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In property-casualty insurance, claims management is featured with the
modeling of a semi-continuous insurance cost associated with individual risk
transfer. This practice is further complicated by the multilevel structure of
the insurance claims data, where a contract often contains a group of policy-
holders, each policyholder is insured under multiple types of coverage, and
the contract is repeatedly observed over time. The data hierarchy introduces
a complex dependence structure among claims and leads to diversification in
the insurer’s liability portfolio.

To capture the unique features of policy-level insurance costs, we propose
a copula regression for the multivariate longitudinal claims. In the model, the
Tweedie double generalized linear model is employed to examine the semi-
continuous claim cost of each coverage type, and a Gaussian copula is speci-
fied to accommodate the cross-sectional and temporal dependence among the
multilevel claims. Estimation and inference is based on the composite like-
lihood approach and the properties of parameter estimates are investigated
through simulation studies. When applied to a portfolio of personal auto-
mobile policies from a Canadian insurer, we show that the proposed copula
model provides valuable insights to an insurer’s claims management process.

1. Introduction and motivation. General insurance (a.k.a. “nonlife,” a.k.a.
“property-casualty”) protects individuals and organizations from financial losses
due to property damage or legal liabilities. It allows policyholders to exchange the
risk of a large loss for the certainty of smaller periodic payments of premiums. In-
surers allocates the bulk of premium dollars into investment and claims payments.
As it is for an insurer to manage its investment portfolio, it is equally important for
the insurer to manage its claim portfolio. Claim management is the counterpart of
asset management for the claims on the insurer’s book.

Claim management is the analytics of insurance costs. It requires applying sta-
tistical techniques in the analysis and interpretation of the claims data. In the data-
driven industry of general insurance, claim management provides useful insights
for insurers to make better business decisions. For instance, analytics helps insur-
ers in identifying risk characteristics for risk screening in underwriting, managing
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claim costs and allocating resources for claims handling, refining the classification
ratemaking system, as well as understanding excess layers for reinsurance and re-
tention.

The central piece of claim management is claims modeling. In this article, we
provide a general framework to look into the process of modeling and estimat-
ing insurance cost with a complex structure. It is well known that the insurance
cost associated with individual risk transfer presents a unique semi-continuous
feature where a significant fraction of zeros is incorporated into an otherwise pos-
itive continuous outcome. The portion of zeros corresponds to no claims and the
positive component corresponds to the amount of claims. Two strategies are com-
monly used by practitioners to analyze claim distributions: the two-part approach
[see, e.g., Frees (2014)] and the pure premium approach [see, e.g., Jørgensen and
Paes de Souza (1994)]. The former decomposes claims cost into a frequency and a
severity component, while the latter uses the Tweedie distribution to accommodate
the mass probability at zero. Each method has its own strengths and weaknesses. In
addition to the statistical considerations, the selection between the two approaches
often depends on the types of data available and the preference of the analyst.

Beyond their mixed character, risk- or policy-level general insurance losses are
also distinctive in that they can be viewed as the sum of losses from multiple haz-
ard or coverage types. For example, a personal automobile insurance policy could
provide both liability and collision coverage. This bundling design complicates the
process of claims modeling. Insurers, on the one hand, must analyze claims sepa-
rately by coverage type both because of the different contract features specific to
each coverage type and because predictive dimensions generally relate differently
to the various coverage types. On the other hand, insurers want to analyze the mul-
tiple types of claims jointly because they are interrelated. The first effort in this
line of study is due to Frees and Valdez (2008) and Frees, Shi and Valdez (2009)
where the authors extended the frequency-severity model to a three-component
framework to incorporate claim type.

Complex design of modern insurance products brings new challenges in mod-
eling insurance costs. One of them is the multilevel structure often encountered in
property-casualty insurance, where a contract contains a group of policyholders,
each policyholder is insured under multiple types of coverage, and the contract
is repeatedly observed over time. For instance, a commercial automobile insur-
ance policy covers both bodily injury and property damage for a fleet of vehicles,
a worker’s compensation contract provides indemnity cost and medical care pay-
ment for all employees of an organization, and an employment-based group health
insurance compensates costs of medical care utilization for office-based visits, hos-
pital stays and emergency room usage. The data hierarchy introduces a complex
dependence structure among claims and leads to diversification in the insurer’s
liability portfolio. In our study, the claims data are from personal automobile in-
surance in Ontario, Canada. An insurance policy provides coverage for the motor
vehicles in a household. The number of vehicles per household ranges from one
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to four and each vehicle is insured under four types of coverage, that is, accident
benefit, civil liability, collision and all risk. The portfolio is observed over a 4-year
period, from 2003 to 2006. In claims modeling, one expects to capture the cluster
effects (household), the cross-sectional dependence among multiple claim types,
as well as the serial correlation in the longitudinal context.

Motivated by the above observations, this article further advances the claims
modeling in property-casualty insurance. To capture the unique features of policy-
level insurance costs, we propose a copula regression for the multivariate longi-
tudinal claims. Specifically, for the claims cost of each type, we consider using
the Tweedie distribution to accommodate the massive zeros. In the Tweedie dis-
tribution, we perform regression on both mean and dispersion using the double
generalized linear model framework [Jørgensen (1987)]. In the insurance claims
data, all available predictors are at the risk level, such as primary owner and vehi-
cle characteristics. We allow the set of covariates to vary by claim type.

The multilevel structure of claims are accommodated using dependence mod-
els. We use a Gaussian copula to join the mixed outcome of claim costs. Refer
to Nelsen (2006) for an introduction and Joe (2015) for recent development on
copulas. For our purpose, we specify three sources of dependence: the correla-
tion among claims from multiple vehicles within the same household, the cross-
sectional dependence among multiple types of claims, and the temporal association
for the longitudinal claim cost of each type. These explicit relations and their im-
plied association are specified in the dispersion matrix of the Gaussian copula, and
the dependence parameters are readily interpretable. We show that the proposed
dependence model has a direct link with the mixed linear model on transformed
data. Another important feature of our data is the lack of balance. The unbalanced
claim costs could be due to the difference in the number of vehicles of a house-
hold, type of coverage for a vehicle or length of observation period. The Gaussian
copula provides flexibility in this sense, assuming that the “missing” observations
are ignorable.

Because of the mixed nature of claim costs, estimation of the Gaussian cop-
ula model using the full maximum likelihood involves multidimensional integra-
tion. For a household with four cars with each being covered by a comprehen-
sive policy (four types of coverage), a four-year period of observation means a
4 × 4 × 4 = 64 dimensional integration. As a solution, we resort to the composite
likelihood method for model estimation and comparison [see Varin, Reid and Firth
(2011) for an overview]. Before fitting the model to the insurance data, we inves-
tigate the finite sample properties of parameter estimates using simulation studies.
Using the Gaussian copula and composite likelihood, statistical efficiency is sac-
rificed to gain the computational advantage and interpretability of the dependence
parameters.

In the application of the personal automobile insurance, we examine the claims
distribution at both individual and portfolio levels. At the individual level, we
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demonstrate basic ratemaking and claims triage under a simplified risk classifi-
cation system. At the portfolio level, we emphasize the importance of dependence
modeling and its implications on an insurer’s risk management practice. We show
that the central limit theorem collapses when aggregating correlated risks in the
portfolio.

Section 2 describes the automobile insurance claims dataset and its impor-
tant characteristics that motivate the multilevel modeling framework. Section 3
proposes the statistical model and discusses the inference based on a composite
likelihood method. The specification of the dependence structure in the model is
detailed in the Appendix. Section 4 investigates the finite sample properties of pa-
rameter estimates using simulated data. In Section 5 we fit the model to the real
data and show its implications on the insurer’s claim management. Concluding
remarks are provided in Section 6.

2. Automobile insurance data. We examine an insurance claims dataset
of personal automobile insurance obtained from a property-casualty insurer in
Canada. The data represent the insurer’s book of business written in the province
of Ontario over the period 2003–2006. Both public and private insurance programs
coexist in Canada. Ontario uses a private insurance system. The industry is made
up of more than 100 private companies that are overseen by the government agency
Financial Services Commission of Ontario. Contrary to the public system, private
insurance has more incentives to use advanced actuarial approach and refined risk
classification in underwriting and ratemaking. This emphasizes the importance of
the statistical analysis in our study.

