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The detection of local genomic signals using high-throughput DNA se-
quencing data can be cast as a problem of scanning a Poisson random field
for local changes in the rate of the process. We propose a likelihood-based
framework for such scans, and derive formulas for false positive rate con-
trol and power calculations. The framework can also accommodate modi-
fied processes that involve overdispersion. As a specific, detailed example,
we consider the detection of insertions and deletions by paired-end DNA-
sequencing. We propose several statistics for this problem, compare their
power under current experimental designs, and illustrate their application on
an Illumina Platinum Genomes data set.

1. Introduction. Developments during the last three decades in biology, es-
pecially in genetics and fMRI analysis, have motivated theoretical and applied
research on the detection of local signals in large fields of data. These data are ob-
tained simultaneously from markers distributed across an entire genome or from
scans of the entire brain; for early examples see Lander and Botstein (1989),
Karlin, Dembo and Kawabata (1990), Feingold, Brown and Siegmund (1993),
Worsley et al. (1992) and Siegmund and Worsley (1995). Over most of the re-
gion of observation the data in such studies are noise, while signals appear as local
“peaks.” The random field is often conveniently assumed to be Gaussian based
on approximations using the central limit theorem. Control for the multiple com-
parisons involved in searching the field for local signals is achieved by using the
theory of maxima of Gaussian fields to obtain a significance threshold that controls
the overall false positive rate. This approach requires that the normal distribution
provide an adequate approximation in the extreme tail of the distribution, which
suggests that one be skeptical of the accuracy of the resulting thresholds, espe-
cially in many cases where Poisson-like data are involved and the Poisson rate is
not large. For asymptotic analyses in various concrete problems without using a
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Gaussian assumption, see Rabinowitz and Siegmund (1997), Tang and Siegmund
(2001), Peng and Siegmund (2005), Chan and Zhang (2007) and Siegmund, Yakir
and Zhang (2011).

This paper is motivated by several problems arising from high-throughput DNA
sequencing data, where the data can be modeled by a Poisson process, possibly
nonhomogeneous, or in some cases a mixture of Poisson processes to deal with
overdispersion. The signal of interest involves a local change in a functional of
the process. In addition to our primary problem of detecting structural variations
using DNA sequencing data, similar scans for local signals arise in the detection
of transcription factor binding sites in chromatin immuno-precipitation followed
by sequencing [ChIP-Seq, cf. Schwartzman et al. (2013)] and in detection of al-
ternative transcription start and end sites in RNA sequencing. See also Song et al.
(2013) for an application to word counts in DNA sequence analysis.

The applications mentioned in the preceding paragraph can be cast as a problem
of scanning a Poisson field for clusters of a prespecified configuration. In partic-
ular, for structural variant detection, the signal is in the form of a local mixture.
We derive approximations for the false positive rates of likelihood-ratio and score-
based scan statistics in reasonably general settings. We also study the power of
these statistics as a function of scientifically interpretable parameters. Although
we use likelihood-based models, the usual regularity conditions of likelihood the-
ory are not satisfied, since the parameters defining the location and the expected
height of a peak are not separately identifiable, that is, we cannot speak of the lo-
cation of a peak unless the expected height is different from the expected value of
the background. We also study settings where the problem is irregular in a second
sense, that the likelihood function is not differentiable in the parameter defining
the location of a signal.

Before concentrating on the detailed models for structural variant detection, we
study a simplified model that may have more general interest and that is relatively
much easier to analyze. This model can be viewed either as a marked Poisson pro-
cess, as a compound Poisson process or, alternatively, as a two-dimensional Pois-
son process where one coordinate of the process involves location in time and/or
space, and the other coordinate involves the value of the observation available at
that location.

