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Mixed-mode surveys are becoming more popular recently because of
their convenience for users, but different mode effects can complicate the
comparability of the survey results. Motivated by the Private Education Ex-
penditure Survey (PEES) of Korea, we propose a novel application of frac-
tional imputation to handle mixed-mode survey data. The proposed method
is applied to create imputed values of the unobserved counterfactual outcome
variables in the mixed-mode surveys. The proposed method is directly appli-
cable when the choice of survey mode is self-selected. Variance estimation
using Taylor linearization is developed. Results from a limited simulation
study are also presented.

1. Introduction. Surveys can be conducted in many different modes, includ-
ing online, telephone, mail and face-to-face, and each survey mode has its unique
effect on the survey responses. Researchers often utilize more than one survey
mode in order to increase the participation rate and improve the coverage of the
survey population. For this reason, mixed-mode surveys, which rely on a combi-
nation of survey modes, are becoming increasingly popular in practice. Dillman
and Christian (2003) and de Leeuw (2005) discussed several advantages of the
mixed-mode survey. However, since each survey mode has a different mode ef-
fect and it is often confounded with the selection effect, it is challenging to com-
pare data in mixed-mode surveys [Krosnick (1991, 1999), Voogt and Saris (2005),
Dillman et al. (2009)]. When the selection effect is ignorable as in the completely
randomized design, the mode effect can be estimated under some comparability
assumptions [Vannieuwenhuyze, Loosveldt and Molenberghs (2010), Buelens and
Van den Brakel (2013)].

From a statistical point of view, the mixed-mode survey can be regarded as a
measurement error problem with different measurement errors representing differ-
ent survey modes. In this sense, statistical adjustment of mode effect is essentially a
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calibration problem under measurement error models. Durrant and Skinner (2006)
considered the calibration problem under measurement errors using a validation
subsample including both the erroneously measured variable and the accurately
measured variable. Powers, Mishra and Young (2005) used the multiple imputa-
tion method for measurement error calibration in the National Health Survey of
Family Growth. Burgette and Reiter (2012) used nonparametric Bayesian multiple
imputation methods to calibrate one measurement to another when the measure-
ment methods are changed during the data collection.

In the mixed-mode surveys, we cannot directly apply the classical calibration
approach because of the absence of a calibration subsample. Biemer (2001) pro-
posed an interview-reinterview approach using the latent class analysis to estimate
the selection effect and the measurement effect in a mixed-mode survey. Klausch,
Schouten and Hox (2014) used a within-subject design to estimate the measure-
ment effect in the same mixed-mode survey considered in Buelens and Van den
Brakel (2013), but their approach is only applicable to sequential mixed-mode
surveys. Kolenikov and Kennedy (2014) provide a nice summary of three exist-
ing methods for handling mixed-mode surveys. Vannieuwenhuyze, Loosveldt and
Molenberghs (2010) considered the covariate adjustment method to explain the
measurement effect in estimating the population mean in mixed-mode surveys.

In this paper, we consider an imputation approach for estimating parameters
of interest under a measurement error model in a single survey. This research is
motivated by the 2011 Private Education Expenditure Survey (PEES) conducted
by Statistics Korea. The PEES aims to measure the average private education ex-
penses for elementary, middle and high school students in Korea, respectively. The
PEES had used mail surveys only for obtaining responses before 2011, and thus
the mail survey has been chosen as the reference mode. In 2011, the PEES used
two survey modes to obtain responses, via mail survey and via internet survey, and
the choice between the two survey modes is completely randomized.

The private education expense variable, denoted as Cost, is the primary study
variable considered. There are significant differences in the study variable and the
time spent on private education, denoted as Time, between two survey modes,
notably the smaller mean and the larger standard deviations for internet surveys
(Tables 1 and 2). Also, in comparison with data from the reference mode, internet

TABLE 1
Means and standard deviations of the private education expenses in 2011 PEES

School level Mail Internet

Elementary School 72.071 (60.422) 68.479 (59.544)
Middle School 82.891 (71.257) 83.395 (81.275)
High School 79.980 (92.116) 74.726 (95.802)

Standard deviations are in parentheses.
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TABLE 2
Means and standard deviations of time spent on private education in 2011 PEES

School level Mail Internet

Elementary School 7.868 (5.840) 7.657 (6.332)
Middle School 7.946 (6.637) 7.159 (6.672)
High School 4.757 (5.455) 4.331 (5.497)

Standard deviations are in parentheses.

survey data has a tendency to have more extreme values; the portion of students
taking no private lessons or tutoring is much higher in the internet survey (Table 3)
and comparatively larger values of private education expense exist in the data from
the internet survey.

In addition to the study variable, there are auxiliary variables, x, that include in-
formation about local area level, school level (Elementary, Middle, High), gender
of students, age of parents, education level of parents, grade of students and house-
hold income. Since in the 2011 PEES respondents were randomly assigned to each
mode, two survey modes produce similar compositions of the respondents with re-
spect to auxiliary variables. For example, Table 4 shows that there is no significant
differences between mail and internet mode in the percent of male students, percent
of parents with less than or equal to 12 years of education and monthly household
income. Thus, we can safely assume that x is not subject to measurement errors
resulting from survey modes.

Moreover, PEES has high response rates. All parents responded to the study
variable, Cost, and to most of the auxiliary variables. For the education level of
parents, nonresponse rates are approximately 4% for both survey modes.

Obtaining consistent estimation results from the reference mode, or the mode
that the survey has been offered in historically, is a critical issue for the survey
provider [Kolenikov and Kennedy (2014)]. In our case, PEES had been conducted
only by mail until 2011, which makes the mail survey our reference mode. Thus,
our goal in the project is to convert the responses from the internet survey into
those from the mail survey.

TABLE 3
Percent of students taking private lessons or tutoring in

2011 PEES

School level Mail Internet

Elementary School 86.1 73.4
Middle School 76.8 71.7
High School 63.7 56.7
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TABLE 4
Description of auxiliary variables in 2011 PEES: The second and third columns show the percent of
male students from mail and internet surveys, respectively. The fourth and fifth columns indicate the
percent of parents with less than or equal to 12 years of education from mail and internet surveys,
respectively. The sixth and seventh columns show the mean of monthly household income from mail

and internet surveys, respectively

Percent of Percent of parents with ≤12 Monthly
male students years of education household income*

School level Mail Internet Mail Internet Mail Internet

Elementary School 52.59 53.05 39.54 36.21 4.28 4.23
Middle School 55.87 51.12 46.62 45.12 4.33 4.34
High School 52.88 53.85 44.51 44.45 4.50 4.36

∗Million KRW.

