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MORTALITY AND LIFE EXPECTANCY FORECASTING FOR A
GROUP OF POPULATIONS IN DEVELOPED COUNTRIES:

A MULTILEVEL FUNCTIONAL DATA METHOD

BY HAN LIN SHANG

Australian National University

A multilevel functional data method is adapted for forecasting age-
specific mortality for two or more populations in developed countries with
high-quality vital registration systems. It uses multilevel functional princi-
pal component analysis of aggregate and population-specific data to extract
the common trend and population-specific residual trend among populations.
If the forecasts of population-specific residual trends do not show a long-
term trend, then convergence in forecasts may be achieved. This method is
first applied to age- and sex-specific data for the United Kingdom, and its
forecast accuracy is then further compared with several existing methods,
including independent functional data and product-ratio methods, through
a multi-country comparison. The proposed method is also demonstrated by
age-, sex- and state-specific data in Australia, where the convergence in fore-
casts can possibly be achieved by sex and state. For forecasting age-specific
mortality, the multilevel functional data method is more accurate than the
other coherent methods considered. For forecasting female life expectancy at
birth, the multilevel functional data method is outperformed by the Bayesian
method of Raftery, Lalic and Gerland [Demogr. Res. 30 (2014) 795–822].
For forecasting male life expectancy at birth, the multilevel functional data
method performs better than the Bayesian methods in terms of point fore-
casts, but less well in terms of interval forecasts. Supplementary materials for
this article are available online.

1. Introduction. Many statistical methods have been proposed for forecast-
ing age-specific mortality rates [see Booth (2006), Booth and Tickle (2008),
Currie, Durban and Eilers (2004), Girosi and King (2008), Shang, Booth and Hyn-
dman (2011), Tickle and Booth (2014) for reviews]. Of these, a significant mile-
stone in demographic forecasting was the work by Lee and Carter (1992). They ap-
plied a principal component method to age-specific mortality rates and extracted a
single time-varying index of the level of mortality rates, from which the forecasts
are obtained by a random walk with drift. The method has since been extended
and modified. For example, Renshaw and Haberman (2003) proposed the age-
period-cohort Lee–Carter method; Hyndman and Shahid Ullah (2007) proposed a
functional data model that utilizes nonparametric smoothing and high-order prin-
cipal components; Girosi and King (2008) and Wiśniowski et al. (2015) considered
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Bayesian techniques for Lee–Carter model estimation and forecasting; and Li, Lee
and Gerland (2013) extended the Lee–Carter method to model the rotation of age
patterns for long-term projections.

These works mainly focused on forecasting mortality for a single population or
several populations individually. However, individual forecasts, even when based
on similar extrapolative procedures, may imply increasing divergence in mortality
rates in the long run, counter to the expected and observed trend toward a global
convergence [Li (2013), Li and Lee (2005), Pampel (2005)]. Thus, joint modeling
mortality for two or more populations simultaneously is paramount, as it allows
one to model the correlations among two or more populations, distinguish be-
tween long-term and short-term effects in the mortality evolution, and explore the
additional information contained in the experience of other populations to further
improve forecast accuracy. These populations can be grouped by sex, state, ethnic
group, socioeconomic status and other attributes. In these cases, it is often desir-
able to produce coherent forecasts that do not diverge over time [e.g., in demog-
raphy, Li and Lee (2005), Biatat and Currie (2010), Alkema et al. (2011), Raftery
et al. (2012, 2013), Li (2013), Raftery, Lalic and Gerland (2014), Ševčíková et al.
(2015); and in actuarial science, Jarner and Kryger (2011), Li and Hardy (2011),
Cairns et al. (2011b), Dowd et al. (2011)].

The definition of coherent in demography varies, but here it means joint mod-
eling of populations and, further, that the mortality forecasts do not overlap. In
the case of two-sex populations, there may be common features in the groups of
data that can first be captured with the common principal components. Further,
we can prevent the forecasts of the groups from diverging by requiring the differ-
ence in each sex-specific principal component scores to be stationary for different
populations i and j so that

lim sup
t→∞

E‖ft,i − ft,j‖ < ∞ for all i and j,

where E‖ft,i − ft,j‖ = ∫
I[ft,j (x) − ft,i(x)]2 dx is the L2 norm, ft (x) repre-

sents age-specific mortality for year t , and I denotes a function support range.
The problem of jointly forecasting mortality rates for a group of populations has
been considered by Lee (2000, 2006), Delwarde et al. (2006), Li and Lee (2005)
and Ševčíková et al. (2015) in the context of the Lee–Carter model. These authors
proposed the augmented common factor model that extracts a common trend for
a group of populations, while acknowledging their individual differences in level,
age pattern and short-term trend [Li and Lee (2005)]. On the other hand, Hyndman,
Booth and Yasmeen (2013) proposed a functional data model to jointly model the
gap between female and male age-specific mortality rates, and Raftery, Lalic and
Gerland (2014) proposed a Bayesian method to jointly model the gap between
female and male life expectancies at birth.

Based on the work of Li and Lee (2005), a general framework is presented by
Lee (2006) for forecasting life expectancy at birth as the sum of a common trend
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and the population-specific trend. Coherent forecasting in the framework of Lee
and Carter’s (1992) model has recently been extended to the coherent functional
data model by Hyndman, Booth and Yasmeen (2013). These authors proposed
the product-ratio method, which models the product and ratio functions of the
age-specific mortality rates of different populations through a functional principal
component decomposition, and forecasts age- and sex-specific mortality coher-
ently by constraining the forecast ratio function via a stationary time series model.
The forecasts of product and ratio functions are obtained using the independent
functional data method given in Hyndman and Shahid Ullah (2007); the forecast
product and ratio functions are then transformed back into the male and female
age-specific mortality rates. Illustrated by empirical studies, they found that the
product-ratio method generally gives slightly less accurate female mortality fore-
casts and produces much more accurate male mortality forecasts than the indepen-
dent functional data method, in which the latter one does not impose a coherent
structure.

As an extension of Li and Lee (2005) and Hyndman, Booth and Yasmeen
(2013), we consider a multilevel functional data model motivated by the work
of Di et al. (2009), Crainiceanu, Staicu and Di (2009), Crainiceanu and Gold-
smith (2010) and Greven et al. (2010), among many others. The objective of the
multilevel functional data method is to model multiple sets of functions that may
be correlated among groups. In this paper, we apply this technique to forecast age-
specific mortality and life expectancy at birth for a group of populations. We found
the multilevel functional data model captures the correlation among populations,
models the forecast uncertainty through Bayesian paradigm, and is adequate for
use within a probabilistic population modeling framework [Raftery et al. (2012)].
Similar to the work of Delwarde et al. (2006), Lee (2006), Li and Lee (2005) and
Li (2013), the multilevel functional data model captures the common trend and
the population-specific trend. It produces forecasts that are comparable with the
ones from the product-ratio method, which themselves are also more accurate than
the independent functional data method for male age-specific mortality and life
expectancy forecasts.

The multilevel functional data model is described in Section 2. In Section 3,
we outline the differences among the multilevel functional data, augmented com-
mon factor and independent functional data methods. In Section 4, we illustrate
the multilevel functional data method by applying it to the age- and sex-specific
mortality rates for the United Kingdom (UK). In Section 5, we compare the point
and interval forecast accuracy among five methods for 32 populations. In Sec-
tion 6, we investigate the performance of the multilevel functional data method
with the age-, and sex- and state-specific mortality rates in Australia. In Section 7,
we provide some concluding remarks, along with some reflections on how the
method presented here can be further extended. More information on some theo-
retical properties of multilevel functional principal component decomposition are
deferred to Supplementary Material A [Shang (2016)].
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2. A multilevel functional data model. We first present the problem in the
context of forecasting male and female age-specific mortality rates, although the
method can easily be generalized to any number of populations. Let y

j
t (xi) be

the log central mortality rates observed at the beginning of each year for year
t = 1,2, . . . , n at observed ages x1, x2, . . . , xp , where x is a continuous variable,
p is the number of ages, and superscript j represents either male or female in the
case of two populations.

Following the functional data framework, we assume there is an underlying
continuous and smooth function f

j
t (x) that is observed at discrete data points with

error; that is,

(2.1) y
j
t (xi) = f

j
t (xi) + δ

j
t (xi)ε

j
t,i ,

where xi represents the center of each age or age group for i = 1, . . . , p, ε
j
t,i is an

independent and identically distributed (i.i.d.) standard normal random variable for
each age in year t , and δ

j
t (xi) measures the variability in mortality at each age in

year t for the j th population. Together, δ
j
t (xi)ε

j
t,i represents the smoothing error.

Let m
j
t (xi) = exp{yj

t (xi)} be the observed central mortality rates for age xi in
year t , and define N

j
t (xi) to be the total j th population of age xi at 1st January of

year t . The observed mortality rate approximately follows a binomial distribution
with estimated variance

(2.2) Var
[
m

j
t (xi)

] ≈ m
j
t (xi) × [1 − m

j
t (xi)]

N
j
t (xi)

.

Via Taylor’s series expansion, the estimated variance associated with the log mor-
tality rate is given by

(2.3)
(̂
δ
j
t

)2
(xi) ≈ Var

{
ln

[
m

j
t (xi)

]} = 1 − m
j
t (xi)

m
j
t (xi) × N

j
t (xi)

.

Since m
j
t (xi) is often quite small, (δ

j
t )2(xi) can be approximated by a Poisson

distribution with estimated variance

(2.4)
(̂
δ
j
t

)2
(xi) ≈ 1

m
j
t (xi) × N

j
t (xi)

.