For an example outside of genomics, see Braun et al. (2008) who discuss the
use of high-energy neutrino telescopes to search for point sources of galactic and
extragalactic neutrinos. Here, atmospheric neutrinos have one energy distribution,
and against this random background one would like to identify the existence of
localized clusters of neutrinos that have a different distribution of energy. A plau-
sible model is a marked Poisson field, where in certain small regions determined
by the point spread function of a distant point source the distribution of the marks
associated with a fraction of the points is different from the distribution of the
background [Braun et al. (2008)]. Scanning the field for these distinguished point
sources has been called a “look elsewhere” test by Gross and Vitells (2010), who
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use a Gaussian random field and the well-developed theory of maxima of random
fields [e.g., Adler and Taylor (2007)] to obtain approximate p-values.

Segmentation of financial time series using a similar model is discussed by Toth,
Lillo and Farmer (2010). See also the series of papers by Kulldorff and collabora-
tors [Kulldorff and Nagarwalla (1995), Kulldorff (1997, 1999)] for applications to
detection of clustered disease outbreaks.

We introduce the motivating genomic applications in Section 2. In Section 3,
we give a general framework for scans of Poisson random fields, first illustrating
it on a simple mixture model (Section 3.1), and then on a more detailed and realis-
tic model for the problem of structural variant detection (Section 3.3). The simple
mixture model is more transparent and also leads to insights that help us under-
stand more complex settings. The procedures for p-value approximation for scan
statistics on Poisson random fields are sketched in the Supplementary Materials
[Zhang et al. (2016)]. In Section 4 we give approximations for the simple mix-
ture model, examine their accuracy by numerical experiments, and analyze power
under different scanning designs. In Section 5, we return to explore in more detail
the more realistic models for structural variant detection formulated in Section 3.3.
We conclude with a discussion in Section 7.

The theory and methods described in this paper are at the core of SWAN, a com-
prehensive statistical pipeline for genomic structural variant detection. SWAN is an
open source R library available at https://bitbucket.org/charade/swan/wiki/Home.
The accuracy of SWAN is compared to mainstream structural variant detection
methods on a in silico spike-in data set in Section 5.

2. Motivating examples from sequencing experiments. High-throughput
short read sequencing, often referred to as “next-generation sequencing,” provides
data for quantifying DNA, RNA, protein binding and many other genome-wide
features in biology. A good overview of the technology and its applications can be
found in three articles in the November 2009 issue of Nature Methods: Flicek and
Birney (2009), Medvedev, Stanciu and Brudno (2009) and Pepke, Wold and Mor-
tazavi (2009). As our main example, we consider DNA sequencing, which is de-
scribed by Medvedev, Stanciu and Brudno (2009). The DNA sequencing pipeline
is briefly summarized in Figure 1: In step (1), double-stranded DNA is extracted
from the sample of interest and fragmented. In step (2), the fragments are usually
amplified, then fragments within a certain size range are selected and made into a
DNA library. In step (3), a fixed number of bases, referred to as reads, is read by
a sequencer from one or both ends of each fragment. When both ends of the frag-
ment are read, the data are referred to as paired ends, since the reads are paired, one
coming from each end of the double-stranded DNA molecule. Since sequencing
is unidirectional, one read of each pair comes from the plus strand of each double
stranded fragment, with the other read of the pair coming from the minus strand.
Finally, in step (4), the reads are mapped to a reference genome template; Flicek
and Birney (2009) give a good overview of this step. Our data include the mapping
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FIG. 1. Outline of a DNA sequencing experiment.

location and strand orientation of the reads as well as other attributes that describe
the mapping, for example, whether the entire read or only a partial read has been
mapped.

For a fragment with both ends mapped, we define the mapped insert length to
be the number of bases between the start position of the minus-strand read and
the start position of the plus-strand read. If the sequenced genome is identical to
the reference genome in the region spanned by the reads, then the mapped insert
length is simply the length of the fragment from which the read pair is derived
minus the length of one read. Important fixed quantities in our models, which are
chosen by the experimenter, are the length of each read, R, and the distribution of
the insert lengths, which we characterize by a distribution function F with mean δ

and standard deviation σ .