We use a measurement error model setup to handle the mixed-mode survey data.
We write the measurement from mode A and mode B as ya and yb, respectively.
Also, we observe demographic variables (such as grade, gender, geography, edu-
cation of parents) denoted by x. Table 5 presents the data structure for the mixed-
mode survey data. As can be seen in Table 5, (X,Ya) is observed in mode A and
(X,Yb) is observed in mode B . Thus, Ya and Yb are never jointly observed. There-
fore, Ya is an unobservable counterfactual outcome of Yb in the mode B sample
and the same can be said of Yb with respect to the mode A sample [Morgan and
Winship (2007), Vannieuwenhuyze, Loosveldt and Molenberghs (2010)]. The goal
of the PEES project is to create imputed values of Ya in the mode B sample so that
θ = E(Ya) can be estimated using the whole sample. We use a novel application
of the fractional imputation method of Kim (2011) to achieve the goal.

This paper is organized as follows. In Section 2, basic setup is described in the
context of a mixed-mode survey with two survey modes. In Section 3, the proposed
method is presented. In Section 4, results from a limited study are presented. Ap-
plication of the proposed method to PEES is described in Section 5. Concluding
remarks are made in Section 6.

TABLE 5
Data structure for a mixed-mode survey with two

survey modes

Mode X Ya Yb

A o o
B o o
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2. Basic setup. In this section, we introduce some notation and state the prob-
lem in the context of a mixed-mode survey with two survey modes. Suppose that
we have a probability sample S drawn from a finite population of size N , where N

is known. Let πi be the first order inclusion probability of unit i and wi = π−1
i be

the design weight associated with unit i.
Next, suppose that a mixed-mode survey with two survey modes, mode A and

mode B , is used to collect information from the sample S. Let S = Sa ∪ Sb be
the partition of the sample based on the mode such that mode A is used in Sa and
mode B in Sb. For each unit i in S, let yai be the measurement of study variable y

from mode A and ybi be the measurement of y from mode B . In addition, suppose
a q-dimensional vector of auxiliary variables xi is also observed throughout the
sample.

As discussed in the Introduction, we use a measurement error model setup to
handle the mixed-mode survey data. A measurement error model can be written as

(2.1) ybi = α0 + α1yai + ui

for some α0 and α1, where ui ∼ (0, σ 2
u ). We treat mode A as the benchmark mode

and focus on converting the data collection under mode B to mode A because
PEES had been exclusively conducted in mode A (mail survey) until 2011. Thus,
we write yai = yi , where yi is the measurement of the study variable y for unit i

from the reference mode.
Now, the measurement error model (2.1) is assumed to be parametrically mod-

eled as

(2.2) ybi |(yi,xi) ∼ g(ybi |yi;α)

for some α with known density g(·). Model (2.2) also implies that

(2.3) f (ybi |xi , yi) = f (ybi |yi),

which means that yb is conditionally independent of x, conditional on y. In the
measurement error literature, variable ybi satisfying (2.3) is often called the surro-
gate variable for yi [Carroll et al. (2006), Section 2.5].

We also assume that yi in the sample follows a parametric model with density
f (yi |xi; θ), where θ is an unknown parameter that characterizes the conditional
distribution; that is, we assume

(2.4) yi |xi ∼ f (yi |xi; θ)

for some θ . Models (2.2) and (2.4) form a set of measurement error models.
Model (2.2), often called the measurement model, describes the relationship be-
tween the two modes, and model (2.4), sometimes called the structural error model,
incorporates extra information from xi .

We are interested in estimating the finite population mean of the study variable,
ψN = N−1 ∑N

i=1 yi , under mode A. For a single-mode survey data (Mode A only),
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the Horvitz–Thompson (HT) estimator, ψ̂HT = N−1 ∑
i∈S wiyai is an unbiased

estimator of ψN . Under the mixed-mode survey structure, a naive estimator given
by

(2.5) ψ̂naive = N−1
{∑

i∈Sa

wiyai + ∑
i∈Sb

wiybi

}

is biased unless E(yai) = E(ybi). As can be seen in Table 1, the two survey modes
are significantly different in their means and the naive estimator is biased.

To correct for the bias of the naive estimator in (2.5), we consider

(2.6) ψ̂ ≡ N−1
{∑

i∈Sa

wiyi + ∑
i∈Sb

wiE(yi |ybi,xi )

}
,

where the conditional expectation is computed from a prediction model, obtained
by the Bayes formula

(2.7) f (yi |ybi,xi) = f (yi |xi )
g(ybi |yi)∫

f (yi |xi )g(ybi |yi) dyi

for the units in Sb. The prediction model will be the model for imputing the un-
observed outcome. The actual computation of the conditional expectation in (2.6)
can be implemented using an application of the parametric fractional imputation
of Kim (2011), which will be presented in Section 3.

In addition to the measurement error model, the choice model (or selection
model), P(mi = a|xi , yi), where mi = a indicates A to be the mode of choice for
unit i, may be considered. The choice model is particularly needed if the choice
of the survey mode is not random. In this case, the conditional distribution (2.7) is
changed, by the Bayes formula again, to

f (yi |ybi,xi ,mi = b)
(2.8)

= f (yi |xi )
g(ybi |yi)P (mi = b|xi , yi)∫

f (yi |xi )g(ybi |yi)P (mi = b|xi , yi) dyi

.

If the choice model satisfies

P(m = b|x, y) = P(m = b|x),

then the choice model is ignorable in the sense of Rubin (1976) and model (2.8)
reduces to model (2.7).

3. Proposed method. The proposed imputation approach aims to generate
yi = yai for i ∈ Sb from the current observation xi and ybi . For the PEES, to
have comparability with historical data, we wish to correct observations from the
internet mode to observations from the mail mode.

We first consider the case when the choice of mode is ignorable. The imputation
model f (ya|x, yb) can be used to create imputed values of yai from i ∈ Sb. Recall
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that the imputation model f (ya|x, yb) is obtained by applying a Bayes formula to
the components of the measurement error models, (2.2) and (2.4); that is,

f (yai |xi , ybi) = f (yai |xi; θ)g(ybi |yai;α)∫
f (yai |xi; θ)g(ybi |yai;α)dyai

,

which depends on unknown parameters θ and α. The EM algorithm can be used
to estimate the parameters and predict the unobserved outcome variable simulta-
neously. In the EM algorithm, computation under the E-step often involves heavy
computational tools such as Markov Chain Monte Carlo [Chen, Shao and Ibrahim
(2000)], and its convergence is difficult to check [Booth and Hobert (1999)].

