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Imaging genetics has rapidly emerged as a promising approach for in-
vestigating the genetic determinants of brain mechanisms that underlie an
individual’s behavior or psychiatric condition. In particular, for early detec-
tion and targeted treatment of schizophrenia, it is of high clinical relevance
to identify genetic variants and imaging-based biomarkers that can be used
as diagnostic markers, in addition to commonly used symptom-based as-
sessments. By combining single-nucleotide polymorphism (SNP) arrays and
functional magnetic resonance imaging (fMRI), we propose an integrative
Bayesian risk prediction model that allows us to discriminate between in-
dividuals with schizophrenia and healthy controls, based on a sparse set of
discriminatory regions of interest (ROIs) and SNPs. Inference on a regula-
tory network between SNPs and ROI intensities (ROI-SNP network) is used
in a single modeling framework to inform the selection of the discriminatory
ROIs and SNPs. We use simulation studies to assess the performance of our
method and apply it to data collected from individuals with schizophrenia
and healthy controls. We found our approach to outperform competing meth-
ods that do not link the ROI-SNP network to the selection of discriminatory
markers.

1. Introduction. The advancements in neuroimaging technologies of the last
two decades have contributed to an improved understanding of brain function in
humans. Functional magnetic resonance imaging (fMRI) techniques in particular
have been increasingly used to map neuronal activity because of their relatively
low invasiveness, absence of radiation exposure and progressively broad utiliza-
tion. The statistical analysis of fMRI data has focused primarily on localizing re-
gions of the brain that are activated in response to a task, as well as determining
distributed networks associated with different brain functions (brain connectivity)
[Bowman (2014), Lindquist (2008)]. In this context, Bayesian approaches have
been proposed to incorporate prior knowledge into the analysis, and thus help
capture the complex inter-regional spatial correlations typical of fMRI data [see
Zhang, Guindani and Vannucci (2015), for a review].
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At the same time, recent developments in molecular genetics have lowered the
cost of individual genetic profiling, creating the opportunity to collect massive
amounts of genetic information and neuroimaging data on the same subjects. As
a result, the field of imaging genetics has rapidly emerged as a promising ap-
proach for investigating the genetic determinants of the brain mechanisms that
underlie an individual’s behavior or psychiatric condition [Hariri and Weinberger
(2003), Meyer-Lindenberg (2012)]. Ultimately, the objective is to identify specific
brain activity characteristics and genetic variants that can be used as biomarkers
to assist medical decision-making. However, the complexity, specificity and high-
dimensionality of the data present challenges to statistical analysis. On one hand,
the large number of variables calls for the use of dimension reduction techniques
to identify a sparse set of relevant fMRI features or genetic covariates, leading to
a problem of variable selection and multiple decision testing. On the other hand,
naive multistep multivariate approaches may lead to results that are difficult to in-
terpret and deprived of direct biological meaning, especially if these approaches
cannot incorporate additional biological information at some stage of the analysis
[Liu and Calhoun (2014)].

We consider a dataset comprising SNP allele frequencies and fMRI scans on
92 patients diagnosed with schizophrenia and 118 healthy controls from a study
conducted by the MIND Clinical Imaging Consortium [MCIC; Chen et al. (2012),
Stingo et al. (2013)]. Schizophrenia is often characterized as a disorder of brain
connectivity, with symptoms that usually develop slowly over months or years.
There are currently no medical tests to diagnose schizophrenia. The diagnosis is
typically made based on an interview of the person and family members. The lim-
itations of such symptom-based assessment have long been known in the literature
[Weiss (1989); and, more recently, Jacob (2013)]. For early diagnosis and targeted
treatment, objective markers to guide clinical practice are highly desirable. In this
respect, neuroimaging methods have been widely used to investigate functional
brain networks associated with the disease [see, for recent reviews, Calhoun and
Hugdahl (2012), Fornito et al. (2012)]. Many studies have also shown that genetic
alterations at the mRNA and SNP levels also play important roles in schizophre-
nia [see, e.g., Chen et al. (2012), Lencz et al. (2007)]. As a matter of fact, Potkin
et al. (2015) recently pointed out that focusing on brain imaging data in neuropsy-
chiatry without considering the genetic component may lead to neglecting a huge
component of the risk for developing schizophrenia. Therefore, there’s a need for
integrative models that can identify genetic variants and imaging-based biomark-
ers associated with the disease [Cao et al. (2013)]. At the same time, for practical
clinical relevance and diagnostic purposes, it is essential to develop risk prediction
models which can further provide an assessment of an individual probability of
being affected by schizophrenia.

Statistical approaches for the analysis of imaging genetics data can be classified
as follows. A first group of methods aims to investigate the association between
genetic markers and imaging endophenotypes, which are defined as brain imaging
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features that highlight the causal links between genes and the phenotypic expres-
sion of disorders [Cannon and Keller (2006)]. For this purpose, a variety of tech-
niques, such as group sparse regularization, multifactor dimensionality reduction,
principal component analysis, generalized low-rank regression, functional-mixed
effects models, independent component analysis (ICA) and clustering methods are
commonly employed [Chi et al. (2013), Floch et al. (2012), Hardoon et al. (2009),
Lin et al. (2014), Liu et al. (2009), Meda et al. (2012), Vounou, Nichols and Mon-
tana (2010), Vounou et al. (2012), Wang et al. (2012b), Zhu et al. (2014)]. A sec-
ond group of methods employs a two-step approach to detect prognostic markers:
first, new genes related to schizophrenia are discovered by studying their associa-
tion with selected imaging endophenotypes, and then the relevant biomarkers are
validated by assessing their association with the disease, often by fitting a sim-
ple frequentist logistic model [Chen et al. (2012), Lin, Calhoun and Wang (2014),
Potkin et al. (2009)]. A third group of approaches comprises predictive frequentist
methods that combine both SNPs and imaging biomarkers as covariates in a single
model [Cao et al. (2013), Wang et al. (2012a), Yang et al. (2010)]. In particular,
several regularization methods [e.g., L1-Lasso by Friedman, Hastie and Tibshi-
rani (2010), Elastic Net by Zou and Hastie (2005), L1-Support vector machine by
Zhang et al. (2006)], as well as boosting algorithms [e.g., LogitBoost, Dettling
and Biihlmann (2003)], can be used to identify imaging and/or genetics covariates
in the context of binary classification. Other methods, such as the sparse group
lasso [Simon et al. (2013)], multikernel and deep network learning methods [Deng
and Yu (2013), Sonnenburg et al. (2006)], have been effectively applied in the
context of disease prediction [Filipovych, Resnick and Davatzikos (2011), Wang
et al. (2012a), Zhang, Huang and Shen (2014)], and belong to this third group
of approaches. Finally, a few integrative Bayesian methods have been proposed
[Batmanghelich et al. (2013), Stingo et al. (2013)]; these approaches use a hier-
archical modeling framework to identify genetic variants associated with disease
through the mediation of selected image-based features.

