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In data fusion, analysts seek to combine information from two databases
comprised of disjoint sets of individuals, in which some variables appear in
both databases and other variables appear in only one database. Most data
fusion techniques rely on variants of conditional independence assumptions.
When inappropriate, these assumptions can result in unreliable inferences.
We propose a data fusion technique that allows analysts to easily incorporate
auxiliary information on the dependence structure of variables not observed
jointly; we refer to this auxiliary information as glue. With this technique,
we fuse two marketing surveys from the book publisher HarperCollins us-
ing glue from the online, rapid-response polling company CivicScience. The
fused data enable estimation of associations between people’s preferences for
authors and for learning about new books. The analysis also serves as a case
study on the potential for using online surveys to aid data fusion.

1. Introduction. In many applications in marketing, analysts seek to combine
information from two or more databases containing information on disjoint sets of
individuals and distinct sets of variables [Gilula, McCulloch and Rossi (2006),
Kamakura and Wedel (1997), Kamakura et al. (2003), van Hattum and Hoijtink
(2008), van der Putten, Kok and Gupta (2002)]. For example, a company has one
database on customers’ purchasing habits and another database on individuals’
media viewing habits, and seeks to find associations between viewing and purchas-
ing habits [Gilula, McCulloch and Rossi (2006)]. This procedure, known as data
fusion [Rässler (2002), pages 60–63], arises in other contexts, including microsim-
ulation modeling in economics [Moriarity and Scheuren (2003)] and government
statistics [D’Orazio, Di Zio and Scanu (2002)]. For applications in other areas, see
Kadane [(2001), reprinted from a 1978 manuscript], Rodgers (1994), Moriarty and
Scheuren (2001) and D’Orazio, Di Zio and Scanu (2006).

Typical applications of data fusion rely on strong and unverifiable assumptions
about the relationships among the variables. To see this, consider fusion of two
databases, D1 and D2, with disjoint sets of individuals. Let A denote the set of
variables common to both databases, such as demographics; let B1 denote the
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set of variables unique to D1; and let B2 denote the set of variables unique to
D2. Since {A,B1,B2} are never observed simultaneously, the joint distribution of
{A,B1,B2} is not identifiable based on (D1,D2) alone. Neither is the distribution
of {B1,B2}, either marginally or conditionally on A. Put another way, many pos-
sible specifications of the joint distributions of {A,B1,B2} may be consistent with
the marginal distributions of {A,B1} in D1 and {A,B2} in D2. The data provide
no information on which specifications to favor.

For data fusion to proceed, analysts must make some assumption about the
joint distribution of {A,B1,B2}. The most common assumption is that the vari-
ables in B1 are conditionally independent of those in B2, given the variables in A

[D’Orazio, Di Zio and Scanu (2006), Gilula, McCulloch and Rossi (2006), Kiesl
and Rässler (2006)]. For example, an analyst might assume that every person with
the same age, gender, occupation, race, county of residence, etc., has the same
probability of purchasing the product, regardless of their media viewing habits.
While this assumption could be reasonable in some contexts with rich A variables,
it also could be grossly incorrect. For example, in some demographic groups, peo-
ple who watch advertising infrequently may be less likely to purchase the product.
When this is the case, assuming conditional independence can result in inferences
about {A,B1,B2} that do not accurately reflect the underlying relationships in the
population.

To reduce reliance on conditional independence assumptions, analysts require
some form of auxiliary information. For example, analysts can use knowledge
about the joint distribution of {B1,B2} from other sources to bound the joint dis-
tribution of {A,B1,B2} [D’Orazio, Di Zio and Scanu (2006)]. Another possibil-
ity is to collect additional data that provides information on unknown features of
the joint distribution of {A,B1,B2}. Historically, such surveys have been untimely
and prohibitively expensive. However, in recent years technological advances have
opened the door to fielding rapid response, low-cost surveys [Gilula and McCul-
loch (2013)]. Questions then arise as to how analysts can leverage the information
in such surveys for more accurate data fusion.

In this article, we propose a novel data fusion approach that allows analysts to
incorporate auxiliary information on arbitrary subsets of {A,B1,B2} with at least
one variable in B1 and one in B2 jointly observed. While auxiliary information
in the form of complete data has been considered previously, the modeling frame-
work presented here accommodates a much wider variety of forms. We refer to this
auxiliary information as glue, since it serves to strengthen the connection between
B1 and B2. We present the approach for the common setting of all categorical vari-
ables, although similar strategies could be used for numerical variables. The basic
idea is to collect or construct a dataset that represents the auxiliary information, ap-
pend this dataset to the concatenated file (D1,D2), and fit an imputation model to
predict missing B1 in D2 and missing B2 in D1. As the engine for imputation, we
use a Bayesian latent class model [Dunson and Xing (2009), Si and Reiter (2013)].
Using simulation studies, we illustrate how to accommodate glue of various sizes
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and on various variable subsets, and demonstrate the potential for glue to improve
accuracy relative to fusion procedures that assume conditional independence. We
discuss problems that can arise when using glue from a nonrepresentative sample,
and propose an approach to incorporating nonrepresentative glue in data fusion.
We illustrate the methodology using a data fusion experiment in which we obtain
glue from the internet polling company CivicScience, and use the glue to fuse sur-
veys fielded by the book publisher HarperCollins Publishers on author preferences
and author discovery tendencies.

The remainder of the article is organized as follows. In Section 2, we intro-
duce the HarperCollins data fusion context and review typical approaches to data
fusion in the literature. In Section 3, we describe how to adapt Bayesian latent
class models for data fusion to accommodate glue. The approach allows for both
the creation of completed data files, that is, as in multiple imputation [Rubin
(1986, 1987), Reiter (2012)], as well as parameter inference. We focus on creating
completed datasets, which can be subsequently analyzed using the techniques of
Rubin (1987). We also summarize results of simulation studies that demonstrate
the benefits of leveraging glue in data fusion. In Section 4, we present results of the
HarperCollins Publishers and CivicScience data fusion. In Section 5, we conclude
with a discussion of open questions and future research directions.

2. Background.

2.1. HarperCollins data and CivicScience glue. HarperCollins Publishers
routinely administers surveys to the public to learn about their behaviors and opin-
ions, relying on this information to guide business decisions. The surveys typically
include questions about basic demographics (e.g., age, income, gender) and read-
ing habits, as well as questions on focused topics such as technology usage or
author preferences. Usually around 10% of questions in the surveys address basic
demographics and reading habits, and the remaining 90% are specific to the survey.
We seek to fuse data from two HarperCollins surveys, one including questions on
the authors people read and the other including questions on where people discover
new authors (e.g., Facebook and Best Sellers lists). The first survey comprises
4001 respondents and 734 variables; we use only a subset of questions related to
discovery and demographics. The second survey comprises 5015 respondents and
1433 variables; we use only a subset of questions relating to author readership and
demographics. The surveys were administered by an independent company to a
random sample of people residing in the United States, with prespecified numbers
of individuals in specific categories based on age, gender, ethnicity and geographic
regions.