For general parametric models, f (yai |xi; θ) and g(ybi |yai;α), the conditional
expectation in the E-step does not have a closed form and Parametric Fractional
Imputation (PFI) proposed by Kim (2011) can be used in this case. By introducing
so-called fractional weights, the PFI method simplifies the computation in the E-
step of the EM algorithm. Unlike the usual Monte Carlo EM algorithm [Wei and
Tanner (1990)], the EM sequence from the PFI method converges even for fixed M ,
where M is the size of Monte Carlo samples in the PFI method. The EM algorithm
using the PFI method is computed by the following steps:

Step 1. Set t = 0. Calculate the maximum likelihood estimate of the parameter
θ of f (yai |xi; θ) using data Sa only. Let the estimate, denoted as θ̂ (0), be the initial
value of θ .

Step 2; generating imputed values. For each unit i ∈ Sb, generate M imputed
values, y

∗(1)
ai , . . . , y

∗(M)
ai from f (yai |xi; θ̂ (0)). Set w∗

ij (0) = 1/M .

Step 3; updating the parameters. Update θ̂ by solving the imputed score equa-
tion for θ :

∑
i∈Sa

wiS1(θ;xi , yai) + ∑
i∈Sb

M∑
j=1

wiw
∗
ij (t)S1

(
θ;xi , y

∗(j)
ai

) = 0,

where S1(θ;xi , yai) = ∂ logf (yai |xi; θ)/∂θ .
Also, update α̂ by solving the imputed score equation for α:

∑
i∈Sb

M∑
j=1

wiw
∗
ij (t)S2

(
α;y∗(j)

ai , ybi

) = 0,

where S2(α;yai, ybi) = ∂ logg(ybi |yai;α)/∂α.
Step 4; calculating the weights. Calculate the fractional weight w∗

ij for each i ∈
Sb,

w∗
ij (t) ∝ g

(
ybi |y∗(j)

ai ; α̂(t))f (y
∗(j)
ai |xi; θ̂ (t))

f (y
∗(j)
ai |xi; θ̂ (0))

and
∑M

j=1 w∗
ij (t) = 1, where η̂(t) = (θ̂ (t), α̂(t))′ is the current estimate of η =

(θ,α)′.
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Step 5. Check for convergence. If converged, stop. Otherwise, set t = t + 1 and
go to Step 3.

If the choice model is nonignorable, however, the probability of the choice mode
depends on ya , then the imputation model becomes

f (yai |xi , ybi,m = b)

= f (yai |xi; θ)g(ybi |yai;α)P (mi = b|xi , yai;φ)∫
f (yai |xi; θ)g(ybi |yai;α)P (mi = b|xi , yai;φ)dyai

,

and the PFI method should incorporate the choice mechanism explicitly. Here, the
probability of the choice mode can be modeled by a logistic regression model,
for example, and φ can be understood as the regression coefficients in the logistic
regression model. The detailed algorithm of the PFI under the nonignorable choice
model is presented in Appendix A.

Using the imputed values for units in Sb generated by the PFI method, one can
compute the conditional expectation in (2.6) by a Monte Carlo approximation.
Thus, the parametric fractional imputation estimator of the finite population mean
is computed by

ψ̂PFI = N−1

{∑
i∈Sa

wiyai + ∑
i∈Sb

wi

M∑
j=1

w∗
ij y

∗(j)
ai

}
.

So far, we have only considered the case of ψ = E(Y ). More generally, suppose
that the parameter of interest ψ is now defined by solving an estimating equation
UN(ψ) ≡ ∑N

i=1 U(ψ;xi , yai) = 0. Let η = (θ,α)′. Under the current setup, the
PFI estimator of ψ can be obtained by solving the fractionally imputed estimating
equation Ū∗(ψ |η) = 0, where

Ū∗(ψ |η) ≡ ∑
i∈Sa

wiU(ψ;xi , yai) + ∑
i∈Sb

wi

M∑
j=1

w∗
ijU

(
ψ;xi , y

∗(j)
ai

)
.(3.1)

We now discuss variance estimation of the PFI estimators. Let η̂ = (θ̂ , α̂) be the
solution to

S̄∗(η) ≡

⎛
⎜⎜⎜⎜⎜⎝

∑
i∈Sa

wiS1(θ;xi , yai) + ∑
i∈Sb

M∑
j=1

wiw
∗
ij S1

(
θ;xi , y

∗(j)
ai

)
∑
i∈Sb

M∑
j=1

wiw
∗
ij S2

(
α;y∗(j)

ai , ybi

)

⎞
⎟⎟⎟⎟⎟⎠

(3.2)

=
(

0
0

)
,
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where S1(θ;xi , yai) = ∂ logf (yai |xi; θ)/∂θ and S2(α;yai, ybi) = ∂ logg(ybi |yai;
α)/∂α and ψ̂PFI is the estimator obtained by solving the imputed estimating equa-
tion, Ū∗(ψ |η) = 0. Note that Ū∗(ψ |η) in (3.1) can be written

Ū∗(ψ |η) = ∑
i∈S

wiŪ
∗
i (ψ |η),

where

Ū∗
i (ψ |η) =

⎧⎪⎪⎨
⎪⎪⎩

U(ψ;xi , yai), for unit i ∈ Sa ,
M∑

j=1

w∗
ijU

(
ψ;xi , y

∗(j)
ai

)
, for unit i ∈ Sb,

and that S̄∗(η) in (3.2) can be written

S̄∗(η) = ∑
i∈S

wiS̄
∗
i (η),

where S̄∗
i (η) = (S̄∗

1i (θ), S̄∗
2i (α))′ with

S̄∗
1i (θ) =

⎧⎪⎪⎨
⎪⎪⎩

S1(θ;xi , yai), for unit i ∈ Sa ,
M∑

j=1

w∗
ij S1

(
θ;xi , y

∗(j)
ai

)
, for unit i ∈ Sb,

S̄∗
2i (α) =

⎧⎪⎪⎨
⎪⎪⎩

0, for unit i ∈ Sa ,
M∑

j=1

w∗
ij S2

(
α;xi , y

∗(j)
ai , ybi

)
, for unit i ∈ Sb.