In this manuscript, we propose a more encompassing integrative Bayesian risk
prediction model that allows us to discriminate between schizophrenic patients and
healthy controls based on a sparse set of discriminatory brain regions of interest
(ROIs) and SNPs. More specifically, the model allows for the identification of a
regulatory network between SNPs and ROl intensities, thus exploiting the imaging
features as an intermediate phenotype. Inference on the ROI-SNP associations
is then used, in a single modeling framework, to inform the selection of a set
of discriminatory ROIs and SNPs that are mostly associated with an increased
probability of schizophrenia through the use of variable selection priors dependent
on the inferred regulatory network. For this purpose, we introduce an innovative
covariate-dependent Markov random field (MRF) prior to guide the selection of
the discriminatory ROIs, whereby the selection probabilities take into account that
ROIs highly connected in the ROI-SNP network are likely to be also associated
with the clinical outcome, in addition to the spatial dependencies among the ROIs.
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We are able to achieve sharper biomarker selection through the specification of
nonlocal prior distributions [Johnson and Rossell (2010, 2012)] on the regression
coefficients of both the ROI-SNP network and the discriminatory ROIs and SNPs.

With respect to the alternative methods outlined previously, our approach has
several advantages. On the one hand, predictive frequentist methods can not eas-
ily model the interaction between the two data modalities, so to use the imag-
ing features as intermediate endophenotypes. Often, they also do not account for
the spatial dependency among ROIs or imaging features. Furthermore, our novel
Bayesian approach is more comprehensive than existing Bayesian methods. In par-
ticular, the method by Stingo et al. (2013) is of limited assistance in practical med-
ical decision-making since it fails to directly link genetic and imaging data with
the clinical outcome in a convenient risk prediction framework. As a matter of
fact, our modeling framework improves on the approaches previously mentioned
by assuming that: (i) genetic factors may affect nondiscriminatory brain regions
(as endophenotypes); and that (ii) genetic factors may be independently associated
with disease status without the mediation of a discriminatory imaging endopheno-
type. Finally, our method provides a direct assessment of the individual probability
of being affected by schizophrenia as a function of the observed fMRI and SNP
biomarkers, which can be used to inform targeted therapies. As a matter of fact,
by modeling the relationship between a scalar discrete response outcome and a
high-dimensional image predictor, our model can also be seen as an extension
of recently proposed scalar-on-image regression models [Goldsmith, Huang and
Crainiceanu (2014), Goldsmith et al. (2012), Li et al. (2015)] to the more chal-
lenging setting of imaging genetics.

In Section 2, we illustrate our proposed modeling approach. In Section 3, we
discuss posterior inference and show how our modeling framework can be used
to predict the disease status of future subjects, and then aid the diagnosis of
schizophrenia. Section 4 presents a few simulation studies in which we found our
approach to outperform competing methods that do not link the ROI-SNP network
to the selection of discriminatory markers. In Section 5, we discuss the results of
our inference on the dataset of schizophrenic patients and healthy controls. Sec-
tion 6 concludes the paper.

2. Bayesian model specification. Our primary goal is to define a predictive
model that accurately predicts the disease status of a subject based on their brain
activity (fMRI) and genetic profile (SNPs). In Section 2.1, we introduce a Bayesian
linear model that relates the observed ROl intensities and SNP allele frequencies to
a binary indicator of the disease status. We then use a direct acyclic graph (DAG) to
infer a regulatory network between SNPs and ROIs (Section 2.2) and incorporate
this DAG in a novel prior that guides the selection of discriminatory ROIs and
SNPs (Section 2.3).
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2.1. A predictive model for disease status. We represent the disease status of
n subjects by an n x 1 binary vector y, such that y; = 1 if subject i has been
diagnosed with schizophrenia and y; = O if subject i is a healthy control. The
brain activity is represented by an n x G matrix X of ROI-based summaries of
BOLD signal intensity as measurements on a set of G ROIs. We denote the set of
M available genetic covariates (SNPs) by an n x M matrix Z. For each SNP, the
genotype is coded by the number of minor alleles.

We consider a probit model to relate the ROIs and SNPs to the binary response
variable. Alternatively, a logistic model could be employed at the expense of an
increased computational cost. In particular, the probit formulation allows to adopt
the data augmentation approach of Albert and Chib (1993) by introducing an aux-
iliary latent variable y*, and to express the probit binary regression model on the
clinical outcome y; as a gaussian linear regression model on the auxiliary vari-
ables. Hence, our predictive model is defined as

1) Y =1,80+ZB" + X8 +v,
where
1 if y*>0
2 J— 9 1 b
) Vi [O, otherwise,
1,, is the unit vector of dimension n, v = (vy, ..., v,). ~ N(0,1,) is an error term,

and I, is the identity matrix of size n x n.

Most likely, only a subset of ROIs and SNPs can discriminate between
schizophrenia cases and healthy controls among the n subjects. We select dis-
criminatory SNPs and ROIs as biomarkers through the introduction of two binary
vectors, y(l) = (y(l), e y(l)) and y(z) = (y(z), el (2)), with yn(f) =1 if SNP

1 M 1 G
m is included in the model and yn(f) = 0 otherwise; similarly, ygfz) =1if ROl g is
included in the model and ygz) = 0 otherwise. We use the latent vectors y () and
¥ @ to specify the prior on each regression coefficient in (1) as a scale mixture of
a product moment prior (pMOM), described by Johnson and Rossell (2012), and
a point mass at zero,

3 p(BP NV h )=y PPMBY L 1) + (1= v, )T (BY)),

where PM (,8,511 ); r, hl,az) denotes the pMOM density of parameters », k| and
o2. The prior on B, p(ﬁéz) |y @, ha, r) is defined similarly. A pMOM prior has
the following probability density function:

‘ ) 1 o5 BY _'32
@ PM(Birh.o7) = G ) WCXP{_%Z}’

with support on the real line. The parameter r characterizes the order of the distri-
bution and % determines the dispersion around zero. Large values of /4 correspond
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to a prior that is well spread out over the parameter space, and typically encour-
ages the selection of relatively large effects. The pMOM distribution is symmetric
at zero and gives a low prior probability to coefficients close to 0, thus elimi-
nating regression models that contain unnecessary explanatory variables, a prop-
erty which is common to the nonlocal prior distributions [Johnson and Rossell
(2010, 2012)]. Finally, we assume a pMOM prior on the intercept term By by
p(Bolho, r) = PM(Bo; r, ho, 1), with scale parameter k.