HarperCollins is interested in understanding the demographics of readers of par-
ticular authors and how to reach them. For example, if HarperCollins publishes a
new book by the author Lisa Kleypas, will they reach more of her readers by adver-
tising the new book in bookstores or on Facebook? Furthermore, who should be the
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target audience (age, gender, etc.) of the advertisements? Leveraging the connec-
tions between author readership, book discovery and demographics across surveys
can help publishers such as HarperCollins pursue profitable marketing strategies.

To obtain glue for the data fusion, we collaborated with internet polling com-
pany CivicScience. Internet polling companies are potentially ideal glue collectors,
as they are able to quickly survey thousands of people at a low cost. As a case in
point, CivicScience collects hundreds of thousands of responses per day and has
information stored on millions of respondents. CivicScience is routinely paid by
other companies to canvass the public on marketing and business decisions.

CivicScience obtains information by posting short surveys, typically three or
four questions, on the sidebar of popular websites. Participation is purely volun-
tary (raising the potential for selection bias, which we return to later). CivicScience
entices participation by beginning each survey with an engagement question that
people are often willing and eager to share their opinion on (e.g., “Who will win
the Superbowl?”). The next question(s) is a value question asked on behalf of a
paying client. The final question inquires about respondent demographics. After
completing the short survey, participants are offered the option to answer addi-
tional questions. CivicScience uses participants’ computer IP addresses to link re-
sponses from the same individuals (more accurately, from the same computer).

For our application, CivicScience ran numerous three-question surveys on au-
thor readership and discovery. The first question was an engagement question to
solicit participation; the second question was about either author readership or dis-
covery; and the third question was about either the respondent’s age or gender.
Many participants completed more than one survey, allowing CivicScience to link
responses on author readership, discovery, age and gender. We use these linked
data in the fusion of the HarperCollins surveys.

2.2. Common data fusion methods. The most widely used data fusion tech-
nique in practice is statistical matching [van der Putten, Kok and Gupta (2002),
Wicken and Elms (2009)]. The analyst divides the observations in (D1,D2) into
groups based on the similarity of values in the A variables. Within each group,
the analyst imputes missing B1 values for records in D2 by sampling from the
empirical distribution of B2 in that group. The analyst imputes missing B2 values
for records in D1 in a similar manner. Often one cannot find groups of records in
D1 and D2 with exactly the same values on all of A, particularly when the con-
tingency table implied by the variables in A has a large number of cells. In such
cases, analysts form groups based on some subset of A variables. Alternatively,
analysts specify some distance function that quantifies how “close” the A values
are for a given pair of observations from D1 and D2, and form groups based on the
close matches. Regardless of how the analyst forms groups, these approaches all
make the unverifiable assumption that B1 is independent of B2 within the analyst-
specified groups.
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A second approach to data fusion is to estimate regression models for the
distributions of (B1|A) from D1 and (B2|A) from D2, and set f (B1,B2|A) =
f (B1|A)f (B2|A), that is, assume conditional independence between B1 and B2
[Gilula, McCulloch and Rossi (2006), Rodgers (1994)]. One then imputes miss-
ing values of B1 using the estimated model for (B1|A), and imputes missing val-
ues of B2 using the estimated model for (B2|A). Gilula, McCulloch and Rossi
(2006) describe how to adapt this regression-based approach to incorporate aux-
iliary information about the dependence between a single binary B1 and a single
binary B2.

A third approach is to estimate models for the entire joint distribution of
{A,B1,B2}. For example, one could use a multinomial distribution with proba-
bilities constrained by a log-linear model that excludes terms involving interac-
tions between B1 and B2. This also assumes conditional independence between
B1 and B2. D’Orazio, Di Zio and Scanu (2006) describe how this conditional
independence assumption can be relaxed in log-linear models by incorporating
auxiliary information on marginal probabilities for (B1,B2). Alternatively, one
could estimate the joint distribution of {A,B1,B2} with a latent class model
[Goodman (1974)], as suggested by Kamakura and Wedel (1997) and as we do
here.

Unlike log-linear models, latent class models can capture complex associ-
ations among the variables automatically, avoiding the difficult task of decid-
ing which interactions to include from the enormous space of possible models
[Si and Reiter (2013), Vermunt et al. (2008)]. Latent class models also easily
handle missing values in D1 and D2 due to item nonresponse within the sur-
veys, assuming nonresponse is missing at random [Rubin (1976)]. While the
latent class model has been used in the context of data fusion, it has never
been developed for incorporating auxiliary information in data fusion. Further-
more, while others have proposed methodology for using auxiliary information
in the form of complete observations on {A,B1,B2}, we introduce more gen-
eral methodology able to accommodate any additional, not necessarily com-
plete, observations that contain variables not previously observed simultane-
ously.

3. Methodology.

3.1. Bayesian latent class models for categorical data fusion. Suppose that we
seek to fuse database D1 comprising n1 individuals with database D2 comprising
n2 individuals. Let Yij ∈ {1, . . . , dj } be the value of variable j for individual i,
where j = 1, . . . , p and i = 1, . . . , n1 + n2. Let Yi = (Yi1, . . . , Yip) for all i. The
p variables form a contingency table with

∏p
j=1 dj cells. For variables j ∈ A, we

observe Yij for all n = n1 +n2 individuals; for variables j ∈ B1, we observe Yij for
only the n1 individuals in D1; and, for variables j ∈ B2, we observe Yij for only
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the n2 individuals in D2. We note that, in practice, item nonresponse will result in
unintentionally missing values within D1 and D2 as well.

In latent class models for categorical data, we assume that each individual
is a member of one of N unobserved classes. Let Zi ∈ {1, . . . ,N} denote indi-
vidual i’s class membership, and let πl = P(Zi = l) be the probability that in-
dividual i is in class l. We assume that π = (π1, . . . , πN) is the same for all
individuals. Within each class, we assume the variables follow independent cat-
egorical distributions with variable-specific probabilities φ

(j)
l = (φ

(j)
l1 , . . . , φ

(j)
ldj

),

where φ
(j)
ly = P(Yij = y|Zi = l). As a flexible and computationally convenient

prior distribution on π and {φ(j)
l }, we use the truncated version of the Dirichlet

Process (DP) prior [Sethuraman (1994)]. The complete model, referred to as the
DP mixture of products of multinomials (DPMPM), can be expressed as

Yi1, . . . , Yip|Zi,φ
ind.∼

p∏
j=1

categorical
(
Yij ;φ(j)

zi1
, . . . , φ

(j)
zidj

)
,(3.1)

Zi |π ind.∼ categorical(π1, . . . , πN), i = 1, . . . , n,(3.2)