For variance estimation of ψ̂PFI, we can use the Taylor linearization. By Taylor
expansion of Ū∗(ψ |η) with respect to η, we can establish

Ū∗(ψ |η̂) ∼= Ū∗(ψ |η) − E

{
∂

∂η′ Ū
∗(ψ |η)

}
E

{
∂

∂η′ S̄
∗(η)

}−1
S̄∗(η)

= ∑
i∈S

wi

{
Ū∗

i (ψ |η) + κ(ψ)S̄∗
i (η)

}
,

where κ(ψ) is defined as

κ(ψ) = −E

{
∂

∂η′ Ū
∗(ψ |η)

}
E

{
∂

∂η′ S̄
∗(η)

}−1
.

Now, κ(ψ) can be consistently estimated by

κ̂ = ∑
i∈Sb

wi

M∑
j=1

w∗
ij (η̂)U∗

ij (ψ)
{
S∗

ij (η) − S̄∗
i (η)

}′{
Î ∗

obs(η̂)
}−1

,
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where, for unit i ∈ Sb,U
∗
ij (ψ) = U(ψ;xi , y

∗(j)
ai ), S∗

ij (η) = (S1(θ;xi , y
∗(j)
ai ), S2(α;

xi , y
∗(j)
ai , ybi))

′ and Îobs(η) is defined as

Î ∗
obs(η) = − ∑

i∈Sa

wiṠa(η;xi , yai) − ∑
i∈Sb

wi

M∑
j=1

w∗
ij (η)Ṡb

(
η;xi , y

∗(j)
ai , ybi

)

− ∑
i∈Sb

wi

M∑
j=1

w∗
ij (η)S∗

ij (η)
{
S∗

ij (η) − S̄∗
i (η)

}′
,

with Ṡa(η;xi , yai) = (∂S1(θ;xi , yai)/∂η′,0)′ and Ṡb(η;xi , y
∗(j)
ai , ybi) = (∂S1(θ;

xi , y
∗(j)
ai )/∂η′, ∂S2(α;xi , y

∗(j)
ai , ybi)/∂η′)′. See Theorem 2 of Kim (2011) for a de-

tailed derivation.
Suppose that a consistent estimator for the variance of ŶHT = ∑

i∈S wiyi is given
by

V̂ (ŶHT) = ∑
i∈S

∑
j∈S

�ijyiyj

for some coefficient �ij . Then a sandwich-type variance estimator for ψ̂PFI is

V̂ (ψ̂PFI) = τ̂−1V̂q τ̂
−1′

,

where

τ̂−1 = ∑
i∈Sa

wi

∂U(ψ̂PFI;xi , yai)

∂ψ ′ + ∑
i∈Sb

wi

M∑
j=1

w∗
ij

∂U(ψ̂PFI;xi , y
∗(j)
ai )

∂ψ ′ ,

and V̂q is a design-consistent variance estimator of
∑

i∈S wiq̂i , given by

V̂q = ∑
i∈S

∑
j∈S

�ij q̂i q̂j ,

where q̂i = Ū∗
i + κ̂ S̄∗

i .
For the nonignorable choice mechanism, we use η = (θ,α,φ), where φ is the

parameter in the choice model, and apply the same linearization method.

4. Simulation study. In this section, we present a simulation study to test the
performance of the proposed method. Both ignorable and nonignorable selection
mechanisms were considered for mode selection in the samples from an artificial
finite population. In this simulation study, we generated a finite population of size
N = 10,000 with x1i ∼ N(1,1), x2i ∼ N(3,1), where x1i and x2i are always ob-
served in the sample and the variable of interest y is observed in either one of the
two different modes A and B . The variable of choice of mode is δi ∼ Bernoulli(pi)

with

(4.1) log
{
pi/(1 − pi)

} = φ0 + φ1x1i + φ2x2i + φ3yai,
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with δi = 1 for mode A and δi = 0 for mode B . The measurements for the study
variable are generated from

yai = β0 + β1x1i + β2x2i + ei,

ybi = α0 + α1yai + ui,

where (β0, β1, β2) = (1,−1,0.5), (α0, α1) = (0.5,1), ei ∼ N(0,1) and ui ∼
N(0, σ 2

u = 2). From the finite population generated above, we used simple ran-
dom sampling to select B = 2000 Monte Carlo samples of size n.

We are interested in estimating four parameters: two regression coefficients,
(α0, α1), the mean of ya , ψ1 = E(ya), and the marginal mean difference between
two modes, ψ2 = E(ya − yb), which is the marginal measurement effect in the
mixed-mode survey analysis. If there are observations ya and yb from both samples
Sa and Sb simultaneously, then the parameters of interest ψ1 and ψ2 would be
consistently estimated by the usual Horvitz–Thompson (HT) estimator. However,
since ya and yb are not available in Sb and Sa , respectively, the HT estimator is not
applicable.

The simulation study can be summarized as a 2 × 2 factorial design with two
factors with the first factor being two types of the choice of mode mechanism, ig-
norable and nonignorable, and the second factor being the sample sizes of n = 100
and n = 500. We used (φ0, φ1, φ2, φ3) = (1,0.5,−0.5,0) and (φ0, φ1, φ2, φ3) =
(−0.4,1,0,−0.4) for the ignorable and nonignorable choice mechanism, respec-
tively, in (4.1).

To estimate the parameters, four estimation methods were considered:

(i) Full sample estimation (Full): Use the complete observations (yai, ybi, xi)

in both samples A and B .
(ii) Use the sample mean under modes A and B ignoring the mode effect

(Naive).
(iii) Stochastic regression imputation (SRI): For each i in B , M = 500 im-

puted values are generated by y∗
ai(j) = β̂0 + β̂1x1i + β̂2x2i + e

∗(j)
i , where e

∗(j)
i ∼

N(0, σ̂ 2
e ) and (β̂0, β̂1, β̂2, σ̂

2
e ) are obtained by a regression of ya on (x1, x2) in

sample A.
(iv) Parametric fractional imputation (PFI) with M = 500.

For example, four estimators were computed to estimate ψ1 = E(ya): the sam-
ple mean of yai in the full sample (Full), the sample mean of yi = δiyai +
(1 − δi)ybi in the full sample ignoring the mode effect (Naive), the sample
mean of ỹi = δiyai + (1 − δi)E(yai |x1i , x2i ) (SRI), and the sample mean of
ỹi = δiyai + (1 − δi)E(yai |x1i , x2i , ybi) using the proposed PFI method in Sec-
tion 3 (PFI). The SRI method is also called the covariate adjustment method, which
is the most popular method of handling mixed-mode surveys.