As suggested by Hyndman and Shahid Ullah (2007), we smooth mortality
rates using weighted penalized regression splines with a partial monotonic con-
straint for ages above 65, where the weights are equal to the inverse variances
given in (2.4). The weights are used to model heterogeneity (different variances)
in mortality across different ages. Letting the weights be the inverse variances
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w
j
t (xi) = 1/[(δj

t )2(xi)], the penalized regression spline can be written as

f̂
j
t (xi) = arg min

θt (xi )

M∑
i=1

w
j
t (xi)

∣∣yj
t (xi) − θt (xi)

∣∣
(2.5)

+ α

M−1∑
i=1

∣∣θ ′
t (xi+1) − θ ′

t (xi)
∣∣,

where i represents different ages (grid points) in a total of M grid points, α is
a smoothing parameter, and ′ symbolizes the first derivative of a function. While
the L1 loss function and the L1 roughness penalty are employed to obtain robust
estimates, the monotonic increasing constraint helps to reduce the noise from es-
timation of older ages [see also He and Ng (1999)]. In the multilevel functional
data model, we first apply (2.1) to smooth multiple sets of curves from different
populations that may be correlated.

The multilevel functional data model can be related to a two-way functional
analysis of variance model studied by Morris et al. (2003), Cuesta-Albertos and
Febrero-Bande (2010) and Zhang (2014), Section 5.4, and it is a special case of
the general “functional mixed model” proposed in Morris and Carroll (2006). In
the case of two populations, the basic idea is to decompose curves among dif-
ferent populations into an average of total mortality μ(x), a sex-specific devia-
tion from the averaged total mortality ηj (x), a common trend across populations
Rt(x), a sex-specific residual trend U

j
t (x), and measurement error e

j
t (x) with fi-

nite variance (σ 2)j . The common and sex-specific residual trends are modeled
by projecting them onto the eigenvectors of covariance operators of the aggregate
and population-specific centered stochastic processes, respectively. To express our
idea, the smoothed mortality rate at year t can be written as

(2.6) f
j
t (x) = μ(x) + ηj (x) + Rt(x) + U

j
t (x), x ∈ I.

To ensure identifiability, we assume two stochastic processes R(x) and Uj(x) are
uncorrelated, but we allow correlations among their realizations.

Because the centered stochastic processes R(x) and Uj(x) are unknown in
practice, the population eigenvalues and eigenfunctions can only be approxi-
mated through a set of realizations R(x) = {R1(x), . . . ,Rn(x)} and Uj (x) =
{Uj

1 (x), . . . ,U
j
n (x)}. From the covariance function of R(x), we can extract a set of

functional principal components and their corresponding scores, along with a set
of residual functions. Based on the covariance function of residual functions, we
can then extract a second set of functional principal components and their associ-
ated scores. While the first functional principal component decomposition captures
the common trend from total mortality rates, the second functional principal com-
ponent decomposition captures the sex-specific residual trend.
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The sample versions of the aggregate mean function, sex-specific mean function
deviation, common trend and sex-specific residual trend, for a set of dense and
regularly spaced functional data, can be estimated by

μ̂(x) = 1

n

n∑
t=1

f T
t (x),(2.7)

η̂j (x) = μ̂j (x) − μ̂(x),(2.8)

R̂t (x) =
∞∑

k=1

β̂t,kφ̂k(x) ≈
K∑

k=1

β̂t,kφ̂k(x),(2.9)

Û
j
t (x) =

∞∑
l=1

γ̂
j
t,lψ̂

j
l (x) ≈

L∑
l=1

γ̂
j
t,lψ̂

j
l (x),(2.10)

where {f T
1 (x), . . . , f T

n (x)} represents a set of smoothed functions for the age-
specific total mortality; μ̂(x) represents the simple average of the total mortal-
ity, whereas μ̂j (x) represents the simple average of females or males; {β̂k =
(β̂1,k, . . . , β̂n,k);k = 1, . . . ,K} represents the kth sample principal component
scores of R(x); and � = [φ̂1(x), . . . , φ̂K(x)] are the corresponding orthogonal
sample eigenfunctions in a square integrable function space. Similarly, {γ̂ j

l =
(γ̂

j
1,l, . . . , γ̂

j
n,l); l = 1, . . . ,L} represents the lth sample principal component scores

of Uj (x), � = [ψ̂j
1 (x), . . . , ψ̂

j
L(x)] are the corresponding orthogonal sample

eigenfunctions, and K , L are truncation lags. As two stochastic processes R(x)

and Uj(x) are uncorrelated, β̂k are uncorrelated with γ̂
j
l .

Substituting equations (2.7)– (2.10) into equations (2.6)– (2.1), we obtain

y
j
t (x) = μ̂(x) + η̂j (x) +

K∑
k=1

β̂t,kφ̂k(x) +
L∑

l=1

γ̂
j
t,lψ̂

j
l (x) + e

j
t (x) + δ

j
t (x)ε

j
t ,

where β̂t,k ∼ N(0, λ̂k), and λ̂k represents the kth eigenvalue of the empirical co-
variance operator associated with the common trend; γ̂

j
t,l ∼ N(0, λ̂

j
l ), and λ̂

j
l rep-

resents the lth eigenvalue of the empirical covariance operator associated with the
sex-specific residual trend; and e

j
t (x) ∼ N(0, (σ̂ 2)j ) represents model errors due

to finite truncation.
Selecting the number of principal components, K and L, is an important

practical issue. Four common approaches are cross-validation [Rice and Silver-
man (1991)], Akaike’s information criterion [Yao, Müller and Wang (2005)], the
bootstrap method [Hall and Vial (2006)] and explained variance [Chiou (2012),
Crainiceanu and Goldsmith (2010)]. We use a cumulative percentage of total vari-
ation to determine K and L. The optimal numbers of K and L are determined
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by

K = arg min
K:K≥1

{
K∑

k=1

λ̂k

/ ∞∑
k=1

λ̂k1{̂λk > 0} ≥ P1

}
,(2.11)

L = arg min
L:L≥1

{
L∑

l=1

λ̂
j
l

/ ∞∑
l=1

λ̂
j
l 1

{̂
λ

j
l > 0

} ≥ P2

}
,(2.12)

where 1{·} denotes a binary indicator function. Following Chiou (2012), we chose
P1 = P2 = 0.9.

An important parameter is the proportion of variability explained by aggregate
data, which is the variance explained by the within-cluster variability [Di et al.
(2009)]. A possible measure of within-cluster variability is given by

(2.13)

∑∞
k=1 λk∑∞

k=1 λk + ∑∞
l=1 λl

=
∫
I Var[R(x)]dx∫

I Var[R(x)]dx + ∫
I Var[Uj (x)]dx

.

When the common factor can explain the main mode of total variability, the value
of within-cluster variability is close to 1.

For multiple populations, the other important parameter is the total variability
for a population given by

(2.14)
1

n

n∑
t=1

[
ft (x) − f̄ (x)

][
ft (w) − f̄ (w)

]
, x,w ∈ I.

This allows us to identify the population with larger variability.
Conditioning on the estimated principal components �, � and continuous func-

tions yj = [yj
1 (x), . . . , y

j
n(x)], the h-step-ahead point forecasts of y

j
n+h(x) are

given by

ŷ
j
n+h|n(x) = E

[
yn+h(x)|μ(x), η(x),�,�,yj ]

= μ̂(x) + η̂j (x) +
K∑

k=1

β̂n+h|n,kφ̂k(x) +
L∑

l=1

γ̂
j
n+h|n,lψ̂

j
l (x),

where β̂n+h|n,k and γ̂
j
n+h|n,l are the forecast principal component scores, obtained

from a univariate time series forecasting method, such as the random walk with
drift (r.w.f.) or the autoregressive integrated moving average (ARIMA)(p, d, q)

model. The automatic algorithm of Hyndman and Khandakar (2008) is able to
choose the optimal orders p,q and d automatically. d is selected based on the suc-
cessive Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit-root test [Kwiatkowski
et al. (1992)]. KPSS tests are used for testing the null hypothesis that an observ-
able time series is stationary around a deterministic trend. We first test the original
time series for a unit root; if the test result is significant, then we test the dif-
ferenced time series for a unit root. The procedure continues until we obtain our
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first insignificant result. Having identified d , the orders of p and q are selected
based on the Akaike information criterion [Akaike (1974)] with a correction for
finite sample sizes. The maximum likelihood method can then be used to estimate
these parameters. It is noteworthy that a multivariate time series method, such as
the vector autoregressive model, can also be used to model and forecast stationary
principal component scores [see, e.g., Aue, Norinho and Hörmann (2015)].

Hyndman, Booth and Yasmeen (2013) used the autoregressive fractionally inte-
grated moving average (ARFIMA) in the product-ratio method (see Section 3.2),
which allows noninteger values for the difference parameter, to forecast the princi-
pal component scores. For any two populations, convergent forecasts are obtained
when {γ̂ F

n+h|n,l − γ̂ M
n+h|n,l} is stationary for each l.

As pointed out by Li and Lee (2005), if {γ̂ F
n+h|n,l − γ̂ M

n+h|n,l; l = 1, . . . ,L} has
a trending long-term mean, the Li and Lee method fails to achieve convergence.
As an extension of the Li and Lee method, the proposed method may also fail to
achieve convergence. However, if the common mean function and common trend
capture the long-term effect, the Li–Lee and multilevel functional data methods
produce convergent forecasts, as the forecasts of residual trends would be flat.

