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DECONVOLUTION OF BASE PAIR LEVEL RNA-SEQ READ
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LEVELS1
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RNA-Seq has emerged as the method of choice for profiling the tran-
scriptomes of organisms. In particular, it aims to quantify the expression
levels of transcripts using short nucleotide sequences or short reads gener-
ated from RNA-Seq experiments. In real experiments, the label of the tran-
script, from which each short read is generated, is missing, and short reads are
mapped to the genome rather than the transcriptome. Therefore, the quantifi-
cation of transcript expression levels is an indirect statistical inference prob-
lem.

In this article, we propose to use individual exonic base pairs as observa-
tion units and, further, to model nonzero as well as zero counts at all base pairs
at both the transcript and gene levels. At the transcript level, two-component
Poisson mixture distributions are postulated, which gives rise to the Convo-
lution of Poisson mixture (CPM) distribution model at the gene level. The
maximum likelihood estimation method equipped with the EM algorithm is
used to estimate model parameters and quantify transcript expression levels.
We refer to the proposed method as CPM-Seq. Both simulation studies and
real data demonstrate the effectiveness of CPM-Seq, showing that CPM-Seq
produces more accurate and consistent quantification results than Cufflinks.

1. Introduction. Transcription is the first step of gene expression, and all
transcription products, which are called RNA molecules or transcripts, form the
transcriptome of a cell under a given developmental stage or physiological con-
dition. The largest family of transcripts are mRNAs. The number of transcripts is
much larger than the number of genes due to gene alternative splicing.

Transcriptome profiling, which is to comprehensively detect, catalog and quan-
tify all transcripts in the transcriptome, is a grand challenge in molecular biol-
ogy and functional genomics. In the past two decades, microarray has been the
primary method for interrogating the transcriptome. Recently, the development
of next generation sequencing (NGS) technology has revolutionized the way ge-
nomic research is conducted. In particular, NGS technology provides a new avenue
for mapping and quantifying the transcriptome. As one of such new technologies,
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RNA-Seq directly measures the abundance of transcripts and has become an attrac-
tive alternative for profiling the transcriptome [Hu et al. (2012), Mortazavi et al.
(2008)].

In a typical RNA-Seq experiment, RNA molecules are fragmented into small
pieces and converted to a library of cDNA fragments with adapters attached to one
end or both ends. Each fragment, after amplification, is then sequenced using one
of the NGS technologies, generating hundreds of millions of short nucleotide se-
quences or short reads. After sequencing, the resulting reads are either assembled
de novo or aligned to the reference genome to produce a genome-scale transcrip-
tional profile. Using the mapped short reads (single-end reads or paired-end reads),
the number of reads that each base pair of the reference genome receives can be
calculated, and the resulting counts are collectively known as the base level read
counts data.

The read counts data can be used to quantify either the expression level of a
region of interest (ROI) on the reference genome, such as an exon or a gene, or the
expression levels of transcripts. The expression level of an ROI is relatively easier
to quantify because the total number of reads received by the ROI directly reflects
its abundance, and thus can be used to measure its expression level after proper
normalization. Various statistical model-based quantification methods for ROI’s
have been proposed in the literature, which include GPseq [Srivastava and Chen
(2010)], PMSeq [Wu, Qin and Zhu (2012)] and POME [Hu et al. (2012)]. The ex-
pression levels of transcripts are, however, more difficult to quantify because one
may not be able to allocate the short reads uniquely to transcripts. Due to alterna-
tive splicing, multiple transcripts can give rise to identical reads. In other words,
the labels of the transcripts that identical reads are generated from are missing.
Therefore, the quantification of transcript expression levels becomes an indirect
inference problem.

A number of methods have been proposed for transcript expression level quan-
tification in the literature. Jiang et al. proposed a Poisson model for the total num-
ber of reads in each exon or exon-exon junction [Salzman, Jiang and Wong (2011)].
The intensity of the Poisson distribution is further assumed to be a linear combi-
nation of the expression levels of the transcripts that contain the exon or exon-
exon junction. Trapnell et al. proposed a method called Cufflinks [Trapnell et al.
(2010)]. Cufflinks uses a probabilistic model to represent the generating scheme
for each read. The probabilistic model involves the expression levels of the tran-
scripts that can produce this read. Li et al. proposed a Lasso regression approach
(called IsoLasso) to quantifying the expression levels of transcripts [Li, Feng and
Jiang (2011)]. IsoLasso first divides a gene into a set of segments based on exon-
intron boundaries and then applies Lasso to regress read counts in the segments
against the transcript expression indexes. Li and Dewey proposed a method called
RNA-Seq by Expectation Maximization (RSEM) for quantifying the expression
level of transcripts [Li and Dewey (2011)]. In RSEM, a noise transcript is intro-
duced to account for reads without alignments. As a result, Li and Dewey claimed
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that RSEM achieves more accurate quantification results than other existing meth-
ods. Salzman et al. later used the simple Poisson distribution to model the total
number of counts that fall into each exon and exon-exon junction [Salzman, Jiang
and Wong (2011)]. Li et al. proposed to use a sparse linear model for isoform dis-
covery and abundance estimation (SLIDE) [Li et al. (2011)]. SLIDE is similar to
IsoLasso except that SLIDE uses read counts in bins instead of segments, and the
mapped reads are considered in the same bin if their starting and ending positions
belong to the same exons, respectively. All six methods discussed above use the
typical approach for solving indirect problems, which is to use a probabilistic or
statistical model to relate observations (i.e., observed reads) to unobserved quanti-
ties (i.e., transcript abundances). They differ from each other in terms of the units
of observations and the types of models they used. In particular, the Poisson model
proposed by Jiang et al. used exon or exon-exon junction as the unit, both Cufflinks
and RSEM treat each observed read as the unit, IsoLasso used each segment as the
unit, and SLIDE uses each bin as the unit [Li, Feng and Jiang (2011)].

The types of units discussed in the previous paragraph may suffer from some
drawbacks. One consequence of using bins, exons or segments as observation units
is the loss of information caused by aggregation. A well-known advantage of NGS
technologies is that they provide single base resolution. In a typical RNA-Seq ex-
periment, due to fragmentation and sampling, some base pairs of a gene receive
reads, while others do not receive reads. It is clear that base pairs with positive read
counts can reflect the abundance level of transcripts. We argue that base pairs with-
out reads also contain information about the abundance of transcripts and reflect
various uncertainties in an RNA-Seq experiment. Therefore, using only base pairs
with read counts but not those without read counts may again result in information
loss. The method proposed by Jiang et al. and IsoLasso model the aggregated read
counts in exons, segments or junctions rather than base pair level counts. Cufflinks
models only observed reads, but does not consider base pairs that do not receive
reads. SLIDE models only aggregated bin counts, whereas base pairs with zero
read counts and bins without observed reads are ignored. Therefore, these methods
may fail to utilize all information contained in RNA-Seq read counts data, and, as
a consequence, may fail to accurately quantify the expression levels of some tran-
scripts. In some cases, they may suffer from the nonidentifiability problem, that is,
they may not be able to distinguish transcripts that are distinguishable.