πl = Vl

l−1∏
r=1

(1 − Vr), πN = 1 −
N−1∑
l=1

πl,

Vl|α i.i.d.∼ beta(1, α), VN = 1, l = 1, . . . ,N − 1,

φ
(j)
l

ind.∼ Dir
(
a

(j)
1 , . . . , a

(j)
dj

)
, l = 1, . . . ,N, j = 1, . . . , p,

α ∼ gamma(aα, bα).(3.3)

The parameter α plays a central role in determining the number of effective compo-
nents in the mixture, with smaller values favoring fewer components. A hyperprior
on α allows the data to inform the number of components. In our applications, we
fix aα and bα equal to 0.5 in the prior distribution in (3.3), which represents a
relatively noninformative prior. We set a

(j)
1 = · · · = a

(j)
dj

= 1 for all j .
We estimate the DPMPM model using Markov chain Monte Carlo (MCMC)

posterior simulation techniques [Ishwaran and James (2001), Ishwaran and Zare-
pour (2000)]. The missing Yij , unforeseen from item nonresponse and expected
due to the structure of data fusion, are imputed as part of the MCMC. Given a
draw of model parameters (α, {φ(j)},Z,V,π), we sample a value for each miss-
ing Yij from the relevant independent categorical distribution in class Zi . Further
details on the sampling algorithm are provided in the Appendix.

The probability model defined in (3.1) and (3.2) is the same as that used by
Kamakura and Wedel (1997). However, rather than use a fully Bayesian estimation
approach, they maximize the likelihood function obtained from equations (3.1)
and (3.2). Additionally, Kamakura and Wedel (1997) use heuristics to determine
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some optimal number of classes, whereas with the DPMPM one simply can fix
the truncation level N to a large value [Ishwaran and James (2001)]. To ensure
that N is large enough, the analyst confirms that the number of occupied classes
n∗ is always significantly less than N across MCMC samples. If the posterior
distribution for n∗ places significant mass near N , then N should be increased. In
the analyses in this article, N = 30 is always sufficiently large.

Even though variables are independent within the latent classes, variables still
can be marginally dependent across the set of classes. For example, for any pair of
variables j and j ′, we have

(3.4) P
(
Yij = y,Yij ′ = y′|π,

{
φ(j)}) =

N∑
l=1

πlφ
(j)
l,y φ

(j ′)
l,y′ .

In general, the expression in (3.4) is not identical to the product of the two marginal

probabilities, (
∑N

l=1 πlφ
(j)
l,y )(

∑N
l=1 πlφ

(j ′)
l,y′ ), implying Yij and Yij ′ are independent

conditional on Zi and {φ(j)}, but dependent upon marginalization over Zi . Expres-
sion (3.4) can be used for model-based inferences about probabilities.

As suggested by Gilula, McCulloch and Rossi (2006) when discussing the
model used by Kamakura and Wedel (1997), estimates of the joint distribution
of {A,B1,B2} from latent class models may not be concordant with conditional
independence. In our simulations, we found that the DPMPM favors somewhat
stronger correlation between B1 and B2 than is implied under conditional indepen-
dence. This results from the clustering engendered by the DP prior specification
since the data contain no information about {B1,B2} jointly. This finding under-
scores the potential benefits of using glue when using latent class models for data
fusion.

3.2. Incorporating glue in data fusion. Schifeling and Reiter (2016) devel-
oped a strategy for incorporating prior information about marginal probabilities
into the DPMPM. They suggest constructing a hypothetical dataset that represents
prior beliefs, appending it to the collected data, and estimating the latent class
model with the concatenated real and hypothetical data. As an example, if one
knows only that the true proportion of women in a population is exactly 50%, one
can append a large hypothetical dataset with equal numbers of men and women
with all other variables missing. Schifeling and Reiter (2016) show that this ap-
proach fixes the posterior probability of being female at 50% without distorting
the conditional distributions of other variables on gender.

We adapt this strategy to incorporate glue in data fusion. We assume that the
analyst has glue data, Ds , in which some subset of the {B1,B2} variables, possi-
bly with A, is measured. For individuals i = 1, . . . , ns in Ds , let Yi be the p × 1
vector of measurements for the ith individual. In most data fusion scenarios, each
Yi will be incomplete by design, in that only some variables are available in Ds .
We assume that Yi for individuals in Ds follows the model in (3.1)–(3.3). Thus,
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we concatenate (D1,D2,Ds) in one file, and estimate the DPMPM model using
MCMC. The information on {A,B1,B2} available in Ds influences the parameter
estimates, resulting in imputations of missing B1 variables in D2 and B2 variables
in D1 that reflect the dependence relationships in the glue. For computational con-
venience, when fitting the MCMC we impute missing values in D1 and D2, but
not those in Ds .

The ideal glue includes data on all variables in (A,B1,B2) and is a sample from
the distribution of (A,B1,B2) in the population of interest. In practice, glue may
be available only on subsets of variables, such as (B1,B2). In addition, Ds may
not be representative of the population. For example, in the HarperCollins and
CivicScience data fusion, only the conditional distributions P(B1|A,B2) can be
plausibly considered representative.

To investigate the potential benefits of glue in these scenarios, we use three sets
of simulation studies. First, we add glue on different subsets of variables to explore
the intuition that richer glue (i.e., glue that contains more variables simultaneously
observed) results in larger improvements in inference. Second, we analyze the sen-
sitivity of inference to the addition of varying amounts of data subjects in the glue.
Third, we study the validity of inferences when using glue that is not representative
of the population distribution of (A,B1,B2). We also present a method for appro-
priately incorporating such information. We note that each of these issues arises
when using the CivicScience data as glue.

3.3. Simulation studies with representative glue. We simulate fusion settings
using a third HarperCollins survey containing 4000 respondents and 1056 vari-
ables. As the A variables, we select demographics variables gender, age, work
status and income. As the B1 and B2 variables, we select eBook reader ownership
and number of hours spent reading per week, respectively. Table 1 describes the
variables in detail. To generate simulated data, we create D1 by randomly selecting
half of the 3567 complete cases and removing reading hours, and create D2 as the
remaining half of the complete case data with eBook reader ownership removed.
This process is repeated 10 times in order to obtain 10 different sets of (D1,D2).
We are interested in fusing D1 and D2 to estimate the relationship between eBook
reader ownership and reading hours per week, conditional on specific demograph-
ics variables. Because we have the complete observations of {A,B1,B2} in the
original data, we can compare results from data fusion to the ground truth.