As in most developed countries, automobile insurance is required for all mo-
torists and is enforced by Ontario law. An insurance contract could provide four
types of coverage: (1) “accident benefit” provides the insured with medical care
payments and income replacement benefits if injured in an automobile accident,
regardless of who caused the accident. (2) “all risk” covers the damage to the in-
sured’s vehicle caused by hazards other than collision, such as fire, theft and hail
etc. (3) “civil liability” is a combined bodily injury and property damage coverage.
It pays claims if the insured is liable for the bodily injury or property damage of
a third party. (4) “collision” covers the financial losses when an insured vehicle is
involved in a collision with another object, including another vehicle. Coverages
(1) and (3) are compulsory and are included in the standard policy. Coverages (2)
and (4) are optional and available through the comprehensive policy. Policyhold-
ers of standard and comprehensive policies often show distinct driving behavior
due to different risk levels and incentives, known as information asymmetry in the
economics literature [see, e.g., Shi, Zhang and Valdez (2012)]. To provide focus,
we limit our analysis to the comprehensive policy, and our final sample contains
87,670 policies after some screening in the preliminary analysis.

One interesting feature of the data is its multilevel structure. The level-one unit
is the insurance policy and the level-two unit is the insured vehicle. In personal
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TABLE 1
Distribution of the number of insured vehicles per policy

Number of vehicles 1 2 3 4 Total

Frequency 77,352 10,058 253 7 87,670
Percentage 88.23 11.47 0.289 0.01 100

automobile insurance, it is common that a single policy is purchased to insure all
vehicles within the same household. The distribution of the number of insured
vehicles per policy is summarized in Table 1. About 12% of policies in our data
insure more than one vehicle, among which the majority insure two vehicles, and
it is rare for a policy to insure more than three vehicles. This percentage is lower
than the actual number of households owning multiple cars. Consider a house-
hold with three cars, two of them are insured under a standard policy and the
other one is insured under a comprehensive policy. Only the vehicle in the com-
prehensive policy is retained in the sample and the two vehicles in the standard
policy are removed for our study. Because the insurance database only contains
policy ID, we do not even know that these three vehicles are from the same house-
hold.

The outcome variable of our interest is the insurance claims cost. The four types
of claims indicate the multivariate nature of the data. We examine insurance claim
cost by coverage type and look into the vector of claims cost; Figure 1 displays
their distributions. The upper panel shows the violin plots using data in 2003 [see
Hintze and Nelson (1998) for details on violin plot]. One noticeable feature is
the semi-continuity, where the large number of zeros correspond to no claims.
In our data, this probability is about 91% regardless of coverage type. Another
observation is the long tails in the individual claims cost. This is more pronounced
in the liability coverage partly due to the large legal defense cost. Data in all years
exhibit consistent properties. The longitudinal nature indicates another hierarchy
in the multilevel data. The lower panel shows the average insurance cost over time.
The accident benefit coverage shows a higher variation, but in general we observe a
relatively stable pattern. In our application, one can think of the average cost as the
pure premium for the insurance contract. The premium shows a wide range across
coverage type, with civil liability and all risk being the most and least expensive
coverages respectively. This relation is also true for different risk levels as shown in
the data analysis. The different distributional features shown in Figure 1 motivate
the insurer to analyze claims data by coverage type.

The insurance data also contains a set of predictors that could explain the vari-
ation in claims cost. It is a common practice for property-casualty insurers using
indicators in the risk classification system. Hence, all predictors available are bi-
nary. Table 2 summarizes the description of these predictors and their sample aver-
ages by year. Three broad categories of covariates are commonly believed to affect
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FIG. 1. Distributions of claims cost by coverage type. The upper panel shows the violin plot and
the lower panel shows the average cost over time.

insurance cost: (1) Policyholder’s characteristics. Our data contains indicators on
the driver’s age, marital status and whether he/she is a homeowner. Because of the
nonlinear age effect, we differentiate young drivers and senior citizens. (2) Driv-
ing history. Years of experience and conviction history are used in the analysis.
(3) Vehicle’s characteristics. Vehicle age is an indicator of ownership at purchase.
The purpose of the car indicates whether it is a lease vehicle and whether it is
used for business. The usage of the vehicle is measured by the mileage driven and
the number of drivers. For a vehicle with multiple drivers, the driver’s character-
istics correspond to the primary driver. As anticipated, the driver’s characteristics
show larger variation, while the vehicle’s characteristics are very consistent over
time.

All the covariates obtained from the insurer are dichotomized. First, insurers
discretize continuous predictors to simplify the risk classification and to capture
potential nonlinear effects. Second, regulations often limit the way predictors can
be used in the ratemaking.
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TABLE 2
Sample mean of predictors by year

Variable Description 2003 2004 2005 2006

Young = 1 if age between 16 and 25 2.77 2.23 1.84 1.60
Senior = 1 if age more than 60 15.18 16.68 18.27 19.97
Marital = 1 if married 71.92 72.85 73.62 73.95
Homeowner = 1 if homeowner 42.15 63.81 76.67 80.42
Experience = 1 if more than ten years of experience 90.14 91.58 92.97 93.68
Conviction = 1 if positive number of convictions 8.86 6.24 2.99 1.89
Newcar = 1 if new car 89.52 89.56 89.59 89.67
Leasecar = 1 if lease car 15.39 15.31 15.35 15.15
Business = 1 if business use 3.43 3.68 3.85 3.96
Highmilage = 1 if drive more than 10,000 miles 72.97 71.52 69.53 67.73
Multidriver = 1 if more than two drivers 3.42 5.18 7.26 9.38

3. Modeling.

3.1. Multivariate Tweedie model. Consider an insurance portfolio consisting
of N policies. For the ith (= 1, . . . ,N ) policy, let Ki denote the number of vehi-
cles, Ji the number of coverage types and Ti the number of observation periods.
Let yikj t denote the insurance cost of coverage type j in the t th period for the
kth vehicle in policy i. The quantity of interest is the vector of claims defined as
yi = (yikj t )k=1,...,Ki,j=1,...,Ji ,t=1,...,Ti

.
Note that yikj t follows a mixed distribution in that it consists of a discrete mass

at zero and a positive continuous component. We consider the Tweedie distribution
that has non-negative support and can have a positive probability at zero [Tweedie
(1984)]. With appropriate parameterization, the Tweedie distribution can be shown
as a member of the exponential dispersion family [Jørgensen (1987)], with the
density function given by

f (y;μ,p,φ) = exp
[

1

φ

( −y

(p − 1)μp−1 − μ2−p

2 − p

)
+ S(y;φ)

]
,

where

S(y;φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if y = 0,

ln
∑
n≥1

{
(1/φ)1/(p−1)y(2−p)/(p−1)

(2 − p)(p − 1)(2−p)/(p−1)

}n 1

n!�(n(2 − p)/(p − 1))y
,

if y > 0.

(1)

With this parameterization, mean and variance of the Tweedie random variable
are μ and φμp , respectively, where φ is the dispersion parameter and p is the
power parameter that controls the variance of the distribution. This result is rather
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appealing because it suggests that the theories of generalized linear models are
ready to apply [McCullagh and Nelder (1989)].

The Tweedie distribution becomes a Poisson distribution when p = 1 and a
gamma distribution when p = 2. The more interesting range of p for our applica-
tion is between 1 and 2. In this case, the Tweedie random variable can be generated
from a Poisson sum of gamma random variables [Smyth (1996)]. From p = 1 to
p = 2, the Tweedie distribution gradually loses its mass at zero as it shifts from a
Poisson distribution to a gamma distribution. The compound Poisson presentation
also provides a nature interpretation for insurance claims modeling. One can think
of the claims cost per year for a policyholder as sum of a series of independent
gamma random variables and the number of claims in a year as a Poisson random
variable.

Denote the density and cumulative distribution functions of yikj t as fj (yikj t )

and Fj (yikj t ), respectively. To allow for covariates, we employ the double gener-
alized linear model to perform regression analysis on both mean and dispersion
of the Tweedie outcome. When modeling the cost of insurance claims, dispersion
modeling is necessary, as it increases the precision of prediction [Smyth and Jør-
gensen (2002)]. Define fj (yikj t ) = f (yikj t ;μikjt , pj ,φikj t ). With log link func-
tions, we specify

gμ(μikjt ) = log(μikj t ) = x′
ikj tβj ,

gφ(φikj t ) = log(φikj t ) = z′
ikj tγ j .

Here xikj t and zikj t are vectors of covariates in the mean and dispersion regression,
respectively, and βj and γ j are the associated regression coefficients. We allow
for different sets of covariates for the mean and dispersion, and because of the
distributional differences in the coverage types as shown in Section 2, we allow
parameters β , γ and p to depend on the claim type j .