To quantify forecast uncertainty, the interval forecasts of y
j
n+h(x) can be ob-

tained through a Bayesian paradigm equipped with Markov chain Monte Carlo
(MCMC) for estimating all variance parameters and drawing samples from the
posterior of principal component scores. Given errors are assumed to be normally
distributed, a hierarchical regression model is able to capture fixed and random
effects [see, e.g., Hoff (2009), Chapter 11.1, Raftery et al. (2013)]. With a set of
MCMC outputs, the forecasts of the future sample path are given by

ŷ
b,j
n+h|n(x) = E

[
yn+h(x)|μ(x), η(x),�,�,yj ]

= f̂
b,j
n+h(x) + δ̂

b,j
n+h(x)ε

b,j
n+h,

(2.15)

= μ̂(x) + η̂j (x) +
K∑

k=1

β̂b
n+h|n,kφ̂k(x) +

L∑
l=1

γ̂
b,j
n+h|n,lψ̂

j
l (x)

+ ê
b,j
n+h(x) + δ̂

b,j
n+h(x)ε

b,j
n+h,

for b = 1, . . . ,B . We first simulate {β̂b
1,k, . . . , β̂

b
n,k} drawn from its full conditional

density, and then obtain β̂b
n+h|n,k using a univariate time series forecasting method

for each simulated sample; similarly, we first simulate {γ̂ b,j
1,l , . . . , γ̂

b,j
n,l } drawn from

its full conditional density, and then obtain γ̂
b,j
n+h|n,l for each simulated sample;

(σ̂ 2)b,j is drawn from its full conditional density. The derivation of full condi-
tional densities is given in Supplement B [Shang (2016)], while some WinBUGS
computation code is presented in Supplement C [Shang (2016)]. As we pre-smooth
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the functional data, we must add the smoothing error δ̂
b,j
n+h(x)ε

b,j
n+h, where δ̂

b,j
n+h(x)

is simulated from its posterior and ε
b,j
n+h is drawn from N(0,1).

The total number of MCMC draws is 20,000 iterations; the first 10,000 it-
erations are used for the burn-in, whereas the remaining 10,000 iterations are
recorded. Among these recorded draws, we keep every 10th draw in order to re-
duce autocorrelation. The prediction interval is constructed from the percentiles
of the bootstrapped mortality forecasts. The point and interval forecasts of life ex-
pectancy are obtained from the forecast age-specific mortality rates using the life
table method [see, e.g., Preston, Heuveline and Guillot (2001)]. In this paper, we
focus on forecasting life expectancy at birth, described simply as life expectancy
hereafter.

3. Relationship to two existing coherent methods.

3.1. Relationship to the augmented common factor method. The multilevel
functional data method can be viewed as a generalization of the augmented com-
mon factor method of Li and Lee (2005). They proposed the following model for
the two-sex case, which can be expressed using a functional data model notation:

y
j
t (xi) = μ̂j (xi) + β̂t φ̂(xi) + γ̂

j
t ψ̂j (xi) + e

j
t (xi),

where xi represents a discrete age or age group, μ̂j (xi) is the age- and sex-specific
mean, and (β̂1, . . . , β̂n) is the mortality index of the common factor, which can be
forecast by a random walk with drift; φ̂(xi) is the first estimated principal com-
ponent of the common factor of Lee and Carter’s (1992) model (based on log
mortality), and it measures the sensitivity of the log total mortality to changes
in {β1, . . . , βn} over time; γ̂

j
t is the time component of the additional factor, and

it can be forecast by an autoregressive (AR) process of order 1; ψ̂j (xi) is the
first estimated principal component of the residual matrix that is specific to males
or females; and e

j
t (xi) is the error term. β̂t φ̂(xi) specifies the long-term trend in

mortality change and random fluctuations that are common for all populations,
whereas γ̂

j
t ψ̂j (xi) describes the short-term changes that are specific only for the

j th population. The augmented common factor model takes into account the mor-
tality trends in all populations by applying the Lee–Carter method twice, subject to
identifiability constraints

∑p
i=1 φ̂(xi) = 1 and

∑n
t=1 β̂t = 0. The eventual constant

ratio between the age-specific mortality rates will thus be adjusted to the short
term according to the population-specific deviations from the common pattern and
trend [Janssen, van Wissen and Kunst (2013)]. If the |γ̂ F

n+h|n − γ̂ M
n+h|n| values be-

come constant, this model leads to nondivergent forecasts in the long run but not
necessarily in the short term in the case of two populations [Li and Lee (2005)].

There are two main differences between the proposed multilevel functional data
method and Li and Lee’s (2005) method. First, Li and Lee’s (2005) method uses a
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single principal component to capture the largest amount of variation. In contrast,
the multilevel functional data method includes the option of incorporating more
than just one component by selecting the number of components based on the cu-
mulative percentage of total variation in the data [Chiou (2012), Crainiceanu and
Goldsmith (2010)]. An examination of the residual contour plots can help to reveal
the existence of any systematic patterns not being accounted for. In such cases, the
additional principal components capture patterns in the data that may not neces-
sarily be explained by the first principal component. As noted by Hyndman, Booth
and Yasmeen (2013), the use of multiple principal components does not introduce
additional model complexity because the scores are uncorrelated and components
are orthogonal by construction. In a similar vein, Booth, Maindonald and Smith
(2002) considered up to three components in total when analyzing data of both
sexes combined, and found that clustering in the residuals was diminished after
the addition of extra components. Delwarde et al. (2006) modeled five countries’
data simultaneously with a number of components, and Li (2013) modeled Aus-
tralian female and male mortality and life expectancy jointly using more than one
component.

The second main difference between the proposed multilevel functional data
method and that of Li and Lee (2005) is that the latter restricted the univariate time
series forecasting method to be a random walk with drift for β̂t and AR(1) for γ̂

j
t .

These choices for the univariate time series forecasting method may not necessar-
ily be optimal for a given time series. In contrast, we implemented the auto.arima
algorithm of Hyndman and Khandakar (2008), which selects the optimal order of
the ARIMA process based on the corrected Akaike information criterion.

3.2. Relationship to the product-ratio method. Let us again consider model-
ing mortality in the two-sex case. The product-ratio method begins by obtaining
the product and ratio functions of all series. The product function can be seen as
the sum of all series in the log scale, whereas the ratio function can be seen as the
differences among series in the log scale. It first applies an independent functional
data method to forecast the future realizations of product and ratio functions, then
transforms the forecasts of product and ratio functions back to the original male
and female age-specific mortality rates. The convergent forecasts are achieved
through the ARFIMA modeling of the ratio function, which implicitly prevents it
from diverging in a long run. This constraint ultimately results in a better forecast
accuracy than the independent functional data method for males, but worse fore-
cast accuracy for females. A possible explanation is that the product-ratio method
improves the goodness of fit for males at the cost of reduced goodness of fit for
females.

The prediction intervals of mortality are constructed based on the normality as-
sumption in Hyndman, Booth and Yasmeen (2013), although it is possible to use a
bootstrap method [see, e.g., Hyndman and Shang (2009)]. In contrast, in the multi-
level functional data method, the prediction intervals of mortality were constructed
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FIG. 1. Observed and smoothed age-specific male and female log mortality rates in the UK. Data
from the distant past are shown in light gray, and the most recent data are shown in dark gray.

based on the Bayesian paradigm. The validity of the Bayesian paradigm for prin-
cipal component scores has been given in Di et al. (2009), Supplement A. For a
small sample size, a Bayesian sampling technique is known to produce more ac-
curate interval forecast accuracy than the one based on the normality assumption
[see Chernick (2008), page 174 for details].

4. Application to UK age- and sex-specific mortality. Age- and sex-specific
raw mortality data for the UK between 1922 and 2009 are available from the
Human Mortality Database (2015). For each sex in a given calendar year, the mor-
tality rates obtained by the ratio between “number of deaths” and “exposure to
risk” are arranged in a matrix for age and calendar year. By analyzing the changes
in mortality as a function of both age x and year t , it can be seen that mortality
rates have shown a gradual decline over time. To provide an idea of this evolution,
we present the functional time series plot for male and female log mortality rates
in Figure 1. Mortality rates dip from their early childhood high, climb in the teen
years, stabilize in the early 20s, and then steadily increase with age. We further
notice that, for both males and females, mortality rates are declining over time,
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FIG. 2. Estimated common mean function, first common functional principal component and as-
sociated scores for UK total mortality (top); estimated mean function deviation for females, first
functional principal component and associated scores for UK female mortality (middle); estimated
mean function deviation for males, first functional principal component and associated scores for
UK male mortality (bottom). The dark and light gray regions show the 80% and 95% prediction
intervals, respectively.

especially in the younger and older ages. Despite the higher male mortality rates
in comparison to females, the difference becomes smaller and smaller over years
at the older ages.

In the top panel of Figure 2, we display the estimated common mean function
μ̂(x), first estimated common principal component φ̂1(x) and corresponding prin-
cipal component scores {β̂1,1, . . . , β̂n,1} along with 30-years-ahead forecasts. The
first common functional principal component captures more than 98% of the total
variation in the age-specific total mortality. In the middle panel of Figure 2, we
display the estimated mean function deviance of females from the overall mean
function η̂F(x), first functional principal component for females ψ̂F

1 (x) and cor-
responding principal component scores {γ̂ F

1,1, . . . , γ̂
F
n,1} with 30-years-ahead fore-

casts. In the bottom panel of Figure 2, we display the estimated mean function
deviance of males from the overall mean function η̂M(x), first functional princi-
pal component for males ψ̂M

1 (x) and corresponding principal component scores
{γ̂ M

1,1, . . . , γ̂
M
n,1} with 30-years-ahead forecasts. In this data set, the first three func-

tional principal components explain at least 90% of the remaining 10% total vari-
ations for both females and males. Due to limited space, we present only the first
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functional principal component, which captures more than 64% and 50% of the re-
maining 10% total variations for females and males, respectively. Based on (2.13),
the proportion of variability explained by the total mortality is 94% for females
and 95% for males, respectively.

From Figure 2, it is apparent that the basis functions are modeling different
movements in mortality rates: φ̂1(x) primarily models mortality changes in chil-
dren and adults, ψ̂F

1 (x) models mortality changes between late teens and 40, and
ψ̂M

1 (x) models the differences between young adults and those over 60. From the
forecast common principal component scores, the mortality changes in children
and adults are likely to continue in the future with increasing forecast uncertainty.
From the forecasts of sex-specific principal component scores, there are no clear
trends associated with each subpopulation, as the forecasts would be flat. Thus, it
is likely to achieve convergent forecasts between female and male subpopulations.