To quantify the potential for glue in this example, we investigated the Fréchet
bounds [D’Orazio, Di Zio and Scanu (2006)] on P(B1 = j,B2 = k) for j = 1,2
and k = 1,2,3, as implied by the marginal distributions P(A,B1) and P(A,B2).
If these bounds are tight, signifying the probabilities are highly constrained by
the observed marginal probabilities P(A,B1) and P(A,B2), then little is to be
gained from incorporating glue. Conversely, if the bounds on the cell probabilities
of P(B1,B2) are wide, then glue has the potential to greatly improve inferences



CATEGORICAL DATA FUSION 1915

TABLE 1
Variables contained in the HarperCollins survey used for simulations. Level labels correspond to

the ordering of categories listed

Variable Group No. levels Levels

Gender A 2 male, female
Age A 6 18–24, 25–34, 35–44, 45–54, 55–64, 65+
Work status A 6 emp FT, emp PT, homemaker

retired, self-emp, other
Income ($1000) A 6 <25, 25–45, 45–75, 75–99, 100+, won’t say
Ebook B1 2 yes, no
Hours B2 3 < 1, 1–4, 5+

based on P(B1,B2). Note that the marginal distributions P(B1) and P(B2) them-
selves constrain P(B1,B2). The Fréchet bound widths on the six cell probabilities
ranged from 0.163 to 0.169. This implies that even with observing {A,B1} and
{A,B2} there remains a lot of uncertainty about {B1,B2} and potentially much to
be gained from collecting glue.

3.3.1. Glue richness. We consider four types of glue for Ds . In increas-
ing order of richness, these include only the marginal distribution {B1,B2}, the
joint distribution of {Ag,B1,B2} where Ag represents gender, the joint distri-
bution of {Aa,B1,B2} where Aa represents age, and the joint distribution of
{Ag,Aa,B1,B2}. In each case, we create glue by duplicating the appropriate
variables for all respondents in the original survey; thus, ns = 3567. We run the
MCMC chains long enough to obtain 120,000 posterior samples of all parameters.
From these runs, we sample m = 50 completed datasets, (D∗

1 ,D∗
2), which we use

in multiple imputation inferences.
To evaluate the impact of glue richness, we compare Hellinger distances, which

are commonly used to quantify the similarity between two probability distributions
[Gibbs and Su (2002), Pollard (2002)]. Hellinger distances based on {A,B1,B2}
reflect the accuracy of the entire estimated joint distribution P(A,B1,B2), which
arguably is the most important level of validity a fusion process can achieve
[Rässler (2004)]. For two discrete distributions P and Q taking on k values with
probabilities (p1, . . . , pk) and (q1, . . . , qk), the Hellinger distance is given by

2−1/2
√∑k

i=1(
√

pi − √
qi)2. This quantity is between zero and one, where smaller

values imply more similarity between the distributions. Because the richest type of
glue contains observations on {Ag,Aa,B1,B2}, for each simulation we compute
Hellinger distances between the empirical distribution of (Ag,Aa,B1,B2) based
on the original complete survey and that based on imputed data files. Calculations
of distances based on the joint distribution (A,B1,B2) including all demographic
variables, rather than just (Ag,Aa,B1,B2), yield similar patterns.
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FIG. 1. Hellinger distance between the empirical distribution of (Ag,Aa,B1,B2) based on the
original complete survey and that based on completed data files using supplemental glue Ds with
five varying levels of richness. For each of the 10 replications, the point represents the mean Hellinger
distance across the 50 imputed datasets, and the endpoints of the vertical bars represent the minimum
and maximum distances.

In addition to the latent class model with and without glue, for comparison
we implement the three common data fusion techniques outlined in Section 2.2:
matching, regression, and log-linear models. For each approach, we create 50 com-
pleted datasets using multiple imputation. For matching, we match each record in
D1 to a record in D2, and vice versa, with the exact same A variables, choosing one
record at random when the equivalence set has multiple records. In the regression
approach, the imputation models include a logistic regression for P(B1 = 1|A)

estimated with the data in D1, and a multinomial logit model for P(B2 = j |A),
where j = (1,2,3), estimated with the data in D2. Each regression model con-
tains only main effects terms for A because none of the interaction terms were
statistically significant. For the log-linear model, we use the model that includes
all main effects and interactions except those involving (B1,B2) simultaneously,
which are inestimable without glue.

Figure 1 displays the minimum, maximum and mean Hellinger distances be-
tween the empirical distribution of (Ag,Aa,B1,B2) and the distributions esti-
mated from 50 imputed datasets. The results indicate that using any type of
glue yields significant gains in accuracy, with increasing gains with richer glue.
These results also suggest that gender offers smaller gains than age, a con-
sequence of the fact that the distribution of {B1,B2} is more similar across
gender than age. This finding is evident in all of the evaluations that follow.
For matching, the empirical joint probability distribution is comparable to that
produced from the latent class model with no glue. The regression and log-
linear modeling approaches are the least accurate in terms of Hellinger dis-
tance.
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FIG. 2. Number of individuals in the incorrect cell of the contingency table under five different
glue scenarios and three existing fusion methods with no glue. For each of the 10 replications, the
point represents the mean number of misclassified individuals across the 50 imputed datasets, and
the endpoints of the vertical bars represent the minimum and maximum number of misclassifications.

We also compare the sum of the absolute differences between the counts in the
true contingency table for {Ag,Aa,B1,B2} based on the original complete data
file and those based on imputed complete data files. These counts, when divided
by two, indicate how many individuals the model places in incorrect cells of the
empirical contingency table. We approximate the expected number of “misclassi-
fied” individuals in an imputed dataset with the empirical average over 50 imputed
data files. Mathematically, the approximation for the expected number of misclas-
sified individuals can be expressed as

E

(
0.5

∏p
k=1 dk∑
j=1

|nj − n̂j |
)

≈ 1

50

50∑
m=1

(
0.5

∏p
k=1 dk∑
j=1

∣∣nj − n̂
(m)
j

∣∣),

where n̂
(m)
j is the number of individuals in cell j in the mth imputed dataset and

nj is the true number of individuals in the original complete dataset. Figure 2
shows similar patterns as in Figure 1: using glue improves over existing approaches
that assume conditional independence, with increasing gains as the glue becomes
richer. We note that adding gender information to glue already containing age does
not lead to much improvement in imputation accuracy.

As a more focused evaluation, we use the completed datasets corresponding
to a single generated (D1,D2) to estimate a logistic regression of eBook reader
ownership on reading hours and the demographics variables. The model includes
terms for all main effects for all predictors, pairwise interactions between reading
hours and gender and reading hours and age, and the three-way interaction among
reading hours, gender and age. Letting Ai represent income and Aw represent work
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status, the link function can be expressed as

logit
(
P(B1 = 1)

) = β0 + βg1(Ag = 2) +
6∑

k=2

βa
k 1(Aa = k) +

6∑
k=2

βw
k 1(Aw = k)

+
6∑

k=2

βi
k1(Ai = k)

+
3∑

k=2

βh
k 1(B2 = k) + βgh1(Ag = 2,B2 = 3)

+ βah1(Aa = 6,B2 = 3) + βgah1(Ag = 2,Aa = 6,B2 = 3).