To improve upon these existing methods, in this article, we treat each base pair
as the observation unit and propose a novel approach that models both zero and
nonzero read counts for quantifying transcript expression levels. The generating
scheme for the read count at each base pair can be considered involving two steps.
In the first step, short reads are generated from each transcript that contains this
base pair according to a certain distribution; and in the second step, all these short
reads are mapped to the same base pair on the reference genome, which gives rise
to the observed read count. In the first step, the label of the transcript from which
each short read is generated is conceptually available, whereas, after the second
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step, this label becomes missing. Therefore, the second step can be regarded as a
convolution step, from which short reads of different transcripts are mixed and the
information about their origins is lost.

Instead of directly proposing models for the observed read counts on the
genome, we propose to first model the short read counts on the transcripts, and
refer to the resulting models as the transcript level models. After the transcript
level models are available, the models for the base level read counts on the refer-
ence genome can then be derived as the convolution of the transcript level models,
which are referred to the genome level models. In particular, we propose to use the
mixture of Poisson models at the transcript level, which leads to the convolution of
the mixture of Poisson models at the genome level. In this article, we do not con-
sider the transcript assembly problem. Instead we focus on the quantification of a
given set of candidate transcripts. The candidate transcripts set can include anno-
tated transcripts, novel transcripts of current research interest or those assembled
by other methods.

In the next section, we propose the Convolution of Poisson Mixture (CPM)
distribution to model RNA-Seq base level read counts data, develop algorithms
for computing the estimates of parameters, and further propose the quantification
method for transcript expression levels. We refer to our proposed method as the
CPM-Seq method. We report in Section 3 the results from simulation studies and
real data applications regarding the performance of CPM-Seq and its comparison
with Cufflinks and RSEM. We conclude the article with further discussion and
future research directions.

2. Methods.

2.1. Isoforms and read types. The exons of a gene form a partition of the
gene’s exonic region. In general, these exons represent the smallest units that can
be entirely transcribed or skipped during the transcription of the gene. However,
it can also happen that only a part of an exon is transcribed. When this happens,
the involved exon needs to be further divided into sub-exons so that each exon or
sub-exon is either completely retained or excluded in a transcript. Suppose gene g

contains kg exons or sub-exons, which are labeled as e1, . . . , ekg from the left end
to the right end of the gene, respectively. Suppose the number of base pairs in ei

is ni for 1 ≤ i ≤ kg . Let n0 = 0 and n = n1 + · · · + nkg . We index the exonic base
pairs of gene g from left to right as 1, . . . , n. It is clear that exon ei consists of the
base pairs {∑i−1

j=0 nj + 1, . . . ,
∑i

j=0 nj } for 1 ≤ i ≤ kg .
As discussed in the Introduction, the transcription of gene g can produce dif-

ferent transcripts, which are called, alternatively, spliced isoforms. For example, if
only e1 and e5 are kept during transcription while all the other exons are skipped,
the resulting transcript consists of e1 and e5, which can be denoted as T1 = e1e5;
and if only e1, e2 and e6 are kept and the others are skipped, the resulting transcript
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is T2 = e1e2e6. Let Tg = {T1, . . . , TN }, where N = |Tg|, be a set of candidate tran-
scripts. For example, if kg = 5, the total number of all possible transcripts will be
25 − 1 = 31, and N will be the number of transcripts of interest, which is less than
or equal to 31.

For every short read mapped to the annotated region of gene g, its starting and
ending positions can be obtained. The starting position and ending position of a
single-end read are denoted as start and end, respectively. Each paired-end read
contains two mate pairs, and we denote the starting positions and ending positions
of the two mate pairs as start1, end1, start2 and end2, respectively. For any two
single-end reads, if their starting positions and ending positions belong to exons
el1 and el2 , respectively, they are said to be of the same type, which is denoted
as rl1l2 . Similarly for a paired-end read, if its starting and ending positions start1,
end1, start2 and end2 are in exons el1 , el2 , el3 and el4 , it is said to be of type
rl1l2l3l4 . Let R denote the collection of all possible read types. The mapped reads
can also be classified into nonjunction reads and junction reads. Nonjunction reads
are those reads whose starting and ending positions are in the same exon, whereas
junction reads are those whose starting and ending positions are not in the same
exon. Correspondingly, all possible read types can be classified into nonjunction
read types and junction read types. For example, r1111 is a nonjunction read type
because reads of type r1111 have their starting and ending positions in the same
exon e1, whereas r1122 is a junction read type because reads of type r1122 have the
starting and ending positions of the first mate pair in exon e1 but the starting and
ending positions of the second mate pair in exon e2. Let N denote the collection of
nonjunction read types and J the collection of junction read types. Then we have
R = N ∪J . At base pair m of gene g, the number of reads or the total read count
starting at this base pair can be obtained, which is denoted as Sm. Furthermore,
this total read count can be partitioned into read counts of different types as Sm =∑

r∈R Y r
m, where Y r

m denotes the total count of type r (r ∈ R) reads starting at base
pair m.

Consider a paired-end read of type rl1l2l3l4 ∈ R. If the read is a nonjunction
read, then l1 = l2 = l3 = l4 = l, and rl1l2l3l4 can be simplified to be rll . If the read
is a junction read, there are seven possible scenarios, which are l1 = l2 = l3 < l4,
l1 = l2 < l3 = l4, l1 < l2 = l3 = l4, l1 = l2 < l3 < l4, l1 < l2 = l3 < l4, l1 < l2 <

l3 = l4, and l1 < l2 < l3 < l4. In this article, we aggregate these seven types into
one type denoted by rl1l4 . In other words, we consider only the starting position
of the first mate pair and the ending position of the second mate pair, and leave
the other positions arbitrary. Therefore, only two indexes (i.e., l1, l4) are needed
to characterize reads involving more than one exon. This simplification is mainly
to facilitate clear presentation of the proposed convolution model framework in
this short article. The proposed convolution model can be applied to the original
read types involving four indexes, although the presentation and computation will
become much more involved. Note that such simplification is not needed when
dealing with single-end reads.
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As discussed in the Introduction, mapped reads and their corresponding counts
can be directly used to quantify the overall expression level of a gene, but they may
not be directly used to quantify the expression levels of transcripts. The counts of
different types of reads Y r

m’s contain more information than the total read counts
Sm, but they still cannot be directly used for quantifying transcript expression lev-
els due to the same reason. To properly characterize the distribution of Y r

m, a con-
volution model is needed. As discussed in the Introduction, transcript expression
level quantification is an indirect statistical inference problem, which is to infer
transcript expression levels from the genome level read counts data. To facilitate
the inference, we first propose statistical models to represent the reads-generating
mechanism for each individual transcript in the RNA-Seq experiment, which are
referred to as the transcript level models. Second, we use a convolution model to
characterize the read counts of different types at the genome level.