2.2. A DAG approach for the ROI-SNP network. In this section, we aim to
identify a regulatory network in which SNPs can affect ROI intensities. This mod-
eling strategy, besides providing interesting insights into the biological mecha-
nisms that characterize schizophrenic patients, yields critical information that will
be incorporated into our biomarker selection procedure (see Section 2.3) and will
lead to satisfactory prediction performances (see Section 4). We model the ROI-
SNP network as a DAG. We assume that each ROI x, can be affected only by
the SNPs, that is, the arrows can only go from SNPs into ROIs. We assume that
the ROIs are independent conditionally upon the SNPs, that is, X¢ 1L X,/|Z. The
likelihood of a DAG can be written as a system of linear equations, where each
regression corresponds to an ROI that is potentially affected by all the SNPs:

(5) X, =ZBY) + &4, g=1,...,G,
with e, = (e1g4, ..., eng)T ~ N(0, o,1,) indicating the error term. For each ROI,

we are interested in identifying a small number of explanatory genetic factors.
This goal can be accomplished via a variable selection approach by introducing

a binary matrix variable, ré = (y(3) ey }’G))T

3 . 3 .
(Vem) G With ygn = 1 if
SNP m is related to ROI g and ygm = 0, otherwise. Given T'®, each compo—
nent of 8 2,3) follows the mixture distribution (3) with parameters r, 4> and ag on

the pMOM density. The matrix I'® defines the ROI-SNP network. We assume
conjugate inverse-gamma priors for the error variances og ~ Inv-Gamma(c, ).
Further, we capture ROI connectivity via the MRF prior defined in Section 2.3.3.

2.3. An integrative approach via variable selection priors. The selection of
relevant predictors is a key step in defining a predictive model. In our Bayesian
model, three sets of binary indicators define the inclusion of ROI-SNP connections
(I'®), discriminatory SNPs (y1) and discriminatory ROIs (y®). We specify
innovative prior distributions on these parameters that encourage sparsity, relate
the ROI-SNP network to the selection of discriminatory markers and account for
the ROI spatial dependencies.

2.3.1. Selection of the ROI-SNP network. The binary variable ygm indicates
whether there is a relationship between ROI g and SNP m. We assume a Bernoulli
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prior on yg(;?’n), with parameter ¢, defined as

(6) p(T¥|q) = H H qygm(l—q )i=vim

g=1m=1

The hyperparameters g,’s define the prior probability that is assigned to a con-
nection between ROI g and any given SNP. In our application, we fix these param-
eters at a small value to encourage the selection of sparse networks. Alternatively,
we could place a Beta hyperprior on g, yielding an automatic multiplicity penalty
since the posterior distribution of g will become more concentrated at small val-
ues near 0 as the total number of variables increases [Scott and Berger (2010)].

2.3.2. Selection of discriminatory SNPs. For the latent SNP selection indica-
tor y(1, we specify a prior distribution that accounts for the ROI-SNP regulatory
network as defined by the matrix I'®. This prior defines a probabilistic depen-
dency between the ROI-SNP network and the clinical outcome. We model the
SNP selection indicators y (! as a function of T®:

7 P(y(1)|F(3), V1, T1) & exp(vljl,{,,y(l) + n]lgl“@y(l)).

The elements of 1) are stochastically independent given I'®, v; and t; for a
given SNP m, the inclusion probability is then defined as

3
exp (V1 + 71 Lo ¥g )

I+expvi+11 X5, vim)

This inclusion probability is an increasing function of the number of ROIs con-
nected to each SNP, so as to reflect our hypothesis that SNPs involved in the
regulatory network are more likely to be significantly correlated with the clini-
cal outcome. The parameter vy controls the prior inclusion probability and is set to
a fixed value that encourages sparsity on the SNP selection. The parameter t; mea-
sures the effect of the ROI-SNP network on the SNP selection. When 71 = 0, this
prior distribution reduces to an independent Bernoulli with probability of success
exp(v1)/[1 + exp(v1)], the logistic transformation of v;. We assume a truncated
Normal distribution on 71, truncated at zero with mean O and variance 031. If the
data support our hypothesis that SNPs involved in the ROI-SNP network are more
likely to be associated with the clinical outcome, we will expect to observe a pos-
terior distribution of 77 that gives small probability to values close to zero.

(8) PV =11%, v, 1) =

2.3.3. Selection of discriminatory ROIs. We define a prior on the ROI binary
indicators y® that captures two main features of our data: (1) ROIs highly con-
nected in the ROI-SNP network are more likely associated with the clinical out-
come; and (2) ROIs located in adjacent areas of the brain show a high level of
correlation.
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More specifically, we further generalize the prior presented in Section 2.3.2 to
include a spatial process on ¥ that takes into account network dependencies
within the ROIs so that connected ROIs are more likely to be selected together. We
specify the ROI spatial network as follows: two ROIs, g and g’, are connected by
an edge if the distance between them is among the kth smallest distances from g
to other ROIs. We denote by N, the set of neighbors of ROI g.

Following Besag (1974), we define a symmetric matrix, B, that captures the
spatial dependencies between ROIs as follows:

d(g, g)?

if ¢’ € N, and 0 otherwise,
2(7,2 } & §

bggr = exp{ —
where d(g, g') is the Euclidean distance between ROIs g and g’, computed using
the physical location of the ROIs in the brain. In our application, crrz was cho-
sen to be equal to the average nearest neighbor square distance. We model spatial

dependencies via a covariate-dependent MRF prior on the ygz) ’s, defined by

© Py@Ir® vy, v, m)
o exp {(uzlg + 01 TOT) Y@ 4 Y b I(y? = yg@)}_
8.8

Given the binary variables y(,z), the probability of yg(z) is an increasing function
of the number of SNPs connected to ROI g:

2
PO, (1) ye,)
(10)

M
2
o exp (vzyé@ +1) yg(;)yéfz) +2m2 ) bgg/l'(y&fz) = y;, ))>
m=1 g'eN,

The parameter v> controls the sparsity of the model, 7o measures the effect of
the number of SNPs connected to the ROIs, and 1, controls the strength of the
connections in the ROI spatial network. High values of 1, encourage neighboring
features to take on the same ygfz) value. MRF priors are commonly used to account
for spatial dependencies between variables measured in nearby locations, such as
neighboring ROIs. The novel MRF prior (9) can be seen as an improved tool, as it
accounts for both spatial dependencies and the ROI-SNP network.