In the first column of Figure 3, we plot the historical mortality sex ratios
(Male/Female) from 1922 to 1979 alongside the 30-years-ahead forecasts of mor-
tality sex ratios from 1980 to 2009 by the noncoherent forecasting methods,
namely, Lee and Carter’s method and the independent functional data method. In
the second column, we show the 30-years-ahead forecasts of mortality sex ratios
from 1980 to 2009, using coherent forecasting methods, including Li and Lee’s
method, and the product-ratio and multilevel functional data methods. We found
that all the coherent forecasting methods exhibit a quite similar pattern, with much
smaller sex ratios than the noncoherent forecasting methods. Our results confirm
the expected trend toward convergence, where the gap in mortality forecasts be-
tween males and females gradually converges to a constant for each age. The con-
vergent forecasts demonstrate biological characteristics, for example, the mortality
of females has been lower than that of males; it would be counterintuitive if fore-
casts of the recent convergence of mortality which has been observed in many
developed countries lead to the opposite situation. Our results further reflect the
importance of joint modeling, which has already been adopted for the official mor-
tality projection in New Zealand [Woods and Dunstan (2014)].

5. Multi-country comparison. While joint modeling mortality for multiple
populations offers the advantage of avoiding possible undesirable divergence in the
forecasts, little is known about whether these methods can improve forecast accu-
racy at various lengths of the forecast horizon. In order to investigate the forecast
accuracy of the multilevel functional data method, we consider 15 other devel-
oped countries for which data are also available in the Human Mortality Database
(2015). These raw mortality rates are shown in Table 1, along with their respective
data periods, within-cluster variability in (2.13) and total variance in (2.14). The
selected countries are all developed countries with relatively long data series com-
mencing at or before 1950. It was desirable to have a long available data period
in order to obtain consistent sample estimators [Box, Jenkins and Reinsel (2008)].
Including the UK data, 32 sex-specific populations were obtained for all analyses.
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FIG. 3. 30-years-ahead forecasts of mortality sex ratios from 1980 to 2009 in the UK data us-
ing Lee and Carter’s method, Li and Lee’s method, the independent functional data method, the
product-ratio method and the multilevel functional data method (r.w.f.). The forecast curves are plot-
ted using a rainbow color palette; the most recent forecast curves are shown in red, whereas the
long-term forecast curves are shown in purple.
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TABLE 1
Data period and within-cluster variability for each country

Within-cluster variability Variance ratio

Country Data period Female Male Female vs Male

Australia 1921 : 2011 0.91 0.92 1 : 1.18
Austria 1947 : 2010 0.92 0.94 1 : 1.24
Belgium 1841 : 2012 0.95 0.96 1 : 1.13
Canada 1921 : 2009 0.91 0.94 1 : 1.17
Denmark 1835 : 2011 0.95 0.96 1 : 1.11
France 1816 : 2012 0.95 0.94 1 : 1.14
Finland 1878 : 2009 0.93 0.93 1 : 1.24
Italy 1872 : 2009 0.95 0.94 1 : 1.14
Japan 1947 : 2012 0.94 0.97 1 : 1.18
Netherlands 1850 : 2009 0.97 0.97 1 : 1.10
Norway 1846 : 2009 0.94 0.96 1 : 1.16
Spain 1908 : 2009 0.95 0.96 1 : 1.19
Sweden 1751 : 2011 0.96 0.96 1 : 1.11
Switzerland 1876 : 2011 0.95 0.97 1 : 1.16
United Kingdom 1922 : 2009 0.94 0.94 1 : 1.16
United States of America 1933 : 2010 0.92 0.94 1 : 1.20

Note that the age groups are single years of age from 0 to 94, and then a single age
group for 95 and above in order to avoid the excessive fluctuations at older ages.

5.1. Forecast accuracy evaluation.

5.1.1. Evaluation of point forecast accuracy. We split our age- and sex-
specific data into a training sample [including data from years 1 to (n − 30)] and
a testing sample [including data from years (n − 29) to n], where n represents the
total number of years in the data. The length of the fitting period differs by coun-
try (see Table 1). We implement a rolling origin approach, following Hyndman,
Booth and Yasmeen (2013) and Shang, Booth and Hyndman (2011). A rolling ori-
gin analysis of a time series model is commonly used to assess model and parame-
ter stabilities over time. A common technique to assess the constancy of a model’s
parameter is to compute parameter estimates and their forecasts over a rolling ori-
gin of a fixed size through the sample [see Zivot and Wang (2003), Chapter 9, for
more details]. The advantage of the rolling origin approach is that it allows us to
assess the point and interval forecast accuracy among methods for different fore-
cast horizons. With the initial training sample, we produce one- to 30-year-ahead
forecasts, and determine the forecast errors by comparing the forecasts with actual
out-of-sample data. As the training sample increases by one year, we produce one-
to 29-year-ahead forecasts and calculate the forecast errors. This process continues
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until the training sample covers all available data. We compare these forecasts with
the holdout samples to determine the out-of-sample point forecast accuracy.

To measure overall point forecast accuracy and bias, we use the root mean
squared forecast error (RMSFE), mean absolute forecast error (MAFE) and mean
forecast error (MFE), averaged across ages and forecasting years. Averaged over
16 countries, they are defined as follows:

RMSFE(h) = 1

16

16∑
c=1

√√√√ 1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

[
mc

k(xi) − m̂c
k(xi)

]2
,

MAFE(h) = 1

16

16∑
c=1

1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

∣∣mc
k(xi) − m̂c

k(xi)
∣∣,

MFE(h) = 1

16

16∑
c=1

1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

[
mc

k(xi) − m̂c
k(xi)

]
,

where mc
k(xi) denotes mortality rate at year k in the forecasting period for age

xi in country c, and m̂c
k(xi) denotes the point forecast. The ordering of the 16

countries are given in Table 1. The RMSFE and MAFE are the average of squared
and absolute errors, and they measure forecast precision regardless of sign. The
MFE is the average of errors and it measures bias.

5.1.2. Evaluation of interval forecast accuracy. To assess interval forecast
accuracy, we use the interval score of Gneiting and Raftery (2007) [see also
Gneiting and Katzfuss (2014)]. For each year in the forecasting period, one-year-
ahead to 30-year-ahead prediction intervals were calculated at the (1 −α)× 100%
nominal coverage probability. We consider the common case of a symmetric
(1 − α) × 100% prediction interval, with lower and upper bounds that are pre-
dictive quantiles at α/2 and 1 − α/2, denoted by mk(xl) and mk(xu) for a given
year k. As defined by Gneiting and Raftery (2007), a scoring rule for the interval
forecast of mortality at age xi is

Sα

[
mk(xl),mk(xu);mk(xi)

]
= [

mk(xu) − mk(xl)
] + 2

α

[
mk(xl) − mk(xi)

]
1
{
mk(xi) < mk(xl)

}
+ 2

α

[
mk(xi) − mk(xu)

]
1
{
mk(xi) > mk(xu)

}
,

where α denotes the level of significance, customarily α = 0.2. The interval score
rewards for a narrow prediction interval, if and only if the true observation lies
within the prediction interval. The optimal score is achieved when mk(xi) lies
between mk(xl) and mk(xu), and the distance between mk(xl) and mk(xu) is min-
imal.
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TABLE 2
Point forecast accuracy of mortality and life expectancy for females and males by method, as
measured by the averaged MAFE, RMSFE and MFE. For mortality, the forecast errors were

multiplied by 100 in order to keep two decimal places. The minimal forecast errors are underlined
for females and males, whereas the minimal overall forecast error is highlighted in bold. FDM

represents the functional data model

MAFE RMSFE MFE

Method F M F+M
2 F M F+M

2 F M F+M
2

Mortality (×100)
Lee–Carter 0.76 0.89 0.83 1.68 1.74 1.71 −0.74 −0.85 −0.80
Li–Lee 0.84 0.65 0.75 1.76 1.36 1.56 −0.83 −0.57 −0.70
Independent FDM 0.42 0.69 0.56 1.00 1.33 1.17 −0.28 −0.60 −0.44
Product-ratio 0.60 0.58 0.59 1.32 1.22 1.27 −0.51 −0.44 −0.48
Multilevel FDM (arima) 0.49 0.60 0.55 1.13 1.22 1.18 −0.36 −0.47 −0.42
Multilevel FDM (r.w.f.) 0.72 0.60 0.66 1.54 1.24 1.39 −0.68 −0.50 −0.59
e(0)
Lee–Carter 2.33 3.04 2.69 2.36 3.10 2.73 2.26 2.97 2.62
Li–Lee 3.00 1.92 2.46 3.03 2.00 2.52 3.00 1.73 2.37
Independent FDM 1.53 3.06 2.30 1.62 3.11 2.37 1.24 3.05 2.15
Product-ratio 2.19 1.91 2.05 2.26 2.02 2.14 1.95 1.76 1.86
Multilevel FDM (arima) 1.65 2.19 1.92 1.73 2.28 2.00 1.30 2.13 1.72
Multilevel FDM (r.w.f.) 2.57 1.84 2.21 2.61 1.90 2.26 2.53 1.66 2.10

From different ages, countries and years in the forecasting period, the mean
interval score averaged across 16 countries is defined by

S̄α(h) = 1

16 × (31 − h) × p

16∑
c=1

n∑
k=n−30+h

p∑
i=1

Sc
α,k

[
mk(xl),mk(xu);mk(xi)

]
.

5.2. Multi-country comparison of point forecast accuracy. Based on the av-
eraged MAFE and RMSFE across 30 horizons shown in Table 2, the Lee–Carter
method performs overall the worst among the methods considered. Lee and Miller
(2001) and Li, Lee and Gerland (2013) stated that mortality at older ages has been
declining more quickly (on a log scale) than at younger ages, which contradicts the
stationarity assumption of mortality improvement in the Lee–Carter method. Thus,
it has been systematically underpredicting improvements in life expectancy over
time. This confirms the fact that progress in life expectancy has been and continues
to rise [see also Oeppen and Vaupel (2002)].