Another commonly used technique to incorporate mass zeros into an otherwise
continuous distribution is the censored regression. The classical example is the
Tobit model [Tobin (1958)]. Relaxing the normality assumption, recent literature
also proposes censored regression with a Student-t distribution [see, e.g., Arellano-
Valle et al. (2012)] and scales mixtures of normal distributions [see, e.g., Castro
et al. (2014) and Garay et al. (2016)]. We choose the Tweedie model over censored
regression because the Tweedie distribution is a Poisson sum of gamma random
variables, and thus is more in line with the frequency-severity modeling framework
commonly used in practice [Frees (2014)].

The multilevel structure of the insurance data is accommodated using depen-
dence models. We use a parametric copula function to model the complex depen-
dence embedded in the vector of claims cost. To simplify the presentation, we
relabel yi = (ỹi1, . . . , ỹimi

), where mi = Ki × Ji × Ti , denoting the total number
of observations for policy i. Then the cumulative distribution function of yi can be
expressed in terms of a copula function Hi , that is,

G(yi ) = Hi

(
F(ỹi1), . . . ,F (ỹimi

)
)
,(2)
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where F is the cumulative distribution function associated with (1). Note that yi

is a vector of mixed random variables. Without loss of generality, assume that
the first qi components (ỹi1, . . . , ỹiqi

) are continuous and the rest of the mi − qi

components (ỹiqi+1, . . . , ỹimi
) are discrete. The density function of yi is shown as

g(yi ) =
qi∏

l=1

f (yl)h
qi

i

(
F(ỹi1), . . . ,F (ỹimi

)
)
,(3)

where

h
qi

i (w1, . . . ,wmi
) = ∂qi

∂w1 · · · ∂wqi

Hi(w1, . . . ,wmi
).

Let m = max{m1, . . . ,mN }. We consider the Gaussian copula with the distribu-
tional function given by

H(w1, . . . ,wm;�) = �m

(
�−1(w1), . . . ,�

−1(wm);�)
,

where �m and � denote the distributional function of an m-variate normal with
zero mean and correlation matrix � and the standard univariate normal respec-
tively. It can be shown that [see, e.g., Song, Li and Yuan (2009) and Shi (2016)]

hq(w1, . . . ,wm;�)

= (2π)−(m−q)/2|�|−1/2

×
∫ �−1(wq+1)

−∞
· · ·

∫ �−1(wm)

−∞
exp

{
1

2

(
s′

1, s′
2
)
�−1(

s′
1, s′

2
)′ − 1

2
s′

1s1

}
ds2.

With the Gaussian copula, the lack of balance can be easily addressed using the
subclass of H and hq . That is, for policy i, we specify Hi(·) = H(·;Ai�A′

i ) and
h

qi

i (·) = hq(·;Ai�A′
i). Here Ai = [ι1, . . . , ιmi

,0, . . . ,0]mi×m and ιr is a column
vector with the r th element being 1 and 0 otherwise, and 0 is a column vector of
zeros.

The dependency among the vector of claims cost is captured by the correlation
matrix � in the Gaussian copula. In our context, one wants to accommodate three
types of association, the correlation among vehicles insured under the same policy,
the dependence among multiple types of claims for a given vehicle, and the tem-
poral relationship for a particular type of coverage. To achieve these purposes, we
specify � = BK×K ⊗ P(T J )×(T J ), where ⊗ denotes the Kronecker product, and

BK×K =

⎛
⎜⎜⎜⎝

1 δ · · · δ

δ 1 · · · δ
...

...
. . .

...

δ δ · · · 1

⎞
⎟⎟⎟⎠ ,
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P(T J )×(T J ) =

⎛
⎜⎜⎜⎜⎝

σ11P11 σ12P12 · · · σ1J P1J

σ21P21 σ22P22 · · · σ2J P2J

...
...

. . .
...

σJ1PJ1 σJ2PJ2 · · · σJJ PJJ

⎞
⎟⎟⎟⎟⎠ .

The cluster effect is captured by an exchangeable correlation BK×K that is implied
by the household-specific random effect. The dependence due to the multivariate
longitudinal observations for a given vehicle is captured by P(T J )×(T J ), where
σjj ′ = σj ′j and Pjj ′ = Pj ′j . This is a commonly used specification in models
of several time series [see, e.g., Greene (2007)]. Here σjj ′ represents the cross-
sectional correlation between coverage type j and j ′ in the same time period,
known as the concurrent or contemporaneous correlation coefficient in time se-
ries analysis. Pjj is the serial correlation for the insurance costs of coverage j .
Pjj ′ (j �= j ′) is the correlation across coverage types j and j ′. Note that this matrix
is in general not symmetric. The diagonal elements are ones and the off-diagonal
elements indicate the lead-lag relationship between component series. Extending
the method in Parks (1967), we specify the concurrent correlation σjj ′ and serial
correlation Pjj , and let the lag correlation Pjj ′ be determined implicitly. With the
AR(1) serial correlation, we have

Pjj ′ =

⎛
⎜⎜⎜⎜⎜⎝

1 ρj ′ · · · ρT −1
j ′

ρj 1 · · · ρT −2
j ′

...
...

. . .
...

ρT −1
j ρT −2

j · · · 1

⎞
⎟⎟⎟⎟⎟⎠ ,

σjj ′ =

⎧⎪⎪⎨
⎪⎪⎩

1, if j = j ′,
τjj ′

√
1 − ρ2

j

√
1 − ρ2

j ′

1 − ρjρj ′
, if j �= j ′.

We detail the specification of � and establish its connection to the linear model on
transformed data in the Appendix.

3.2. Inference. For inference purposes, we employ the composite likelihood
method [Lindsay (1988)]. Because of the mixed nature of the insurance cost,
the likelihood function of model (3) involves multidimensional integration. In
our application, an insurance contract covering four vehicles would imply a 64-
dimensional integration. Thus, full maximum likelihood estimation is computa-
tionally challenging and the computational difficulty increases as the number of
time periods becomes larger. To minimize the computational burden, we use the
pairwise likelihood [Cox and Reid (2004)], which provides relatively high estima-
tion efficiency as shown in the literature. See Varin (2008, 2011) for reviews on
the composite likelihood approach.
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On another note, the trade-off between the computational challenge and the ef-
ficiency loss using the composite likelihood method is due to the estimation of the
probability mass function of the Gaussian copula. One alternative strategy could
be to explore a more flexible dependence modeling approach such as the pairwise
copula construction based on vines [see, e.g., Aas et al. (2009), Smith et al. (2010)
and Panagiotelis, Czado and Joe (2012)]. However, we find the Gaussian copula is
particularly useful in our application in that it is ready to apply to the unbalanced
data and the dependence parameters have intuitive interpretations. Considering the
applied nature of this work, we make sacrifices to balance the interpretability, com-
plexity and computation of the model.

The pairwise composite likelihood function for policy i is defined as

li(θ;yi ) =
Ki∑
k=1

(
Ji∑

j=1

∑
t<t ′

�(θ;yikj t , yikj t ′) + ∑
j<j ′

Ti∑
t,t ′=1

�(θ;yikj t , yikj ′t ′)

)

+ ∑
k<k′

Ji∑
j,j ′=1

Ti∑
t,t ′=1

�(θ;yikj t , yik′j ′t ′),

where �(θ;yikj t , yik′j ′t ′) = log(L(θ;yikj t , yik′j ′t ′)) and

L(θ;yikj t , yik′j ′t ′)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
(
Fj (yikj t ),Fj ′(yik′j ′t ′); ρ̃kj tk′j ′t ′

)
,

if yikj t = 0 and yik′j ′t ′ = 0,

fj (yikj t )h1
(
Fj (yikj t ),Fj ′(yik′j ′t ′); ρ̃kj tk′j ′t ′

)
,

if yikj t > 0 and yik′j ′t ′ = 0,

fj ′(yik′j ′t ′)h2
(
Fj (yikj t ),Fj ′(y2); ρ̃kj tk′j ′t ′

)
,

if yikj t = 0 and yik′j ′t ′ > 0,

fj (yikj t )fj ′(yik′j ′t ′)h
(
Fj (yikj t ),Fj ′(yik′j ′t ′); ρ̃kj tk′j ′t ′

)
,

if yikj t > 0 and yik′j ′t ′ > 0,

with ρ̃kj tk′j ′t ′ = δI(k �=k′)σ I(j �=j ′)
jj ′ ρ

I(t<t ′)|t−t ′|
j ′ ρ

I(t>t ′)|t−t ′|
j . Then the total compos-

ite likelihood for the portfolio of policies can be expressed as

l(θ;y) =
N∑

i=1

1

mi − 1
li(θ;yi ),(4)

where 1/(mi − 1) is the weight assigned for the ith policy [see, e.g., Zhao and Joe
(2005) and Joe and Lee (2009)].