2.1. Detection of copy number variation. Copy number variation refers to the
deletion or duplication of a chromosomal segment of DNA. DNA sequencing has
been used to detect copy number variation because the density of reads mapped
to a genome interval depends on the relative quantity of that piece of DNA in the
sequenced sample [Campbell et al. (2008); Chiang et al. (2009); Abyzov et al.
(2011); Shen and Zhang (2012)]. A simple model assumes that the start positions
of the mapped reads follow a nonhomogeneous Poisson process N(t) of intensity
ρ(t), where t is position along the genome. That is, for s < t , N(t) − N(s) is the
number of reads that map to the region (s, t] on the reference genome. We will
call N(t) the coverage process. The function ρ(t) depends not only on the copy
number but also on features that are local to the neighborhood of t . For example, it
has been shown that the percentage of bases that are G or C dramatically influence
the baseline coverage. Assuming that a reliable estimate of ρ(t) is available, we
can model a deletion of (t1, t2] as a local drop of the intensity function to, say,
exp(β)ρ(t), where β < 0. The log-likelihood ratio for the process Nt , with and
without the deletion, is

β[Nt2 − Nt1−R] − [
exp(β) − 1

] ∫ t2

t1−R
ρ(t) dt.(2.1)

Since the boundaries of the deletion are unknown, a scan statistic would involve
maximization of (2.1) over an appropriate range of t1 < t2, and perhaps also over a
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reasonable range for β . This model can obviously also be used to detect increases
in DNA copy number.

2.2. Detection of structural variants. Structural variants are insertions, dele-
tions, inversions and translocations of segments of DNA in the genome. Deletions
result in a loss of copy number, and insertions of DNA in the form of tandem du-
plications represent copy number gain. Thus, structural variations may cause copy
number variation. However, a translocation, which is the movement of a DNA seg-
ment from one position in the genome to another, does not result in a change of
copy number, although it represents a deletion at the original site and an insertion
at the new site.

Structural variants are always parameterized with respect to the reference
genome to which reads are mapped. For example, deletion of [s, t] refers to dele-
tion in the target genome of the DNA sequence starting at s and ending at t in the
reference genome. Paired-end DNA sequencing allows the detection and some-
times the precise positioning of structural variants. Figure 2 shows how deletions
and insertions produce telltale signatures in the mapping of paired-end reads. Fig-
ure 2(a) shows a deletion of bases s to t in the reference genome. The deleted
region is labeled B and is spanned by regions A and C. In the absence of struc-
tural change, the mapped insert length is random with a known distribution F .
Fragments that span the deletion point, that is, those that start in A and end in C in
the target, produce read pairs that map farther apart in the reference than expected

FIG. 2. Mapping of paired-end reads in region of deletion (a) and insertion (b). Arcs join reads
within a pair. In (a), the deleted region, labeled B , spans bases s to t in the reference genome, and is
flanked by regions A and C. In (b), the inserted segment B is flanked by regions A and C in the target
genome, with A and C joined together in the reference genome.
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under F . Now consider Figure 2(b), where an insertion B , spanned by A and C,
starts at position t in the reference genome. A read that overlaps with B would fail
to map whenever B is a foreign sequence with no homolog in the target genome,
or it would map far from its mate if B is a “domestic” insertion from a distant lo-
cation of the reference. Read pairs where one read maps successfully and the other
fails to map, maps in the same orientation or maps too far from the first are called
hanging pairs. Deletions can also produce hanging pairs whenever one read of a
given pair straddles the boundary between A and C in the target genome. Sim-
ilarly, fragments that span insertions produce read pairs that map closer to each
other than expected under F . In Sections 3.1 and 3.3, we describe models and
statistics that exploit these patterns to detect structural variants.