The functional data methods use the automatic ARIMA algorithm for selecting
the optimal difference operator d , for which the mortality improvement will then
be stationary. Generally, the functional data methods give more accurate forecasts
than the Lee–Carter and Li–Lee methods. The independent functional data method
performs consistently the best for forecasting female mortality, followed by the
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multilevel functional data (arima) and product-ratio methods. The superiority of
the independent functional data method over the coherent forecasting methods is
manifested by a population with small variabilities over age and time, such as in
female mortality. In terms of male and overall forecast errors, the product-ratio
and multilevel functional data methods perform similarly: they both produce more
accurate forecasts than those from the independent functional data method.

From the averaged MFE across 30 horizons, the coherent forecasting meth-
ods produce less biased forecasts than the noncoherent forecasting methods for
males. The independent functional data method gives the least biased forecasts
of female mortality. For male mortality, the product-ratio method and multilevel
functional data method (arima) perform about the same in terms of bias, and they
both produce less biased forecasts than the ones from the independent functional
data method.

With the forecast age-specific mortality, we can also forecast life expectancy
[see Preston, Heuveline and Guillot (2001) for details]. Based on the averaged
MAFE, RMSFE and MFE across 30 horizons, we again found that the functional
data methods generally give smaller overall forecast errors and bias across the
two sexes, in comparison to the Lee–Carter and Li–Lee methods. The independent
functional data method performs the best for forecasting female life expectancy,
followed by the multilevel functional data (arima) and product ratio methods. For
male data, the multilevel functional data method (r.w.f.) gives the most accurate
point forecasts. The product-ratio and multilevel functional data methods both pro-
duce more accurate point forecasts than the ones from the independent functional
data method. Of the two approaches, the multilevel functional data method (arima)
performs the best based on simple averaging of the forecast errors over two sub-
populations.

To achieve optimal point forecast accuracy and bias, the independent functional
data method should be used for forecasting female mortality and life expectancy,
whereas the product-ratio or multilevel functional data method (r.w.f.) should be
implemented for forecasting male mortality and male life expectancy, respectively.
Based on the simple average of two subpopulations, the multilevel functional data
method (arima) generally performs the overall best in all. With respect to the auto-
matic ARIMA and random walk with drift (r.w.f.), the automatic ARIMA method
is recommended to forecast principal component scores in the multilevel func-
tional data method for age-specific female mortality and life expectancy. In con-
trast, the r.w.f. method is suitable to forecast principal component scores for age-
specific male mortality and life expectancy.

5.3. Multi-country comparison of interval forecast accuracy. The prediction
intervals for age-specific mortality are obtained from (2.15), and the prediction
intervals for life expectancy are obtained from the percentiles of simulated life ex-
pectancies. The simulation method takes the nonlinear relationship between age-
specific mortality and life expectancy into account, thus giving an asymmetric pre-
diction interval [Hyndman, Booth and Yasmeen (2013)]. Based on the averaged
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TABLE 3
Interval forecast accuracy of mortality and life expectancy for females and males by method, as

measured by the averaged mean interval score. For mortality, the mean interval scores were
multiplied by 100 in order to keep two decimal places

Mortality (×100) e(0)

Method F M F+M
2 F M F+M

2

Lee–Carter 6.14 7.25 6.70 11.41 55.54 33.48
Li–Lee 4.51 3.01 3.76 19.61 9.04 14.33
Independent FDM 2.05 3.66 2.86 8.09 17.93 13.01
Product-ratio 3.17 3.64 3.41 12.93 8.46 10.70
Multilevel FDM (arima) 2.45 3.04 2.75 7.76 10.49 9.13
Multilevel FDM (r.w.f.) 3.99 2.92 3.46 14.95 7.66 11.31

mean interval scores shown in Table 3, the independent functional data method
produces the most accurate forecasts for female mortality, followed by the mul-
tilevel functional data (arima) method. For male mortality, the multilevel func-
tional data model (r.w.f.) performs the best, followed by the Li–Lee method. Aver-
aged across both sexes, the multilevel functional data method (arima) performs the
best. For forecasting female life expectancy, the multilevel functional data method
(arima) produces the most accurate interval forecasts, followed by the indepen-
dent functional data method. For forecasting male life expectancy, the multilevel
functional data method (r.w.f.) gives the best interval forecast accuracy. Averaged
across both sexes, the multilevel functional data method (arima) performs the best.

Apart from the mean forecast errors and mean interval scores, we also consider
the maximum absolute forecast error, maximum root squared forecast error and
maximum interval score for measuring the extreme point and interval errors across
different ages and years in the forecasting period. Their results in the multi-country
comparison are included in Supplement D [Shang (2016)].

5.4. Comparison between the functional data models and a Bayesian method.
Raftery, Lalic and Gerland (2014) proposed a Bayesian hierarchical model for
joint probabilistic projection of male and female life expectancies that ensures co-
herence between them by projecting the gap between female life expectancy and
male life expectancy. This method starts with a probabilistic projection of life ex-
pectancy for females obtained from a Bayesian hierarchical model, then models
the gap in life expectancy between females and males. The probabilistic projec-
tion of life expectancy for males can be obtained by combining the former two
quantities. Computationally, this method is implemented in the bayesLife package
[Ševčíková and Raftery (2015)] in R [R Core Team (2015)]. In Tables 4 and 5, we
compare the forecast accuracy between the multilevel functional data and Bayesian
methods for forecasting life expectancy.
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TABLE 4
Point and interval forecast accuracy between the multilevel functional data method and Bayesian

method for forecasting female life expectancy at birth [e(0)]. Using the data until 1979, we forecast
the e(0) for years 1984, 1989, 1994, 1999, 2004 and 2009

Multilevel functional data method Bayesian method

Country 1984 1989 1994 1999 2004 2009 1984 1989 1994 1999 2004 2009

MAFE
AUS 0.54 1.84 2.22 2.81 3.51 4.55 0.98 0.78 1.49 2.02 2.51 2.74
AUT 0.71 1.46 1.74 2.30 2.96 3.13 0.78 1.30 1.43 1.84 2.35 2.43
BEL 1.63 2.40 3.07 3.56 4.17 4.39 0.94 1.15 1.39 1.53 1.79 1.66
CAN 0.20 1.01 1.85 2.41 2.78 3.02 0.74 0.40 0.03 0.17 0.10 0.11
DEN 0.20 0.04 0.06 0.40 0.99 1.91 0.58 1.29 1.83 1.78 1.56 1.02
FRA 1.78 2.81 3.65 3.89 4.87 5.10 0.74 1.09 1.50 1.25 1.92 1.74
FIN 1.66 1.65 2.60 3.13 4.03 4.55 0.61 0.40 0.10 0.14 0.27 0.33
ITA 1.79 2.59 2.86 3.40 4.43 4.33 0.78 1.09 0.99 1.24 1.99 1.65
JPN 0.53 1.25 1.62 1.97 2.95 3.25 0.94 1.24 1.29 1.38 2.18 2.30
NET 1.41 1.52 1.58 1.35 1.96 2.80 0.43 0.06 0.36 0.84 0.48 0.07
NOR 0.99 0.74 1.47 1.62 2.51 2.98 0.21 0.44 0.11 0.24 0.34 0.43
SPA 1.42 1.79 2.21 2.05 2.55 2.96 1.27 1.01 1.26 1.05 1.42 1.74
SWE 1.40 1.76 2.33 2.59 3.12 3.56 0.60 0.39 0.37 0.09 0.11 0.09
SWI 1.26 1.82 2.23 2.64 3.28 3.59 0.41 0.21 0.05 0.13 0.00 0.10
UK 0.74 0.60 1.20 1.10 1.86 2.50 0.74 0.48 0.98 0.80 1.46 2.00
USA 1.02 2.03 2.88 3.84 4.31 4.53 0.21 0.26 0.61 1.10 1.01 0.80

Mean 1.08 1.58 2.10 2.44 3.14 3.57 0.68 0.72 0.86 0.98 1.22 1.20

Mean interval score
AUS 1.83 3.13 4.81 7.29 9.49 13.13 2.06 2.78 3.48 4.22 5.52 5.30
AUT 2.92 5.24 8.92 13.94 20.97 27.48 2.10 3.28 4.17 5.02 5.75 6.42
BEL 5.51 10.75 17.32 19.93 26.41 25.64 2.12 3.12 4.01 4.65 5.38 6.03
CAN 1.80 2.59 3.42 6.10 6.07 7.09 1.96 2.94 3.72 4.50 5.02 5.78
DEN 3.34 4.18 5.03 6.40 11.54 19.91 1.97 2.96 3.74 4.47 5.16 5.75
FRA 6.31 14.65 21.48 23.77 32.17 35.97 2.05 3.21 4.11 4.79 5.43 6.04
FIN 8.90 4.16 11.13 14.58 23.71 26.42 2.25 3.47 4.66 5.61 6.45 7.23
ITA 4.03 9.51 11.21 17.16 27.69 24.23 2.16 3.28 4.11 4.96 5.68 6.28
JPN 2.08 3.88 5.57 6.73 8.17 9.30 2.17 3.35 4.24 4.90 5.58 6.25
NET 3.83 4.93 5.85 6.22 6.75 7.05 1.80 2.56 3.28 3.86 4.30 4.65
NOR 2.75 2.51 5.60 6.36 15.46 19.65 1.85 2.53 3.15 3.68 4.16 4.69
SPA 3.62 5.88 10.81 8.35 17.02 20.55 4.48 3.11 3.87 4.59 5.33 5.80
SWE 3.22 4.13 7.05 9.15 14.60 15.85 1.86 2.78 3.36 4.07 4.71 5.29
SWI 2.62 3.90 7.51 9.20 14.75 17.56 1.96 3.06 4.06 5.06 5.94 6.68
UK 4.15 2.60 7.85 7.93 14.89 21.47 2.00 2.90 3.67 4.15 4.71 5.32
USA 1.81 2.45 3.02 3.41 3.64 4.04 2.06 3.01 3.76 4.57 5.18 5.71