The composite likelihood estimator is defined as θ̂N = arg maxθ l(θ;y). Denote
the composite score function as SN(θ) = ∂l(θ;y)/∂θ . To estimate the variance of
θ̂N , we use the Godambe information matrix [Godambe (1960)], defined as

GN(θ) = RN(θ)�−1
N (θ)RN(θ),(5)
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where RN(θ) = −E(∂SN(θ)/∂θ ′) and �N(θ) = Var(SN(θ)). Under regularity
conditions [Molenberghs and Verbeke (2005), pages 190–191] on the bivariate
log-likelihood functions, we can apply the central limit theorem to the composite
likelihood score statistic, leading to the result that the composite likelihood esti-
mator, θ̂N , is asymptotically normally distributed when N → ∞,

√
NG1/2

N (θ)(θ̂N − θ)
d−→N (0, I).(6)

The sample estimate of sensitivity matrix RN(θ) is given by

R̂N(θ) = − 1

N

N∑
i=1

∂2li(θ;yi )

∂θ∂θ ′ ,

and the numerical Hessian matrix is used to approximate the second order deriva-
tive. The sample estimate of variability matrix �N(θ) is expressed by the outer
product of the composite score functions as

�̂N(θ) = 1

N

N∑
i=1

∂li(θ;yi )

∂θ

∂li(θ;yi )

∂θ ′ .

Thus, the asymptotic covariance matrix can be approximated by Ĝ−1
N (θ̂N)/N . Fur-

thermore, model comparison is based on the composite likelihood version of AIC
[Varin and Vidoni (2005)] and BIC [Gao and Song (2010)], which are respectively
defined as

CLAIC = −2cl(θ;y) + 2 tr
(
�(θ)R−1(θ)

)
,

CLBIC = −2cl(θ;y) + log(N) tr
(
�(θ)R−1(θ)

)
.

4. Numerical experiments. The properties of the composite likelihood es-
timates are investigated using simulated data. In the simulation, we set J = 2,
K = 2 and T = 4, that is, a policy covers two vehicles and provides two types
of coverage for each vehicle in a four-year period. Data are generated from
the multivariate Tweedie model in Section 3.1. In the marginal distribution, we
use Tweedie(μj ,pj ,φj ) with the following specification for coverage type j =
1 and 2:

μj = exp(βj0 + βj1X1 + βj2X2), φj = exp(γj0 + γj1X1 + γj2X2),
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TABLE 3
The resulting association parameter of δτρ under different parameter scenarios

τ = 0.15 τ = 0.55 τ = 0.95

ρ = 0.15
δ = 0.15 0.003 0.012 0.021
δ = 0.55 0.012 0.045 0.078
δ = 0.95 0.021 0.078 0.135

ρ = 0.55
δ = 0.15 0.012 0.045 0.078
δ = 0.55 0.045 0.166 0.287
δ = 0.95 0.078 0.287 0.496

ρ = 0.95
δ = 0.15 0.021 0.078 0.135
δ = 0.55 0.078 0.287 0.496
δ = 0.95 0.135 0.496 0.857

where X1 ∼ Bernoulli(0.5) and X2 ∼ Bernoulli(0.6) independently. In the joint
distribution, we use the Gaussian copula with the correlation matrix specified as

� =
(

1 δ

δ 1

)
⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1 ρ1 ρ2
1 ρ3

1

ρ1 1 ρ1 ρ2
1

ρ2
1 ρ1 1 ρ1

ρ3
1 ρ2

1 ρ1 1

⎞
⎟⎟⎟⎠ σ12

⎛
⎜⎜⎜⎝

1 ρ2 ρ2
2 ρ3

2

ρ1 1 ρ2 ρ2
2

ρ2
1 ρ1 1 ρ2

ρ3
1 ρ2

1 ρ1 1

⎞
⎟⎟⎟⎠

σ12

⎛
⎜⎜⎜⎝

1 ρ1 ρ2
1 ρ3

1

ρ2 1 ρ1 ρ2
1

ρ2
2 ρ2 1 ρ1

ρ3
2 ρ2

2 ρ2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 ρ2 ρ2
2 ρ3

2

ρ2 1 ρ2 ρ2
2

ρ2
2 ρ2 1 ρ2

ρ3
2 ρ2

2 ρ2 1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, σ12 = τ12

√
1 − ρ2

1

√
1 − ρ2

2/(1 − ρ1ρ2).
In the above specification, parameters ρ1, ρ2 and τ12 can be interpreted as corre-

lation coefficient, and they are bounded between −1 and 1. Therefore, so is param-
eter σ12. Parameter δ captures the within-cluster dependence and 0 < δ < 1 (see
Appendix for details). To obtain some intuition about the resulting dependence,
we consider the special case ρ1 = ρ2 = ρ and τ12 = τ , and we report the resulting
association parameter of δ × σ12 ×ρ = δτρ under different parameter scenarios in
Table 3. The combination of the three values of each parameter allows for a wide
range of dependence. The insights obtained from the table apply to the general
parameter setting.

In the simulation, we examine three scenarios, weak dependence (δ = τ = ρ =
0.15), moderate dependence (δ = τ = ρ = 0.55) and strong dependence (δ = τ =
ρ = 0.95). The true parameters and simulation results are displayed in Tables 4, 5
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TABLE 4
Simulation for different sample sizes (number of policies) under weak dependence

Estimate (mean) Relative bias SD SE MSE

Parameter N = 200 500 200 500 200 500 200 500 200 500

β10 = 1 0.932 0.978 −0.068 −0.022 0.295 0.220 0.302 0.190 0.092 0.049
β11 = 1.5 1.534 1.501 0.022 0.001 0.217 0.131 0.210 0.134 0.048 0.017
β12 = 0.5 0.529 0.511 0.058 0.022 0.295 0.202 0.297 0.187 0.088 0.041
β20 = 1 0.982 1.004 −0.018 0.004 0.212 0.136 0.220 0.141 0.045 0.019
β21 = 0.5 0.509 0.493 0.017 −0.013 0.221 0.131 0.218 0.138 0.049 0.017
β22 = 2 1.999 1.994 −0.001 −0.003 0.211 0.136 0.218 0.140 0.044 0.018
p1 = 1.2 1.195 1.197 −0.004 −0.002 0.024 0.013 0.021 0.013 0.001 0.000
p2 = 1.4 1.393 1.397 −0.005 −0.002 0.026 0.017 0.026 0.017 0.001 0.000
γ10 = 5 4.994 4.993 −0.001 −0.001 0.115 0.076 0.120 0.077 0.013 0.006
γ11 = 1 0.995 1.012 −0.005 0.012 0.098 0.061 0.096 0.060 0.010 0.004
γ12 = −1 −0.991 −0.994 −0.009 −0.006 0.115 0.079 0.120 0.078 0.013 0.006
γ20 = 4 3.989 4.000 −0.003 0.000 0.123 0.076 0.111 0.071 0.015 0.006
γ21 = 0 0.010 0.004 − − 0.113 0.071 0.110 0.070 0.013 0.005
γ22 = 1 1.012 1.009 0.012 0.009 0.135 0.087 0.126 0.079 0.018 0.008
ρ1 = 0.15 0.153 0.150 0.022 0.001 0.061 0.048 0.097 0.059 0.004 0.002
ρ2 = 0.15 0.158 0.157 0.053 0.045 0.058 0.043 0.076 0.050 0.003 0.002
τ = 0.15 0.147 0.145 −0.022 −0.034 0.082 0.049 0.079 0.050 0.007 0.002
δ = 0.15 0.137 0.146 −0.088 −0.030 0.068 0.053 0.079 0.050 0.005 0.003

and 6, respectively. We consider different sample sizes (number of policies) N and
report the results for N = 200 and 500. For each simulated sample, we estimate
parameters by maximizing the composite likelihood function. The reported results
are based on 100 replications.

Within each table, we first report the mean and standard deviation of the point
estimates for each parameter. The average estimates are very close to the corre-
sponding true parameters for both N = 200 and 500. We further confirm this re-
lation by calculating the relative bias of the estimates. As expected, increasing
sample size reduces the estimation bias, and when N = 500 the biases for most
parameters are almost zero. Next, we examine the standard error of the estimator.
In each replication, the standard error is estimated using the Godambe information
matrix described in Section 3.2. Its average (denoted by SE in the table) is compa-
rable with the nominal standard deviation (SD) of point estimates, indicating the
accuracy of the uncertainty estimates. Finally, we report the mean squared error
(MSE) of the parameter estimates. Consistent results are observed that a larger
sample size leads to more accurate estimates and that estimates with less uncer-
tainty can be obtained with a larger number of policies.

