
The Annals of Applied Statistics
2016, Vol. 10, No. 3, 1496–1516
DOI: 10.1214/16-AOAS944
© Institute of Mathematical Statistics, 2016

BAYESIAN NONPARAMETRIC DEPENDENT MODEL FOR
PARTIALLY REPLICATED DATA: THE INFLUENCE OF FUEL

SPILLS ON SPECIES DIVERSITY1

BY JULYAN ARBEL2,∗, KERRIE MENGERSEN AND JUDITH ROUSSEAU

Collegio Carlo Alberto and Bocconi University, Queensland University of
Technology and Université Paris-Dauphine

We introduce a dependent Bayesian nonparametric model for the prob-
abilistic modeling of membership of subgroups in a community based on
partially replicated data. The focus here is on species-by-site data, that is,
community data where observations at different sites are classified in distinct
species. Our aim is to study the impact of additional covariates, for instance,
environmental variables, on the data structure, and in particular on the com-
munity diversity. To this end, we introduce dependence a priori across the
covariates and show that it improves posterior inference. We use a dependent
version of the Griffiths–Engen–McCloskey distribution defined via the stick-
breaking construction. This distribution is obtained by transforming a Gaus-
sian process whose covariance function controls the desired dependence. The
resulting posterior distribution is sampled by Markov chain Monte Carlo. We
illustrate the application of our model to a soil microbial data set acquired
across a hydrocarbon contamination gradient at the site of a fuel spill in
Antarctica. This method allows for inference on a number of quantities of
interest in ecotoxicology, such as diversity or effective concentrations, and is
broadly applicable to the general problem of community response to environ-
mental variables.

1. Introduction. This paper was motivated by the ecotoxicological problem
of studying communities, or groups of species, observed as counts of species at a
set of sites, where the composition and distribution of species may differ among
sites, and for which the sites are indexed by a contaminant. More specifically, the
soil microbial data set we are focusing on in this paper was acquired at differ-
ent sites of a fuel spill region in Antarctica. Although there is now much greater
awareness of human impacts on the Antarctic, substantial challenges remain. One
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of these is the containment of historic buried station waste, chemical dumps and
fuel spills. These wastes do not break down in such extreme environments and
their spread is exacerbated by melting ice in summer. Developing effective con-
tainment strategies requires an understanding of the impact of these incursions on
the natural environment. The data set considered here consists of soil microbial
counts of operational taxonomic units, OTUs, as well as a site contaminant level
measured by the total petroleum hydrocarbon, TPH. Thus, the aim is to model the
probabilities of occurrence associated with the species at the different sites and to
be able to interpret the impact of the contaminant on the community as a whole or
on a particular species.

This specific case study gives rise to a more general problem that can be de-
scribed as modeling the probability of membership of subgroups of a community
based on partially replicated data obtained by observing different subsets of the
subgroups at different levels of a covariate. The problem can also be considered
as the analysis of compositional data in which the data points represent so-called
compositions, or proportions, that sum to one. A typical example is the chemi-
cal composition of rock specimens in the form of percentages of a prespecified
number of elements [see, e.g., Aitchison (1982), Barrientos, Jara and Quintana
(2015)]. This problem is endemic in many fields, for example, meat composition
in biology [Alston, Mengersen and Gardner (2011)], consumer demand in eco-
nomics [Pawlowsky-Glahn and Buccianti (2011)], food composition in nutrition
[van den Boogaart and Tolosana-Delgado (2013)], genotype frequency in genetics
[George, Mengersen and Davis (2000)], bacterial composition in microbiomics [Li
(2015)] and so on. Despite this, the solution to that problem remains a challenge
[Aitchison (1986, 1994), Lovell et al. (2015)]. Common approaches are typically
based on parametric assumptions and require prespecification of the number of
subgroups (e.g., species) in the community. In this paper, we suggest an alterna-
tive that overcomes this drawback. The method is described in terms of species for
reasons of intuitiveness in description, but the approach is generally applicable far
beyond the species sampling framework.

We propose a Bayesian nonparametric approach to both the specific and general
problems described above using a covariate dependent random probability mea-
sure as a prior distribution. Dependent extensions of random probability measures,
with respect to a covariate such as time or position, have been extensively stud-
ied recently under three broad constructions. First, a class of solutions is based on
the Chinese Restaurant process; see, for instance, Caron, Davy and Doucet (2007)
and Johnson et al. (2013). These are oriented toward in-line data collection and
fast implementation. Second, some approaches use completely random measures;
see, for example, Lijoi, Nipoti and Prünster (2014a, 2014b). An appealing feature
of this approach is analytical tractability which allows for more elaborate study-
ing of the distributional properties of the measures. Third, many strategies make
use of the stick-breaking representation based on the line of research pioneered by
MacEachern (1999, 2000), which defines dependent Dirichlet processes. There are
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many variants, including those suggested by Chung and Dunson (2011), Dunson
and Park (2008), Dunson, Pillai and Park (2007), Griffin and Steel (2006, 2011),
among others. The success of the stick-breaking constructions stems from their
attractiveness from a computational point of view as well as their great flexibil-
ity in terms of full support, which we prove for our model in Section S.3.2 of the
Supplementary Material. This is the approach that we follow here.

We define a dependent version of the Griffiths–Engen–McCloskey distribution
(hereafter denoted GEM), which is the distribution of the weights in a Dirichlet
process, for modeling presence probabilities. Dependence is introduced via the
covariance function of a Gaussian process, which allows dependent Beta random
variables to be defined by inverse cumulative distribution functions transforms.
The main appeal of introducing dependence in the model is to allow predictions to
be made at any value of the covariate.