We estimate the coefficients from the 50 completed datasets for one of the sim-
ulations using the standard multiple imputation combining rules [Rubin (1987)].
Because the imputations are extremely similar across the 10 replications, we show
these results only for one simulation of (D1,D2). As displayed in Figure 3, 18 of
the 22 regression coefficients based on the original data are contained in the 95%
MI confidence intervals under the data fusion model applied with no glue. All in-
tervals contain the original data coefficients when glue includes {Aa,B1,B2} as
well as {Ag,Aa,B1,B2}. Adding glue with only {B1,B2} improves the estimates
of the main effects associated with B2 (reading hours). Adding glue with at least
{Aa,B1,B2} results in further improvements, in particular resulting in more re-
liable estimates of the interaction term associated with Aa × B2 (age × hours).
Clearly, even targeted inferences can be improved by collecting glue, with gener-
ally increasing gains with richer glue.

3.3.2. Glue size. In Section 3.3.1, the glue sample size was equal to the to-
tal survey sample size, that is, ns = n = 3567. Generally, this will not be the
case. To evaluate the role of glue sample size, we repeated the simulations us-
ing {Ag,Aa,B1,B2} as glue with different sample sizes for Ds in each of the 10
simulations. As shown in Figure 4 and Table 2, as expected, more high quality
glue observations result in more accurate estimates with less uncertainty. Data fu-
sion with ns = 1784 glue cases yields inferences that are close to the ground truth
and to the inferences produced with more glue cases, suggesting that even modest
amounts of glue can improve inferences.

3.3.3. Nonrepresentative glue. While glue obtained from nonprobability sam-
ples like CivicScience polls is convenient and inexpensive, it might not be
representative of the joint distribution of {A,B1,B2} in the target population
for (D1,D2). For example, Ds may disproportionately represent some demo-
graphic groups compared to their shares in (D1,D2). When the concatenated data
(D1,D2,Ds) is not an (incomplete) draw from P(A,B1,B2), the posterior dis-
tributions of the DPMPM model parameters will not produce accurate estimates
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FIG. 3. Point estimates and 95% confidence intervals for estimated versus true regression coeffi-
cients under five different glue scenarios for one of the simulations. The first plot refers to the no glue
scenario, and highlights terms which are affected by adding glue. These same 4 terms are highlighted
in the remaining plots as more glue is added.
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FIG. 4. Difference between the posterior mean estimates for the marginal bivariate distribution
of P(B1,B2) under three different glue sample sizes and the empirical distribution based on the
original complete survey, labeled truth. The points represent the average difference between the
posterior mean and the truth over the 10 data fusion settings, and the vertical bars represent the
minimum and maximum difference over simulations.

of P(A,B1,B2). Therefore, the resulting imputations will be draws from a biased
estimate of P(A,B1,B2), which can diminish or even negate the benefits of using
glue.

To illustrate this phenomenon, consider a scenario where the glue includes
{B1,B2,Ag,Aa} and only responses from people aged 55+. We construct this
scenario by discarding all survey responses for which age is less than 55 from
the CivicScience data, and randomly sample from the remaining records to create
a Ds of the same size as the original survey. When the DPMPM model is fit to
the concatenated data, the average number of misclassifications is 245.2 over 50
imputations. Comparing this to the average number of misclassifications of 195.2
obtained with representative glue, we see that blindly including nonrepresentative
glue can degrade inferences substantially.

TABLE 2
Average posterior mean and width of 95% credible intervals over the ten simulations for the

marginal bivariate distribution of P(B1,B2) under three different glue sample sizes

Truth ns = 0 ns = 1784 ns = 7135

P(B1 = 1,B2 = 1) 0.037 0.071 (0.020) 0.050 (0.017) 0.040 (0.009)
P(B1 = 2,B2 = 1) 0.363 0.326 (0.041) 0.351 (0.032) 0.360 (0.020)
P(B1 = 1,B2 = 2) 0.064 0.066 (0.017) 0.067 (0.017) 0.066 (0.011)
P(B1 = 2,B2 = 2) 0.252 0.255 (0.037) 0.251 (0.029) 0.253 (0.018)
P(B1 = 1,B2 = 3) 0.096 0.061 (0.018) 0.081 (0.020) 0.092 (0.012)
P(B1 = 2,B2 = 3) 0.186 0.220 (0.037) 0.201 (0.029) 0.189 (0.017)
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When Ds is not representative of the population, one still can construct useful
glue provided that either P(B1|B2,A) or P(B2|B1,A) in Ds is a draw from the
corresponding conditional distribution in the population. The analysis proceeds as
follows:

1. Fit the DPMPM model to Ds alone to estimate P(A,B1,B2), from which
one can obtain P(B1|A,B2) and P(B2|A,B1).

2. Construct glue D∗
s by duplicating or sampling records {A,B1} with replace-

ment from D1, or duplicating or sampling records {A,B2} with replacement from
D2, and imputing the missing values of B2 from {B2|A,B1} and the missing values
of B1 from {B1|A,B2} based on the conditional distributions from step (1).

In this way, the constructed glue appropriately reflects the marginal distribution of
A and the information in the conditional distributions. With glue representing the
appropriate joint distribution, we are in the scenarios described in Sections 3.3.1
and 3.3.2.

To assess the validity of the assumptions that P(B1|A,B2) and P(B2|A,B1)

from Ds are representative of the population of interest, analysts can compare the
empirical distributions of the sampled B1 and B2 variables in step (2) to those
from D1 and D2. When these empirical distributions differ greatly, the assump-
tions of conditional representativeness of the glue may be inappropriate, and the
glue is not useful for data fusion. When only one conditional distribution, either
P(B1|A,B2) or P(B2|A,B1), seems reasonable, the glue can be constructed using
that conditional distribution only. Analysts can choose the number of records in the
constructed D∗

s to reflect their level of certainty about the conditional distributions.
We now illustrate that this diagnostic procedure can detect whether or not glue is

representative on P(B1|A,B2) or P(B2|A,B1). We consider a setting in which Ds

is representative on P(B1|A,B2) but not on P(B2|A,B1), constructed as follows.
For {Ag,Aa}, we oversample women and older individuals by keeping all obser-
vations with Ag = 2 or Aa > 4, and sample each of the remaining observations
with probability 0.5. This results in ns = 2837 auxiliary cases. We sample each
record’s B2 from {1,2,3} with probabilities (0.7,0.15,0.15). This is highly non-
representative, as the true marginal probabilities are (0.41,0.32,0.27). We sample
each record’s B1 from {1,2} with probabilities given by the empirical P(B1|A,B2)

from the original data. Thus, Ds is representative in terms of P(B1|A,B2), but not
on P(B2|A,B1) or any marginal distributions. We fit the DPMPM model to Ds