When comparing across tables with different degrees of dependence, one no-
tices that, for regression parameters, stronger dependence generally increases both
bias and uncertainty of the estimates for a given sample size. This is because the
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TABLE 5
Simulation for different sample sizes (number of policies) under moderate dependence

Estimate (mean) Relative bias SD SE MSE

Parameter N = 200 500 200 500 200 500 200 500 200 500

β10 = 1 0.905 0.966 −0.095 −0.034 0.335 0.226 0.331 0.209 0.121 0.052
β11 = 1.5 1.534 1.505 0.023 0.003 0.198 0.131 0.222 0.142 0.040 0.017
β12 = 0.5 0.552 0.517 0.105 0.034 0.293 0.178 0.296 0.188 0.089 0.032
β20 = 1 0.983 0.995 −0.017 −0.005 0.255 0.157 0.248 0.162 0.065 0.025
β21 = 0.5 0.504 0.498 0.008 −0.005 0.270 0.146 0.232 0.150 0.073 0.021
β22 = 2 2.002 1.989 0.001 −0.005 0.194 0.138 0.209 0.137 0.038 0.019
p1 = 1.2 1.195 1.199 −0.004 −0.001 0.021 0.015 0.021 0.014 0.000 0.000
p2 = 1.4 1.396 1.400 −0.003 0.000 0.023 0.018 0.027 0.017 0.001 0.000
γ10 = 5 4.994 4.993 −0.001 −0.001 0.138 0.079 0.119 0.078 0.019 0.006
γ11 = 1 1.014 1.014 0.014 0.014 0.089 0.060 0.095 0.061 0.008 0.004
γ12 = −1 −1.006 −1.000 0.006 0.000 0.126 0.078 0.117 0.077 0.016 0.006
γ20 = 4 3.995 4.001 −0.001 0.000 0.130 0.084 0.114 0.074 0.017 0.007
γ21 = 0 −0.009 0.009 − − 0.120 0.073 0.112 0.072 0.014 0.005
γ22 = 1 1.011 0.994 0.011 −0.006 0.140 0.082 0.123 0.078 0.020 0.007
ρ1 = 0.55 0.539 0.544 −0.020 −0.011 0.073 0.044 0.067 0.045 0.006 0.002
ρ2 = 0.55 0.543 0.545 −0.013 −0.010 0.061 0.042 0.061 0.041 0.004 0.002
τ = 0.55 0.550 0.541 −0.001 −0.017 0.074 0.045 0.067 0.046 0.005 0.002
δ = 0.55 0.537 0.536 −0.024 −0.026 0.075 0.051 0.068 0.045 0.006 0.003

effective sample size is smaller when dependence is stronger. In contrast, for de-
pendence parameters, stronger dependence indicates a higher signal to noise ratio,
and thus decreases bias of the point estimate and the associated uncertainty esti-
mate.

Finally, we investigate the robustness of the Gaussian copula model with respect
to the copula misspecification. In principal, the proposed modeling framework and
inference method applies to any elliptical copula. We only examine the t copula
because elliptical copulas other than Gaussian and t are rarely used in applications.
Specifically, we generate data from the t copula model and estimate with the Gaus-
sian copula model. In the data-generating process, specifications for marginals and
the dispersion matrix are the same as above. We fix the degrees of freedom (df) in
the t copula at df = 1 and df = 5. The estimation results are exhibited in Table 7.
One finds similar patterns as observed in Table 5 (the Gaussian copula). In addi-
tion, the mean squared errors of the estimates in both marginal and dependence
parameters are small, indicating that the Gaussian copula is robust with respect to
misspecification. As anticipated, higher estimation precision is achieved when the
degrees of freedom in the t copula is larger, because the t copula is approaching
the Gaussian copula. One notices that the estimation for df = 5 is already close to
those in Table 5.
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TABLE 6
Simulation for different sample sizes (number of policies) under strong dependence

Estimate (mean) Relative bias SD SE MSE

Parameter N = 200 500 200 500 200 500 200 500 200 500

β10 = 1 0.800 0.907 −0.200 −0.093 0.619 0.302 0.486 0.309 0.423 0.100
β11 = 1.5 1.516 1.507 0.011 0.004 0.156 0.090 0.153 0.099 0.024 0.008
β12 = 0.5 0.660 0.549 0.320 0.098 0.436 0.203 0.307 0.192 0.215 0.044
β20 = 1 0.948 0.954 −0.052 −0.046 0.369 0.212 0.346 0.224 0.139 0.047
β21 = 0.5 0.515 0.500 0.031 0.000 0.184 0.104 0.164 0.104 0.034 0.011
β22 = 2 2.017 1.996 0.009 −0.002 0.131 0.071 0.115 0.077 0.018 0.005
p1 = 1.2 1.192 1.199 −0.007 −0.001 0.025 0.016 0.023 0.016 0.001 0.000
p2 = 1.4 1.392 1.397 −0.005 −0.002 0.034 0.020 0.028 0.020 0.001 0.000
γ10 = 5 4.976 4.991 −0.005 −0.002 0.178 0.097 0.121 0.081 0.032 0.009
γ11 = 1 1.021 0.999 0.021 −0.001 0.097 0.058 0.087 0.057 0.010 0.003
γ12 = −1 −0.989 −0.989 −0.011 −0.011 0.159 0.079 0.122 0.078 0.025 0.006
γ20 = 4 3.992 3.994 −0.002 −0.001 0.130 0.094 0.135 0.090 0.017 0.009
γ21 = 0 0.013 0.002 − − 0.104 0.070 0.102 0.068 0.011 0.005
γ22 = 1 1.004 1.017 0.004 0.017 0.120 0.067 0.105 0.071 0.014 0.005
ρ1 = 0.95 0.946 0.948 −0.004 −0.002 0.020 0.013 0.018 0.011 0.000 0.000
ρ2 = 0.95 0.946 0.948 −0.004 −0.003 0.018 0.012 0.018 0.011 0.000 0.000
τ = 0.95 0.956 0.952 0.007 0.002 0.021 0.016 0.022 0.014 0.000 0.000
δ = 0.95 0.943 0.946 −0.007 −0.004 0.025 0.013 0.021 0.013 0.001 0.000

5. Application in risk analysis.

5.1. Estimation results. The proposed approach is applied to the portfolio of
automobile insurance policies introduced in Section 2. The composite likelihood
estimates are summarized in Table 8. In the Tweedie marginals, we fit log-linear
models to both the mean and the dispersion for each type of claim. The set of
covariates is allowed to vary by coverage type. Due to the relatively small number
of predictors, a backward selection procedure is adopted to select the covariates
in the marginal model. We start with all available covariates and remove the least
important one in each iteration until the AIC statistic deteriorates. The orthogonal
parametrization in the Tweedie distribution allows to select variables in the mean
and dispersion models in a sequential manner. We report a more parsimonious
model by retaining only those important predictors.

The effects of covariates on claim frequency and severity differ either in direc-
tion or size. Not surprisingly, we observe their significant effects on the mean as
well as the dispersion of the Tweedie model. For instance, the length of driving ex-
perience shows a negative effect on the mean but a positive effect on the dispersion
of claims cost regardless of the coverage type. There are common factors affecting
all types of claims (such as senior and conviction in the mean, and homeowner
in the dispersion). Their effects across coverage types are noticeably consistent in
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TABLE 7
Robustness of Gaussian copula