2.3. Detection of transcription factor binding sites. Chromatin immuno-
precipitation (ChIP) is a technique for isolating from a DNA sample only those
DNA fragments bound to a protein of interest. Sequencing reads from the ends of
the DNA fragments derived from ChIP then mapping these reads to a reference
template allows us to detect the binding locations of the protein in the genome of
the sample. One expects to see an increase in the density of mapped reads near the
binding site. Under the assumption that the binding site is short compared to R,
it is natural to assume that the “shape” of the peak centered on the site is roughly
triangular. Schwartzman et al. (2013) consider statistics of the form

Zt =
∫

gw(t − s) dNs,(2.2)

where Ns is the Poisson counting process with jumps at the centers of mapped
reads, and g is a symmetric kernel. Schwartzman suggested the function gw(s) =
(1−|s|/w)+/w as a plausible “matched filter.” An alternative kernel is a Gaussian
probability density function with standard deviation w. The scale parameter w

indicating the width of the signal may be known or unknown. Under this setup, the
log-likelihood ratio for testing the intensity function ρ(s) against the alternative of
a peak at t of the form exp(βgw(t − s)) equals

�(t,w,β) = βZt −
∫ [

exp
(
βgw(t − s)

) − 1
]
ρ(s) ds.(2.3)

Since the location t is unknown, one might consider one of several statistics
maximized over candidate values of t . The simplest would be the score statistic,
∂�/∂β|β=0 = Zt − ∫

gw(t − s)ρ(s) ds. An alternative would be maxβ �(t,w,β),
where the maximum is over (in addition to t) some appropriate range of values
of β > 0 and perhaps also w. Below we shall see a model for detecting insertions
and deletions that also involves convolution of a smooth function with a Poisson
process.
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2.4. Modeling overdispersion. It has often been found that the coverage pro-
cess Nt is overdispersed. The overdispersion can be handled by using a negative
binomial process or, equivalently, a gamma mixture of Poisson processes. An al-
ternative that may be more suitable for our present purposes is to assume that a
small fraction of DNA fragments, hence points in the Poisson process, occur with
random multiplicity. For example, assume that the size of a jump in the process is k

with binomial probability having parameters j , α and conditioned to be at least 1.
In this case, after multiplication of the rate function ρ(t) by [1 − (1 − α)j ]/(jα)

to maintain the expected null intensity, the log-likelihood becomes

β[Nt2 − Nt1−R] − [
	(t2) − 	(t1 − R)

]{[
1 + α

(
exp(β) − 1

)]j − 1
}
/(jα).(2.4)

Its null variance is inflated by the factor 1+ (j −1)α, and it reduces to the Poisson
case for either j = 1 or α → 0.

3. Models and scan statistics.

3.1. A simple mixture model. Consider first a simplified model for the detec-
tion of insertions and deletions using the mapped insert lengths in paired-end se-
quencing. We consider for now only those pairs where both reads are unambigu-
ously in opposite orientation. For read pair i, let x+

i and x−
i be the mapped posi-

tions of the plus- and minus-strand reads, respectively. For a reference template of
length m, (x+

i , x−
i ) ∈ {1, . . . ,m − R + 1}2. The mapped insert length, which we

denote by yi for read pair i, is defined by yi ≡ x−
i − x+

i .
If there are no structural variants, yi has distribution F0(dy) with density f0,

mean δ and standard deviation σ . As described in Section 2.2, deletions cause
an increase in mapped insert length, and small insertions cause a decrease. We
introduce a parameter w, where the sign of w is positive for deletions and negative
for insertions, while |w| is the number of bases in the deleted or inserted segment.
Apart from the length of the variant, another important parameter influencing the
strength of the signal is purity, denoted by r . For example, heterozygous variants,
which are carried by 50% of the genomes in a diploid individual, have purity 0.5.
In cancer tissue, where the cell population is usually genetically heterogeneous,
the purity of a given mutation is a continuous fraction. Both w and r are usually
unknown, although it is informative to study statistics defined by particular values
of these parameters. As illustrated in Figure 2, read pairs derived from fragments
containing the deletions/insertions have mapped insert lengths coming from the
mixture distribution F1(dy) = (1 − r)F0(dy) + rF0(dy − w).