2.2. Convolution of Poisson mixture models. For gene g with kg exons, there
are a maximum of kg(kg + 1)/2 all possible types of reads, among which kg types
are nonjunction types and kg(kg − 1)/2 types are junction types. We still use N
and J to denote the collection of all nonjunction types and the collection of all
junction types under consideration, respectively. It is clear that R = N ∪J , which
is the collection of all possible types. We use Eg to denote the exonic region of
gene g, that is, Eg = e1 ∪ e2 ∪ · · · ∪ ekg . For any type r ∈ R and base pair m ∈ Eg ,
recall Y r

m denotes the count of type r reads starting at base pair m. We use Y r =
{Y r

m;m ∈ Er} to represent the collection of type r read counts, where Er is the
collection of all possible base pairs that can become the starting positions of type
r reads. We use Y = {Y r; r ∈ R} = {Y r

m; r ∈ R,m ∈ Er} to represent the counts
for all types of reads defined on all possible base pairs.

Recall that Tg = {T1, T2, . . . , TN } is the collection of N candidate transcripts for
gene g under consideration. Consider transcript Tt ∈ Tg for 1 ≤ t ≤ N . For base
pair m of transcript Tt , that is, m ∈ Tt , and read type r ∈ R, we define Xr

tm to be the
count of type r reads generated from Tt in an RNA-Seq experiment, and assume
Xr

tm follows a two-component mixture of Poisson distribution with the probability
mass function

f
(
Xr

tm = x|λt ,pt

) =
2∑

i=1

pti Poi(x;λti),(2.1)

where pt = (pt1,pt2)
′ is the vector of mixing proportions satisfying

∑2
i=1 pti = 1,

λt = (λt1, λt2)
′ is the vector of intensity rates of the two Poisson components,

Poi(x;λti) = (λti)
x exp(−λti)/x!, and x is any non-negative integer. The first

Poisson component with intensity rate λt1 is used to model the base pairs that
either are not covered in the RNA-Seq experiment or covered with an abnormally
smaller number of reads due to various sequencing uncertainties, whereas the sec-
ond Poisson component with intensity rate λt2 is used to model the base pairs that
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are normally covered in the RNA-Seq experiment and λt2 represents the abundance
of the transcript.

The two-component Poisson mixture distribution can be considered a general-
ized zero-inflated Poisson model. The difference between this model and the stan-
dard zero-inflated model is that its first component accounts for not only excessive
zero counts but also small counts. The reason we choose this model over the stan-
dard zero-inflated model is threefold. First, there are three sources that can give
rise to zero and small counts, which include background noise, skipped base pairs
due to random fragmentation and base pairs improperly covered in an RNA-Seq
experiment; and the first component is used to simultaneously characterize those
sources. Second, using single-isoform genes, Wu et al. have found that the two-
component Poisson mixture distribution fits real RNA-Seq data well [Wu, Qin and
Zhu (2012)]. Third, as discussed in the Introduction, zero and small counts also
contain information about the abundance of the transcript; and, together with the
second component, the intensity rate of the first component will be used to produce
a more accurate shrinkage estimate of the transcript expression level (see Section 7
of the supplementary material [Wu and Zhu (2016)]). The standard zero-inflated
Poisson model cannot be used to serve the same purpose.

Note that Xr
tm for m ∈ Tt , Tt ∈ Tg and r ∈ R may not be always directly observ-

able. After the reads are mapped to the annotated region of gene g, the transcript
label t is missing as discussed previously. Instead of observing Xr

tm, we may only
observe Y r

m, which is the total count of type r reads for m ∈ Er . There, how-
ever, exists a relationship between Y r

m and Xr
tm, which can be obtained explicitly

when the collection of transcripts Tg is given. Consider a base pair m ∈ Er for
r ∈ R. Suppose a total of Nr transcripts {Ti1, . . . , TiNr

} ⊂ Tg can give rise to type
r reads. Let Xr

i1m
, . . . ,Xr

iNr m be the counts of type r reads at base pair m from
the candidate transcripts Ti1, . . . , TiNr

, respectively. Then Y r
m is the sum of Xr

km
for k = i1, . . . , iNr , that is, Y r

m = Xr
i1m

+ · · · + Xr
iNr m. Therefore, the distribution

Y r
m is the convolution of the distributions of Xr

i1m
, . . . ,Xr

iNr m. Because Xr
km fol-

lows the two-component mixture of Poisson distribution as defined previously in
model (2.1) with f (Xr

km = x) = ∑2
i=1 pki Poi(x;λki) for k ∈ {i1, i2, . . . , iNr }, the

distribution of Y r
m can be derived explicitly, which is a 2Nr -component mixture of

Poisson distribution with the following probability mass function:

p
(
Y r

m = y
) ≡ f

(
y|{Ti1 · · ·TiNr

})

=
iNr∏
k=i1

[ 2∑
jk=1

pkjk
Poi(y;λkjk

)

]
(2.2)

= ∑
ji1

· · · ∑
jiNr

[
pi1ji1

· · ·piNr jiNr
Poi(y;λi1ji1

+ · · · + λiNr jiNr
)
]
,

where y is a non-negative integer. There are in total 4Nr unknown parameters in
the model above: 2Nr proportion parameters pk1 and pk2 satisfying pk1 +pk2 = 1
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for k = i1, i2, . . . , iNr , and 2Nr intensity rates λk1 and λk2 for k = i1, i2, . . . , iNr .
The intensity rates λt1 may vary from transcript to transcript, but they mainly
depend on the coverage uncertainty in the RNA-Seq experiment as discussed in
the paragraph following (2.1), so we further assume that they are equal, that is,
λi11 = · · · = λiNr 1.

In the discussion above, we do not distinguish junction reads from nonjunc-
tion reads, even though junction reads demonstrate different characteristics. First,
junction reads contain more information about the transcripts, from which they are
generated, than nonjunction reads. Consider junction reads of type rl1l2 ∈ J with
l1 < l2 and nonjunction reads of type rl1l1 ∈ N . Let T rl1l1 be the collection of can-
didate transcripts that can generate reads of nonjunction type rl1l1 , and T rl1l2 the
collection of candidate transcripts that can generate reads of junction type rl1l2 . It
is clear that T rl1l2 is a subset of T rl1l1 . Therefore, reads of type rl1l2 are generated
from a smaller set of transcripts, and contain more direct information about the
transcripts than reads of type rl1l1 . For the same reason, junction reads are often
used for assembling novel transcripts.