We treat v, and 1), as fixed hyperparameters [Li and Zhang (2010), Stingo, Van-
nucci and Downey (2012)]. It is known that allowing 7, to vary can lead to a phase
transition problem, that is, the number of yg(z) = 1 undergoes a dramatic change
given an infinitesimal change in 7, [Li and Zhang (2010), Stingo et al. (2011)].
Even if n; is fixed in this study, our covariate-dependent MRF includes an addi-
tional stochastic parameter 1 that links the ROI-SNP network to the biomarker
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selection, and a phase transition may occur if the prior on 7 is not carefully speci-
fied. For that reason, we assume 1, to follow a normal distribution with O as mean
and variance 032, truncated on the left by 0 and on the right by r;, which repre-
sents a problem-dependent phase transition threshold parameter. In Section B of
the Supplementary Material, we provide guidelines and an illustrative example to
demonstrate how to detect a phase transition value.

3. Posterior inference. For posterior inference, our primary interest is in the
estimation of the selection indicators (y(l), y(z)), the ROI-SNP network I'(3), and
the parameters t; and 1o, which define the degree of influence of the ROI-SNP
network on the selection of the predictive markers. We use a Metropolis—Hastings
within Gibbs sampler to sample from the posterior distribution of these parameters.
The computational efficiency of our stochastic search algorithm can be improved
by integrating the regression coefficients 8o, 8", B®, B and the variance pa-
rameter ¢ using a standard Laplace approximation [Johnson and Rossell (2012)].
(See Section A in the Supplementary Material for more details.) Therefore, we
focus on the marginal posterior distribution of (y(l), y(z), I'(3), 71, T0).

The resulting stochastic search Markov chain Monte Carlo (MCMC) algorithm
efficiently explores the model space and can quickly find the most probable set
of covariates with high posterior probabilities, while spending less time in re-
gions with low posterior probabilities [George and Mcculloch (1997), Stingo et al.
(2010)]. Stochastic search variable selection approaches are known to have greater
accuracy in binary regression models than standard variable selection methods
such as forward, backward or stepwise selection [Swartz, Yu and Shete (2008)].

3.1. MCMC sampling. Our algorithm comprises four Metropolis—Hastings
(M-H) steps (1)—(4) and a nontrivial step (5) in which samples are drawn from
a doubly-intractable distribution, that is, a distribution with an unknown normaliz-
ing constant that depends on the sampled parameter.

Here, we succinctly describe our MCMC algorithm:

1. The binary variable selection parameters y (1), y® are updated using separate

M-H steps.
A new value for yV (or @) is proposed as follows: we randomly choose
between changing the value of a single component, from 0 to 1 or from 1 to
0, and swapping two components with opposite values. This step explores the
model space in order to find relevant SNPs and ROls, respectively.

2. The parameter I'® is updated using M-H steps based on the same type of
moves defined for 1) and y @ . This step explores the model space that defines
the ROI-SNP network.

3. An M-H step is used to update the latent variables, y;’s. A y»"*V is proposed by
an exponential distribution with scale parameter 1/y*°ld, y*1ew ~ Exp(1/y*old)

if y, = 1, and y™ ~ — Exp(—1/y:°d) if y, =0.
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4. An M-H step is used to update 7 in (7): a 7{'*V is proposed from a truncated

fld and truncation at 0. The variance of this distribution

normal with mean t
(before truncation), h%l , represents a tuning parameter to be set so as to facilitate
exploring the parameter space and to induce a good acceptance rate.

5. The interaction parameter 77 in (9) is sampled from a doubly-intractable distri-
bution.

We draw 1 from the following density:

p(nly®, 1) o p(y @IT®, ) p(r2)
(11)
p(12)

x exp{(vzllé + tQJlLI‘G)T)y(z)} Z(0)

with Z(t2) being the normalizing constant of the prior distribution of y®,
which is not available analytically. The M-H acceptance ratio depends on two
unknown normalizing constants, Z(72) and Z (rznew). To bypass this issue, we
adapt the approach proposed by Atchadé, Lartillot and Robert (2013) to sample
from our integrative prior (9). Technical details are presented in Section B of
the Supplementary Material.

The MCMC sampler results in lists of the included biomarkers (ROIs, SNPs and
ROI-SNP pairs), together with their posterior probabilities. Important biomarkers
can be selected by assessing the marginal posterior probabilities p(y @y, X, Z),
i=1,2,and p(l"(3) ly, X, Z), estimated from the relative frequency of the inclu-
sion of each biomarker in the models visited by the MCMC sampler. Samples
from the posterior distribution of 7; and 7o can be used to infer the effect of the
ROI-SNP pairs on the selection of the discriminatory biomarkers.

3.2. Classification of future cases. We can use Npey further measurements
Xhew and Zyey to predict disease status ypew for new subjects. We standardize Xpew
and Zpey using the mean and variance from the training data. The latent variables
Yhew are predicted using a Bayesian model averaging approach [Sha et al. (2004)]:

~x ~ ~(1) ~(2) Ak ~
(12) Yiew = Z (]lnﬁ0+Znewﬁ +Xnewﬂ )P()’(l), y(2)|y , X, Z, 9)7
(y(l)’y<2))

A PN ) N . . A
where 0 = (71, 12, l"( )) is a posterior estimate of 6 = (tq, 12, F(S)) and ® =
~()T =T 7 . .
M @ )T is the posterior mode of ® = (B, LT ,B(Z)T)T. The latent

(Bo. B~ . B
variable y* is set to the mean y* of the y*’s, sampled during the MCMC algo-
rithm. The summation in equation (12) is performed over the / models that have
the highest posterior probability [Madigan and Raftery (1994)]. Given yj}.,,, the
corresponding predicted disease binary indicators ypey for the Npeyw patients can

be computed via equation (2) [Sha et al. (2004)]. The predictive probabilities of
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*

disease status can be computed as p(y; = 1|X, Z) ~ ®(y}), where ® is the nor-
mal cumulative distribution function. An area under the receiver operating char-
acteristics curve (AUC) statistic can be computed using these probabilities on the
validation set (denoted as AUCp).

4. Simulation study. We investigate the performance of our method using
simulated data that mimic the characteristics of the MCIC schizophrenia data. The
goal of this analysis is threefold: identify the predictive biomarkers, reconstruct
the ROI-SNP network, and correctly predict the disease status of the subjects in
the validation set.