Estimate (mean) Relative bias SD SE MSE

Parameter N = 200 500 200 500 200 500 200 500 200 500

df = 1
β10 = 1 0.818 0.901 −0.182 −0.099 0.560 0.361 0.449 0.285 0.346 0.140
β11 = 1.5 1.514 1.519 0.010 0.013 0.230 0.142 0.197 0.127 0.053 0.020
β12 = 0.5 0.630 0.576 0.260 0.152 0.424 0.265 0.324 0.207 0.196 0.076
β20 = 1 0.903 0.959 −0.097 −0.041 0.342 0.243 0.310 0.200 0.126 0.061
β21 = 0.5 0.534 0.536 0.067 0.073 0.238 0.162 0.201 0.131 0.058 0.028
β22 = 2 2.011 2.009 0.005 0.004 0.180 0.109 0.165 0.107 0.033 0.012
p1 = 1.2 1.187 1.190 −0.011 −0.008 0.028 0.018 0.024 0.016 0.001 0.000
p2 = 1.4 1.380 1.390 −0.014 −0.007 0.033 0.021 0.032 0.022 0.002 0.001
γ10 = 5 4.980 4.987 −0.004 −0.003 0.153 0.103 0.137 0.092 0.024 0.011
γ11 = 1 1.029 1.015 0.029 0.015 0.102 0.066 0.095 0.062 0.011 0.005
γ12 = −1 −0.983 −0.987 −0.017 −0.013 0.157 0.107 0.138 0.090 0.025 0.012
γ20 = 4 3.963 3.970 −0.009 −0.008 0.161 0.098 0.136 0.091 0.027 0.010
γ21 = 0 0.035 0.013 − − 0.115 0.080 0.115 0.076 0.015 0.007
γ22 = 1 1.041 1.024 0.041 0.024 0.125 0.081 0.125 0.081 0.017 0.007
ρ1 = 0.55 0.858 0.856 0.559 0.557 0.041 0.024 0.031 0.022 0.096 0.094
ρ2 = 0.55 0.853 0.854 0.550 0.552 0.037 0.023 0.030 0.021 0.093 0.093
τ = 0.55 0.847 0.836 0.540 0.520 0.048 0.028 0.040 0.026 0.091 0.083
δ = 0.55 0.834 0.833 0.516 0.514 0.042 0.028 0.036 0.025 0.082 0.081

df = 5
β10 = 1 0.851 0.946 −0.149 −0.054 0.415 0.238 0.377 0.240 0.195 0.060
β11 = 1.5 1.500 1.521 0.000 0.014 0.237 0.133 0.223 0.141 0.056 0.018
β12 = 0.5 0.615 0.529 0.230 0.057 0.343 0.192 0.305 0.193 0.131 0.038
β20 = 1 0.953 0.982 −0.047 −0.018 0.298 0.193 0.272 0.179 0.091 0.038
β21 = 0.5 0.501 0.494 0.001 −0.012 0.248 0.146 0.232 0.147 0.061 0.021
β22 = 2 2.036 2.006 0.018 0.003 0.222 0.143 0.196 0.130 0.051 0.020
p1 = 1.2 1.189 1.195 −0.009 −0.005 0.025 0.015 0.022 0.015 0.001 0.000
p2 = 1.4 1.393 1.396 −0.005 −0.003 0.031 0.020 0.027 0.018 0.001 0.000
γ10 = 5 4.982 4.987 −0.004 −0.003 0.147 0.094 0.123 0.079 0.022 0.009
γ11 = 1 1.007 1.008 0.007 0.008 0.101 0.064 0.096 0.061 0.010 0.004
γ12 = −1 −0.981 −0.982 −0.019 −0.018 0.137 0.089 0.119 0.077 0.019 0.008
γ20 = 4 3.986 3.993 −0.004 −0.002 0.111 0.079 0.120 0.078 0.013 0.006
γ21 = 0 0.014 0.003 − − 0.119 0.073 0.113 0.072 0.014 0.005
γ22 = 1 1.019 1.007 0.019 0.007 0.133 0.081 0.122 0.079 0.018 0.007
ρ1 = 0.55 0.690 0.697 0.254 0.268 0.060 0.044 0.055 0.041 0.023 0.024
ρ2 = 0.55 0.686 0.685 0.248 0.246 0.062 0.040 0.052 0.037 0.022 0.020
τ = 0.55 0.683 0.671 0.241 0.220 0.066 0.038 0.057 0.040 0.022 0.016
δ = 0.55 0.671 0.672 0.220 0.222 0.061 0.043 0.059 0.039 0.018 0.017
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TABLE 8

Composite likelihood estimates of the multilevel Tweedie model

Accident benefit All risk Civil liability Collision Dependence model

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Parameter Est. S.E.

Mean
Intercept 5.732 0.127 3.485 0.092 5.337 0.063 4.467 0.066 ρ1 0.163 0.022
Young −0.911 0.221 ρ2 0.051 0.013
Senior −0.466 0.105 −0.467 0.054 −0.183 0.039 −0.142 0.038 ρ3 0.099 0.015
Marital −0.155 0.030 −0.102 0.030 ρ4 0.101 0.011
Homeowner −0.225 0.074 −0.163 0.038 0.065 0.028 τ12 0.436 0.010
Experience −0.324 0.115 −0.221 0.068 −0.227 0.042 −0.383 0.045 τ13 0.049 0.018
Conviction 0.807 0.140 0.368 0.078 0.136 0.054 0.209 0.057 τ14 0.641 0.009
Newcar 0.327 0.067 0.136 0.047 0.399 0.050 τ23 0.013 0.012
Leasecar 0.544 0.048 0.170 0.034 0.428 0.034 τ24 0.351 0.007
Business 0.261 0.091 0.342 0.064 τ34 0.021 0.010
Highmilage −0.578 0.075 0.082 0.029 0.194 0.031 δ 0.082 0.020
Multidriver 0.428 0.050 0.402 0.048 σ12 0.434 −
p 1.703 0.005 1.631 0.003 1.577 0.003 1.440 0.003 σ13 0.048 −

Dispersion
Intercept 7.107 0.050 6.505 0.053 6.330 0.031 6.751 0.025 σ23 0.013 −
Young −0.288 0.068 σ24 0.350 −
Senior 0.151 0.048 0.098 0.026 0.187 0.019 −0.049 0.019 σ34 0.021 −
Marital 0.174 0.036 −0.100 0.021 0.068 0.016
Homeowner −0.099 0.035 0.072 0.019 0.043 0.014 0.051 0.015
Experience 0.489 0.047 −0.169 0.039 0.216 0.021 0.097 0.023
Conviction −0.095 0.027
Newcar −0.093 0.032 −0.149 0.023
Leasecar −0.094 0.017 −0.116 0.017
Business
Highmilage −0.096 0.020
Multidriver −0.237 0.060 −0.184 0.025
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TABLE 9
Goodness-of-fit statistics for alternative dependence specification

Model Description CLAIC CLBIC

M0 independence 958,513 959,142
M1 no temporal correlation 957,747 958,375
M2 no cross-sectional dependence 958,501 959,130
M3 no cluster effect 957,734 958,363
M4 no dispersion 958,491 959,120
M5 the proposed model 957,730 958,358

the direction, but could differ substantially in the size. In the dependence structure,
we observe mild serial correlation in claims cost, which is explained by the short
sampling period and the sparsity in the mixed outcome. Strong cross-sectional as-
sociation is found among various types of claims. The cluster effect is statistically
significant though relatively weak.

Table 9 compares the proposed model with alternative model specifications. Be-
cause dependence modeling is of primary interest for our application, we consider
a nested dependence structure to emphasize the effect of various types of associ-
ations among claims cost. These nested cases are as follows: M0 assumes total
independence, ignoring all types of dependence among claims; M1 assumes no
serial correlation in either type of claim; M2 examines the longitudinal claims
cost of each type separately by assuming independence among claim types; M3
ignores the cluster effect, assuming all vehicles under the same policy are inde-
pendent. To examine the effect of dispersion, we also look into the Tweedie GLM
without dispersion modeling (M4). The dependence structure in the mean regres-
sion M4 is the same as in the proposed copula model M5. We report in Table 9 the
CLAIC and CLBIC statistics described in Section 3.2, with the preferred model
highlighted. Both statistics suggest the favorite fit of the proposed model. The
goodness-of-fit statistics of M0 and M4 are close, suggesting modeling dispersion
and dependence are equally important in terms of the reported statistics. Consis-
tent with the size of the dependence parameters reported in Table 8, ignoring the
cross-sectional correlation among claim types results in the largest penalty in the
model fit. Therefore, we use the proposed model M5 in the following applications.

5.2. Basic ratemaking. One unique feature that makes insurance differ from
other commodities is that the pricing of an insurance contract is based on its future
cost. Therefore, claims modeling becomes important in that it provides feedback
to the classification and prediction of risks. To demonstrate the prediction, we con-
sider a simplified risk classification system. The core element in the basic ratemak-
ing is the expected cost of a policy. In this application, we consider the total cost
of the four types of coverage. Ranking from low to high, there are five risk classes,
Superior, Excellent, Good, Fair and Poor as defined in Table 10.
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TABLE 10
Risk profile of hypothetical ratemaking classes

Ratemaking classes

Superior Excellent Good Fair Poor

Young 0 0 0 0 0
Senior 1 1 1 1 0
Marital 1 1 1 1 0
Homeowner 1 1 1 1 0
Experience 1 1 0 1 0
Conviction 0 0 1 1 1
Newcar 0 1 1 1 1
Leasecar 0 1 0 1 1
Business 0 1 1 1 1
Highmilage 1 0 1 0 0
Multidriver 0 0 0 1 1

We report the expected cost of each risk class in Figure 2. To incorporate un-
certainty in parameter estimates, we show their distributions instead of point esti-
mates. The distributions are derived based on the Monte Carlo simulation from the
asymptotic distributions of composite likelihood estimators. The straight line in
Figure 2 corresponds to the 95% prediction interval. As anticipated, the expected
claims costs of the four types of coverage increase from low risk to high risk class,
and the differences among risk classes are statistically significant. As anticipated,
the expected claims cost increases from low risk to high risk class, and the dif-
ferences among risk classes are substantive. For comparison, we also show the
actual observed average cost of each risk class as indicated by the solid dot in Fig-
ure 2. Because of the large number of observations in each risk class, the observed
average cost is consistent with the prediction.