The resulting model is not confined to the estimation of diversity indices, but
could also utilize the predictive structure yielded by specific discrete nonparamet-
ric priors to address issues such as the estimation of the number of new species
(subgroups) to be recorded from further sampling, the probability of observing a
new species at the (n + m + 1)th draw conditional on the first n observations, or
of observing rare species, defined as occurring with frequency less than a certain
threshold [see, e.g., Favaro, Lijoi and Prünster (2012), Lijoi, Mena and Prünster
(2007)].

The paper is organized as follows. In Section 2 we describe our case study,
review the ecotoxicological literature and background, and discuss diversity and
effective concentration estimation. Section 3 describes the Bayesian nonparametric
model, posterior sampling and most useful properties of the model. Estimation
results and ecotoxicological guidelines are given in Section 4. A discussion on
model considerations is given in Section 5, and Section 6 concludes this paper
with a general discussion. Extended results, details of posterior computation and
the proofs of our results are available in the Supplementary Material available as
Arbel, Mengersen and Rousseau (2016).

2. Case study and ecotoxicological context.

2.1. Case study and data. As already sketched in the Introduction, our case
study consists of a soil microbial data set acquired across a hydrocarbon contam-
ination gradient at the location of a fuel spill at Australia’s Casey Station in East
Antarctica (110◦32′E, 66◦17′S) along a transect at 22 locations. Microbes are clas-
sified as Operational Taxonomic Units (OTU), that we also generically refer to as
species throughout the paper. OTU sequencing was processed on genomic DNA
using the mothur software package; see Schloss et al. (2009). We refer to Snape
et al. (2015) for a complete account of the data set acquisition. The total number of
species recorded at least once at one site is 1, 800+. All species were included in
the analysis and estimation. However, we have noticed that it is possible to work
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with a subset of the data, consisting of those species with abundance over all mea-
surements exceeding a given low threshold (in our case up to ten), without altering
significantly the results. A crucial point for the subsequent analyses is that we or-
der the species by decreasing overall abundance (i.e., species j = 1 is the most
numerous species in the whole data set). The variations of sampling across the
sites explain why the species are not strictly ordered when considered site by site;
see Figure 1.

OTU measurements are paired with a contaminant called Total Petroleum Hy-
drocarbon [TPH, see Siciliano et al. (2014)], suspected to impact OTU diversity.
The contamination TPH level recorded at each site ranges from 0 to 22,000 mg
TPH/kg soil. Ten sites were actually recorded as uncontaminated with TPH equal
to zero. We call the microbial communities associated to these sites baseline com-
munities, and use them to define effective concentrations ECx ; see Section 2.4.
Although a continuous variable, TPH is recorded with ties that we interpret as
due to measurement rounding. Our methodology cannot handle ties unless they
are genuine ties which could be collapsed together into one single site. Such a col-
lapsing would not be biologically meaningful, hence, we jitter TPH concentrations
with a random Gaussian noise (absolute value for the case TPH = 0) to account for
measurement errors and to discriminate the ties. This noise can be incorporated in
the probabilistic model. A sensitivity assessment of the impact of the variance of
the noise, using a range of moderate values compared with the variability of TPH,
showed little to no impact on the estimates of interest. An alternative to allow for
multiple observations at the same level of covariate can be achieved by adding a
small amount to the diagonal of the Gaussian process correlation matrix, known
as the nugget term [see, e.g., Andrianakis and Challenor (2012), Cressie (1993)].
This is left for future investigation.

2.2. Ecotoxicological context. This paper focuses on an ecotoxicological case
study where the goal is to predict the impact of a contaminant on an ecosystem.
The common treatment of this question relies on toxicity tests, either on single
species (called populations) or on multiple species (called communities). The need
for appropriate modeling techniques is apparent due to data limitations, for in-
stance, in our case where data acquisition in Antarctica is extremely expensive.
Although single species modeling methods are now well understood, many com-
munity modeling methods are less strongly theoretically endorsed. There are two
alternative community modeling approaches. On the one hand, one can model sin-
gle species independently and then aggregate the individual predictions into com-
munity predictions [e.g., Ellis, Smith and Pitcher (2011)]. A drawback attached to
the aggregation is the lack of appropriate uncertainty of the method. Moreover, one
necessarily loses crucial information by dismissing interplays across species. On
the other hand, the response of the community as a whole is modeled, which gener-
ally entails the use of some univariate summaries of community responses, such as
compositional dissimilarity [e.g., Ferrier and Guisan (2006), Ferrier et al. (2007)]
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or rank abundance distributions [Foster and Dunstan (2010)]. Alternatively, the re-
sponses of multiple species can be modeled simultaneously [e.g., Dunstan, Foster
and Darnell (2011), Foster and Dunstan (2010), Wang et al. (2012)].

Single species are commonly modeled through the probability of presence pj

of each species j as a function of the environmental parameters. The natural dis-
tribution for multiple species is the multinomial distribution, which provides an
intuitive framework when the sampling process consists of independent observa-
tions of a fixed number of species. Recent literature demonstrates the popularity of
the multinomial distribution in ecology [e.g., De’ath (2012), Fordyce et al. (2011),
Holmes, Harris and Quince (2012)] and genomics [Bohlin, Skjerve and Ussery
(2009), Dunson and Xing (2009)]. Our use of the GEM distribution actually ex-
tends the multinomial distribution to cases where the number of species does not
need to be fixed or known, that is, where the prior is on infinite vectors of presence
probabilities.