In current real RNA-seq data, however, we found that the number of junction
reads is relatively smaller than the number of nonjunction reads. In other words,
given a junction read type r ∈ J , for m ∈ Er , the number of positive yr

m’s is small.
We postulate that the excessive large number of base pairs with yr

m = 0, for r ∈ J ,
is caused by other unknown missing mechanisms, which cannot be properly mod-
eled. Therefore, when estimating the model parameters, it may not be appropriate
to use the original distribution of Y r

m, for r ∈ J . One approach to solving this
difficulty is to consider only positive counts yr

m > 0 and the conditional distribu-
tion of yr

m given yr
m > 0. Another advantage of using the positive counts and their

conditional distributions is to avoid the ambiguity caused by difference in frag-
ment length in the definition of Er for r ∈ J . We define yr+ = {yr

m : m ∈ Er+},
where Er+ = {m : yr

m > 0}. For r ∈ J , the conditional distribution of Y r
m given

Y r
m > 0 for m ∈ Er is given as follows:

p
(
Y r

m = y|Y r
m > 0

)

=
{ iNr∏

k=i1

[ 2∑
jk=1

pkjk
Poi(y;λkjk

)

]}/{
1 − p

(
Y r

m = 0
)}

.

2.3. Illustrative example. We use a concrete example to illustrate exons, read
types and the models discussed in the previous subsections. Based on the refer-
ence sequence database (refseq) of the human genome (hg18), gene DARC has
two biological exons, which we denote as exons e′

1 and e′
2, respectively, and de-

pict in Figure 1 of the supplementary material [Wu and Zhu (2016)]. There are
two annotated transcripts or isoforms associated with DARC, which are labeled
as NM002036 and NM001122951, respectively. NM002036 consists of e′

1 and a
part of e′

2, while NM001122951 consists of the entire e′
2. To make the transcripts
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either contain or skip an exon entirely, we split exon e′
2 into two sub-exons de-

noted as e2 and e3. We re-denote exon e′
1 as e1. Therefore, exons e1, e2 and e3

form a partition of the exonic region of gene DARC, NM002036 consists of e1

and e3, and NM001122951 consists of e2 and e3. We relabel the two transcripts
NM002036 and NM001122951 as T1 and T2, respectively, and assume that they
form the collection of candidate transcripts, that is, T = {T1, T2}. We are inter-
ested in quantifying the expression levels of T1 and T2 based on the reads that are
mapped to the annotated region of gene DARC.

Let Eg be the exonic region of gene DARC, that is, Eg = e1 ∪ e2 ∪ e3. There are
in total 2212 base pairs in Eg with 969 base pairs in e1, 202 base pairs in e2, and
1041 base pairs in e3. We index the base pairs in Eg from the left end (5′-end) to the
right end (3′-end) by 1,2, . . . ,2212. Hence, e1 contains base pairs 1 through 969,
e2 contains base pairs 970 through 1171, and e3 contains base pairs 1172 through
2212. Transcript T1 is capable of generating reads of three different types, which
are r11, r13 and r33, respectively. Similarly, transcript T2 is capable of generating
reads of three types, which are r22, r23 and r33. Therefore, the collection of all
possible read types is R = {r11, r22, r33, r13, r23}, and the collections of nonjunc-
tion types and junction types are N = {r11, r22, r33} and J = {r13, r23}, respec-
tively. Thus, Er11 = {1, . . . ,969}, Er13 = {1, . . . ,969}, Er33 = {1172, . . . ,2212},
Er22 = {970, . . . ,1171}, and Er23 = {970, . . . ,1171}. Let X

ruv
tm represent the count

of type ruv reads generated from transcript Tt at base pair m for ruv ∈ R, Tt ∈ T
and m ∈ Eruv . Due to limited space, we list only the distributions of X

r33
1m and

X
r33
2m below, and the distributions of other X

ruv
tm ’s can be found in Section 3 of the

supplementary material [Wu and Zhu (2016)]:{
X

r33
1m ∼ p11 Poi(λ11) + p12 Poi(λ12), for m ∈ Er33;

X
r33
2m ∼ p21 Poi(λ21) + p22 Poi(λ22), for m ∈ Er33 .

(2.3)

Here the intensity rates λ11 and λ21 account for the no-coverage or abnormally low
coverage at the base pairs of transcripts T1 and T2, respectively. Note that λ11 =
λ21. The intensity rates λ12 and λ22 account for the abundance or the expression
levels of transcripts T1 and T2, respectively.

As discussed previously, X
ruv
tm ’s are not always directly observable. Instead, we

only observe the aggregated read counts Y
ruv
m ’s. The relationship between Y

ruv
m and

X
ruv
tm and the distributions of Y

ruv
m can be obtained. For example, Y r33

m = ∑2
i=1 X

r33
im ,

and the distribution of Y
r33
m is

∑2
i=1

∑2
j=1 p1ip2j · Poi(λ1i + λ2j ),m ∈ Er33 . No-

tice that, in this example, both transcripts T1 and T2 can produce reads of type
r33. Therefore, Y

r33
m is the convolution of X

r33
1m and X

r33
2m. The distributions of the

other Y
ruv
m ’s can be found in Section 3 of the supplementary material [Wu and Zhu

(2016)]. Given y = {yr
m : m ∈ Er, r ∈ R}, the maximum likelihood method can be

used to estimate the mixing proportions and the intensity rates of the models.
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2.4. Composite likelihood function. For gene g with kg exons e1, . . . , ekg , the
collection of candidate transcripts Tg = {T1, . . . , TN }, and the collection of possi-
ble read types R = N ∪J , given the count data of all possible types y = {yr

m,m ∈
Er, r ∈R}, the likelihood function for the model parameters can be derived as fol-
lows. We consider nonjunction read types first. For r ∈ N , yr = {yr

m : m ∈ Er}.
Recall that T r

g = {Ti1 · · ·TiNr
}, which is a sub-collection of Tg including the

transcripts that can produce reads of type r . Let θr = {(pk1,pk2, λk1, λk2) : k ∈
{i1, . . . , iNr }}, which is the collection of the model parameters associated with the
transcripts in T r

g . The probability mass function of yr
m is given in model (2.2).

Given yr , the likelihood function of θr is

Lr(θr |yr)

= ∏
m∈Er

iNr∏
k=i1

[ 2∑
jk=1

pkjk
Poi(λkjk

)

]
(2.4)

= ∏
m∈Er

{ 2∑
ji1

· · ·
2∑

jiNr

[
(pi1ji1

· · ·piNr jiNr
)Poi

(
yr
m;λi1ji1

+ · · · + λiNr jiNr

)]}
.

Next, we consider junction read types r ∈ J . For r ∈ J , yr = {yr
m : m ∈ Er}. Due

to the reasons discussed in Section 2.2, we only use the nonzero counts yr
m > 0 and

the conditional distribution of Y r
m given Y r

m > 0. We define T r and θr in the same
way as those for nonjunction types. Given the positive counts yr+ = {yr

m : m ∈ Er+},
the conditional likelihood function of θr is

Lr
c

(
θr |yr+

) = ∏
m∈Er+, s.t. yr

m>0

p
(
yr
m|θr , yr

m > 0
)
,(2.5)

where c in Lr
c indicates conditional likelihood. The detailed calculation of the con-

ditional likelihood function can be found in Section 4 of the supplementary ma-
terial [Wu and Zhu (2016)]. Assume that there are |Tg| = N candidate transcripts
in Tg , which are indexed by 1,2, . . . ,N . Let θ = {(pi1,pi2, λi1, λi2) : 1 ≤ i ≤ N},
which is the collection of all model parameters. We assume read counts of differ-
ent types are independent with each other. Let ỹ = {yr : r ∈ N } ∪ {yr+ : r ∈ J }.
Given ỹ, the likelihood function of θ can be obtained by combining the likelihood
functions (2.4) and (2.5) as follows:

L(θ |ỹ) = ∏
r∈N

Lr(θr |yr) · ∏
r∈J

Lr
c

(
θr |yr, yr > 0

)
.