to estimate P(B1|A,B2) and P(B2|A,B1), as described in step (1), and construct
D∗

s as described in step (2). The resulting marginal distribution for the imputed
B1 is extremely close to the empirical distribution of B1 from D1, with differences
of only 0.01. The marginal distribution for imputed B2 is (0.57,0.23,0.20), quite
far from the original data values. The diagnostic suggests that P(B2|A,B1) is not
representative, whereas it may be reasonable to rely on P(B1|A,B2).
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4. HarperCollins data fusion with CivicScience glue. We now turn to the
HarperCollins data fusion. We seek to combine information from two surveys.
The dataset D1 contains n1 = 2000 respondents who answered questions related
to the discovery of new authors, for example, “Do you become aware of an author
by [medium]?” for different media. Although this first survey was administered to
4001 respondents, we restrict ourselves to the half that was asked about author dis-
covery. In D2, HarperCollins asked n2 = 5015 different people about their interest
in various authors. Each person was asked about different subsets of authors, and so
D2 includes many missing values. We let B1 represent author discovery via the me-
dia Best Seller List, Facebook, the library, online, recommendations and the book-
store. We let B2 represent interest in the authors Shel Silverstein, Agatha Christie,
Suzanne Collins, Stephanie Meyer and Lisa Kleypas. Each B1 variable is recorded
as yes or no. Each B2 variable is recorded as one of three categories, namely, read,
interested or not interested. Both D1 and D2 contain the demographic variables
age, gender and income, all of which are of strong interest to HarperCollins for
market segmentation. Our goal is inference on relationships between discovery
media and author interest, in particular on the distributions P(B1|B2), P(B1,B2)

and P(B1,B2|A).
We provided CivicScience with a list of questions to ask in one of their surveys,

with the goal of procuring glue. CivicScience collected ns = 2730 simultaneous
observations on author discovery and interest, along with age and gender for many
(but not all) respondents. There are some key differences between the data col-
lected by CivicScience and those in the original HarperCollins surveys. In partic-
ular, the CivicScience respondents tend to be older; over 60% are 55+ years old
compared to only 30% of HarperCollins respondents (see Figure 5). We conjecture
that is a consequence of the voluntary nature of the internet data collection done
by CivicScience. We note that the distributions of A variables in D1 and D2 are
very similar.

As discussed in Section 3.3, it is not prudent to proceed with data fusion by ap-
pending the nonrepresentative sample from the CivicScience survey to (D1,D2).
We therefore construct D∗

s that reflects the marginal distribution of {A,B2} in

FIG. 5. Age distributions from the HarperCollins (dark gray) and CivicScience (light gray) surveys.
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FIG. 6. Left: Empirical probabilities assigned to no (“o” symbol) and yes (“×” symbol) for each
of 6 discovery questions by sampling B1 as implied by inference for P(B1|A,B2) from the Civic-
Science data versus marginal distributions of B1 from the survey data. Right: Empirical probabilities
assigned to read (“o” symbol), interested (“+” symbol) and not interested (“×” symbol) for each
of 6 author interest questions by sampling B2 as implied by inference for P(B2|A,B1) from the
CivicScience data versus B2 from the survey data.

D2 and the conditional distribution P(B1|A,B2) estimated from the collected
CivicScience data, following the procedure for nonrepresentative glue described
in Section 3.3.3. We first duplicate {A,B2} from D2, and then sample values of
{B1|A,B2} for these duplicated records using a DPMPM applied to the Civic-
Science data. As evident in Figure 6, the empirical probability distributions for the
observed values of B1 in D1 and the sampled values of B1 from P(B1|A,B2) are
similar, suggesting that it is not unreasonable to use the CivicScience data to esti-
mate P(B1|A,B2). We also considered creating D∗

s by duplicating {A,B1} from
D1 and sampling {B2|A,B1} for the duplicated records. However, as shown in Fig-
ure 6, the sampled marginal distributions for B2 do not closely match the empirical
distributions in D2. We therefore do not assume {B2|A,B1} in the CivicScience
data is representative, and construct D∗

s only from the duplicated {A,B2} sample
from D2. Due to the large sample size, there is little uncertainty in the estimates in
Figure 6. However, in cases where the size of the original survey is smaller, there
can be a fair amount of variability in the empirical probabilities, and this procedure
could be repeated to quantify this uncertainty.

After appending the constructed D∗
s to (D1,D2), we estimate the DPMPM

model on the concatenated data. In the process we impute all missing values in
D1 and D2. As in the simulation studies, we keep m = 50 of these completed
datasets, spacing them far apart among the 100,000 MCMC iterations post burn-in
to ensure approximate independence. We use the completed versions of D1 and
D2 for multiple imputation inferences. Standard MCMC diagnostics, such as ex-
amination of trace plots, did not suggest problems with convergence or inadequate
mixing. The appropriateness of the DPMPM was evaluated using posterior pre-
dictive checks, which did not reveal substantial inadequacies in the latent class



1924 B. K. FOSDICK, M. DEYOREO AND J. P. REITER

FIG. 7. Multiple imputation point estimates for P(B1 = yes|B2 = read, income) for low- and high-
-income groups, all media B1 and all authors B2.

model fit. Details on the model checking and MCMC diagnostics are provided in
the online supplemental file [Fosdick, DeYoreo and Reiter (2016)].

As a first data fusion inference relevant for marketing strategies, we estimate
probabilities of discovery via a given medium for those who have read or are in-
terested in reading a particular author. As evident in Figure 7, high-income indi-
viduals appear very likely to discover books via recommendations regardless of
author. Low-income individuals are also likely to discover books through recom-
mendations, but the extent to which this is the case is more variable by author; for
instance, low-income individuals who have read Agatha Christie are more likely
to discover new books via recommendations than those who have read other au-
thors. Probability of discovery by recommendations is the highest for both groups
and all authors. Among individuals who have read Meyer, those with high incomes
are very likely to discover books at the library, whereas those with low incomes
are not as likely. Variability in probability of discovery via library is much greater
across authors for high-income individuals than for low-income individuals. Fur-
thermore, low-income individuals are more likely to discover books via the Inter-
net than high-income individuals for readers of all authors; however, this difference
is minimal for Kleypas. In fact, low- and high-income individuals who have read
Kleypas do not appear to differ in terms of discovery.

