusion frequency weights
	Comparison with competing methods
	Impact of correlation
	Thresholding with exclusion frequency weights


	Application to PREDICT-HD study of neuroimaging measures for Huntington's disease
	Clinical research problem
	Results

	Discussion
	Acknowledgments
	References
	Author's Addresses