We refer to L(θ |ỹ) as the composite likelihood function of θ , since it involves both
the ordinary likelihood and conditional likelihood functions. The maximum com-
posite likelihood estimate (MCLE) of θ is defined as the solution to the following
maximization problem:

max
θ

L(θ |ỹ),
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subject to ⎧⎪⎨
⎪⎩

λij > 0, for 1 ≤ i ≤ N and 1 ≤ j ≤ 2;
λ11 = · · · = λN1;
pi1 + pi2 = 1, for 1 ≤ i ≤ N.

The MCLE of θ is denoted as θ̂ . The behavior and properties of general MCLEs
have been studied by Varin et al. [Varin, Reid and Firth (2011)]. Under some regu-
larity conditions, MCLEs are consistent, asymptotically normal and may, however,
trade some efficiency for gain in convenience in modeling and computation. In the
next subsection, we use the EM algorithm to compute θ̂ .

2.5. EM algorithm. Directly optimizing the original composite likelihood
function L(θ |ỹ) is difficult and time consuming. Instead we apply the EM algo-
rithm to calculate the MCLE θ̂ . The EM algorithm uses a two-step data-generating
scheme as follows. For type r ∈ R and m ∈ Er , recall that Y r

m follows a 2Nr -
component mixture of Poisson distribution, and we index the components by
i1ji1 · · · iNr jiNr

, for jik ∈ {1,2} and k ∈ {1, . . . ,Nr}. We define membership in-
dicator variables Zr

m,(i1ji1 ···iNr jiNr
) such that Zr

m,(i1ji1 ···iNr jiNr
) = 1 if Y r

m is from the

component of the convolution distribution with intensity (λi1ji1
+ · · · + λiNr jiNr

);
and Zr

m,(i1ji1 ···iNr jiNr
) = 0, otherwise. Let zr = {zr

m,(i1ji1 ···iNr jiNr
),m ∈ Er}, for

r ∈ N and zr+ = {zr
m,(i1ji1 ···iNr jiNr

),m ∈ Er+} for r ∈ J . Let z̃ = {zr : r ∈ N }∪{zr+ :
r ∈ J }, which is the membership indicator of ỹ. With both ỹ and z̃, the complete
composite log-likelihood for θ can be written as

l(θ |ỹ, z̃) = log
(
L

(
θr |y, z

))
= ∑

r∈N
lr

(
θr |yr, zr) + ∑

r∈J
lrc

(
θr |yr, zr , yr > 0

)
.

For detailed information about the log-likelihood for nonjunction and junction
reads, see Section 6 of the supplementary material [Wu and Zhu (2016)].

Suppose the current parameter estimate is θ̂cur = (λ̂cur, p̂cur)′. The E-step
is to calculate the expected complete log-likelihood function Q(θ |θ̂cur, ỹ) =
Ez̃[log(l(θ |θ̂cur, ỹ, z̃))], where the expectation is over the conditional distribu-
tion of z̃ given λ̂cur, p̂cur and ỹ. Notice that Q(θ |θ̂cur, ỹ) can also be written as
E[∑r∈N lr (θr |yr, θ̂cur, zr) +∑

r∈J lrc (θ
r |yr, θ̂cur, zr+, yr > 0)]. The function Q

consists of two parts, one of which involves the nonjunction types, and the other
involves the junction types.

The M-step is to maximize Q with respect to λ and p, and the resulting
maximizers can be used to update θ̂ cur = (λ̂cur, p̂cur)′. We use a block coordi-
nate descent algorithm to optimize Q. First, we fix the value of p at p̂cur and
maximize Q with respect to λ. The resulting maximizer is (λ̂11, λ̂12, . . . , λ̂N2) =
arg maxλ11,λ12,...,λN2 Q, and the current estimate of λ̂cur is updated to be (λ̂11, λ̂12,
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. . . , λ̂N2). Second, we fix the value of λ at λ̂cur, and optimize Q with respect to
pt2 for 1 ≤ t ≤ N . Let p̂t2 = arg maxpt2 Q and then p̂t1 = 1 − p̂t2 for 1 ≤ t ≤ N .
Then current estimate p̂cur is updated to be (p̂12, . . . , p̂N2).

The EM algorithm iterates between the E-step and M-step until some conver-
gence criterion is satisfied. It is worth pointing out that as the number of candidate
transcripts increases, the computational complexity also increases. The EM algo-
rithm for the CPM model suffers from the curse of dimensionality and the problem
of local optima. To deal with the first problem, more sophisticated optimization al-
gorithms or parallel computing techniques could be implemented. To deal with the
second problem, we adopt the strategy of using multiple initializations. We repeat
the EM algorithm with different initial values of the parameters and choose the
estimates that achieve the largest likelihood value.

2.6. Quantification method. Suppose the MCLEs of the model parameters for
transcript Tt are calculated to be λ̂t1, λ̂t2, p̂t1 and p̂t2. Following the quantification
procedure proposed by Wu et al. [Wu, Qin and Zhu (2012)], the expression level
of transcript Tt is quantified to be gs

t = (sλ̂t1p̂t1 + λ̂t2p̂t2)/(sp̂t1 + p̂t2), where s is
a prespecified number between 0 and 1 and λ̂t1 < λ̂t2. More discussions about the
selection of the tuning parameter s can be found in Section 7 of the supplementary
material [Wu and Zhu (2016)].

2.7. Illustrative example (continued). Wong’s lab studied the transcriptome of
a brain tissue in an RNA-Seq experiment [Au et al. (2010)] which generates 50 bp
paired-end reads. A total of 313 reads are mapped to gene DARC, which contains
two isoforms, as we discussed in Section 2.3. The annotated two transcripts of
gene DARC are able to generate five types of reads. The frequency of each type of
reads is summarized in Table 1, and the base level counts are plotted in Figure 2
of the supplementary material [Wu and Zhu (2016)].