We also look at author discovery conditional on reading interest and age, as
opposed to income. Figure 8 displays inference for P(B1 = yes|B2 = read, age)
across age groups for three different combinations of discovery media B1 and au-
thors B2. There appears to be an increasing trend in discovery via Best Seller List
for those who have read Meyer. In other words, older individuals who have read
Meyer are more likely to discover new books through the Best Seller List than
younger individuals. Quadratic trends are present for discovery via the Internet for
those who have read Silverstein and for discovery via Bookstores for those who
have read Collins. As evidence of the impact of glue, Figure 8 also displays the
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FIG. 8. Multiple imputation point estimates and 95% confidence intervals for
P(B1 = yes|B2 = read, age) across age groups for three different combinations of medium
B1 and authors B2. Open circles refer to the estimates under the DPMPM model applied without
any glue. Left: Probability of discovery via Best Seller List given one has read Meyers. Middle:
Probability of discovery Online given one has read Silverstein. Right: Probability of discovery via
Bookstores given one has read Collins.

multiple imputation point estimates obtained from the DPMPM model fit without
using the CivicScience data. In some cases these estimates agree in terms of the
trends they suggest (e.g., the middle figure), but sometimes there are fairly stark
differences, such as in the leftmost figure.

Finally, we estimate the conditional distributions P(B1|B2) for particular dis-
covery media and authors. Figure 9 displays these probability distributions for
authors Silverstein and Christie, under models applied with and without glue. It
appears that fans of Silverstein’s books use Facebook to find out about new books
more frequently than fans of Christie’s books; however, both readerships rely on
recommendations equally. We note that the glue impacts inference for even these

FIG. 9. Multiple imputation point estimates and 95% confidence intervals for
P(B1 = yes|B2 = read) for B1 representing each of 5 media and B2 representing Silverstein
and Christie under the model applied with glue (left) and without glue (right).
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marginal probabilities. For instance, without glue, one cannot conclude that readers
of Christie are more likely to discover via Best Seller List than readers of Silver-
stein. However, with glue, the 95% confidence intervals are reduced in width and
no longer overlap; hence this conclusion can be made with more confidence.

5. Concluding remarks. The results of the simulation studies offer a number
of general lessons about data fusion. The most important lesson is the value of
collecting and using glue: compared to assuming conditional independence, using
glue can improve the quality of inferences from data fusion substantially. The ap-
proach presented here—concatenating the samples and auxiliary data, and estimat-
ing models with the concatenated data—offers a principled way to take advantage
of such auxiliary information and enhance data fusion, even when the additional
data include only portions of the full joint distribution of interest.

Our experiences with the HarperCollins and CivicScience data fusion also pro-
vide insights about integrating online and traditional survey data. The results sug-
gest that data from online polling companies like CivicScience, not surprisingly,
are likely to not be representative on some dimensions. Obviously, one should be
very cautious in making population inferences based on the online data. Less obvi-
ously, one should not naively merge online and traditional survey data and proceed
with a data fusion (or other data integration) analysis; selection biases in the online
data can degrade the quality of the resulting inferences. However, while joint dis-
tributions are prone to bias from selection into the online poll, it may be plausible
to believe that conditional distributions in the polling data are reliable. When this
is the case, our methodology provides a simple, yet general approach to leveraging
the information in the conditional distributions. It prescribes a means of generating
representative glue, thereby avoiding some of the consequences of selection bias in
online polls. With this approach, we believe that analysts can take better advantage
of timely, inexpensive online data collection to supplement traditional surveys.

Finally, the simulations with the HarperCollins data point to interesting direc-
tions for future research. In those simulations, adding gender to glue already con-
taining age does not noticeably improve the inferences. In practice, one would
expect the cost of collecting glue to increase with the number of variables; hence,
in this simulated fusion context, it may not be cost effective to collect gender as
part of the glue. This suggests a benefit for research on methods for selecting the
variables that most improve the accuracy of data fusion, taking into account the
cost of obtaining those variables.

APPENDIX: POSTERIOR COMPUTATION

In order to obtain inference under the hierarchical model, we use a Gibbs
sampler to simulate from the posterior distribution P({φ(j)},Z,V,α,Y (mis)|data),
where Y (mis) refers to all missing values in Yi = (Ai,Bi,1,Bi,2) from D1 and D2,



CATEGORICAL DATA FUSION 1927

and data refers to all observations of (Ai,Bi,1,Bi,2) in D1, D2 and Ds . For com-
putational expediency, we need not impute missing values for Ds , as we are sim-
ply using this data to inform nonidentifiable relationships. However, it would be
straightforward to impute these missing values just like we impute missing val-
ues in D1 and D2. We now describe the posterior full conditionals for all model
parameters.

Full conditional for Z. The mixture allocation variables Zi , for i = 1, . . . , n,
are updated from categorical distributions with probabilities given by

(A.1) P(Zi = h|Yi,π,φ) =
πh

∏p
j=1 φ

(j)
hYij∑N

k=1 πk

∏p
j=1 φ

(j)
kYij

for h = 1, . . . ,N . For the glue cases i = n + 1, . . . , n + ns , let Ji represent the
variables in {1, . . . , p} that are observed for observation i. The variable Zi , i =
n + 1, . . . , n + ns , is updated from a categorical distribution with

(A.2) P(Zi = h|Yi,π,φ) =
πh

∏
j∈Ji

φ
(j)
hYij∑N

k=1 πk

∏
j∈Ji

φ
(j)
kYij

for h = 1, . . . ,N .

Full conditional for {φ(j)}. Let Ji be defined as above for i = n + 1, . . . , n +
ns , and define J1 = · · · = Jn = {1, . . . , p}. To update φ

(j)
h , for h = 1, . . . ,N ,

and j = 1, . . . , p, sample from a Dirichlet distribution. The full conditional
P(φ

(j)
h |Y (mis),data,Z) is proportional to

(A.3) Dirichlet
(
φ

(j)
h ;a1 + ∑

{i:Zi=h,

j∈Ji}

1(Yij = 1), . . . , adj
+ ∑

{i:Zi=h,

j∈Ji}

1(Yij = dj )

)
,

where the summations are over all survey and glue cases, i ∈ {1, . . . , n + ns}.
Full conditional for V . The stick-breaking proportions Vh, for h = 1, . . . ,

N − 1, can be sampled from Beta distributions:

(A.4) P(Vh|α,Z) ∝ beta

(
Vh;Mh + 1, α +

N∑
j=h+1

Mj

)
,

where Mh = ∑n+ns

i=1 1(Zi = h). Fixing VN = 1, the probabilities π are given by
π1 = V1 and πh = Vh

∏h−1
j=1(1 − Vj ) for h = 1, . . . ,N .

Full conditional for α. The DP precision parameter α can be sampled from a
Gamma distribution:

(A.5) P(α|V ) ∝ gamma
(
α;N + aα − 1, bα − log(πN)

)
.
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Imputing Y (mis). Missing Yij in D1 and D2 can be imputed by sampling from
categorical distributions with the form given in equation (3.1).
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SUPPLEMENTARY MATERIAL

Model checking and MCMC diagnostics (DOI: 10.1214/16-AOAS925SUPP;
.pdf). Model goodness-of-fit checks to the HarperCollins and CivicScience data
and MCMC convergence diagnostics results.