It is worth stressing that the risk classification is not limited to the ratemaking.
Insurance is a highly regulated industry. In practice, regulation might not allow
insurers to use certain risk factors in pricing, even if evidence supports the pre-
dictive power. In this case, risk classification is still useful because insurers could
use such risk factors in the underwriting to prescreen risks and thus mitigate the
adverse selection.

5.3. Claims triage. In response to claims filed by its customers, an insurer
needs to investigate the claim, determine the coverage and legal liability, and set-
tle the claim. This process is known as claims adjusting that aims to fulfill the in-
surer’s promises to its policyholders. Claims adjusting is integral to establishing an
insurer’s relationship to its policyholders. The reputation of the insurer in settling
claims directly impacts the marketing and retention of policyholder insurance.
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FIG. 2. Distribution of expected cost by risk class. The straight line corresponds to the 95% pre-
diction interval, and the solid dot indicates the observed average cost.

Insurers often employ claims triage in the claims adjusting process so as to pro-
vide effective and efficient services to their customers. This is in the same spirit
of nurse triage in emergency rooms, where a trained nurse performs an early as-
sessment of patients to ensure they receive appropriate attention with the requisite
degree of urgency. The purpose of claims triage is to decide early on the nature
of the claim and assign an adjuster accordingly to ensure prompt and appropriate
handling of the claim. For instance, standard stable claims might cost the insurer
the same regardless of who handles the claim. However, large volatile claims could
have a wide range of possible outcomes, thus, proper claim intervention from ex-
perienced adjusters may reduce the ultimate claim payment significantly.

Relevant questions are how many cohorts of adjusters an insurer should have in
the claims department and how to allocate claims to each cohort. We provide so-
lutions through cluster analysis. From a risk management perspective, underwrit-
ing controls the frequency of claims while claim settlement controls the severity.
Hence, the quantity of interest is the cost of a claim given occurrence. Let Yi de-
note the cost for policyholder i. If Yi follows the Tweedie distribution, then one
has

E(Yi | Yi > 0) = E(Yi)

1 − Fi(0)
= μi

1 − exp(−(1/φi)(μ
2−p
i /(2 − p)))

.(7)

Based on the available predictors in Table 2, there are in total 1536 possible risk
profiles. We calculate the severity of claims for each risk and perform a model-
based clustering using normal mixture models.

Because claims of different types often require unique expertise from the ad-
justers, we perform the cluster analysis separately for each type of coverage. For
illustration purposes, we report in Figure 3 the results for the coverage for prop-
erty damage of the policyholder, collision and all risk. For each coverage type, we
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FIG. 3. Comparison of clustering between the Tweedie and the double GLM models. The upper
panel corresponds to the all risk coverage and the lower panel corresponds to the collision coverage.

compare the clustering results for models M4 (Tweedie) and M5 (double GLM).
In Figure 3, we display the risk clusters on the two-dimensional space determined
by the mean (μ) and dispersion (φ) from the proposed model M5. The difference
is as anticipated: with constant dispersion, the Tweedie model classifies risks based
solely on the mean because the conditional expected cost in (7) is proportional to
the mean. In contrast, the double GLM considers the heterogeneity in dispersion
and thus takes it into account in the clustering. The analysis also demonstrates the
value added by dispersion modeling.

5.4. Portfolio management. As a second application, we are interested in the
distribution of insurance costs for a block of business. Consider a hypothetical
portfolio consisting of 5000 policies that are evenly distributed in the five risk
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FIG. 4. Comparison of portfolio risk. The left panel compares the predictive distribution of portfo-
lio claims from the mean and dispersion models. The right panel compares the predictive distribution
of portfolio claims from the copula and independence models.

classes defined in Table 10. The claim distribution of the portfolio is provided in
Figure 4. We examine the effect of dispersion modeling and dependence mod-
eling on the portfolio risk. The left panel compares the claim distribution from
the Tweedie GLM with and without dispersion modeling. To focus on this effect,
we assume independence among claims. As the central limit theorem predicts, the
effect of dispersion modeling is less pronounced on the portfolio risk than the indi-
vidual risk. The right panel compares the claim distribution from the independent
and the copula-based Tweedie double GLM. In contrast, the central limit theorem
collapses in this case and the dependence modeling plays a critical role in risk
aggregation.

The above analysis provides insight for the insurer to make better business de-
cisions, such as to determine the appropriate risk capital and to implement the best
reinsurance arrangement. To determine the risk capital for the portfolio, we employ
two risk measures that have been widely used in both actuarial and financial stud-
ies, the value-at-risk (VaR) and the conditional tail expectation (CTE) [Klugman,
Panjer and Willmot (2012), Chapter 3.5]. Both metrics focus on the tail of the
distribution, with the VaR being a percentile measure and the CTE providing the
expected value conditional on exceeding the VaR. Reinsurance, as a mean of risk
management, transfers a portion of an insurer’s risks to reinsurers. We examine
two types of reinsurance arrangements, quota share reinsurance and excess-of-loss
reinsurance. The former is a form of proportional reinsurance under which a fixed
percentage of claims is ceded to the reinsurer. The latter is a nonproportional rein-
surance where the reinsurer assumes all the losses above a specified dollar amount,
the retention limit.

We report in Tables 11 and 12 for the required risk capital determined by VaR
and CTE, respectively. Standard deviations are based on 1000 replications. In each
case, we consider a variety of reinsurance arrangements and compare the impli-
cations from the independence and copula models. For quota share reinsurance,
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TABLE 11
Estimated risk capital by VaR

95% VaR 99% VaR

Independence Copula Independence Copula

Estimate SD Estimate SD Estimate SD Estimate SD

Full coverage 1,232,195 28,967 2,126,942 96,500 2,225,927 118,051 3,298,770 244,766
Quota = 0.25 924,147 21,725 1,595,207 72,375 1,669,445 88,538 2,474,078 183,575
Quota = 0.5 616,098 14,484 1,063,471 48,250 1,112,964 59,025 1,649,385 122,383
Quota = 0.75 308,049 7,242 531,736 24,125 556,482 29,513 824,693 61,192
Retention = 1 m 1,000,000 0 1,000,000 0 1,000,000 0 1,000,000 0
Retention = 1.5 m 1,232,195 28,967 1,500,000 0 1,500,000 0 1,500,000 0
Retention = 2 m 1,232,195 28,967 1,996,368 15,307 1,993,295 37,087 2,000,000 0

risk measures are calculated based on a rescaled distribution, and for excess-of-
loss reinsurance, risk measures are calculated based on a truncated distribution.
Dependence among risks plays a critical role in the capital determination. Positive
(negative) association implies higher (lower) variability in the aggregate losses.
The effects are linear and nonlinear for quota share and excess-of-loss reinsurance,
respectively.

6. Conclusion. In this work, we advanced modeling of insurance claims with
a complex data structure that often exhibits in property-casualty insurance. The
data are complex in that they are multivariate and multilevel. The multivariate
nature is because a vehicle is insured by multiple types of coverage. The multilevel
structure is because a policy covers more than one vehicle and they are observed

TABLE 12
Estimated risk capital by CTE

95% CTE 99% CTE

Independence Copula Independence Copula

Estimate SD Estimate SD Estimate SD Estimate SD

Full coverage 1,757,925 152,819 2,907,977 188,560 2,601,139 556,144 4,268,984 644,687
Quota = 0.25 1,142,047 48,367 2,311,163 140,351 2,281,018 275,428 3,302,446 373,194
Quota = 0.5 910,513 14,185 1,705,420 93,570 1,478,016 165,732 2,381,024 213,539
Quota = 0.75 891,409 10,571 1,144,965 45,633 898,713 12,691 1,442,155 91,992
Retention = 1 m 1,245,359 37,423 1,632,082 43,660 1,245,359 37,423 1,632,082 43,660
Retention = 1.5 m 1,757,925 152,819 2,204,311 77,457 2,206,040 233,886 2,204,311 77,457
Retention = 2 m 1,757,925 152,819 2,760,684 137,491 2,422,570 317,148 2,764,584 137,344
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over time. The proposed multivariate regression model is sufficiently flexible to
handle our complex insurance data.