Mean 3.67 5.28 8.54 10.41 15.83 18.46 2.18 3.02 3.84 4.57 5.27 5.83
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TABLE 5
Point and interval forecast accuracy between the multilevel functional data method and Bayesian
method for forecasting male life expectancy at birth [e(0)]. Using the data until 1979, we forecast

the e(0) for years 1984, 1989, 1994, 1999, 2004 and 2009

Multilevel functional data method Bayesian method

Country 1984 1989 1994 1999 2004 2009 1984 1989 1994 1999 2004 2009

MAFE
AUS 1.32 1.70 2.97 4.01 5.28 5.97 1.61 1.90 3.08 4.19 5.44 6.07
AUT 0.09 0.69 0.96 1.79 2.66 2.98 0.72 1.73 2.13 2.96 3.89 4.22
BEL 1.04 1.85 2.28 2.72 3.82 4.52 0.81 1.46 1.83 2.06 2.97 3.53
CAN 1.13 1.32 1.69 2.36 3.32 4.09 1.56 1.62 1.87 2.43 3.31 3.99
DEN 0.00 0.23 0.07 1.02 1.51 2.77 0.35 0.67 0.43 0.39 0.76 1.89
FRA 0.39 0.99 1.66 2.50 3.84 4.57 0.57 0.92 1.21 1.65 2.59 2.93
FIN 1.27 0.81 2.06 2.42 3.46 4.20 1.42 0.86 1.95 2.03 2.82 3.21
ITA 0.70 1.08 1.09 1.81 3.10 3.53 1.00 1.53 1.60 2.43 3.74 4.20
JPN 0.26 0.23 0.85 1.43 1.02 1.02 0.34 0.27 0.34 0.84 0.44 0.32
NET 0.74 0.92 0.73 0.58 0.43 1.62 0.72 1.13 1.79 2.27 3.52 4.90
NOR 0.01 0.70 0.49 0.65 2.06 2.75 0.26 0.17 1.18 1.35 2.72 3.38
SPA 0.67 0.20 0.19 0.17 0.58 1.48 0.90 0.17 0.17 0.31 1.09 2.02
SWE 0.16 0.25 0.95 1.48 2.38 3.03 0.86 1.09 1.71 2.15 2.86 3.24
SWI 1.02 0.89 1.14 2.00 2.97 3.45 0.60 0.43 0.70 1.59 2.49 2.99
UK 1.03 1.20 1.94 2.23 3.43 4.30 1.10 1.25 2.00 2.29 3.44 4.26
USA 0.13 0.30 0.39 0.33 0.59 0.94 0.99 0.73 0.83 1.71 2.08 2.57

Mean 0.62 0.83 1.22 1.72 2.53 3.20 0.86 1.00 1.43 1.92 2.76 3.36

Mean interval score
AUS 5.87 6.07 17.17 27.12 24.19 17.86 6.58 4.56 14.18 22.25 31.65 35.93
AUT 1.83 2.51 2.95 7.67 14.82 16.00 2.62 3.83 4.83 5.78 9.44 8.90
BEL 2.47 5.21 6.31 6.79 9.78 16.47 2.52 3.76 4.87 5.84 6.71 7.54
CAN 1.67 2.11 2.58 6.36 15.08 21.74 5.58 3.47 4.31 5.27 8.89 12.18
DEN 1.84 2.28 2.63 2.84 2.74 5.76 2.34 3.48 4.17 4.91 5.54 6.13
FRA 4.75 6.53 7.86 8.93 10.70 11.78 2.57 3.97 5.23 6.35 7.40 8.53
FIN 3.86 5.34 6.37 7.02 16.47 21.92 3.14 4.22 5.41 6.62 7.59 8.66
ITA 3.94 4.99 5.92 6.44 7.63 7.89 2.59 3.88 4.89 5.77 8.81 9.50
JPN 1.61 1.83 2.24 2.35 2.24 2.59 2.91 4.55 6.09 7.32 8.51 9.61
NET 4.30 5.17 6.54 6.95 8.19 8.40 2.26 3.31 4.08 4.74 14.80 26.17
NOR 2.24 2.97 3.84 4.23 4.73 5.10 2.31 3.29 4.00 4.61 6.35 10.30
SPA 4.04 5.14 5.82 6.76 6.64 6.80 2.61 3.83 4.72 5.61 6.39 7.23
SWE 3.19 3.80 8.15 8.94 10.25 11.53 2.27 3.29 4.09 4.71 7.45 9.94
SWI 1.90 2.37 2.71 7.93 8.81 9.86 2.43 3.60 4.54 5.49 6.26 6.84
UK 1.57 2.16 5.44 6.63 17.44 25.34 2.46 3.56 4.37 5.22 10.36 15.70
USA 1.45 1.87 2.44 2.64 2.87 3.24 2.53 3.74 4.78 5.68 6.51 7.30

Mean 2.91 3.77 5.56 7.47 10.16 12.02 2.98 3.77 5.29 6.64 9.54 11.90
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For females, the Bayesian method is recommended. For males, the multilevel
functional data method is preferable, in terms of point forecast accuracy. In terms
of interval forecast accuracy, the Bayesian method is slightly advantageous for
long-term forecasts. We found that the Bayesian (a simpler and direct) method
outperforms the multilevel functional data method for long-term projection of life
expectancy. The Bayesian method shows a superior interval forecast accuracy for
two reasons:

(1) The Bayesian method uses the historical life expectancy data to produce
forecasts, whereas the multilevel functional data method uses the historical age-
specific mortality to produce these age-specific mortality rate forecasts, which are
then combined nonlinearly to give life expectancy forecasts. Oftentimes, the direct
forecasting method outperforms the indirect forecasting method.

(2) The Bayesian method uses the prior information to assist its forecasts, in
particular at the longer forecast horizon.

By contrast, the multilevel functional data method is a time series extrapolation,
which works reasonably well in the short time. However, it does not work well
for the long term. Given that different changes are at play at different phases of a
mortality transition, the age components of change in the past are not necessarily
informative of the longer-term future.

6. Application to Australian age- and sex- and state-specific mortality.
First, we consider the age- and state-wise total mortality rates from 1950 to 2003
in Australia, available in the addb package of Hyndman (2010) in R [R Core Team
(2015)]. This data set contains mortality rates for six states of Australia: Victoria
(VIC), New South Wales (NSW), Queensland (QLD), South Australia (SA), West-
ern Australia (WA), and Tasmania (TAS). The Australian Capital Territory and the
Northern Territory are excluded from the analysis due to many missing values in
the available data.

In Figure 4, we show the estimated overall mean function μ̂(x), first common
functional principal component φ̂1(x) and corresponding scores {β̂1,1, . . . , β̂n,1}
with 30-years-ahead forecasts. The first common functional principal component
accounts for at least 90% of total variation in the total mortality. The retained
number of functional principal components for each state is the one that explains at
least 90% of the remaining 10% total variations in the data. Due to limited space,
we present only the first principal components for the six states, which explain
27%, 68%, 26%, 22%, 22% and 28% of the remaining 10% total variations for
VIC, NSW, TAS, QLD, SA and WA, respectively. Based on (2.13), the proportion
of variability explained by the aggregate data (the simple average of total mortality
across states) is 71%,71%,33%,63%,50% and 50% for VIC, NSW, TAS, QLD,
SA and WA, respectively.

In Figure 4, we also show the estimated mean function deviation, first state-
specific functional principal component ψ̂s

1(x) and principal component scores
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FIG. 4. The first common functional principal component and its associated scores for the aggre-
gate mortality data (top), followed by the first functional principal component and associated scores
for the state-wise total age-specific mortality rates in VIC, NSW, TAS, QLD, SA and WA, respectively.
The dark and light gray regions show the 80% and 95% prediction intervals.
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FIG. 5. Based on historical mortality rates (1950–2003), we forecast future mortality rates and
life expectancy from 2004 to 2033, for the independent functional data, product-ratio and multilevel
functional data methods.

{γ̂ s
1,1, . . . , γ̂

s
n,1} with 30-years-ahead forecasts, where s denotes a state. The con-

vergence in forecasts is likely to be achieved by the multilevel functional data
method because the forecasts of principal component scores for each state do not
show a long-term trend, with the exception of NSW. From a statistical perspective,
this may be because the NSW has the largest proportion of variability that cannot
be explained by the aggregate data. From a social perspective, NSW is the state
that attracts the most migrants in Australia (http://www.abs.gov.au/ausstats/abs@
.nsf/mf/3412.0).

Figure 5 shows 30-years-ahead forecasts of median log mortality rates and life
expectancy from 2004 to 2033 for all states, for the independent functional data,
product-ratio and multilevel functional data methods. We focus on these three
methods in this application because they generally outperform the Lee–Carter and
Li–Lee methods as demonstrated in Section 5. For the independent functional data
method, the gap in mortality and life expectancy forecasts among states diverges.
In contrast, the product-ratio and multilevel functional data methods are quite sim-
ilar, and the gaps between female and male age-specific mortality and life ex-
pectancy converge, respectively.