2.3. Diversity. Modeling presence probabilities provides a clear link to in-
dices that describe various community properties of interest to ecologists, such
as species diversity, richness, evenness, etc. The literature on diversity is exten-
sive, not only in ecology [Colwell et al. (2012), De’ath (2012), Foster and Dunstan
(2010), Hill (1973), Patil and Taillie (1982)] but also in other areas of science,
such as biology, engineering, physics, chemistry, economics, health and medicine
[see Borges and Roditi (1998), Havrda and Charvát (1967), Kaniadakis, Lissia
and Scarfone (2005), and in more mathematical fields such as probability theory
[Donnelly and Grimmett (1993)]. There are numerous ways to study the diversity
of a population divided into groups. Examples of predominant indices in ecol-
ogy include the Shannon index −∑

j pj logpj , the Simpson index (or Gini index)
1−∑

j p2
j , on which we focus in this paper, and the Good index which generalizes

both −∑
j pα

j logβ pj , α,β ≥ 0 [Good (1953)].
Diversity estimation, and, more generally, estimation of community indices

based on species data, has been a statistical problem of interest for a long time.
One of the main stumbling blocks is the high variability in species data. For in-
stance, the most obvious estimators, hereafter referred to as empirical estimators,
which involve plugging in empirical presence probabilities (i.e., observed propor-
tions p̂ij of species j at site i), suffer from that curse. Many treatments have been
proposed in the literature to account for this issue. A first approach is the field
of occupancy modeling and imperfect detection; see, for instance, the monograph
Royle and Dorazio (2008). We provide a concise description of imperfect detection
modeling in Section 5.1 and do not pursue this direction here.

Another approach, that we are following in this paper, involves smoothing or
regularizing empirical estimates. A Bayesian approach is a natural way to do this.
Specifically, Gill and Joanes (1979) show that using a Dirichlet prior distribu-
tion over (p1, . . . , pJ ) in the multinomial model with J species greatly improves
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estimation over empirical counterparts. The reason for this is that using a prior
prevents pathological behavior due to outliers by smoothing the estimates. The
smoothing is controlled by the Dirichlet parameter which can be chosen based
on expert information, related literature or other relevant information sources. Our
case study exhibits an additional variability in the across-sites dimension compared
to the framework of Gill and Joanes (1979). This variability is instantiated by the
plot of empirical estimates of Simpson diversity in Figure 4. However, we lever-
age this additional difficulty by borrowing strength across the sites, following the
intuition that neighboring sites should respond similarly to the contaminant. The
borrowing of strength is achieved by incorporating dependence across the sites in
the prior distribution. Noting that the total number of species is not known a priori,
we adopt a Bayesian nonparametric approach. More specifically, we extend the
work by Gill and Joanes (1979) from a Dirichlet prior to a covariate-dependent
Dirichlet process prior. This is also extending the model of Holmes, Harris and
Quince (2012) to a covariate-dependent setting with a priori unknown number of
species.

Interestingly, this idea of using a Bayesian nonparametric approach as a smooth-
ing technique for species data was recently adopted in the context of discovery
probability, the probability of observing new species or species already observed
with a given frequency. Good (1953) proposed smoothed estimators popularized as
Good–Turing estimators for discovery probabilities. Good–Turing estimators were
shown to have a Bayesian nonparametric interpretation [see Arbel et al. (2016),
Favaro, Nipoti and Teh (2016), Lijoi, Mena and Prünster (2007)], thus demon-
strating the ability of Bayesian nonparametric methods to regularize species data.

2.4. Effective concentration. Highly relevant in terms of protecting an ecosys-
tem, the effective concentration at level x, denoted by ECx , is the concentration
of contaminant that causes x% effect on the population relative to the baseline
community [e.g., Newman (2012)]. For example, the EC50 is the median effective
concentration and represents the concentration of a contaminant which induces a
response halfway between the control baseline and the maximum after a specified
exposure time. For single species studies, this is commonly assessed by an x% in-
crease in mortality. In applications with a multi-species response as in this paper, it
is the response of the community as a whole that is of interest. The ECx values are
used to derive appropriate protective guidelines on contaminant concentrations, for
instance, in terms of waste, chemical dumps and fuel spills containment strategies.
Currently, it is not clear how to best calculate ECx values using whole-community
data. The ECx values can be defined in many ways depending on the specific as-
pects of interest to the ecological application. We illustrate the use of the Jaccard
dissimilarity index, denoted by Jac(X) (where X here denotes TPH and the Jac-
card dissimilarity is seen as a function of TPH), one of the many dissimilarity
variants available, as a measure of change in community composition. We defined
the baseline community as the set of uncontaminated sites (ten sites) where TPH
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equals zero; see Section 2.1. The dissimilarity at TPH zero, denoted by Jac0, is
an estimate of the variability in community composition between uncontaminated
sites. The ECx value is obtained from Jac(X) values as the smallest TPH value X

such that

Jac(X) = 1 − (1 − Jac0)(1 − x/100).(1)

In this way, EC0 = 0, the TPH value for which there is no change relative to base-
line, is obtained at Jac(X) = Jac0, while EC100 is obtained at Jac(X) = 1 for a
TPH value such that the community composition becomes disjoint with the base-
line. We see by equation (1) that intermediate values are obtained by linear in-
terpolation. The smallest TPH value is used so as to provide a conservative ECx

estimate, since the dissimilarity curve is not guaranteed to be monotonic. A partic-
ular feature of the model which allows us to follow this methodology is its ability
to estimate the community composition between observed TPH values, since it is
unlikely that the dissimilarity threshold Jac(X) sought in equation (1) will coin-
cide exactly with one of the measured TPH levels in the data. 95% credible bands
for ECx values were obtained in a similar fashion, as the smallest and the largest
values of, respectively, the 2.5% and 97.5% quantiles of the ECx value, again so
as to provide conservative estimates. Note that both quantities Jac(X) and ECx are
estimated from the posterior samples obtained in Section 3.3; see also Figure 5(a)
for an illustration of the method.