We generated training and validation sets of 168 and 42 samples, respectively.
We retrieved the matrix Z of the observed SNP data from the MCIC schizophrenia
study. This approach ensures that the realistic pattern of correlation across the
SNPs is preserved. The ROI-SNP network I'® is generated from an independent
Bernoulli distribution, with probability chosen uniformly between 1% and 5%,
which on average results in 282 connections (3%) included in the network. The
regression coefficients of the connections are set to either 1 or —1; ,ngz e{l, -1}

if ygf,i) =1, and 0 otherwise. The matrix X of G = 116 ROIs is generated using
independent multivariate distributions as follows:

M

(13) Xig =) ZimBoy + Eig,

m=1
where € = (g;¢) ~ N Onxc, I, ® 271) and Q is the precision matrix and de-
fined as a banded matrix of bandwidth 3, that is, [2]g o = O for |g — g'l >3,
[Q],,e' = p otherwise for g # g’, and 1 on the diagonal. This induces a decom-
posable graph [Zhang, Wiesel and Greco (2013)] with exactly 800 edges, which
is equivalent to a precision matrix €2 with only 4% nonzero entries. The parame-
ter p defines the degree of partial correlation between the ROIs. When p # 0, the
data-generating process of the ROIs differs from our proposed model, in which
the ROIs are assumed to be independent in the ROI-SNP network model. We first
investigated the performance of our approach on two cases: p € {0.1, 0.2}. To en-
sure that our simulation studies encompassed realistic ROI correlation patterns,
we also investigated a scenario in which € is set as a sparse precision matrix,
QgL estimated from the observed ROISs via graphical lasso [Friedman, Hastie and
Tibshirani (2008)].

In our simulation studies, we investigated how the prediction and selection per-
formances are affected by the effective size of the association with the predictive
biomarkers. Specifically, in scenario 1, we set the absolute value of the nonzero
coefficients ,8,(”1 ) and ,85,2) to either 0.5, 1 or 1.5. We set the intercept term to g = 1.
We selected 6 ROIs and 5 SNPs to be associated with the clinical outcome. In this
scenario, all selected ROIs and SNPs are highly connected in the ROI-SNP net-
work, that is, they all have a large number of connections (6-8), or degrees, in
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the ROI-SNP graph. Also, 3 ROIs and 2 SNPs are set to be negatively associ-
ated with the clinical endpoint. The analysis of more challenging scenarios, that is,
with small effect sizes, is of particular interest in our application context since the
SNPs identified from either genome-wide association studies (GWAS) or candi-
date gene studies have often been shown to explain only a small part of heritability
[Shahbaba, Shachaf and Yu (2012)].

In a second simulation study, we considered 3 additional scenarios that allow
us to understand how the performances of our models change with respect to the
degree of connectivity of the discriminatory markers. In scenario 2, we selected 3
ROIs and 3 SNPs that are highly connected (degrees between 6 and 8) in the ROI-
SNP network as well as 2 SNPs and 3 ROIs that are less connected in the same
network, that is, having at most 1 connection. In scenario 3, we selected only 1
ROI and 1 SNP that are highly connected, with degrees 7 and 8 respectively, and 5
ROIs and 4 SNPs that are less connected, with degrees either O or 1. In scenario 4,
we selected 11 markers, all of which had zero or very small degrees (1 or 2) in
the ROI-SNP network. The binary outcome and the underlying latent variable
are obtained by employing equations (2) and (1). Setting the hyperparameters is
discussed in Section C of the Supplementary Material.

4.1. Results. To highlight the importance of incorporating the ROI-SNP net-
work in our model, we compare our integrative Bayesian approach for imaging
genetics (iBIG) with a Bayesian two-step approach (BTS), defined by setting
71 = 1p = 0. BTS fails to link the selection of ROI-SNP pairs to the selection
of the discriminatory ROIs and SNPs, and then independently fits the two stages
(ROI-SNP network and clinical predictive model) that define our approach. Both
methods were run for 80,000 MCMC iterations with a burn-in period of 30,000 it-
erations to allow our adaptive MCMC algorithm to converge; iBIG and BTS were
fitted using the same parameter settings. To assess the convergence of the MCMC
algorithm, we ran two MCMC chains for each case with randomly chosen starting
points. Details on the MCMC diagnostics are given in Section E of the Supple-
mentary Material.

We further compared our methods with three alternative approaches: the sparse-
group lasso (sGroup-Lasso) binomial regression of Simon et al. (2013), the L1
support vector machine (L/-SVM) of Zhang et al. (2006) and the neural network
with model averaging (avNNnet) of Ripley (1996). The penalty parameters for
sGroup-Lasso and L1-SVM were chosen following a 10-fold and 5-fold cross-
validation approach as suggested and implemented in the R packages SGL and
penalizedSVM, respectively. The R package caret was used to fit the avNNnet
method. We also compared our approach with the penalized L1 Lasso [LI-Lasso,
Friedman, Hastie and Tibshirani (2010)], elastic net [Net-Lasso, Zou and Hastie
(2005)], multikernel [MKL, Sonnenburg et al. (2006)] and deep learning methods
[DNN, LeCun, Bengio and Hinton (2015)]. The results of these additional com-
parisons are presented in the Supplementary material Section H. We computed
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the F1-measure to assess the performances in terms of variable selection: the F1-
measure is defined as F1 =2PR/(P + R), that is, as the harmonic mean of the
precision (P) and the recall, or sensitivity, (R). The F1-measure is commonly used
in the presence of a very skewed class imbalance, such as variable selection in
high-dimensional sparse data. All three alternative methods yield a list of selected
covariates and predict the disease status for the units in the validation set. Concern-
ing our methods, all covariates with marginal posterior probability greater than 0.5
were selected. To evaluate the prediction performance, we reported the AUC and
the misclassification error rate (MCE) on the validation set following the strategy
defined in Section 3.2.

Both iBIG and BTS perfectly reconstructed the ROI-SNP network, r'®, with
the AUCs for variable selection close to 1 for all simulation scenarios. Hence,
both methods can accurately reconstruct the ROI-SNP network even when partial
correlations are of small magnitude. Table 1 shows the variable selection and pre-
diction performances for all competing methods across 9 scenarios: iBIG always
performs best, both in terms of variable selection (much higher F1) and prediction
(larger AUCp and smaller MCE). As the absolute values of the “effect sizes” in-
crease from 0.5 to 1 or 0.5, the performances of our method improved for all levels
of the correlation structure between ROIs (p). Results from the second simulation
study are summarized in Table 2; for all simulation scenarios, data were generated
setting p = 0.1 and the absolute value of the regression coefficients to 1. The set of
discriminatory biomarkers differs between scenarios, and a fair performance com-
parison can be done only within each scenario. iBIG performs much better than
the competing methods when there is a large number of discriminatory biomarkers
that are also highly connected in the ROI-SNP network. As expected, we did not
observe a significant difference between iBIG and BTS in scenarios 3 and 4, as the
number of relevant biomarkers highly connected in the network is only 2 and O,
respectively. Figure 1 shows the density kernel plots of the posterior distribution
of the network effect parameters 71 and 1, for each scenario. The mode of these
distributions increased with the number of discriminatory biomarkers involved in
the network, which highlights the importance of our prior (9) that relates, through
71 and 12, the inferred ROI-SNP network to the selection of the discriminatory
biomarkers. Note that our approach accounts for the uncertainty on the estimation
of the ROI-SNP network, and can flexibly separate the two stages of our approach
by assigning values to 71 and 7, that are close to zero when suggested by the data
(such as in scenarios 3 and 4).