6.1. Comparisons of point and interval forecast accuracy. Table 6 displays
the point and interval forecast accuracy for both age- and state-specific total mor-
tality rates and life expectancy at each forecast horizon. As measured by the aver-
aged MAFE, RMSFE, MFE and averaged mean interval score across 30 horizons,
the independent functional data method performs the worst, whereas the multi-
level functional data method (r.w.f.) performs the best, for forecasting age- and

http://www.abs.gov.au/ausstats/abs@.nsf/mf/3412.0
http://www.abs.gov.au/ausstats/abs@.nsf/mf/3412.0
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TABLE 6
Point and interval forecast accuracy of mortality and life expectancy [e(0)] across different states by

method and forecast horizon, as measured by the averaged MAFE, RMSFE, MFE and averaged
mean interval score. The minimal forecast errors are underlined for each state, whereas the minimal

overall forecast error is highlighted in bold

VIC NSW QLD TAS SA WA Mean

Mortality MAFE
(×100) Independent FDM 0.61 0.63 0.77 0.96 0.70 0.70 0.73

Product-ratio 0.56 0.55 0.45 0.53 0.47 0.53 0.51
Multilevel FDM (arima) 0.53 0.51 0.47 0.53 0.46 0.52 0.51
Multilevel FDM (r.w.f.) 0.47 0.47 0.41 0.49 0.41 0.46 0.45
RMSFE
Independent FDM 1.36 1.42 1.69 1.96 1.48 1.53 1.57
Product-ratio 1.08 1.04 0.87 1.26 0.97 1.06 1.05
Multilevel FDM (arima) 1.03 0.97 0.95 1.23 0.96 1.05 1.03
Multilevel FDM (r.w.f.) 0.91 0.88 0.82 1.18 0.86 0.93 0.93
MFE
Independent FDM −0.31 −0.16 −0.41 −0.86 −0.48 −0.40 −0.43
Product-ratio −0.52 −0.49 −0.32 −0.25 −0.35 −0.43 −0.39
Multilevel FDM (arima) −0.48 −0.43 −0.32 −0.25 −0.33 −0.42 −0.37
Multilevel FDM (r.w.f.) −0.42 −0.39 −0.20 −0.14 −0.26 −0.33 −0.29
Mean interval score
Independent FDM 4.00 3.55 5.42 4.95 5.01 4.52 4.58
Product-ratio 2.85 2.78 2.75 2.44 2.43 2.69 2.66
Multilevel FDM (arima) 2.47 2.14 2.42 1.81 1.85 2.50 2.20
Multilevel FDM (r.w.f.) 2.10 2.06 2.01 1.55 1.58 2.04 1.89

e(0) MAFE
Independent FDM 2.34 2.75 3.19 4.63 3.06 3.08 3.17
Product-ratio 3.07 3.30 2.83 2.08 2.46 2.93 2.78
Multilevel FDM (arima) 2.96 3.05 2.81 2.39 2.39 2.88 2.75
Multilevel FDM (r.w.f.) 2.79 3.01 2.49 1.76 2.17 2.64 2.48
RMSFE
Independent FDM 2.92 3.05 3.75 4.67 3.35 3.56 3.55
Product-ratio 3.14 3.38 2.94 2.20 2.61 3.03 2.88
Multilevel FDM (arima) 3.04 3.16 2.95 2.53 2.53 2.99 2.87
Multilevel FDM (r.w.f.) 2.86 3.10 2.60 1.89 2.32 2.75 2.59
MFE
Independent FDM 2.26 1.75 2.62 4.63 2.79 2.53 2.76
Product-ratio 3.07 3.29 2.81 2.05 2.45 2.93 2.77
Multilevel FDM (arima) 2.95 3.03 2.79 2.37 2.37 2.87 2.73
Multilevel FDM (r.w.f.) 2.78 3.00 2.47 1.69 2.16 2.64 2.46
Mean interval score
Independent FDM 21.04 25.05 30.46 24.20 19.85 16.34 22.82
Product-ratio 22.70 24.66 13.53 19.95 17.10 21.14 19.85
Multilevel FDM (arima) 20.79 20.64 15.04 18.44 15.79 19.59 18.38
Multilevel FDM (r.w.f.) 17.09 18.81 9.41 14.26 12.27 15.79 14.60
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FIG. 6. A two-level hierarchical tree diagram.

state-specific total mortality and life expectancy. As the product-ratio and mul-
tilevel functional data methods perform similarly, it is paramount to incorporate
correlation among subpopulations in forecasting, as this allows us to search for
characteristics within and among series.

6.2. Application to Australian age-, sex- and state-specific mortality. We ex-
tend the multilevel functional data method to two or more subpopulations in a
hierarchy. This is related to hierarchical/grouped time series [see, e.g., Hyndman
et al. (2011)]. A grouped structure is depicted in the two-level hierarchical dia-
gram, presented in Figure 6.

Following a bottom-up hierarchical structure, we first extract a common trend
from the total mortality within each state. For the j th population in state s, the
multilevel functional data model can be written as

(6.1) f
j,s
t (x) = μj,s(x) + Rs

t (x) + U
j,s
t (x),

where f
j,s
t (x) represents the female or male mortality in state s at year t ; μj,s(x)

is the mean function of female or male mortality in state s; Rs
t (x) captures the

common trend across two populations for a state; and U
j,s
t (x) captures the sex-

specific residual trend for a state. Based on (2.13), the proportion of variability
explained by the total mortality in each state is 65%, 69%, 25%, 53%, 43% and
37% for females, and 59%, 59%, 22%, 54%, 41% and 38% for males.

We can also extract the common trend from the averaged mortality across all
states for females and males. For the j th population in state s, the multilevel func-
tional data model can be written as

(6.2) f
j,s
t (x) = μj,s(x) + S

j
t (x) + W

j,s
t (x),

where S
j
t (x) captures the common trend across six populations, and W

j,s
t (x) cap-

tures the state-specific residual trend. By combining (6.1) and (6.2), we obtain

f
j,s
t (x) = μj,s(x) + Rs

t (x) + U
j,s
t (x) + S

j
t (x) + W

j,s
t (x)

2
.(6.3)

Tables 7, 8 and 9 show the point and interval forecast accuracy among different
functional data methods. As measured by the averaged MAFE, RMSFE, MFE and
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TABLE 7
Point forecast errors (×100) of mortality across states and sexes by method, as measured by the

averaged MAFE, RMSFE and MFE. The minimal forecast errors are underlined for each state and
each sex, whereas the minimal overall forecast error is highlighted in bold

Sex Method VIC NSW QLD TAS SA WA Mean

MAFE
F Independent FDM 0.46 0.41 0.90 0.56 0.59 0.76 0.61

Product-ratio 0.58 0.56 0.47 0.60 0.51 0.50 0.54
Multilevel FDM (arima) 0.39 0.37 0.48 0.35 0.35 0.36 0.38
Multilevel FDM (r.w.f.) 0.38 0.37 0.47 0.32 0.35 0.35 0.37

M Independent FDM 0.90 0.85 1.31 1.12 1.03 1.20 1.07
Product-ratio 0.75 0.71 0.59 0.83 0.67 0.83 0.73
Multilevel FDM (arima) 0.98 0.94 1.13 0.85 0.88 1.08 0.98
Multilevel FDM (r.w.f.) 0.91 0.86 0.93 0.73 0.79 0.98 0.87

F+M
2 Independent FDM 0.68 0.63 1.11 0.84 0.81 0.98 0.84

Product-ratio 0.66 0.63 0.53 0.72 0.59 0.66 0.63
Multilevel FDM (arima) 0.69 0.66 0.80 0.60 0.62 0.72 0.68
Multilevel FDM (r.w.f.) 0.65 0.62 0.70 0.53 0.57 0.66 0.62
RMSFE

F Independent FDM 1.20 0.99 2.02 1.34 1.35 1.63 1.42
Product-ratio 1.19 1.14 0.99 1.48 1.12 1.08 1.17
Multilevel FDM (arima) 0.85 0.79 1.28 0.82 0.81 0.86 0.90
Multilevel FDM (r.w.f.) 0.81 0.78 1.26 0.73 0.82 0.81 0.87

M Independent FDM 1.90 1.66 2.91 2.59 2.09 2.53 2.28
Product-ratio 1.58 1.41 1.26 2.22 1.51 1.98 1.66
Multilevel FDM (arima) 1.94 1.77 2.58 1.70 1.83 2.36 2.03
Multilevel FDM (r.w.f.) 1.77 1.58 2.30 1.51 1.63 2.12 1.82

F+M
2 Independent FDM 1.55 1.33 2.46 1.97 1.72 2.08 1.85

Product-ratio 1.39 1.28 1.12 1.85 1.32 1.53 1.41
Multilevel FDM (arima) 1.40 1.28 1.93 1.26 1.32 1.61 1.46
Multilevel FDM (r.w.f.) 1.29 1.18 1.78 1.12 1.23 1.46 1.35
MFE

F Independent FDM −0.16 −0.09 −0.77 −0.23 −0.50 −0.60 −0.39
Product-ratio −0.55 −0.51 −0.37 −0.38 −0.42 −0.41 −0.44
Multilevel FDM (arima) −0.34 −0.30 −0.15 −0.21 −0.21 −0.23 −0.24
Multilevel FDM (r.w.f.) −0.34 −0.32 −0.15 −0.16 −0.22 −0.20 −0.23

M Independent FDM −0.66 −0.71 −1.07 −0.79 −0.73 −0.98 −0.82
Product-ratio −0.65 −0.61 −0.36 −0.24 −0.41 −0.66 −0.49
Multilevel FDM (arima) −0.87 −0.82 −0.69 −0.65 −0.62 −0.91 −0.76
Multilevel FDM (r.w.f.) −0.83 −0.77 −0.36 −0.48 −0.58 −0.84 −0.64

F+M
2 Independent FDM −0.41 -0.40 −0.92 −0.51 −0.62 −0.79 −0.60

Product-ratio −0.60 −0.56 −0.37 −0.31 −0.42 −0.54 −0.46
Multilevel FDM (arima) −0.60 −0.56 −0.42 −0.43 −0.42 −0.57 −0.50
Multilevel FDM (r.w.f.) −0.59 −0.54 −0.26 −0.32 −0.40 −0.52 −0.43
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TABLE 8
Point forecast accuracy of life expectancy across states and sexes by method, as measured by the

averaged MAFE, RMSFE and MFE. The minimal forecast errors are underlined for each state and
each sex, whereas the minimal overall forecast error is highlighted in bold