To detect insertions and deletions, we consider as a toy model the two-
dimensional Poisson random field

N(dt, dy) =
n∑

i=1

I
(
x+
i ∈ dt, yi ∈ dy

)
.
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FIG. 3. Region on chromosome 22 from NA12878 sequenced by the 1000 Genomes Project. This
region contains a putative heterozygous deletion of ∼50 bases. The mean insert size is shown by the
horizontal line.

We assume for N the null intensity function λ(dt, dy) = ρ(t) dtF0(dy), where
ρ(t) is the rate with which plus-strand reads map to genome position t . Alterna-
tively, we can think of this process as a marked (or compound) Poisson process
with rate ρ(t) and marks that follow F0 or F1.

This logic prompts the construction of an alternative intensity function

λ1(dt, dy) =
{
ρ(t) dtF1(dy), t ∈ [s − δ, s);
ρ(t) dtF0(dy), otherwise,

(3.1)

for a structural variant starting at s. The log-likelihood ratio of λ1 versus λ0 is

� =
∫

log
(
λ1(dt, dy)/λ0(dt, dy)

)
N(dt, dy)

(3.2)
−

∫ [
λ1(dt, dy) − λ0(dt, dy)

]
.

The log-likelihood is indexed by the location parameter s and the parameters w

and r in the specification of F1. A scan of the genome for large values of the log-
likelihood, varying s and possibly also r and w, can be used to detect insertions
and/or deletions.

Figure 3 shows an example of a region on chromosome 22 containing a signal
from the sequencing of NA12878 by the 1000 Genomes Project. Note the cluster
of points with an elevated mean at base position 16,865,200–16,865,300. Since the
mean increased by around 50 bases in approximately half of the read pairs in this
100 base window, we suspect that there is a heterozygous deletion of roughly 50
bases starting at ∼16,865,300.

Compared to the models introduced below in Section 3.3, the scan statistic sug-
gested here has a simple, general structure due to the assumption that the rate func-
tion for the two-dimensional process is a product of separate one-dimensional rate
functions in t and y. This structure leads to relatively simple theoretical proper-
ties that may be of general interest for problems involving mixtures in compound
Poisson processes. Despite its simplicity, this toy model leads to insights in our
problem.
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3.2. General framework and notation. Assume that the observed data are a
counting process {N(dz) : z ∈ 	}, that has a null intensity function λ0(z) on
the domain 	. For example, in the single-read sequencing setup of Sections 2.1
and 2.3, N(z) is the coverage process, with z being a one-dimensional index
for genome location. In the mixture model proposed in Section 3.1, z = (t, y),
	 = [0,m] × �, and N(z) counts the number of read pairs with the plus-strand
read mapping to a given location and mapped insert length within a given range.
The signal of interest in all cases is a local change in intensity, which is represented
by an alternative intensity function λ1(z) that relies on one or more parameter(s),
collectively denoted by τ . For example, in Section 3.1, τ can be the single param-
eter s for genome location but can also be the vector (s, r,w) which includes the
proportion and length of the variant. We introduce the representation

λ1(dz) = eβkτ (z)λ0(dz),(3.3)

where we call kτ (z) the kernel function. The parameter β plays a technical role
in false positive rate calculations. The alternative of interest is often β = 1. The
log-likelihood ratio (3.2) can be written as

�τ = β

∫
kτ (z)N(dz) − ψτ (β),(3.4)

where

ψτ (β) =
∫ {

exp
[
βkτ (z)

] − 1
}
λ0(dz).(3.5)

The scan statistics (2.1) and (2.3) for detecting copy number variants and peaks in
ChIP-Seq data are also of this form.

Almost no restrictions are placed on the kernel function, except that the integral
(3.5) exists for β in some neighborhood of 0 and that, when appropriate, ψτ can
be differentiated with respect to the scan parameters under the integral.