A main contribution of this article is the introduction of the regression frame-
work for the multivariate semi-continuous claims in the multilevel context. We
used the Tweedie distribution to accommodate the semi-continuous nature of
claims cost while, at the same time, allowing for covariates in both mean and dis-
persion. One innovation in our approach is the employment of dependence mod-
eling to accommodate the complex relationship among insurance claims. We used
the Gaussian copula because of its flexibility in handling unbalanced data and the
interpretability of the dependence parameters. We focused on the Gaussian copula
and investigated misspecification with respect to the t copula.

The proposed method can potentially be extended in two areas. First, other cop-
ulas in the elliptical family possess similar flexibility in dependence modeling as
the Gaussian copula, and thus are sensible candidates for our data. However, the
properties of the composite likelihood estimator for elliptical copulas are worth
further investigating in future research. Second, regression can be performed on
the copula in addition to the marginal model. Adding covariates to the correlation
structure could be difficult because of the constraints in the association matrix.
One possible solution for future exploration is through the modified Cholesky de-
composition [see, e.g., Pourahmadi (1999, 2000, 2007), among others].

The modeling approach developed in this article was motivated by the claims
data in personal automobile insurance. However, it finds applications in a much
broader context. As pointed out already, the multilevel structure exhibited by our
claims data is very common in property-casualty insurance, including major per-
sonal lines (personal auto and homeowner) and commercial lines (worker’s com-
pensation, commercial multi-peril, commercial auto). The property-casualty in-
surance represents an important sector in the developed economy. The size of the
market provides sufficient motivation for our work. Beyond the insurance market,
the proposed model has potential application in the modeling of health care utiliza-
tion, where a household in a private health plan or an employer in a group health
plan forms the cluster, and the consumption of various types of care services is the
outcome of interest. This provides additional motivation for the proposed method.

There are other possible approaches to modeling this type of data. One strat-
egy is to use techniques from multivariate longitudinal data [Fahrmeir and Tutz
(2001), Chapter 7.2]. Because the Tweedie density is not analytically tractable,
the likelihood-based method for the Tweedie linear mixed model is difficult [see,
e.g., Dunn and Smyth (2005, 2008) and Zhang (2013)]. The dispersion model in
this context is another challenge. Another possibility is the two-part model for the
semi-continuous longitudinal data [see, e.g., Olsen and Schafer (2001)]. However,
the two-part framework is not ready to apply due to the multivariate and multilevel
nature of our data. Since both strategies involve inference on the prediction of ran-
dom quantities, we feel that the proposed approach is more flexible and easier to
implement, especially when focus of the application is the predictive distribution
of the outcome variables.
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APPENDIX

This section provides a foundation for the dependence structure used in the
Gaussian copula model. Consider the linear model for the transformed data:

εikj t = �−1(
F(yikj t ;μikjt , pj ,φikj t )

) = ρjεikj t−1 + uikjt + vij t ,

where the three components of εikj t are assumed to be independent and
Var(εikj t ) = 1. Let uikt = (uik1t , . . . , uikJ t )

′ and vit = (vi1t , . . . , viJ t )
′, and

Var(uikt ) =
⎛
⎜⎝

σ
(11)
u · · · σ

(1J )
u

...
. . .

...

σ
(J1)
u · · · σ

(JJ )
u

⎞
⎟⎠ , Var(vit ) =

⎛
⎜⎝

σ
(11)
v · · · σ

(1J )
v

...
. . .

...

σ
(J1)
v · · · σ

(JJ )
v

⎞
⎟⎠ .

We show that the above model implies the dependence structure � = BK×K ⊗
P(T J )×(T J ) specified in Section 3.1 if and only if Var(vit ) = λVar(uikt ). As shown
below, this assumption implies the exchangeable correlation in BK×K and the sep-
arable dependence in �. In our context, the exchangeable structure means that cor-
relation between vehicles under the same policy is introduced by a latent household
specific heterogeneity. The separable dependence refers to the identical coverage-
temporal relation for all vehicles within the same household. Both are reasonable
assumptions if one thinks that individuals from the same household might possess
similar risk characteristics and risk appetite and they might drive their vehicles
interchangeably.

Let εikj = (εikj1, . . . , εikjT )′. We consider four scenarios in dependence anal-
ysis. The first is regarding the serial correlation among insurance costs for each
coverage type. It can be shown that

Var(εikj ) =

⎛
⎜⎜⎜⎜⎜⎝

1 ρj · · · ρT −1
j

1 · · · ρT −2
j

. . .
...

1

⎞
⎟⎟⎟⎟⎟⎠ = Pjj .

The second is regarding dependence among different types of claims cost for a
given vehicle. For the same time period t = t ′,

Cov(εikj t , εikj ′t ) = σ
(jj ′)
u + σ

(jj ′)
v

1 − ρjρ
′
j

= 1 + λ

λ

σ
(jj ′)
v

1 − ρjρ
′
j

:= σjj ′ .

For the different time periods t �= t ′,

Cov(εikj t , εikj ′t ′) =
⎧⎨
⎩

ρt−t ′
j Cov(εikj t ′, εikj ′t ′) = ρt−t ′

j σjj ′, if t > t ′,
ρt ′−t

j ′ Cov(εikj t , εikj ′t ) = ρt ′−t
j ′ σjj ′, if t < t ′.
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Thus, we have

Cov(εikj ,εikj ′) = σjj ′

⎛
⎜⎜⎜⎜⎜⎝

1 ρj ′ · · · ρT −1
j ′

ρj 1 · · · ρT −2
j ′

...
...

. . .
...

ρT −1
j ρT −2

j · · · 1

⎞
⎟⎟⎟⎟⎟⎠ = σjj ′Pjj ′ .

The third is the dependence between losses of a particular type of coverage but
from different vehicles under the same policy. For the same period t = t ′,

Cov(εikj t , εik′j t ) = σ
(jj)
v

1 − ρ2
j

= λ

1 + λ
:= δ,

and 0 < δ < 1. Note that the cluster-specific effect only introduces positive corre-
lation. For the different time periods t �= t ′,

Cov(εikj t , εikj ′t ′) =
⎧⎨
⎩

ρt−t ′
j Cov(εikj t ′, εik′j t ′) = δρt−t ′

j , if t > t ′,
ρt ′−t

j ′ Cov(εikj t , εik′j t ) = δρt ′−t
j ′ , if t < t ′.

Hence, one obtains

Cov(εikj ,εik′j ) = δ

⎛
⎜⎜⎜⎜⎜⎝

1 ρj · · · ρT −1
j

1 · · · ρT −2
j

. . .
...

1

⎞
⎟⎟⎟⎟⎟⎠ = δPjj .

The fourth is the dependence between losses of different coverage types and
from different vehicles insured by the same contract. For the same period t = t ′,

Cov(εikj t , εik′j ′t ) = σ
(jj ′)
v

1 − ρjρj ′
= λ

1 + λ
σjj ′ = δσjj ′ .

For the different time periods t �= t ′,

Cov(εikj t , εik′j ′t ′) =
⎧⎨
⎩

ρt−t ′
j Cov(εikj t ′, εik′j ′t ′) = ρt−t ′

j δσjj ′, if t > t ′,
ρt ′−t

j ′ Cov(εikj t , εik′j ′t ) = ρt ′−t
j ′ δσjj ′, if t < t ′.

In addition,

Cov(εikj t , εik′j ′t ) = σ
(jj ′)
v

1 − ρjρj ′
= τjj ′

√
σ

(jj)
v

√
σ

(j ′j ′)
v

1 − ρjρj ′
= δτjj ′

√
1 − ρ2

j

√
1 − ρ2

j ′

1 − ρjρj ′
.
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This justifies the reparameterization σjj ′ = τjj ′
√

1 − ρ2
j

√
1 − ρ2

j ′/(1 − ρjρj ′) and
provides a natural interpretation of parameter τjj ′ . Therefore,

Cov(εikj ,εik′j ′) = δσjj ′

⎛
⎜⎜⎜⎜⎜⎝

1 ρj ′ · · · ρT −1
j ′

ρj 1 · · · ρT −2
j ′

...
...

. . .
...

ρT −1
j ρT −2

j · · · 1

⎞
⎟⎟⎟⎟⎟⎠ = δσjj ′Pjj ′ .
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