Note that r23 and r13 are two possible junction reads. Since type r23 reads are
not observed, they will not be included in the calculation. There are 41 type r13
reads, and the count of those reads will be included in the calculation. There-
fore, in this example, R = N ∪ J = {r11, r22, r33, r13} and the observed read
counts are y = (yr11, yr22, yr33, y

r13+ )′. The composite likelihood can be written as
L(θ |y) = ∏

ruu∈N Lruu(θruu |yruu) · ∏
ruv∈J L

ruv
c (θruv |yruv ), where λtj > 0 for 1 ≤

TABLE 1
Frequency table for all read types for DARC in

illustrative example

Type r11 r13 r22 r23 r33

Counts 103 41 0 0 169
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TABLE 2
Quantification results for gene DARC in illustrative example

Transcript λ̂ p̂ CPM-Seq Cufflinks

T1 λ̂11 = 0.066 p̂11 = 0.953 0.319 2.577
λ̂12 = 1.352 p̂12 = 0.047

T2 λ̂21 = 0.066 p̂21 = 0.830 0.033 ≈ 0
λ̂22 ≈ 0.000 p̂22 = 0.170

t ≤ 2,1 ≤ j ≤ 2. Additionally, we have λ11 = λ21, and pt1 +pt2 = 1 for 1 ≤ t ≤ 2.
Applying the EM algorithm, the MCLEs of the parameters are obtained and re-
ported in Table 2.

The expression levels of T1 and T2 are quantified to be 0.319 and 0.033 by CPM-
Seq, respectively. We also applied Cufflinks to quantify the expression levels of
these two transcripts, and they are 2.577 and 0, respectively. From the counts of the
observed types of reads in Table 1, we can see that there do not exist type r22 and
r23 reads, suggesting the absence or the low expression level of transcript T2. The
large counts of type r11 and type r33 reads indicate the presence of transcript T1.
Therefore, in this example, the quantification results of CPM-Seq and Cufflinks
are consistent with each other and with the observed read counts.

3. Results. To further compare CPM-Seq with Cufflinks and RSEM, two pop-
ularly used methods in practice, we need to have a gold standard as the benchmark.
In our simulation study, we can simulate expression levels and treat them as the
gold standard. In real data applications, however, the true expression levels of tran-
scripts are not available, hence, we instead use the qRT-PCR measurements as the
gold standard. We present the results of three simulation studies, which are Exam-
ples 1, 2 and 3, conducted at different scales. We further use two real datasets to
compare our proposed method with Cufflinks and RSEM. The first dataset contains
the single-end sequencing data and qRT-PCR measurements of eight transcripts.
The second dataset contains the paired-end sequencing data of a brain sample. The
comparison results based on these two datasets are presented in Examples 4 and 5,
respectively.

3.1. Simulation study. We can generate RNA-Seq read counts in two possible
ways. We can simulate the data from a prespecified parametric model or we can
use an RNA-Seq simulator. To make our simulation study more convincing, we
choose the Flux simulator to generate RNA-Seq short reads. The Flux simulator
was developed by Gabriel et al. [Griebel et al. (2012)] to simulate RNA-Seq ex-
periments in silico and is among the most sophisticated simulators. Given a set of
transcripts and their expression levels, the Flux simulator simulates the protocols
of an RNA-Seq experiment step-by-step to generate the short reads.
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EXAMPLE 1. We conducted a small-scale simulation study to compare the
performances of CPM-Seq and Cufflinks. Five genes were selected from chromo-
some one of the human genome. Each gene contained three annotated isoforms.
Using the Flux simulator, 75 bp paired-end reads were generated for these 15 iso-
forms as follows. First, the simulator randomly assigned expression levels to all 15
isoforms in the annotation. Second, the simulator randomly fragmented these iso-
form molecules into small pieces, which were then amplified in silico. Third, the
simulator sequenced these fragments and generated three thousand 75 bp paired-
end reads. Once the reads were obtained, we mapped them back to the reference
genome using Tophat [Trapnell, Pachter and Salzberg (2009)]. We converted the
mapped reads to read count data of different types. Based on the count data of
different types, we applied CPM-Seq and Cufflinks separately to quantify the ex-
pression levels of the 15 transcripts. We refer to the resulting measurements as the
CPM-Seq measurements and Cufflinks measurements, respectively. The expres-
sion levels of the transcripts assigned by the simulator in the first step were treated
as the gold standard.

The Pearson correlation coefficient between the CPM-Seq measurements and
the gold standard is 0.715, and the Pearson correlation coefficient between the
Cufflinks measurements and the gold standard is 0.665. The scatter plots of the
CPM-Seq and Cufflinks measurements against the gold standard are given in Fig-
ure 3 in the supplementary material [Wu and Zhu (2016)]. We also calculated the
Spearman rank correlation coefficient between CPM-Seq and the gold standard
(0.871), and the Spearman rank correlation coefficient between Cufflinks and the
gold standard (0.275). The scatter plots of the ranks of the CPM-Seq and Cufflinks
measurements against those of the gold standard are given in Figure 1.

We can see that in terms of the Pearson correlation coefficient, CPM-Seq
slightly outperforms Cufflinks. However, in terms of the Spearman rank corre-

FIG. 1. Scatter plots of ranks of quantification results by Cufflinks and CPM-Seq for 15 transcripts
in Example 1. Plot (a) is for the ranks of Cufflinks measurements versus those of the gold standard
(the Spearman rank correlation coefficient = 0.275). Plot (b) is for the ranks of the CPM-Seq mea-
surements versus those of the gold standard (the Spearman rank correlation coefficient = 0.871).
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TABLE 3
Spearman rank correlation coefficients for RSEM,
CPM-Seq and Cufflinks versus the gold standard

CPM-SEQ Cufflinks RSEM

0.604 0.387 0.589

lation coefficient, CPM-Seq outperforms Cufflinks dramatically. We believe that
the Spearman rank correlation coefficient characterizes the performances of the
two different methods much better than the Pearson correlation coefficient. The
overall superior performance of CPM-Seq over Cufflinks is demonstrated by the
strong linear pattern in Plot (b) of Figure 1 for CPM-Seq, and the lack of linear
pattern in Plot (a) for Cufflinks. When comparing the 15 transcripts pairwise (105
pairs in total), CPM-Seq ranked 90 pairs correctly, whereas Cufflinks only ranked
63 pairs correctly. This example suggests that the Spearman rank correlation co-
efficient provides a more reliable measure of the performance of a quantification
method, and thus we will use it in the other examples in the rest of the paper.

EXAMPLE 2. We conducted a medium scale simulation study to compare
CPM-Seq with both Cufflinks and RSEM. We used the Flux Simulator and gen-
erated reads for 17 genes, each of which contains 3 transcripts. As in Example 1,
generated reads were mapped back to the reference genome using Tophat. CPM-
Seq, Cufflinks and RSEM were applied to quantify the transcripts’ expression lev-
els. CPM-Seq and RSEM achieved comparable Spearman rank correlation with
the gold standard, which were 0.604 and 0.589, respectively. Cufflinks was only
able to achieve a correlation of 0.387 with the gold standard. The performances of
these three methods are summarized in Table 3 and Figure 2.