REFERENCES

D’ORAZIO, M., DI ZIO, M. and SCANU, M. (2006). Statistical Matching: Theory and Practice.
Wiley, Chichester. MR2268833

D’ORAZIO, M., DI ZIO, M. and SCANU, M. (2002). Statistical matching and official statistics.
Rivista di Statistica Ufficiale 1 5–24.

DUNSON, D. B. and XING, C. (2009). Nonparametric Bayes modeling of multivariate categorical
data. J. Amer. Statist. Assoc. 104 1042–1051. MR2562004

FOSDICK, B., DEYOREO, M. and REITER, J. (2016). Supplement to “Categorical data fusion using
auxiliary information.” DOI:10.1214/16-AOAS925SUPP.

GIBBS, A. and SU, F. (2002). On choosing and bounding probability metrics. Int. Stat. Rev. 70
419–435.

GILULA, Z. and MCCULLOCH, R. (2013). Multi level categorical data fusion using partially fused
data. Quantitative Marketing and Economics 11 353–377.

GILULA, Z., MCCULLOCH, R. and ROSSI, P. (2006). A direct approach to data fusion. Journal of
Marketing Research 43 73–83.

GOODMAN, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidenti-
fiable models. Biometrika 61 215–231. MR0370936

ISHWARAN, H. and JAMES, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer.
Statist. Assoc. 96 161–173. MR1952729

ISHWARAN, H. and ZAREPOUR, M. (2000). Markov chain Monte Carlo in approximate Dirichlet
and beta two-parameter process hierarchical models. Biometrika 87 371–390. MR1782485

KADANE, J. B. (2001). Some statistical problems in merging data files. Journal of Official Statistics
17 423–433.

KAMAKURA, W. and WEDEL, M. (1997). Statistical data fusion for cross tabulation. Journal of
Marketing Research 34 485–498.

KAMAKURA, W., WEDEL, M., DE ROSA, F. and MAZZON, J. A. (2003). Cross-selling through
database marketing: A mixed data factor analyzer for data augmentation and prediction. Interna-
tional Journal of Research in Marketing 20 45–65.

KIESL, H. and RÄSSLER, S. (2006). How valid can data fusion be? IAB Discussion Paper, 15.

http://dx.doi.org/10.1214/16-AOAS925SUPP
http://www.ams.org/mathscinet-getitem?mr=2268833
http://www.ams.org/mathscinet-getitem?mr=2562004
http://dx.doi.org/10.1214/16-AOAS925SUPP
http://www.ams.org/mathscinet-getitem?mr=0370936
http://www.ams.org/mathscinet-getitem?mr=1952729
http://www.ams.org/mathscinet-getitem?mr=1782485


CATEGORICAL DATA FUSION 1929

MORIARITY, C. and SCHEUREN, F. (2003). A note on Rubin’s statistical matching using file con-
catenation with adjusted weights and multiple imputations. J. Bus. Econom. Statist. 21 65–73.
MR1973805

MORIARTY, C. and SCHEUREN, F. (2001). Statistical matching: A paradigm for assessing the un-
certainty in the procedure. Journal of Official Statistics 17 407–422.

POLLARD (2002). A User’s Guide to Measure Theoretic Probability. Cambridge Univ. Press, Cam-
bridge.

RÄSSLER, S. (2002). Statistical Matching: A Frequentist Theory, Practical Applications, and Al-
ternative Bayesian Approaches. Lecture Notes in Statistics 168 60–63. Springer, New York.
MR1996879

RÄSSLER, S. (2004). Data fusion: Identification problems, validity, and multiple imputation. Aus-
trian Journal of Statistics 33 153–171.

REITER, J. P. (2012). Bayesian finite population imputation for data fusion. Statist. Sinica 22 795–
811. MR2954362

RODGERS, W. L. (1994). An evaluation of statistical matching. J. Bus. Econom. Statist. 2 91–102.
RUBIN, D. B. (1976). Inference and missing data. Biometrika 63 581–592. MR0455196
RUBIN, D. B. (1986). Statistical matching using file concatenation with adjusted weights and multi-

ple imputations. J. Bus. Econom. Statist. 4 87–94.
RUBIN, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

MR0899519
SCHIFELING, T. A. and REITER, J. P. (2016). Incorporating marginal prior information in latent

class models. Bayesian Anal. 11 499–518. MR3472000
SETHURAMAN, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650.

MR1309433
SI, Y. and REITER, J. P. (2013). Nonparametric Bayesian multiple imputation for incomplete cate-

gorical variables in large-scale assessment surveys. Journal of Educational and Behavioral Statis-
tics 38 499–521.

VAN HATTUM, P. and HOIJTINK, H. (2008). The proof of the pudding is in the eating. Data fusion:
An application in marketing. Journal of Database Marketing & Customer Strategy Management
15 267–284.

VAN DER PUTTEN, P., KOK, J. N. and GUPTA, A. (2002). Data fusion through statistical matching.
Working paper 4342-02. MIT Sloan School of Management, Cambridge, MA.

VERMUNT, J., GINKEL, J., DER ARK, L. and SIJTSMA, K. (2008). Multiple imputation of incom-
plete categorical data using latent class analysis. Sociological Methodology 38 369–397.

WICKEN, G. and ELMS, S. (2009). Demystifying data fusion—The “why?”, the “how?” and the
“wow!” Technical report, Advertising Research Foundation Week of Workshops, New York.

B. K. FOSDICK

DEPARTMENT OF STATISTICS

COLORADO STATE UNIVERSITY

102 STATISTICS BUILDING

FORT COLLINS, COLORADO 80523-1877
USA
E-MAIL: bailey@stat.colostate.edu

M. DEYOREO

J. P. REITER

DEPARTMENT OF STATISTICAL SCIENCE

DUKE UNIVERSITY

BOX 90251
DURHAM, NORTH CAROLINA 27708-0251
USA

http://www.ams.org/mathscinet-getitem?mr=1973805
http://www.ams.org/mathscinet-getitem?mr=1996879
http://www.ams.org/mathscinet-getitem?mr=2954362
http://www.ams.org/mathscinet-getitem?mr=0455196
http://www.ams.org/mathscinet-getitem?mr=0899519
http://www.ams.org/mathscinet-getitem?mr=3472000
http://www.ams.org/mathscinet-getitem?mr=1309433
mailto:bailey@stat.colostate.edu

	Introduction
	Background
	HarperCollins data and CivicScience glue
	Common data fusion methods

	Methodology
	Bayesian latent class models for categorical data fusion
	Incorporating glue in data fusion
	Simulation studies with representative glue
	Glue richness
	Glue size
	Nonrepresentative glue


	HarperCollins data fusion with CivicScience glue
	Concluding remarks
	Appendix: Posterior computation
	Full conditional for Z
	Full conditional for {phi(j)}
	Full conditional for V
	Full conditional for alpha
	Imputing Y(mis)

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