Under the ignorable choice model, to compute the PFI estimator for unit i

from sample B , first generate M imputed values of y
∗(j)
ai , j = 1, . . . ,M from
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TABLE 6
Monte Carlo means and standard errors of the four estimators under the ignorable choice

mechanism based on 2000 Monte Carlo samples

Estimator

Sample size Parameter Full Naive SRI PFI

n = 100 α0 0.52 N/A 1.39 0.55
(0.33) N/A (0.36) (0.53)

α1 0.99 N/A 0.53 0.98
(0.14) N/A (0.14) (0.26)

ψ1 1.49 1.75 1.49 1.49
(0.14) (0.18) (0.18) (0.18)

ψ2 −0.51 −1.19 −0.50 −0.50
(0.14) (0.35) (0.30) (0.30)

n = 500 α0 0.51 N/A 1.35 0.52
(0.14) N/A (0.16) (0.23)

α1 1.00 N/A 0.53 0.99
(0.06) N/A (0.06) (0.12)

ψ1 1.49 1.75 1.49 1.49
(0.06) (0.07) (0.08) (0.08)

ψ2 −0.51 −1.18 −0.51 −0.51
(0.06) (0.15) (0.13) (0.13)

Standard errors are in parentheses.

fa(yai |x1i , x2i; β̂(0)), the conditional distribution of ya given x1 and x2 with initial

estimate parameter β̂(0) = (β̂0(0), β̂1(0), β̂2(0), σ̂
2
e(0))

′, where β̂(0) are computed by
the maximum likelihood method from Sample A. Each imputed value is assigned
a fractional weight w∗

ij ∝ g(ybi |y∗
ai; α̂(t)), where g(ybi |y∗

ai; α̂(t)) is the conditional

distribution of yb given ya with α̂′
(t) = (α̂0(t), α̂1(t), σ

2
u(t)) obtained by maximum

likelihood using the fractionally imputed data with fractional weight w∗
ij (t−1). The

parametric fractional imputation method for the nonignorable choice of modes
mechanism is described in Appendix A.

Tables 6 and 7 present Monte Carlo means and standard errors of the point
estimators of the four parameters under ignorable and nonignorable choice mech-
anisms, respectively. For the regression coefficients α0 and α1, under both choice
mechanisms, SRI shows large biases, but PFI provides nearly unbiased estimators.
For the mean-type parameters, ψ1 and ψ2, Naive estimators are biased even though
the choice of mode is ignorable. Although SRI for ψ1 and ψ2 are unbiased when
the choice mechanism is ignorable, they have severe biases under the nonignorable
choice mechanism when n = 500. On the other hand, the proposed PFI estimators
are unbiased for the mean type of parameters ψ1 and ψ2 under both ignorable and
nonignorable choice mechanisms. Monte Carlo variance of the PFI estimators are
smaller than that of Naive estimators under the ignorable choice of mode, but if
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TABLE 7
Under the nonignorable choice, Monte Carlo means and standard errors of the four estimators of

parameters of interest based on 2000 samples

Estimator

Sample size Parameter Full Naive SRI PFI

n = 100 α0 0.48 N/A 1.51 0.47
(0.41) N/A (0.44) (0.99)

α1 1.00 N/A 0.52 0.97
(0.16) N/A (0.16) (0.31)

ψ1 1.49 1.75 1.29 1.53
(0.14) (0.19) (0.19) (0.36)

ψ2 −0.51 −1.87 −0.87 −0.47
(0.14) (0.33) (0.34) (0.67)

n = 500 α0 0.51 N/A 1.20 0.49
(0.17) N/A (0.21) (0.38)

α1 1.00 N/A 0.77 0.98
(0.07) N/A (1.00) (0.14)

ψ1 1.49 1.75 1.30 1.50
(0.06) (0.08) (0.08) (0.15)

ψ2 −0.51 −1.87 −0.87 −0.49
(0.06) (0.14) (0.15) (0.29)

Standard errors are in parentheses.

the choice model is nonignorable, then the PFI estimators have larger variance than
Naive estimators.

Under the current setup, f (ya|x1, x2, yb) has a normal distribution with mean
α0 +α1x1i +α2x2i +α3ybi and variance σ 2

a = σ 2
ya

−α(σyax1, σyax2, σyayb
)′, where

σ 2
ya

is the variance of ya , α = (α0, α1, α2, α3) and σxy is the covariance of x and
y. Thus, the theoretical variance of the PFI estimator of ψ1 under the ignorable
choice mechanism is

(4.2) Var(ψ̂1,PFI) ∼= 1

n

(
σ 2

ya
− σ 2

a

) + 1

na

σ 2
a + (n − na)

n2 σ 2
a ,

where na is the size of sample Sa , σ 2
ya

= 2.25 is the variance of ya and σ 2
a = 2/3.

Thus, the theoretical asymptotic standard errors of the PFI estimator of ψ1 are
0.18 and 0.08 for n = 100 and n = 500, respectively, which are consistent with the
results in Table 6.

In addition to point estimation, confidence intervals were computed using the
variance estimation method discussed in Section 3. The actual coverage rates of
confidence intervals were computed using normal approximation in Table 8. Ta-
ble 8 shows that the actual coverage rates are not significantly different from the
nominal coverage level for the sample of size n = 500. For n = 100, there is a
modest undercoverage for ψ2 due to the small sample size.
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TABLE 8
Observed coverage for 95% and 99% confidence intervals

Observed coverage (%)

ψ1 ψ2

Confidence level (%) n = 100 n = 500 n = 100 n = 500

95 95.7 95.2 93.6 94.6
99 98.9 99.3 98.8 98.7

5. Application in the private education expenditures survey.

5.1. Data description. The Private Education Expenditures Survey (PEES)
aims to provide reliable data on household expenditure on tutoring or private
lessons for elementary, middle and high school students in Korea every year. The
PEES surveys 45,501 parents from 1081 schools, for example, in 2011. The sam-
pling design for the survey is a stratified cluster sampling using local area level as
the stratification variable. The primary sampling unit is school.