EXAMPLE 3. We also conducted a relatively large-scale simulation study with
ten replicated runs. In each run, the Flux simulator randomly assigned expression
levels to all isoforms of human chromosome 1 in refseq hg 18, and generated
three million 75 bp paired-end reads. Once the reads were obtained, they were
mapped back to the reference genome using Tophat. We eliminated genes that
had less then 20 reads, and genes that received more than 60 reads at least at
one base pair. In the first run, there were 987 genes left after filtering. Among
these genes, 710 genes had single isoform, 156 genes had two isoforms, 74 genes
had three isoforms, 27 genes had four isoforms, and 27 genes had five isoforms.
We applied CPM-Seq and Cufflinks separately to quantify the expression levels of
these isoforms and calculated their Spearman rank correlation coefficients with the
gold standard. The Spearman rank correlation coefficient for CPM-Seq was 0.616
and the Spearman rank correlation coefficient for Cufflinks was 0.538. Therefore,
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FIG. 2. Scatter plots of quantification results by CPM-Seq, Cufflinks and RSEM with the gold
standard in Example 2.

CPM-Seq outperformed Cufflinks in this run. The simulation results of the other
9 runs are reported in Table 4. To compare the performances of CPM-Seq and
Cufflinks in all ten runs, we applied the paired t-test, and the resulting p-value
was ≤ 0.0001, suggesting a significant improvement of CPM-Seq over Cufflinks.

3.2. Real data application. Two real datasets are further used to compare
CPM-Seq, Cufflinks and RSEM, and the corresponding results are presented in
Examples 4 and 5 below. Example 4 is based on a small-scale study with qRT-
PCR measurements which are used as the gold standard. Example 5 is based on

TABLE 4
Spearman rank correlation coefficients for CPM-Seq and Cufflinks of ten simulation runs

CPM-Seq with gold Cufflinks with gold CPM-Seq with Cufflinks

Run 1 0.616 0.538 0.498
Run 2 0.551 0.540 0.436
Run 3 0.606 0.550 0.471
Run 4 0.612 0.555 0.464
Run 5 0.589 0.548 0.511
Run 6 0.547 0.527 0.464
Run 7 0.603 0.562 0.490
Run 8 0.610 0.532 0.449
Run 9 0.602 0.569 0.498
Run 10 0.594 0.585 0.536
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the large-scale study that does not have qRT-PCR measurements. Therefore, we do
not have a gold standard in Example 5. Instead, we use the characteristics of the
read counts data themselves to facilitate the comparison of the two methods.

EXAMPLE 4. Two human cell lines named MCF7 and HME were studied
by Wang et al. using RNA-Seq [Wang et al. (2008)]. The resulting data can be
downloaded from the NCBI Short Read Archive at http://www.ncbi.nlm.nih.gov/
sra under accession number GSE12946. There are 21.6 million 32 bp reads for
the MCF7 cell line and 17.8 million 32 bp sequenced reads for the HME cell line.
Using bowtie [Langmead et al. (2009)], we mapped the reads to the ucsc hg18
reference genome and obtained the base level read counts data for both cell lines.
We applied CPM-Seq, Cufflinks and RSEM to quantify the transcript expression
levels.

The original study of Wang et al. did not provide the qRT-PCR measurements
of the transcripts. Fortunately, Kim et al. [Kim et al. (2011)] used the qRT-PCR
techonology to measure eight transcripts of four genes of these two cell lines in
a separate study. We used these qRT-PCR measurements as the gold standard to
compare the performances of CPM-Seq, Cufflinks and RSEM. In Table 5, we re-
port those eight transcripts and their qRT-PCR, CPM-Seq, Cufflinks and RSEM
measurements for the HME cell line. The same transcripts and their qRT-PCR,
CPM-Seq, Cufflinks and RSEM measurements for the MCF7 cell line are reported
in Section 9 of the supplementary material [Wu and Zhu (2016)]. The Spearman
rank correlation coefficients between the gold standard and the three quantifica-
tion methods for both of the two cell lines are calculated and reported in Table 6.
We can see that CPM-Seq achieves higher correlation with the gold standard than
Cufflinks and RSEM in both cell lines.

TABLE 5
Quantification results of qRT-PCR, CPM-Seq and Cufflinks for eight transcripts in Example 4

HME

Transcript ID qRT-PCR CPM-Seq Cufflinks RSEM

uc002cvs.1 423.5 0.9771 1.3396 1.52
uc002cvt.2 234.7 1.4227 33.6959 40.05
uc002qlp.1 277.9 1.1251 7.8938 6.97
uc002qlq.1 621.8 1.3131 18.9976 19.51
uc002xmo.1 8.1 0.0019 0.1141 0.44
uc002xmn.1 10.7 0.0039 0.2860 0.29
uc003ngr.1 12.4 0.8350 14.3832 9.93
uc003ngs.1 538.2 0.0472 1.6722 2.01

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
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TABLE 6
Spearman rank correlation coefficients of CPM-Seq
and Cufflinks with the gold standard in Example 4

CPM-Seq Cufflinks RSEM

HME 0.571 0.476 0.452
MCF7 0.619 −0.024 −0.024

EXAMPLE 5. In this example, we will see that even when CPM-Seq is concor-
dant with Cufflinks and RSEM, their quantification results for some genes can be
quite different from each other. We analyzed RNA-Seq data of the Human Brain
Reference RNA sample, which was originally generated by Wong’s lab using the
Illumina Genome Analyzer platform [Au et al. (2010)]. We processed one lane of
eight million 50 bp paired-end reads. The data set can be downloaded from the
NCBI Short Read Archive (SRA) at http://www.ncbi.nlm.nih.gov/sra under the
accession numbers GSM475204 and GSM475205 [Au et al. (2010)]. Tophat was
used to map the reads to refseq hg18. We filtered out genes that had received in total
less than 20 reads, genes that had received more than 60 reads at least at one base
pair, and genes with more than five exons. After filtering, 433 genes on chromo-
some one remained and included 743 isoforms. Among the 433 genes, there were
277 single-isoform genes, 87 two-isoform genes, 51 three-isoform genes and 18
four-isoform genes. Because these multi-isoform genes contain many sub-exons, it
is not possible to observe every type of junction read even if all of the junctions are
expressed. Therefore, we used the composite likelihood, which includes all non-
junction reads and the positive junction reads. We applied CPM-Seq, Cufflinks and
RSEM to quantify the expression level of each transcript. The Spearman rank cor-
relation coefficient between CPM-Seq and Cufflinks was 0.589, and the Spearman
rank correlation coefficient between CPM-Seq and RSEM was 0.590. Therefore,
CPM-Seq, Cufflinks and RSEM show a good overall concordance in this example.

Despite their general concordance, the quantification results of CPM-Seq differ
from those of Cufflinks and RSEM for a large number of genes. A more careful
comparison between the CPM-Seq, Cufflinks and RSEM measurements of these
genes indicates that the CPM-Seq measurements are more reasonable. We give
such an example below.