S. The MCIC schizophrenia dataset. We consider a study on schizophrenia
conducted by the MCIC, which is a multi-institutional effort to apply neuroimag-
ing techniques in the study of mental illnesses and brain disorders. The study
aimed to identify neural markers for disease onset by using functional imaging
combined with clinical characterization and genomic analysis. The data we have
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Simulation results—scenario 1 (30 replicates). Coeff is the effect size in absolute value, F1 is the
Fl-measure, AUCp is the predictive AUC, and MCE is the misclassification error.

The best values are shown in boldface

Method p Coeff F1 AUCp MCE

avNNnet 0.1 0.5 0.150 (0.061) 0.759 (0.092) 0.327 (0.089)
sGroup-Lasso 0.1 0.5 0.342 (0.054) 0.814 (0.075) 0.282 (0.070)
L1-SVM 0.1 0.5 0.241 (0.071) 0.812 (0.102) 0.254 (0.074)
iBIG 0.1 0.5 0.564 (0.120) 0.889 (0.051) 0.194 (0.047)
BTS 0.1 0.5 0.340 (0.141) 0.738 (0.122) 0.316 (0.093)
avNNnet 0.1 1 0.145 (0.046) 0.853 (0.049) 0.237 (0.051)
sGroup-Lasso 0.1 1 0.321 (0.050) 0.908 (0.042) 0.204 (0.061)
L1-SVM 0.1 1 0.281 (0.097) 0.920 (0.041) 0.170 (0.052)
iBIG 0.1 1 0.789 (0.144) 0.948 (0.038) 0.134 (0.063)
BTS 0.1 1 0.548 (0.145) 0.894 (0.059) 0.214 (0.080)
avNNnet 0.1 1.5 0.159 (0.04) 0.889 (0.032) 0.201 (0.056)
sGroup-Lasso 0.1 1.5 0.321 (0.044) 0.943 (0.029) 0.168 (0.063)
L1-SVM 0.1 1.5 0.297 (0.086) 0.941 (0.024) 0.154 (0.051)
iBIG 0.1 1.5 0.821 (0.156) 0.974 (0.025) 0.099 (0.048)
BTS 0.1 1.5 0.663 (0.129) 0.922 (0.057) 0.163 (0.075)
avNNnet 0.2 0.5 0.145 (0.069) 0.771 (0.088) 0.318 (0.089)
sGroup-Lasso 0.2 0.5 0.344 (0.056) 0.787 (0.08) 0.310 (0.073)
L1-SVM 0.2 0.5 0.230 (0.051) 0.797 (0.083) 0.279 (0.094)
iBIG 0.2 0.5 0.566 (0.122) 0.873 (0.068) 0.221 (0.078)
BTS 0.2 0.5 0.354 (0.160) 0.736 (0.126) 0.321 (0.114)
avNNnet 0.2 1 0.164 (0.048) 0.844 (0.040) 0.230 (0.048)
sGroup-Lasso 0.2 1 0.336 (0.056) 0.898 (0.042) 0.230 (0.057)
L1-SVM 0.2 1 0.267 (0.077) 0.904 (0.037) 0.204 (0.061)
iBIG 0.2 1 0.834 (0.127) 0.954 (0.039) 0.127 (0.059)
BTS 0.2 1 0.546 (0.132) 0.869 (0.066) 0.234 (0.088)
avNNnet 0.2 1.5 0.155 (0.052) 0.861 (0.043) 0.233 (0.052)
sGroup-Lasso 0.2 1.5 0.329 (0.033) 0.935 (0.036) 0.167 (0.042)
L1-SVM 0.2 1.5 0.304 (0.095) 0.928 (0.034) 0.185 (0.050)
iBIG 0.2 1.5 0.938 (0.076) 0.991 (0.012) 0.055 (0.035)
BTS 0.2 1.5 0.647 (0.140) 0.913 (0.062) 0.161 (0.079)
avNNnet QaL 0.5 0.132 (0.055) 0.803 (0.067) 0.283 (0.092)
sGroup-Lasso QaL 0.5 0.344 (0.048) 0.832 (0.078) 0.254 (0.079)
L1-SVM Qe 0.5 0.223 (0.061) 0.835(0.122) 0.239 (0.085)
iBIG QaL 0.5 0.603 (0.146) 0.912 (0.070) 0.162 (0.068)
BTS Qe 0.5 0.387 (0.113) 0.821 (0.112) 0.248 (0.102)
avNNnet QaL 1 0.132 (0.055) 0.886 (0.043) 0.217 (0.059)
sGroup-Lasso QaL 1 0.318 (0.052) 0.952 (0.030) 0.137 (0.050)
L1-SVM QoL 1 0.245 (0.069) 0.943 (0.038) 0.144 (0.050)
iBIG QoL 1 0.715 (0.161) 0.971 (0.021) 0.090 (0.035)
BTS QaL 1 0.561 (0.129) 0.939 (0.043) 0.142 (0.057)
avNNnet QaL 1.5 0.105 (0.033) 0.924 (0.041) 0.154 (0.054)
sGroup-Lasso QoL 1.5 0.314 (0.044) 0.972 (0.020) 0.105 (0.047)
L1-SVM QaL 1.5 0.255 (0.083) 0.962 (0.017) 0.111 (0.028)
iBIG Qe 1.5 0.833 (0.130) 0.988 (0.013) 0.060 (0.032)
BTS QoL 1.5 0.654 (0.100) 0.969 (0.039) 0.113 (0.053)
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Simulation results—scenarios 1-4 (30 replicates). F1 is the F1-measure, AUCp is the predictive
AUC, and MCE is the misclassification error