3. Model.

3.1. Data model. We describe here the notation and the sampling process of
covariate-dependent species-by-site count data. To each site i = 1, . . . , I corre-
sponds a covariate value Xi ∈ X , where the space X is a subset of Rd . We focus
here on a single covariate (d = 1). The general case (d ≥ 1) is discussed in Sec-
tion 6. Individual observations Yn,i at site i are indexed by n = 1, . . . ,Ni , where
Ni denotes the total abundance or number of observations. Observations Yn,i take
on positive natural number values j ∈ {1, . . . , Ji}, where Ji denotes the number of
distinct species observed at site i. No hypothesis is made about the unknown total
number of species J = maxi Ji in the community of interest, which might be infi-
nite. We denote by (X,Y) the observations over all sites, where X = (Xi)i=1,...,I ,
Y = (YNi

i )i=1,...,I and YNi

i = (Yn,i)n=1,...,Ni
. The abundance of species j at site i,

that is, the number of times that Yn,i = j with respect to index n, is denoted by Nij

and satisfies
∑Ji

j=1 Nij = Ni .
We model the probabilities of presence p = (p(Xi))i=1,...,I , where p(Xi) rep-

resents the vector of probabilities pj (Xi) of species j under covariate Xi , by the
following:

(2) Yn,i |p(Xi),Xi
ind∼

∞∑
j=1

pj (Xi)δj ,

for i = 1, . . . , I , n = 1, . . . ,Ni , where δj denotes a Dirac point mass at j .
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3.2. Dependent prior distribution. We follow a Bayesian approach which im-
plies that we need to define a prior distribution for the probabilities p. The Dirichlet
process [Ferguson (1973)] is a popular distribution in Bayesian nonparametrics
which has been used for modeling species data by Lijoi, Mena and Prünster (2007).
We extend the methodology developed by Lijoi et al. in building a covariate-
dependent prior distribution in a way which is reminiscent of the extension of
the classical Dirichlet process to the dependent Dirichlet process by MacEachern
(1999). More specifically, the marginal prior distribution on p(X) for covariate
X is defined by the following stick-breaking construction, which introduces Beta

random variables Vj (X)
iid∼ Beta(1,M) such that p1(X) = V1(X) and, for j > 1,

(3) pj (X) = Vj (X)
∏
l<j

(
1 − Vl(X)

)
.

This prior distribution is called the Griffiths–Engen–McCloskey distribution and
denoted by p(X) ∼ GEM(M), where M > 0 is called the precision parameter.
The motivation for using the GEM distribution is explained by Figure 1 which
shows, for species j = 1, . . . ,32, the observed proportions (p̂ij ) at site i = 9 and
draws of (pj ) from the GEM(M) prior with precision parameter M = 6. Since
the GEM(M) prior on p(Xi) is stochastically ordered [see Pitman (2006)], it puts
more mass on the more numerous species of the community. It makes sense to
sort the data by decreasing overall abundance, as explained in Section 2.1, and to
use a prior with a stochastic order on p since the data under study are naturally
present in a large and small number of species. In Figure 1 we observe the same
nonincreasing pattern between the observed frequencies and draws from the GEM
prior, which is an argument in favor of the use of the GEM(M) prior for marginal
modeling of the probabilities p(X). For a discussion on the ordering assumption,
see Section 5.2.

For an exhaustive description of the prior distribution on p, the marginal de-
scription (3) needs to be complemented by specifying a distribution for stochas-
tic processes (Vj (X),X ∈ X ) for any positive integer j . Since (3) requires Beta

FIG. 1. Comparison of probabilities of presence in raw data at site i = 9 (left) and probabili-
ties sampled from the Griffiths–Engen–McCloskey prior with M = 6 (right). The x-axis represents
species j = 1, . . . ,32.



1504 J. ARBEL, K. MENGERSEN AND J. ROUSSEAU

marginals, natural candidates are Beta processes. A simple yet effective construct
to obtain a Beta process is to transform a Gaussian process by the inverse cumula-
tive distribution function (CDF) transform as follows. Denote by Z ∼ N(0, σ 2

Z) a
Gaussian random variable, by �σZ

its CDF and by FM a Beta(1,M) CDF. Then
V = F−1

M ◦ �σZ
(Z) is Beta(1,M) distributed, with F−1

M (U) = 1 − (1 − U)1/M .
Denote by gσZ,M = F−1

M ◦ �σZ
. Note that the idea of including a transformed

Gaussian process within a stick-breaking process is used in previous articles, in-
cluding Barrientos, Jara and Quintana (2012), Pati, Dunson and Tokdar (2013),
Rodríguez and Dunson (2011), Rodríguez, Dunson and Gelfand (2010).

In our case, we use Gaussian processes Zj on the space X , j = 1,2, . . . , which
define Beta processes Vj , which in turn define the probabilities pj . Although the
main parameters of interest are the pj , we will work hereafter with Zj for compu-
tational convenience.