According to human refseq hg18, gene ZNF238 contains two exons, which we
denote as e′

1 and e′
2, and it has two annotated transcripts labeled as NM205768 and

NM006352. Transcript NM205768 consists of e′
1 and a part of e′

2, and transcript
NM006352 consists of the entire e′

2. To make the transcripts either contain or skip
an exon entirely, we split exon e′

2 into two sub-exons denoted as e2 and e3. We re-
denote exon e′

1 as e1. Therefore, exons e1, e2 and e3 form a partition of the exonic
region of gene ZNF238. The total length of gene ZNF238’s exonic region is 4387,
and the exonic base pairs are indexed as 1, . . . ,4387. Exons e1, e2 and e3 contain

http://www.ncbi.nlm.nih.gov/sra
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TABLE 7
Frequency table for each type of read for gene ZNF238 in Example 5

Type r11 r13 r22 r23 r33

Counts 2 8 4 2 1313

base pairs {1, . . . ,187}, {188, . . . ,695}, {696, . . . ,4387}, respectively. NM205768
consists of e1 and e3, and NM006352 consists of e2 and e3. We relabel the two
transcripts NM205768 and NM006352 as T1 and T2, respectively, and assume that
they form the collection of candidate transcripts, that is, T = {T1, T2}.

As discussed previously, not all junction reads will be observed due to insuffi-
cient coverage or technological limitations of the RNA-Seq experiment. In the 50
bp paired-end reads data generated by Wong’s lab, we observed only five types
of reads for gene ZNF238. The frequency of each type of read is summarized in
Table 7, and the base level counts are plotted in Figure 3.

We applied CPM-Seq to quantify the expression levels of T1 and T2, and the
MCLEs of the model parameters and quantification results are reported in Table 8.

The parameter estimates indicate that both T1 and T2 are expressed and the ex-
pression level of T1 (0.741) is about 1.5-fold higher than that of T2 (0.296). We
also applied Cufflinks and RSEM to quantify these two transcripts, and the quan-
tification results are also presented in Table 8. Cufflinks quantified the expression
level of T1 to be 11.653, and quantified the expression level of T2 to be 4.128e-05,
which is almost zero. It appears that Cufflinks suggests that T1 was expressed but
T2 was not. RSEM quantified the expression level of T1 to be 233.61, and quanti-
fied the expression level of T2 to be 23.36. According to the RSEM measurements,

FIG. 3. Base pair level counts for each type of read of ZNF238 in Example 5. The x-axis indicates
base pair positions, and the y-axis represents the counts.
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TABLE 8
Quantification results of CPM-Seq and Cufflinks for T1 and T2 in Example 5

Transcript λ̂ p̂ CPM-Seq Cufflinks RSEM

T1 λ̂11 = 0.040 p̂21 = 0.898 0.741 11.653 233.61
λ̂12 = 1.978 p̂12 = 0.102

T2 λ̂21 = 0.040 p̂21 = 0.993 0.296 ≈ 0 (4.128e–05) 23.36
λ̂22 = 7.998 p̂22 = 0.007

T2 was also expressed, which is consistent with CPM-Seq; however, the expres-
sion level of T1 is 9-fold higher than that of T1, which is not completely consistent
with CPM-Seq.

Recall that T1 = e1e3, T2 = e2e3, and e1, e2 and e3 are 187 bp, 507 bp and 3691
bp long in length, respectively. It is clear e3 is the longest among the three exons,
followed by e2 and then e1, and e3 is actually much longer than e2 and e1. From
Table 7, e3 received the majority of the reads mapped to gene ZNF238 (1313 out
of 1329 reads). These reads are of type r33. Because both T1 and T2 contain e3 and
both transcripts can give rise to reads of type r33, they cannot be directly allocated
to the transcripts. Reads of types r11 and r13 (10 in total) suggest the expression of
T1, whereas reads of type r22 and r23 (6 in total) suggest the expression of T2. The
counts of these types of reads are relatively small compared to the count of reads of
type r33, due to the short lengths of e1 and e2. We believe that this was the reason
that Cufflinks was not able to separate the two transcripts and instead allocated all
reads of type r33 to T1. RSEM was able to separate the two transcripts, however,
its ratio of separation is not consistent with the ratio of counts of reads that are not
of the r33 type. On the other hand, CPM-Seq was able to infer the expression levels
of T1 and T2 using the convolution model that models the read count at each base
pair. We believe that CPM-Seq successfully identified and properly quantified the
two transcripts in this example.

4. Discussion. As discussed in the Introduction, it is an indirect inference
problem to identify transcripts and quantify their expression levels using RNA-
Seq data, and various types of observation units proposed in the literature such as
exons, segments and bins can make transcripts and their expression levels noniden-
tifiable in many cases. In this article, we propose a novel approach called CPM-Seq
for quantifying transcript expression levels, which treats individual base pairs as
observation units and uses the convolution of a mixture Poisson distribution to
model the RNA-Seq data. Both a simulation study and real data application have
demonstrated the effectiveness of CPM-Seq, and further shown that CPM-Seq is
capable of producing more accurate and consistent quantification results than Cuf-
flinks and RSEM.
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There are several immediate directions to further improve CPM-Seq. First, more
efficient computational algorithms may substantially accelerate CPM-Seq. Our
current R implementation ran for 1 minute, 10 hours and 30 minutes for Exam-
ples 1, 2 and 3, respectively, on an Intel i5 2.5 GHz Processor with four cores. We
observed that CPM-Seq takes a relatively longer time to handle genes with a large
number of transcripts. The computation is more challenging with more candidate
transcripts in the annotation. Because CPM-Seq quantifies the transcripts on a gene
by gene basis, an immediate idea to accelerate CPM-Seq is to parallelize the cur-
rent algorithm using modern distributed and parallel computing systems such as
Spark [Zaharia et al. (2010)].

The second direction to improve CPM-Seq is to incorporate the fragment length
distribution into the CPM model. In the literature, the fragment length distribution
is typically modeled by N(μ,σ 2), where μ and σ 2 are either known or can be
estimated from reads mapped to genes with a single exon. When considering reads
of different types, we also need to include the possible lengths of the reads. For
example, for read type r , instead of simply counting the reads of type r , we need
to count the reads of type r and length l.

The third direction to improve CPM-Seq is to incorporate the lasso type of
penalty into CPM-Seq. Currently, CPM-Seq can handle collections of candidate
transcripts of moderate size. When the collection of candidate transcripts becomes
large, both the computational and estimation efficiencies of CPM-Seq will be com-
promised. Under the sparsity assumption, incorporating the lasso-type penalty into
CPM-Seq is expected to improve both the estimation and computational efficien-
cies of CPM-Seq. We have been working on all those three directions and the
results are expected to be reported in a future publication.
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SUPPLEMENTARY MATERIAL

Supplementary document for deconvolution of base pair level RNA-
Seq read counts for quantification of transcript expression levels (DOI:
10.1214/16-AOAS906SUPP; .pdf). We provide a supplementary document to
show the details of the Poisson mixture distribution, the conditional distribution of
yr
m, the distribution of the illustrative example, the composite likelihood function,

the details of the EM algorithm, the quantification method, supporting figures for
the illustrative example, quantification results for MCF7, and the supporting figure
for Example 1.
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