Sex Method VIC NSW QLD TAS SA WA Mean

MAFE
F Independent FDM 1.92 1.94 4.48 2.49 2.91 3.87 2.93

Product-ratio 2.94 3.07 2.67 2.26 2.42 2.68 2.67
Multilevel FDM (arima) 1.97 2.05 1.62 1.82 1.48 1.76 1.78
Multilevel FDM (r.w.f.) 2.08 2.26 1.32 1.76 1.57 1.76 1.78

M Independent FDM 3.44 3.65 5.51 4.24 4.47 4.80 4.35
Product-ratio 3.18 3.44 2.93 2.24 2.53 3.07 2.90
Multilevel FDM (arima) 3.91 4.08 4.09 3.85 3.33 3.95 3.87
Multilevel FDM (r.w.f.) 3.95 4.20 2.84 3.63 3.29 3.87 3.63

F+M
2 Independent FDM 2.68 2.79 5.00 3.36 3.69 4.33 3.64

Product-ratio 3.06 3.26 2.80 2.25 2.48 2.87 2.78
Multilevel FDM (arima) 2.94 3.06 2.86 2.83 2.40 2.85 2.83
Multilevel FDM (r.w.f.) 3.02 3.23 2.08 2.69 2.43 2.81 2.71
RMSFE

F Independent FDM 2.45 2.18 4.55 3.02 3.23 4.11 3.26
Product-ratio 3.03 3.20 2.83 2.42 2.61 2.82 2.82
Multilevel FDM (arima) 2.09 2.17 1.77 2.01 1.66 1.92 1.93
Multilevel FDM (r.w.f.) 2.18 2.36 1.51 1.91 1.75 1.91 1.93

M Independent FDM 3.71 3.86 5.55 4.58 4.66 5.05 4.57
Product-ratio 3.23 3.49 3.00 2.32 2.61 3.14 2.96
Multilevel FDM (arima) 4.06 4.25 4.25 4.04 3.54 4.14 4.05
Multilevel FDM (r.w.f.) 4.00 4.25 2.92 3.70 3.39 3.94 3.70

F+M
2 Independent FDM 3.08 3.02 5.05 3.80 3.94 4.58 3.91

Product-ratio 3.13 3.35 2.91 2.37 2.61 2.98 2.89
Multilevel FDM (arima) 3.07 3.21 3.01 3.02 2.60 3.03 2.99
Multilevel FDM (r.w.f.) 3.09 3.30 2.21 2.81 2.57 2.92 2.82
MFE

F Independent FDM 0.98 1.00 4.48 1.48 2.90 3.27 2.35
Product-ratio 2.93 3.06 2.66 2.25 2.41 2.68 2.67
Multilevel FDM (arima) 1.97 2.03 1.61 1.80 1.45 1.76 1.77
Multilevel FDM (r.w.f.) 2.08 2.25 1.26 1.75 1.54 1.76 1.77

M Independent FDM 3.43 3.62 5.51 3.95 4.47 4.71 4.28
Product-ratio 3.17 3.44 2.91 2.23 2.51 3.07 2.89
Multilevel FDM (arima) 3.91 4.06 4.09 3.82 3.28 3.94 3.85
Multilevel FDM (r.w.f.) 3.95 4.19 2.81 3.62 3.29 3.87 3.62

F+M
2 Independent FDM 2.21 2.31 5.00 2.72 3.69 3.99 3.32

Product-ratio 3.05 3.25 2.79 2.24 2.46 2.87 2.78
Multilevel FDM (arima) 2.94 3.05 2.85 2.81 2.37 2.85 2.81
Multilevel FDM (r.w.f.) 3.02 3.22 2.03 2.68 2.42 2.81 2.70
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TABLE 9
Interval forecast accuracy of mortality and life expectancy across states and sexes by method, as

measured by the averaged mean interval score. The minimal forecast errors are underlined for each
state and each sex, whereas the minimal overall forecast error is highlighted in bold

Sex Method VIC NSW QLD TAS SA WA Mean

Mortality (×100)
F Independent FDM 3.12 2.28 4.93 3.57 3.46 4.44 3.63

Product-ratio 2.76 2.64 3.11 2.30 2.43 2.64 2.65
Multilevel FDM (arima) 1.83 1.74 2.41 1.66 1.70 1.71 1.84
Multilevel FDM (r.w.f.) 1.78 1.73 2.36 1.54 1.72 1.71 1.81

M Independent FDM 6.00 5.10 7.50 7.37 6.79 7.35 6.68
Product-ratio 3.63 3.52 4.10 3.12 3.46 3.84 3.61
Multilevel FDM (arima) 6.71 6.62 6.57 5.57 5.63 6.99 6.35
Multilevel FDM (r.w.f.) 4.61 4.50 4.68 3.81 4.07 4.81 4.41

F+M
2 Independent FDM 4.56 3.69 6.22 5.47 5.12 5.90 5.16

Product-ratio 3.20 3.08 3.60 2.71 2.94 3.24 3.13
Multilevel FDM (arima) 4.27 4.18 4.49 3.62 3.66 4.35 4.10
Multilevel FDM (r.w.f.) 3.20 3.11 3.52 2.68 2.90 3.26 3.11
e(0)

F Independent FDM 7.76 13.31 33.49 13.91 8.09 11.75 14.72
Product-ratio 20.09 21.50 14.10 17.84 15.49 17.70 17.79
Multilevel FDM (arima) 9.43 9.74 6.98 8.37 6.46 7.37 8.06
Multilevel FDM (r.w.f.) 8.07 8.93 5.29 6.51 5.88 6.50 6.86

M Independent FDM 33.67 35.66 49.16 37.06 34.50 29.49 36.59
Product-ratio 22.01 24.30 11.71 18.38 15.97 20.81 18.86
Multilevel FDM (arima) 32.51 33.57 29.37 31.44 27.92 32.57 31.23
Multilevel FDM (r.w.f.) 26.07 28.34 16.58 22.55 20.28 25.37 23.20

F+M
2 Independent FDM 20.72 24.49 41.32 25.48 21.30 20.62 25.65

Product-ratio 21.05 22.90 12.90 18.11 15.73 19.25 18.32
Multilevel FDM (arima) 20.97 21.66 18.17 19.90 17.19 19.97 19.64
Multilevel FDM (r.w.f.) 17.07 18.63 10.94 14.53 13.08 15.94 15.03

averaged mean interval score across 30 horizons, the multilevel functional data
method (r.w.f.) gives the smallest errors for forecasting female mortality rate and
life expectancy, as well as the smallest overall errors, whereas the product-ratio
method produces the most accurate forecasts for male mortality rate and life ex-
pectancy.

Apart from the expected error loss function, we also consider the maximum
point and interval forecast error criteria. Their results are also included in Supple-
ment D [Shang (2016)].

7. Conclusion. In this paper, we adapt the multilevel functional data model
to forecast age-specific mortality and life expectancy for a group of populations.
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We highlight the relationships among the adapted multilevel functional data, aug-
mented common factor method and product-ratio method.

As demonstrated by the empirical studies consisting of two populations, we
found that the independent functional data method gives the best forecast accuracy
for females, whereas the multilevel functional data and product-ratio methods pro-
duce more accurate forecasts for males. Based on their averaged forecast errors,
the multilevel functional data method (arima) should be used in the case of two
subpopulations, in particular for females.

In the case of more than two populations, it is evident that the multilevel func-
tional data and product-ratio methods consistently outperform the independent
functional data method. The multilevel functional data method (r.w.f.) gives the
most accurate mortality and life expectancy forecasts for age- and state-specific to-
tal mortality. When we further disaggregated the age- and state-specific total mor-
tality by sex, we found that the multilevel functional data method (r.w.f.) should
be used for forecasting female mortality and life expectancy, whereas the product-
ratio method should be applied for forecasting male mortality and life expectancy.

The superiority of the product-ratio and multilevel functional data methods over
the independent functional data method is manifested by a population with large
variability over age and year. For example, the male data generally show greater
variability over age and year than do the female data; as a result, the product-ratio
and multilevel functional data methods perform better in terms of forecast accu-
racy than the independent functional data method. Because the product-ratio and
multilevel functional data methods produce better forecast accuracy than the inde-
pendent functional data method overall, this may lead to their use by government
agencies and statistical bureaus involved in short-term demographic forecasting.
For long-term forecast horizons, any time series extrapolation methods, including
the proposed one, may not be accurate, as the underlying model may no longer be
optimal. Given that different changes are at play in different phases of a mortality
transition, the age components of change in the past are not necessarily informative
of the longer-term future. By incorporating prior knowledge, the Bayesian method
of Raftery, Lalic and Gerland (2014) demonstrated the superior forecast accuracy
of the long-term projection of life expectancy.

A limitation of the current study is that the comparative analysis among the five
methods focuses on errors that aggregate over all age groups for one- to 30-step-
ahead mortality forecasts. In future research, it is possible that the analysis of the
forecast errors for certain key age groups, such as those above 65, might shed light
on the results of more detailed analysis. For a relatively long time series, geometri-
cally decaying weights can be imposed on the computation of functional principal
components [see, e.g., Hyndman and Shang (2009)] for achieving potentially im-
proved forecast accuracy. In addition, the product-ratio and multilevel functional
data methods could be applied to model and forecast other demographic compo-
nents, such as age-specific immigration, migration and population size by sex or
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other attributes for national and sub-national populations. Reconciling these fore-
casts across different levels of a hierarchy is worthwhile to investigate in the future
[see an early work by Shang and Hyndman (2016)].
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H. L. Shang (DOI: 10.1214/16-AOAS953SUPP; .pdf). This supplement contains
a PDF divided into four sections. Supplement A: Some theoretical properties of
multilevel functional principal component decomposition; Supplement B: Deriva-
tion of posterior density of principal component scores and other variance param-
eters; Supplement C: WinBUGS computational code used for sampling principal
component scores and estimating variance parameters from full conditional densi-
ties; Supplement D: Additional results for point and interval forecast accuracy of
mortality and life expectancy, based on maximum forecast error measures.
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