The Gaussian process is used as a prior probability distribution over functions. It
is fully specified by a mean function m, which we take equal to 0, and a covariance
function K defined by

(4) K(Xi,Xl) = Cov
(
Zj (Xi),Zj (Xl)

)
.

We control the overall variance of Zj by a positive pre-factor σ 2
Z and write

K = σ 2
ZK̃ , where K̃ is normalized in the sense that K̃(Xi,Xi) = 1 for all i. We

work with the squared exponential (SE), Ornstein–Uhlenbeck (OU) and rational
quadratic (RQ) covariance functions; see Section S.2 in the Supplementary Ma-
terial for more details. All three involve a parameter λ called the length-scale
of the process Zj . This parameter tunes how far apart two points X1 and X2
have to be for the process to change significantly. The shorter λ is, the rougher
are the paths of the process Zj . We adopt the same technique as van der Vaart
and van Zanten (2009) who deal with λ by making it random with an inverse-
Gamma (denoted IG) prior distribution. They obtain adaptive minimax-optimal
posterior contraction rates which indicate that the length-scale parameter λ cor-
rectly adapts to the path smoothness. Gibbs (1997) derived a covariance function
where the length-scale λ(X) is a (positive) function of X. This case is not stud-
ied here, although it could result in interesting behavior, as noted in Rasmussen
and Williams (2006). Each species j is associated to a Gaussian process Zj .
We have a set of I points X = (X1, . . . ,XI ) in the covariate space X which
reduces the evaluation of the whole process Zj to its values at X denoted by
Zj = (Z1,j , . . . ,ZI,j ) = (Zj (X1), . . . ,Zj (XI )). We denote also by Z the matrix
of all vectors Zj , Z = (Zij )1≤i≤I,1≤j≤J . The vector Zj is multivariate Gaussian.
Its covariance matrix K(X, λ, σZ) = (σ 2

ZK̃λ(Xi,Xl))i,l=1,...,I is a Gram matrix
with entries given by equation (4). The prior distribution of Zj is

logπ(Zj |X, λ, σZ) = 1

2
Z


j K−1(X, λ, σZ)Zj − 1

2
log

∣∣K(X, λ, σZ)
∣∣ − I

2
log 2π
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FIG. 2. Diagrammatic representation for the Dep-GEM model. Squares represent observed data:

covariates X = (Xi)i=1,...,I and observations YNi
i = (Y1,i , . . . , YNi,i ). Circles represent parameters

for the Dep-GEM model.

or, written in terms of σ 2
Z and K̃λ = (K̃λ(Xi,Xl))i,l=1,...,I ,

π(Zj |X, λ, σZ) ∝ σ−I
Z |K̃λ|−1/2 exp

(
−Z


j K̃−1
λ Zj

2σ 2
Z

)
.

The prior distribution is complemented by specifying the distributions over hy-
perparameters σZ the standard deviation, λ the length scale and M the precision
parameter of the GEM distribution. We use the following standard hyperpriors:

σ 2
Z ∼ IG(aZ, bZ), λ ∼ IG(aλ, bλ) and M ∼ Ga(aM,bM).(5)

Note that these are also common choices in the absence of dependence since they
are conjugate priors, and recall that the inverse-Gamma for λ also proves to lead
to good convergence results.

It is convenient to estimate the model in terms of Zj , and then to use the trans-
form Vj = gσZ,M(Zj ). The likelihood is

L(Y|Z,X, σZ,M) =
J∏

j=1

I∏
i=1

gσZ,M

(
Zj(Xi)

)Nij
(
1 − gσZ,M

(
Zj(Xi)

))N̄i,j+1,(6)

where N̄i,j+1 = ∑
l>j Nil . The posterior distribution is then

(7) π(Z, λ, σZ,M|Y,X) ∝ L(Y|Z,X, σZ,M)π(Z|X, λ, σZ)π(σZ)π(λ)π(M).

The model is illustrated by a graphical representation in Figure 2.

3.3. Posterior computation and inference. Here we highlight the main points
of interest of the algorithm, which is fairly standard; the fully detailed posterior
sampling procedure can be found in the Supplementary Material, Section S.1. In-
ference in the Dep-GEM model is performed via two distinct samplers: (i) first
a Markov chain Monte Carlo (hereafter MCMC) algorithm comprising Gibbs and
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Metropolis–Hastings steps for sampling the posterior distribution of (Z, σZ, λ,M).
It proceeds by sequentially updating each parameter Z, σZ, λ and M via its con-
ditional distribution; (ii) second a sampler from the posterior predictive distribu-
tion of Z∗, which consists of posterior conditional sampling of the Gaussian pro-
cess Z at covariates X∗ = (X∗

1, . . . ,X∗
I∗) which are not observed (i.e., such that

{X1, . . . ,XI } and {X∗
1, . . . ,X∗

I∗} are pairwise distinct). This is achieved by inte-
grating out Z in the conditional distribution of Z∗ given Z according to the poste-
rior distribution sampled in (i).

3.4. Distributional properties. We provide in Proposition 1 the first prior mo-
ments, expectation, variance and covariance, of the diversity. This is of crucial
importance for eliciting the values of hyperparameters, or their prior distribu-
tion, based on prior information (expert, etc.) Additionally, since the Dep-GEM
introduces some dependence across the pj (Xi) in varying Xi , the question of
the dependence induced in a diversity index arises. Denote the Simpson index
by HSimp(Xi); see Section 2.3. An answer is formulated in the next proposition
in terms of the covariance between HSimp(X1) and HSimp(X2). Further notable
properties are presented in the Supplementary Material Section S.3, including
marginal moments of the Dep-GEM prior and continuity of sample paths in Propo-
sition S.3.1, full support in Proposition S.3.3, a study of the joint distribution of
samples from the Dep-GEM prior in Proposition S.3.4, and a discussion on the
joint exchangeable partition probability function based on size-biased permuta-
tions in Section S.3.4.