In 2011, the PEES became a self-reported survey conducted with two different
survey modes, mail survey and internet survey. In the 2011 survey, respondents
were randomly assigned to each mode, mail or internet, but from 2012, respon-
dents can choose their survey modes. Under the mail mode, a classroom teacher
sends out paper questionnaires to students, which are then filled out by parents
and submitted back to the teacher. Under the internet mode, a classroom teacher
informs parents of the internet survey, after which parents fill out the same ques-
tionnaires online through the internet. The mail mode and the internet mode are
denoted by mode A and mode B , respectively.

In order to build a model for the expenses of private education, we first consider
the amount of time spent on private education, which is also subject to measure-
ment error. Thus, there are two study variables, Time and Cost, which will be
denoted by y1 and y2, respectively. The total time spent on private education in
a week is the time variable, whereas the total monetary amount spent on private
education in a month is the cost variable. In addition to the two study variables,
there are auxiliary variables, x, that include information about local level, school
level, sex, age of parents, education level of parents, grade of students and house-
hold income. As discussed in the Introduction, we assume that x is not subject to
the measurement error resulting from survey modes.

5.2. Methodology. Another difficulty in developing a proper imputation
model for y1 and y2 is the significant portion of zero values for y1 and y2 in
the sample. For example, the proportion of zero values for study variable y1 is
more than 15% in the sample under mode A (Sample A). Thus, to account for
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the significant portion of zero values in y1, we applied a Tobit regression model
[Amemiya (1973), Schnedler (2005)], which uses latent variables za1 and za2 to
explain ya1 and ya2, respectively. For ya1, we use

(5.1) ya1,i =
{
za1,i , if za1,i > 0,

0, otherwise,

where

(5.2) za1,i = x′
iβ + ei, ei ∼ N

(
0, σ 2

e

)
.

Thus, za1 denote the latent variable in the Tobit regression model of ya1. Negative
values of za1 lead to zero values of ya1. In (5.2), we use auxiliary variables such
as local area level of school, education level of parents, average age of parents,
gender of students and GPA of students, which are chosen by the usual variable
selection methods using Sample A.

To obtain a prediction model for y2, we note that y1 = 0 (zero time) is equivalent
to y2 = 0 (zero cost). Also, it is natural to assume that cost is proportional to
the amount of time spent on private education even though the slope may vary
depending on the school level and the other factors. Thus, we use a ratio model for
the cost variable:

(5.3) za2,i = Riza1,i ,

where Ri = x′
iγ + ηi, ηi ∼ N(0, σ 2

η ). Thus, negative values of za2 lead to zero
values of ya2.

Similarly, we consider latent variables zb1 and zb2 for yb1 and yb2, respectively,
as

(5.4) ybj,i =
{
zbj,i , if zbj,i > 0,

0, otherwise,
j = 1,2,

where

(5.5) zbj,i = zaj,i + uj,i, uj,i ∼ N
(
0, σ 2

uj

)
, j = 1,2.

Note that the conditional independence assumption is implicitly used in the
above measurement model:

gb(zbj |zaj , yaj ,x) = gb(zbj |zaj ), j = 1,2.

Thus, (zb1, zb2) is the surrogate variable for (za1, za2). We used separate struc-
tural error models for each school level (Elementary, Middle, High), but, in the
measurement model, we assume equal variance for measurement errors.

For parameter estimation of the specified models, the EM algorithm using PFI,
described in Section 3, was used. For i ∈ Sa , we generate M (M = 500) imputed
values of (za1, za2) from the following imputation model:

z
∗(j)
a1,i ∼ f (za1|xi , za1,i < 0; θ̂1(0)) if ya1,i = 0,

z
∗(j)
a2,i ∼ f

(
za2|xi , z

∗(j)
a1,i , za2,i < 0; θ̂2(0)

)
if ya2,i = 0,
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where θ1 = (β, σ 2
e ) and θ2 = (β, σ 2

e ). Otherwise, we use z
∗(j)
a1,i = ya1,i and z

∗(j)
a2i =

ya2,i . The fractional weights are given by

w∗
ij (t) ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, ya1i > 0,

f (z
∗(j)
a1,i |xi , z

∗(j)
a1,i < 0; θ̂1(t))

f (z
∗(j)
a1,i |xi , z

∗(j)
a1,i < 0; θ̂1(0))

f (z
∗(j)
a2,i |xi , z

∗(j)
a1,i , z

∗(j)
a2,i < 0; θ̂2(t))

f (z
∗(j)
a2,i |xi , z

∗(j)
a1,i , z

∗(j)
a2,i < 0; θ̂2(0))

,

ya1,i = 0,

with
∑M

j=1 w∗
ij (t) = 1.

For i ∈ Sb, we generate M imputed values of (za1, za2) first and then generate
M imputed values of (zb1, zb2):

z
∗(j)
a1,i ∼ f (za1|xi , ; θ̂1(0)),

z
∗(j)
a2,i ∼ f

(
za2|xi , z

∗(j)
a1,i ; θ̂2(0)

)
and

z
∗(j)
b1,i ∼ g1

(
zb1|z∗(j)

a1,i , zb1,i < 0; σ̂ 2
u1(0)

)
if yb1,i = 0,

z
∗(j)
b1,i = yb1,i if yb1,i > 0,

z
∗(j)
b2,i ∼ g2

(
zb2|z∗(j)

a2,i , zb2,i < 0; σ̂ 2
u2(0)

)
if yb2,i = 0,

z
∗(j)
b2,i = yb2,i if yb2,i > 0,

where g1(·) and g2(·) are the density for the measurement model of zb1 and zb2,
respectively. For i ∈ Sb, yb1i > 0, yb2i > 0, the fractional weights are given by

w∗
ij (t) ∝ g1

(
zb1,i |z∗(j)

a1,i ; σ̂ 2
u1(t)

)
g2

(
zb2,i |z∗(j)

a2,i ; σ̂ 2
u2(t)

)

× f (z
∗(j)
a1,i |xi; θ̂1(t))

f (z
∗(j)
a1,i |xi; θ̂1(0))

f (z
∗(j)
a2,i |xi , z

∗(j)
a1,i ; θ̂2(t))

f (z
∗(j)
a2,i |xi , z

∗(j)
a1,i ; θ̂2(0))

.