Method Scenario F1 AUCp MCE
avNNnet Scenario 1 0.152 (0.044) 0.841 (0.054) 0.249 (0.059)
sGroup-Lasso Scenario 1 0.330 (0.050) 0.906 (0.049) 0.208 (0.064)
L1-SVM Scenario 1 0.294 (0.094) 0.931 (0.026) 0.161 (0.040)
iBIG Scenario 1 0.789 (0.144) 0.948 (0.038) 0.134 (0.063)
BTS Scenario 1 0.548 (0.145) 0.875 (0.069) 0.214 (0.080)
avNNnet Scenario 2 0.236 (0.045) 0.821 (0.061) 0.240 (0.072)
sGroup-Lasso Scenario 2 0.374 (0.048) 0.896 (0.041) 0.187 (0.051)
L1-SVM Scenario 2 0.259 (0.070) 0.810 (0.068) 0.251 (0.062)
iBIG Scenario 2 0.840 (0.157) 0.928 (0.063) 0.138 (0.078)
BTS Scenario 2 0.724 (0.227) 0.896 (0.094) 0.163 (0.094)
avNNnet Scenario 3 0.230 (0.062) 0.732 (0.062) 0.330 (0.049)
sGroup-Lasso Scenario 3 0.387 (0.037) 0.865 (0.036) 0.232 (0.045)
L1-SVM Scenario 3 0.354 (0.106) 0.826 (0.063) 0.255 (0.069)
iBIG Scenario 3 0.881 (0.112) 0.902 (0.078) 0.172 (0.082)
BTS Scenario 3 0.844 (0.115) 0.890 (0.076) 0.183 (0.085)
avNNnet Scenario 4 0.164 (0.037) 0.767 (0.046) 0.283 (0.053)
sGroup-Lasso Scenario 4 0.393 (0.049) 0.914 (0.025) 0.159 (0.039)
L1-SVM Scenario 4 0.364 (0.133) 0.806 (0.043) 0.267 (0.056)
iBIG Scenario 4 0.891 (0.105) 0.948 (0.052) 0.103 (0.065)
BTS Scenario 4 0.868 (0.135) 0.946 (0.039) 0.104 (0.042)
(a) (b)
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available consist of 92 patients diagnosed with schizophrenia and 118 healthy con-
trols. Prior to inclusion in the study, all healthy participants were free of any med-
ical, neurological or psychiatric illnesses and had no history of substance abuse.
The inclusion criteria for patients were based on a diagnosis of schizophrenia,
schizophreniform or schizoaffective disorder. Details on data collection and pre-
processing, as well as the participants’ demographics (sex, age, ethnicity), can be
found in Chen et al. (2012) and Gollub et al. (2013), and are also reported in Sec-
tion I of the Supplementary Materials. In summary, fMRI data were collected from
all participants during a sensorimotor task, a block-design motor response to au-
ditory stimulation. In particular, a stimulus-on versus stimulus-off coefficient was
obtained for each of the 53 x 63 x 46 voxels that comprised the statistical para-
metric maps. Each brain image was then segmented into G = 116 ROIs accord-
ing to the Automated Anatomical Labeling (AAL) atlas [Tzourio-Mazoyer et al.
(2002)]. ROI-based summaries were obtained by computing the median of the sta-
tistical parametric map values of blood oxygenation level-independent (BOLD)
measurements from all voxels within each region [Chen et al. (2012)]. In addition
to the imaging data, we have measurements available on M = 81 genetic covariates
(SNPs) for each participant in the study. The SNPs were selected by accessing the
online Schizophrenia Research Forum (http://www.schizophreniaforum.org/) and
querying for SNPs that had previously been implicated in schizophrenia. We ran-
domly split the MCIC data into a training set and a validation set of 168 (4/5) and
42 (1/5) samples, respectively. To obtain a training set with enough information
on both groups, we followed a balanced allocation scheme and randomly selected
94 healthy controls and 74 patients for the training set, and 24 healthy controls and
18 patients for the validation set. We constructed a spatial network among ROIs
based on the physical location of the regions in the brain. The three-dimensional
spatial coordinates of the centroids of each ROI allowed us to calculate a distance
matrix among the ROIs based on the Euclidean distance.

We used the resulting network to define the MRF prior (9). We ran 6 MCMC
chains with different starting points, both for iBIG and BTS. We assessed the
agreement of the results among the six chains by evaluating the correlation coeffi-
cients between the marginal posterior probabilities for biomarker selection. These
indicated good concordance between the six chains, with all correlations > 0.9.
MCMC diagnostics confirmed that our chains were run for a satisfactory number
of iterations (see Section E in the Supplementary Material for details).

By means of 5-fold cross-validation, we compared the prediction performance
of both iBIG and BTS to the performance of several competing methods (Table 3).
Furthermore, we compared the performance of our integrative model including
the ROI-SNP network with simpler models that incorporated only the SNP or
ROI covariates. As a general result, for most methods, increased accuracy can be
observed when the two data modalities are combined in a single framework, in
terms of both MCE and out-of-sample predictions (summarized by AUCp). The
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TABLE 3
Comparison of predictive performance on the MCIC data. Empirical standard errors are between
parentheses. “NA” is used to indicate that the sparse group lasso is not applicable when using only
one type of covariate

Both ROIs and SNPs

Method iBIG BTS L1-Lasso L1-SVM LogitBoost
AUCp 0.69 (0.03) 0.66 (0.03) 0.62 (0.04) 0.64 (0.05) 0.63 (0.06)
MCE 0.33 (0.02) 0.34 (0.03) 0.36 (0.02) 0.40 (0.02) 0.37 (0.04)
Method Net-Lasso sGroup-Lasso MKL avNNnet DNN

AUCp 0.67 (0.02) 0.67 (0.03) 0.53 (0.01) 0.68 (0.03) 0.55 (0.02)
MCE 0.34 (0.02) 0.36 (0.01) 0.43 (0.00) 0.36 (0.02) 0.46 (0.03)

Only SNPs

Method iBIG* BTS* L1-Lasso L1-SVM LogitBoost
AUCp 0.64 (0.04) 0.57 (0.03) 0.62 (0.02) 0.55 (0.02)
MCE 0.45 (0.01) 0.44 (0.01) 0.44 (0.02) 0.49 (0.02)
Method Net-Lasso sGroup-Lasso MKL avNNnet DNN

AUCp 0.61 (0.04) NA 0.59 (0.01) 0.63 (0.02) 0.53 (0.01)
MCE 0.43 (0.02) NA 0.44 (0.00) 0.40 (0.01) 0.49 (0.02)

Only ROIs

Method iBIG* BTS* L1-Lasso L1-SVM LogitBoost
AUCp 0.66 (0.02) 0.62 (0.02) 0.65 (0.02) 0.62 (0.02)
MCE 0.37 (0.02) 0.40 (0.02) 0.40 (0.02) 0.39 (0.02)
Method Net-Lasso sGroup-Lasso MKL avNNnet DNN

AUCp 0.65 (0.02) NA 0.53 (0.01) 0.65 (0.02) 0.55 (0.02)
MCE 0.39 (0.02) NA 0.44 (0.00) 0.37 (0.02) 0.44 (0.00)

*IBIG and BTS are equivalent with only either ROIs or SNPs as covariates.

iBIG method performed generally better than the BTS method (without the ROI-
SNP network) and the other competing methods. Small standard errors confirm
good stability of the results.