PROPOSITION 1. The expectation and variance of the Simpson diversity, and
its covariance at two sites X1 and X2, induced by the Dep-GEM distribution, are
as follows:

E(HSimp) = M

1 + M
, Var

(
HSimp(X)

) 2M

(M + 1)(M + 1)3
,(8)

Cov
(
HSimp(X1),HSimp(X2)

) = ν2,2(1 − ω2,0) + 2ν2,0γ2,2

(1 − ω2,0)(1 − ω2,2)
− ν2

1,0,(9)

where νi,j = E[V i(X1)V
j (X2)], ωi,j = E[(1−V (X1))

i(1−V (X2))
j ] and γi,j =

E[V i(X1)(1 − V (X2))
j ].

The values of νi,j ,ωi,j , γi,j cannot be computed in a closed-form expression
when i × j �= 0, but they can be approximated numerically. The same formal com-
putations for the Shannon index lead to somehow more complex expressions which
are not displayed here [see also Cerquetti (2014)]. The expressions of Proposition 1
are illustrated in Figure 3.

The precision parameter M has the following impact on the prior distribution
and on the diversity: when M → 0, the prior degenerates to a single species with
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FIG. 3. Illustration of Proposition 1. Left: E(HSimp(X)) w.r.t. M . Middle: Var(HSimp(X)) w.r.t.
M . Right: three paths of Cov(HSimp(X1),HSimp(X2)) w.r.t. |X1 − X2| for M ∈ {1/2,1,3}.

probability 1, hence, HSimp → 0, whereas when M → ∞, the prior tends to favor
infinitely many species, and HSimp → 1. In both cases, the variance and the covari-
ance vanish. In between, the variance is maximum for M ≈ 0.49. The covariance
at X1 and X2 equals the variance when X1 = X2 (by continuity of the sample
paths), while the covariance vanishes when |X1 − X2| → ∞ (which corresponds
to independence for infinitely distant covariates).

Despite the fact that the first moments of the diversity indices under a GEM
prior can be derived, a full description of the distribution seems hard to achieve.
For instance, the distribution of the Simpson index involves the small-ball-like
probabilities P(

∑
j p2

j < a) for which, to the best of our knowledge, no result is
known under the GEM distribution.

4. Case study results. We now apply the model to the estimation of diver-
sity and of effective concentrations ECx as described in Section 2, and assess the
goodness of fit of the model and its sensitivity to sampling variation.

4.1. Results. The MCMC algorithm is run with squared exponential Gaussian
processes for 50,000 iterations thinned by a factor of 5 with a burn-in of 10,000
iterations. The parameters of the hyperpriors (5) are aZ = bZ = 1, ηλ = 1, aλ =
bλ = 1 and aM = bM = 1. The efficiency and convergence of the MCMC sampler
were assessed by trace plots and autocorrelations of the parameters.

The results for the Simpson diversity estimation are illustrated in Figure 4 for
the Dep-GEM model [left, 4(a)] and for the independent GEM model [right, 4(b)].
The horizontal axis represents the pollution level TPH and the vertical axis rep-
resents the Simpson diversity. The posterior mean of the diversity is represented
by the solid line, and a 95% credible interval is indicated by dashed lines, for the
dependent model only. The dots indicate the empirical estimator of the diversity.

The Dep-GEM model [Figure 4(a)] suggested that diversity first increases with
TPH with a maximum at 4000 mg TPH/kg soil, and then decreases with TPH.
Such a variation may depict a feature of practical interest for biologists known as
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(a) Dep-GEM (b) Independent GEM

FIG. 4. Diversity estimation results. (a) Dep-GEM model estimates (50,000 MCMC samples). Solid
line: Simpson diversity estimate. Dashed lines: 95% credible interval for the Simpson diversity. Dots:
Empirical estimates of Simpson diversity. (b) Independent GEM model estimates (50,000 MCMC
samples). Triangles: posterior mean estimate of the Simpson diversity.

a hormetic effect [see Calabrese (2005)]. Hormesis refers to a dose-response phe-
nomenon characterized by favorable responses to low exposures to a pollutant: the
species can feed on TPH at limited concentration, hence resulting in an increase of
diversity, while above some threshold TPH starts to annihilate most of the species,
hence reducing diversity.

The GEM model estimates are shown for comparison in Figure 4(b). These
estimates showed more variability with respect to TPH in that they are closer to
the empirical estimates of the diversity. Note that the GEM estimates were only
available at levels of the covariate that were present in the data because of the in-
dependent nature of the model specification. The Dep-GEM, in contrast, provided
predictions across the full range of TPH values. The credible bands are narrowest
for TPH between 3000–5000 mg TPH/kg soil, due to borrowing of information
between concentrated points, and they widen both at TPH = 0, due to a lot of data
points with high variability, and at large TPH, due to few data points.