For i ∈ Sb, yb1i = 0, yb2i = 0, the fractional weights are given by

w∗
ij (t) ∝ g1(zb1,i |z∗(j)

a1,i , z
∗(j)
b1,i ≤ 0; σ̂ 2

u1(t))

g1(zb1,i |z∗(j)
a1,i , z

∗(j)
b1,i ≤ 0; σ̂ 2

u1(0))

g2(zb2,i |z∗(j)
a2,i , z

∗(j)
b2,i ≤ 0; σ̂ 2

u2(t))

g2(zb2,i |z∗(j)
a2,i , z

∗(j)
b2,i ≤ 0; σ̂ 2

u2(0))

× f (z
∗(j)
a1,i |xi; θ̂1(t))

f (z
∗(j)
a1,i |xi; θ̂1(0))

f (z
∗(j)
a2,i |xi , z

∗(j)
a1,i ; θ̂2(t))

f (z
∗(j)
a2,i |xi , z

∗(j)
a1,i ; θ̂2(0))

,

with
∑M

j=1 w∗
ij (t) = 1.
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TABLE 9
Summary of the imputation procedure for PEES

Step 1 Generate the latent variables (za1, za2, zb1, zb2)

Step 1a For i ∈ Sa , generate za1 from (5.2) if ya1 = 0, otherwise za1 = ya1.
Step 1b For i ∈ Sa , generate za2 from (5.3) if ya2 = 0, otherwise za2 = ya2.
Step 1c For i ∈ Sb, generate za1 and za2 from (5.2) and (5.3), respectively.
Step 1d For i ∈ Sb, generate zb1 and zb2 from (5.5) if yb1 = 0,

otherwise zb1 = ya1 and zb2 = yb2, respectively.
Step 2 Compute the corresponding fractional weights w∗

ij for each unit.
Step 3 Update the parameters by solving the imputed score equations.
Step 4 Go to Step 2 until convergence.

The parameter estimates are updated by solving the imputed score equations:

∑
i∈S

M∑
j=1

wiw
∗
ij (t)S1

(
θ1;xi, z

∗(j)
a1i

) = 0,

∑
i∈S

M∑
j=1

wiw
∗
ij (t)S2

(
θ2;xi, z

∗(j)
a1i , z

∗(j)
a2i

) = 0,

where S1 and S2 are the score functions of θ1 and θ2, respectively. The parameters
in the measurement error models are updated by

σ̂ 2
u1(t+1) =

∑
i∈Sb

wi

∑M
j=1 w∗

ij (t)(zb1,i − z
∗(j)
a1,i )

2∑
i∈Sb

wi

and

σ̂ 2
u2(t+1) =

∑
i∈Sb

wi

∑M
j=1 w∗

ij (t)(zb2,i − z
∗(j)
a2,i )

2∑
i∈Sb

wi

.

Table 9 gives a summary of the imputation procedure used in the 2011 PEES.

5.3. Result. The mean expenses of students taking private education and the
percentage of students taking private education are estimated and shown in Ta-
ble 10. For each parameter of interest, we compute four estimators: sample mean
using only observations from the mail mode (Mail), sample mean using only ob-
servations from the internet mode (Internet), naive method using all observations
ignoring mode effect (Naive) and, finally, real observations from the mail mode
and the imputed “observations” from the internet mode generated by parametric
fraction imputation (PFI). These four estimators for the population mean can be
written as follows:

– Mail:
∑

i∈Sa
wiyai/(

∑
i∈Sa

wi),
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TABLE 10
Four estimates of the two parameters from the 2011 PEES data

Parameter School Mail Internet Naive PFI

Mean expense of students Elementary 27.91 27.38 27.69 27.45
taking private education (0.46) (0.53) (0.35) (0.21)

Middle 35.98 38.75 37.24 36.55
(0.55) (0.71) (0.44) (0.26)

High 41.84 43.93 42.79 41.76
(0.66) (0.77) (0.50) (0.30)

Percent of taking Elementary 85.10 84.10 84.90 84.40
private education (0.02) (0.03) (0.01) (0.01)

Middle 74.80 70.70 72.40 73.40
(0.03) (0.04) (0.02) (0.02)

High 59.20 54.30 56.80 57.10
(0.03) (0.03) (0.01) (0.01)

Standard errors are in parentheses.

– Internet:
∑

i∈Sb
wiybi/(

∑
i∈Sb

wi),
– Naive: {∑i∈Sa

wiyai + ∑
i∈Sb

wiybi}/(∑i∈S wi),

– PFI: {∑i∈Sa
wiyai + ∑

i∈Sb

∑M
j=1 wiw

∗
ij y

∗(j)
ai }/(∑i∈S wi),

where wi are the sampling weights.
In Table 10, it is shown that the internet survey results in larger estimates for

the two parameters and has larger standard errors than the mail survey. Naive esti-
mates have smaller variance but still have values that are quite different from Mail
estimates. The PFI estimates of the mean expense on private education are simi-
lar in value to Mail estimates but are different from Internet and Naive estimates,
while its standard errors are smaller than that of Mail estimates.

Furthermore, as revealed by the comparison between the observed data and the
imputed data on the Cost variable in the internet survey, extremely large values
among observed data were reduced in value in the imputed data, which leads to a
smaller proportion of extremely large values. Under the Tobit model we consid-
ered, it is assumed that the internet mode has a larger variance than does the mail
mode because the internet mode involves a larger sample proportion of zero val-
ues. Hence, theoretically, the mean of the internet mode would appear larger than
that of the mail mode, and the proposed methodology effectively corrects for the
bias by decreasing the mean value of the internet mode.

Moreover, Figures 1 and 2 show the time series of the mean private education
expenses and the percentages of students taking private lessons from 2007 to 2011,
respectively. It is shown in Figure 1 that the estimates of the mean private educa-
tion expense in 2011 are larger for both mail and internet modes than the estimate
of the mail mode in 2010. However, we can see that the estimate from the inter-
net survey is disproportionately larger in 2011 than the overall tendency of the
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FIG. 1. Mean expense of students taking private education from 2007 to 2011.

increase in the estimate from the mail survey. Moreover, in Figure 2, the estimate
from the internet survey on the percent of students taking private lessons decreased
sharply in 2011, much more so than the overall decreasing pattern shown for the
mail mode. Because the portion of zeros in the sample from the internet mode is
so large, its effect is still reflected in the PFI method, which suggests that the Tobit
regression model used in the PFI method does not completely remove the mea-
surement errors in the internet mode samples. However, the overall mean is well
estimated in the PFI method. The PFI estimate of the mean expense is very close
to the estimate of the mail mode and closer to the estimate of the mail mode than
to the estimate of the internet mode.