We then investigated the markers selected by our approach. Figures 2 and 3
show the marginal inclusion posterior probabilities for the ROIs, SNPs, and for
each connection in the ROI-SNP network. These probabilities can be used to pri-
oritize the relevant ROIs, SNPs and ROI-SNP pairs for further experimental work.
Concerning the ROI-SNP network, iBIG identified 22 ROIs connected to 6 SNPs,
for a total of 24 ROI-SNP pairs with marginal posterior probability > 0.5 (see
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Figure 3). SNPs 4, 11, 18 and 77 are connected to multiple brain regions (15, 2, 2
and 3 regions, respectively). Most of these regions are neighbors in the ROI net-
work. SNP 4 (rs3803300), which is highly connected in the estimated ROI-SNP
network, is part of gene AKT1 on chromosome 14, and is known to be associated
with schizophrenia [Ikeda et al. (2008), Joo et al. (2009), Xu et al. (2007)]. ROI
35 (left posterior cingulum), which was found to be a discriminatory biomarker,
with posterior probability of 0.53, is connected to SNPs 4 and 55 in the estimated
ROI-SNP network. Direct relationships between abnormalities of the posterior
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cingulum and positive symptoms in schizophrenia have been previously reported
[Fujiwara et al. (2007)]. ROIs 57, 61 and 115 were also selected as discriminatory,
with marginal posterior probabilities of 0.52, 0.57 and 0.71, respectively. ROI 57
(left postcentral gyrus) and ROI 61 (left inferior parietal region) are neighbors in
the ROI network and have been associated with schizophrenia [Glahn et al. (2008),
Miiller et al. (2013), Waltz et al. (2009), Yang et al. (2010)]. To our knowledge,
ROI 115, the posterior inferior vermis (lobule IX), has not yet been shown to be
related to schizophrenia. However, many studies have shown that an abnormality
involving the entire vermis (lobules I-X) may contribute to the pathophysiology of
schizophrenia [Levitt et al. (1999), Okugawa, Sedvall and Agartz (2003)]. Three
discriminatory SNPs (22, 10 and 38) were also identified by iBIG, with marginal
posterior probabilities of 0.62, 0.39 and 0.45, respectively. SNP 22 (rs3737597) is
located in gene DISC1 (chromosome 1), a gene which is disrupted in schizophre-
nia [Kim et al. (2012)]. It was also found to be discriminatory by Stingo et al.
(2013) and Yang et al. (2010). This SNP was previously identified as an allele
indicating risk of developing the schizophrenic disorder in Finnish families and
among the Scandinavian population [Saetre et al. (2008)]. SNP 10 (rs2051632)
is in gene ARHGAP18, which has been associated with schizophrenia through
both imaging and case-control studies [Potkin et al. (2009)]. SNP 38 (rs194072)
in gene GABRB2 has also been associated with schizophrenia susceptibility [Lo
et al. (2004), Yu et al. (20006)].

To highlight the importance of our new variable selection prior, we compared
the markers selected by iBIG with those obtained from BTS, which does not take
into account the ROI-SNP network in the selection of the discriminatory markers
(see Section F of the Supplementary Material for details on the BTS results). One
main difference pertains to ROI 35, the left posterior cingulate region, which we
found to be connected to SNPs 4 and 55: the posterior probability of this region
increased from 0.11 (using BTS) to 0.53 (using iBIG).

We observed a similar trend for SNP 10, for which the posterior probability
went from 0.24 (using BTS) to 0.39 (using iBIG); SNP 10 is connected to ROI 78
(the right thalamus) in the estimated ROI-SNP network. Both examples highlight
the effect of the ROI-SNP network on the selection of discriminatory markers.

6. Conclusion. In this paper, we have proposed a Bayesian predictive model
to accurately predict the disease status of schizophrenia for a subject based on a
sparse set of imaging and genetic biomarkers. Our Bayesian approach has several
innovative characteristics: (1) It is integrative since it combines in a single model
both SNP and fMRI data; (2) It employs novel covariate-dependent variable se-
lection priors, which incorporate inference on the ROI-SNP network to select a
discriminatory set of biomarkers; and (3) It achieves sharper biomarker selection
through the specification of nonlocal prior distributions on the regression coeffi-
cients. The performance of the method was evaluated on simulated data and on a
dataset collected from individuals diagnosed with schizophrenia that was obtained
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from the MIND Clinical Imaging Consortium. Our extensive simulation studies
show that including the ROI-SNP network in the selection mechanism enhances
both biomarker selection and prediction performances. We investigated the effect
of the prior (9) on the posterior inference via simulation studies.

By employing the prior (9), prediction performance is particularly improved
when there is a large number of discriminatory biomarkers that are also highly
connected in the ROI-SNP network. Our model and simpler approaches, such as
BTS, perform equally well if the data do not fully support the existence of a signif-
icant ROI-SNP network. When applied to the data from the MIND Clinical Imag-
ing Consortium, the improved performance in variable selection, which results in
higher precision and lower false negative and false positive findings, leads to the
selection of a set of discriminatory biomarkers that would have been otherwise
missed, aiding the interpretation of the results.

Overall, our results have confirmed the complex nature of genetic effects on
the functional brain abnormality that is present in schizophrenia. Both biology
and improved prediction performances confirm that our modeling assumptions are
appropriate.

In our application, the fMRI activation has been summarized by using ROIs de-
fined by the AAL atlas. However, activation or connectivity patterns might vary
within predefined ROIs, with resulting loss of signal. To partially obviate this lim-
itation, one might consider finer brain parcellations. In Section J of the Supple-
mentary Materials, we illustrate the results of a simulation where we employ our
method on an increased number of brain imaging markers (500 and 1000). Alterna-
tively, one might focus on identifying activity and connectivity patterns localized
inside only one or a few regions of interests. Finally, our modeling framework
could be applied to other types of dimension reduction techniques. For example,
independent component analysis (ICA) provides a grouping of brain activity into
regions that share the same response pattern and can be seen as a data-driven ap-
proach to brain parcellation [Calhoun, Liu and Adali (2009), Wu et al. (2015)].
The number of components is typically chosen between 10 and 100 [Damaraju
et al. (2014), Erhardt et al. (2011)], which is comparable to the number of imaging
biomarkers we considered in this manuscript.
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian predictive model for imaging genetics with
application to schizophrenia” (DOI: 10.1214/16-A0AS948SUPP; .zip). The
supplementary material [Chekouo et al. (2016)] contains details about posterior
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computation, hyperparameter settings and sensitivity, data preprocessing, and ad-
ditional simulation studies and data analyses. The companion MATLAB code is
available on The Annals of Applied Statistics website.
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