The Jaccard dissimilarity curve with respect to TPH is shown in Figure 5(a). The
ECx values are estimated as explained in Section 2.4 and provided in Table 5(b).
Dissimilarity increased with TPH, illustrating that the contaminant alters commu-
nity structure. Typically, EC10, EC20 and EC50 values of Table 5(b) are reported in
toxicity studies to be used in the derivation of protective concentrations in environ-
mental guidelines, see Section 2.4. EC10, EC20 and EC50 values estimated from
this model are 1250, 1875 and 5000 mg TPH/kg soil respectively. For small x (less
than 10%), the lower bound of the credible interval on the ECx value is zero be-
cause both TPH and dissimilarity values are bounded below by zero. Conversely,
for large x (more than 75%), the upper bound on the credible interval is 25,000,
which is the limit of the TPH range in our analysis.
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x ECx min max

10 1250 0 2500
20 1875 625 3750
50 5000 3125 6875

(a) Illustration of ECx and Jaccard dissimilarity (b) ECx estimates and 95% credible
intervals (min,max)

FIG. 5. Jaccard dissimilarity and ECx estimation results. (a) Posterior distribution (Dep-GEM
model) of Jaccard dissimilarity between the control community where TPH equals zero and com-
munities where TPH > 0. Solid line: mean estimate. Dashed lines: 95% credible intervals of the
dissimilarity estimate. Horizontal segments and vertical dashed lines: illustration of estimation of
ECx values and their credible intervals. (b) Estimates of ECx values and their credible intervals.

4.2. Posterior predictive checks. Since we aim to compare the performance
of the model in terms of diversity estimates, we also need to specify measures of
goodness of fit. We resort to the conditional predictive ordinates (CPOs) statistics,
which are now widely used in several contexts for model assessment; see, for ex-
ample, Gelfand (1996). For each species j , the CPO statistic is defined as follows:

CPOj = f (Yj |Y−j ) =
∫

L(Yj |θ)π(dθ |Y−j ),

where L represents the likelihood (6), Yj denotes data for species j over all sites,
Y−j denotes the observed sample Y with the j th species excluded, π(dθ |Y−j )

is the posterior distribution of the model parameters θ = (Z, σZ, λ,M) based on
data Y−j and f denotes the (cross-validated) posterior predictive distribution. By
rewriting the statistic CPOj as

CPOj =
(∫ 1

L(Yj |θ)
π(dθ |Y)

)−1
,

it can be easily approximated by Monte Carlo as

ĈPOj =
(

1

T

T∑
t=1

1

L(Yj |θ(t))

)−1

,

where {θ(t), t = 1,2, . . . , T } is an MCMC sample from π(dθ |Y). We illustrate
the logarithm of the CPOj , j = 1, . . . , J , by boxplots in Figure 6(a) and pro-
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Model Mean.CPO Median.CPO

Dep-GEM SE −1131.3 −732.9
Dep-GEM OU −1131.5 −732.7
Dep-GEM RQ −1131.8 −731.4
PSBP −1373.5 −932.3
Independent GEM −2910.1 −1734.1
Single GEM −34,606.2 −28,773.6

(a) (b)

FIG. 6. Log-conditional predictive ordinates (log-CPO) for different models and prior specifica-
tions (see text). (a) Boxplots of log-CPO. (b) Summaries of log-CPO, mean and median.

vide the corresponding average and median values in Table 6(b). For the pur-
pose of comparison, we have estimated six models. The first three are the Dep-
GEM model with squared-exponential (SE), Ornstein–Uhlenbeck (OU) and ratio-
nal quadratic (RQ) covariance functions; see Section S.2 in the Supplementary
Material. The fourth is the probit stick-breaking process (PSBP) by Rodríguez and
Dunson (2011). For the purpose of comparison, we set the hyperparameters of the
PSBP to match the expected number of clusters of the Dep-GEM prior. Last, we
used two variants of the GEM prior: first independent GEM priors at each site, as
in Figure 4, and second a single GEM prior where the presence probabilities are
all drawn from the same GEM distribution.

The single GEM is used as a very crude baseline (not shown in the boxplots)
which does poorly compared to the other five models. As expected, the dependence
induced by the Dep-GEM and the PSBP greatly improves the predictive quality of
the model compared to the independent GEM. The Dep-GEM model has a slightly
better predictive fit than the PSBP, which seems to indicate that the total ordering
of the species that we use helps as far as prediction is concerned.

4.3. Sensitivity to sampling variation. A thorough sensitivity analysis to sam-
pling variation was conducted in Arbel et al. (2015). It consists of estimating the
model on modified data by (i) deleting the least abundant species; (ii) including
additional species; (iii) excluding sites randomly. The model provided consistent
results under these modifications, thus supporting some robustness to sampling
variation.

5. Model considerations and extensions. In addition to a sensitivity analysis
to sampling variation as in Section 4.3, here we consider sensitivity with respect
to the model itself, which could be extended in a number of ways.
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5.1. Imperfect detection. As pointed out in Section 2.3, we do not connect our
model to the fields of occupancy modeling and imperfect detection, as developed,
for instance, by Royle and Dorazio (2008). A possible extension to the current
model is by accounting for imperfect detection. Following Dorazio et al. (2008),
Royle and Dorazio (2006), a simple yet effective way to handle this extension is to
define a probability of detection θi fixed for each site i, and to model the variability
of θi across i by an exchangeable prior. It is anticipated that introducing such an
underlying amount of nondetection in the model would increase the credible bands,
but essentially not affect point estimates. Our model is clearly robust to the case
where the probability of detection is homogeneous across sites, corresponding to
a baseline θi = θ , and where a complete census of species is acquired. However,
this is rarely the case in practice. The more realistic case of varying θi is harder
to tackle in our case study, notably due to the lack of a rationale for detection.
There is a growing body of literature aimed at diversity estimation when detection
is properly accounted for in situations where replicate data are available; see, for
instance, Broms, Hooten and Fitzpatrick (2015) for a thorough review. Such a
methodology is based on Bayesian hierarchical models and could be applied in
quite a natural way to our model (which is also a Bayesian hierarchical model)
if replicate data were to be available. When replicates are not available, Broms,
Hooten and Fitzpatrick (2015) recommend splitting sites in order to artificially
create replicates. In our study, there was a concern about doing this due to the
limited number of sites, but adding this layer is not prevented by our model and
can be considered as an avenue for future investigation.