6. Conclusion. We have presented a new approach to analyzing data from
mixed-mode surveys. The prediction model for the unobserved counterfactual out-
come is obtained by using the Bayes formula formulated from a measurement error

FIG. 2. Percents of students taking private lessons from 2007 to 2011.
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model. Parameters in the prediction model are estimated by applying the EM algo-
rithm using parametric fractional imputation of Kim (2011). The proposed method
is computationally attractive and can be applied even when the choice mechanism
for mode selection is nonignorable.

While the proposed method itself is a promising approach of handling the
mixed-mode survey data in general, the application of the proposed method to
2011 PEES data has several limitations. First, the choice of the imputation model
is somewhat ad hoc. Because the data has a significant portion of zero values, we
considered a Tobit regression model to account for the larger proportion of ze-
ros. Instead of the Tobit model, we could consider mixture models, such as zero-
inflated regression models, but we did not discuss model selection in this paper.
Second, we essentially ignored unit nonresponse. As far as we know, the survey
participation was mandatory and there was no unit nonresponse in the 2011 PEES
survey. Thus, the unit nonresponse is not an issue in this project. However, if there
were unit nonresponse that is confounded with the survey mode, the resulting anal-
ysis would be more complicated. Also, we have only considered the case of two
survey modes. Extension of the proposed method to several survey modes will be
a topic of future study.

APPENDIX A: NONIGNORABLE CHOICE MECHANISM

Suppose that θ,α and φ are the parameter of distributions f (yai |xi; θ),
g(ybi |yai;α) and P(mi = a|xi , yai;φ), respectively. Then, the EM algorithm us-
ing the PFI method under the nonignorable choice mechanism is computed by the
following steps:

Step 1. Set t = 0. Calculate the estimate of the parameter θ of f (yai |xi; θ) with
data Sa . Let the estimate, denoted as θ̂ (0), be the initial value.

Step 2. For each unit i ∈ Sb, generate M imputed values, y∗(1)
ai , . . . , y

∗(M)
ai , from

f (yai |xi; θ̂ (0)). Set w∗
ij (0) = 1/M .

Step 3. Update θ̂ , α̂ and φ̂ by solving the imputed score equations:

∑
i∈Sa

wiS1(θ;xi , yai) + ∑
i∈Sb

M∑
j=1

wiw
∗
ij (t)S1

(
θ;xi , y

∗(j)
ai

) = 0,

∑
i∈Sb

M∑
j=1

wiw
∗
ij (t)S2

(
α;y∗(j)

ai , ybi

) = 0,

∑
i∈Sa

wiS3(φ;mi,xi , yai) + ∑
i∈Sb

M∑
j=1

wiw
∗
ij (t)S3

(
φ;mi,xi , y

∗(j)
ai

) = 0,

where S1(θ;xi , yai) = ∂ logf (yai |xi; θ)/∂θ , S2(α;yai, ybi) = ∂ logg(ybi |yai;α)/

∂α and S3(φ;xi , yai) = ∂{log I (mi = a) log(Pi/(1 −Pi))+ log(1 −Pi)}/∂φ with
Pi = P(mi = a|xi , yai;φ).
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Step 4. Calculate weight w∗
ij for each i ∈ Sb,

w∗
ij (t) ∝ g

(
ybi |y∗(j)

ai ; α̂(t))f (y
∗(j)
ai |xi; θ̂ (t))

f (y
∗(j)
ai |xi; θ̂ (0))

× P
(
mi = b|xi , y

∗(j)
ai ; φ̂(t))

and
∑M

j=1 w∗
ij (t) = 1, where η̂(t) = (θ̂ (t), α̂(t), φ̂(t)) is the current estimate of η =

(θ,α,φ).
Step 5. Set t = t + 1 and go to Step 3. Continue until convergence.

APPENDIX B: EQUIVALENCE OF THE TWO IMPUTATION ESTIMATORS
FOR MEAN PARAMETERS UNDER IGNORABLE CHOICE

Consider the following linear regression model:

yai = β0 + β1xi + ei, ei ∼ N
(
0, σ 2

e

)
,

ybi = α0 + α1yai + ui, ui ∼ N
(
0, σ 2

u

)
,

where i = 1, . . . ,N . We observe (yai, xi) in sample A and (ybi, xi) in sample B

and assume the choice mechanism is ignorable. To predict yai in sample B , we
may consider two conditional expectations: (i) covariate adjustment E(yai |xi) and
(ii) the best prediction of yai using E(yai |xi, ybi),

E(yai |xi, ybi) = (β0 + β1xi)σ
2
u + α1σ

2
e (ybi − α0)

σ 2
u + α2

1σ 2
e

.

Under the ignorable choice mechanism, α̂ and β̂ satisfy∑
i∈Sa

wi(yai − β̂0 − β̂1xi) = 0,

∑
i∈Sb

wi

{
ybi − α̂0 − α̂1E(yai |xi; β̂)

} = 0,

where E(yai |xi; β̂) = β̂0 + β̂1xi .
Thus, the finite population mean of ya , ψ , can be estimated using either the

regression estimator or the PFI estimator:

ψ̂REG = N−1
{∑

i∈Sa

wiyai + ∑
i∈Sb

wiE(yai |xi; β̂)

}
,

ψ̂PFI = N−1
{∑

i∈Sa

wiyai + ∑
i∈Sb

wiE(yai |xi, ybi; α̂, β̂)

}
.
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Since ∑
i∈Sb

wiE(yai |xi, ybi; α̂, β̂)

= ∑
i∈Sb

wi

(β̂0 + β̂1xi)σ̂
2
u + α̂1σ̂

2
e (ybi − α̂0)

σ̂ 2
u + α̂2

1 σ̂ 2
e

= ∑
i∈Sb

wi

(β̂0 + β̂1xi)σ̂
2
u + α̂1σ̂

2
e (ybi − α̂0 − α̂1E(yai |xi; β̂))

σ̂ 2
u + α̂2

1 σ̂ 2
e

+ ∑
i∈Sb

wi

α̂2
1 σ̂ 2

e E(yai |xi; β̂)

σ̂ 2
u + α̂2

1 σ̂ 2
e

= ∑
i∈Sb

wi

(β̂0 + β̂1xi)σ̂
2
u + α̂2

1 σ̂ 2
e E(yai |xi; β̂)

σ̂ 2
u + α̂2

1 σ̂ 2
e

= ∑
i∈Sb

wiE(yai |xi; β̂),

the two estimators of ψ are equivalent.
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