5.2. Assumption on data, stochastic decrease of the p̂j ’s. We have assumed
that after ordering with respect to overall abundance, the p̂j ’s display a stochasti-
cally decreasing pattern as in Figure 1. In our experience, this assumption turns out
to be satisfied with most of the species data sets, where species can be microbes,
animals, words in text, DNA sequences, etc. However, this assumption proves to be
overly restrictive in the following cases, (i) data might be subject to detection error:
this is covered in the previous section by changing the prior adequately; (ii) there
are outlier species which contradict the assumption: this could be addressed by
adding a mixture layer in the prior specification; (iii) the underlying assumption
itself is not true: this is, for instance, the case when all species are overall evenly
distributed. A treatment would be context-specific and depend on the field.

5.3. Comparison to other models. In Section 4 we have compared the Dep-
GEM model to other models: two GEM priors and the probit stick-breaking prior
(PSBP) of Rodríguez and Dunson (2011). The benefits of the Dep-GEM over the
first two is apparent in terms of smoothing of the estimates due to the a priori
dependence; see Figure 4. It also carries over better predictive fit [see Figure 6(a)
and Table 6(b)] and, most importantly, allows us to assess the response of species
to any value of the contaminant, including unsampled values. With respect to the
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PSBP, the CPOs indicate a slightly better predictive fit of the Dep-GEM prior, at
least for the case study at hand.

6. Discussion. We have presented a Bayesian nonparametric dependent
model for species data based on the distribution of the weights of a Dependent
Dirichlet process, named Dep-GEM distribution, which is constructed by appeal
to Gaussian processes. A fundamental advantage of our approach based on the
stick-breaking is that it brings considerable flexibility in defining the dependence
structure, which is defined by the kernel of a Gaussian process.

In terms of model fit, we have shown that the Dep-GEM model improves estima-
tion compared to an independent GEM model. This was evaluated by computing
conditional predictive ordinates (CPOs). In addition, our dependent model allows
predictions at arbitrary covariate levels (not just those that were in the data). It al-
lows, for example, estimation of the diversity and the dissimilarity across the full
range of covariates. This is an essential feature in applications where the experi-
mental data are sparse and is instrumental in estimating the ECx values.

There are computational limitations to the use of this model. The estimation
can deal with a large number of observations since the complexity grows linearly
with the number of different observed species J . However, the number of unique
covariate values I represents the limiting factor of the algorithm, and may lead
to dimensionality problems. One could consider the use of INLA approximations
[see Rue, Martino and Chopin (2009)] in the case of prohibitively large I .

Possible extensions of the present paper include the following. First, extra flexi-
bility would be guaranteed by using the two-parameter Poisson–Dirichlet distribu-
tion instead of the GEM distribution, since it controls more effectively the poste-
rior distribution of the number of clusters [Lijoi, Mena and Prünster (2007)]. This
can be done at almost no extra cost since it only requires one additional step in
the Gibbs sampler. Second, the Dep-GEM model is tested on univariate variables
only, but could be extended to multivariate variables X ∈ R

d , d > 1. Instead of
a Gaussian process Z , one would use a Gaussian random field Zd . To that pur-
pose, all the methodology presented in Section 3 remains valid. The algorithm can
become computationally challenging in the case of large dimensional covariates,
but it does not carry additional difficulty for limited dimensions. Applications of
such an extension are promising, such as testing joint effects in dynamic models
(time × contaminant), spatial models (position × contaminant), etc.

Acknowledgments. The problem of estimating change in soil microbial di-
versity associated with TPH was motivated by discussions with the Terrestrial and
Nearshore Ecosystems research team at the Australian Antarctic Division (AAD).
The case study data set used in this paper was provided by the AAD, with par-
ticular thanks to Tristrom Winsley. We acknowledge the generous technical as-
sistance of researchers at the AAD, in particular, Ben Raymond, Catherine King,



DEPENDENT MODEL FOR PARTIALLY REPLICATED DATA 1513

Tristrom Winsley and Ian Snape. We also wish to thank Antonio Canale for provid-
ing us with the implementation code for the probit stick-breaking process, Nicolas
Chopin and Annalisa Cerquetti for helpful discussions, as well as the Editor, Karen
Kafadar, an Associate Editor and three referees for their constructive feedback.
Part of the material presented here is contained in the Ph.D. thesis Arbel (2013)
defended at the University of Paris-Dauphine in September 2013.

SUPPLEMENTARY MATERIAL

Supplement to “Bayesian nonparametric dependent model for partially
replicated data: The influence of fuel spills on species diversity” (DOI:
10.1214/16-AOAS944SUPP; .pdf). The supplementary material contains details
about posterior computation and inference in the Dep-GEM model, additional
results and omitted proofs that complement the analysis of the main text. It is
available as Arbel, Mengersen and Rousseau (2016).
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