The simple model in Section 3.1 has a kernel that is separable in t and y,

kτ (t, y) = 1{s − δ ≤ t ≤ s}g(y;w, r),(3.6)

where g(y;w, r) = log[1 − r + rf0(y −w)/f0(y)]. The separability allows simple
p-value approximations and more direct analysis of power.

In general, we will consider as raw material for scan statistics the random fields
(3.4), indexed by the unknown parameters τ . Note that the random field is in gen-
eral not differentiable in the parameter s for location, but can be differentiable in
the other parameters such as r,w in (3.6).

3.3. More realistic models for structural variants. The mixture model sug-
gested above neglects several features of the problem of detecting structural vari-
ants by paired-end reads. Here we propose alternative models that take into ac-
count more specific features of paired-end sequencing, albeit at the cost of a more
complicated analysis of the false positive error rate.
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Let n be the number of read pairs where at least one read within the pair is
successfully mapped to the template. As before, let x+

i and x−
i be the leftmost base

positions of the plus- and minus-strand reads, respectively, for pair i. Successfully
mapped reads have positions in {1, . . . ,m − R + 1}. Some reads will fail to map
to the reference template, in which case we assign its position the value ∞. Reads
may fail to map due to sequencing or mapping error, or due to inclusion of a
segment of DNA that does not have a match in the reference. Read pairs where
the plus (minus) strand fails to map are called hanging plus- (minus-) strand pairs.
See Figure 2(b) for an illustration of hanging pairs produced by an insertion. Let
p be the probability of a hanging read due to experimental error. A conservative
estimate of p can be obtained from n−1 ∑

i[I (x+
i = ∞) + I (x−

i = ∞)]. Since
hanging reads caused by true structural variants are only a very small proportion
of the overall number of hanging reads, we expect this conservative estimate to be
very accurate. Thus, we assume that p is known.

In Section 2.2 we discussed hanging pairs in a broader context that also includes
read pairs that are mapped too far apart or in reverse orientation. The models and
statistics we introduce below easily adapt to the broader definition, but the notation
will be much simpler under the narrow definition. The important thing is that,
given whatever the definition may be for a hanging pair, p should be empirically
estimated by nH/n, where nH is the total number of read pairs that satisfy this
definition.

Let κ(t) be the rate with which reads (either plus- or minus-strand) map to po-
sition t . For mathematical convenience we embed the discrete mapping positions
into the continuous interval [0,m] and let

N(du, dv) =
n∑

i=1

I
(
x+
i ∈ du, x−

i ∈ dv
)
, u, v ∈ [0,m].(3.7)

Then, in the notation of Section 3.2, N is an inhomogeneous Poisson process with
z = (u, v), 	 = ([0,m] ∪ ∞)2, and intensity function

λ0(u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − p)κ(u)κ(v)f (v − u), u, v ∈ [0,m];
1

2
pκ(u)

∫ m

u
κ(x)f (x − u)dx, u ∈ [0,m], v = ∞;

1

2
pκ(v)

∫ v

0
κ(x)f (v − x)dx, u = ∞, v ∈ [0,m].

(3.8)

The integrals in the second and third lines account for the possible different insert
lengths, which are unobserved because of the hanging read. We assume that hang-
ing reads are equally likely to be a hanging plus strand or a hanging minus strand.
Note that the marginal intensity for a read to map to t is κ(t). If we assume con-
stant κ , then λ0(u, v) simplifies to (1 − p)κ2f (v − u) for properly mapped read
pairs, and pκ2/2 for hanging pairs.
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FIG. 4. Examples of the four types of informative read pairs in the neighborhood of a deletion at
[s, s + w): SC

s,w have at least one read that covers the window; SB
s,w bracket the window; S+

s,w have
hanging plus-strand reads, with the minus strand mapping to the right of the window; and S−

s,w have
hanging minus-strand reads, with the plus-strand read mapping to the left of the window.

Now consider testing the alternative hypothesis that a proportion r of the
genomes in the sample contain a deletion of width w beginning at reference lo-
cation s. In reference to the window [s, s + w), the sample space 	 of possible
paired-end mappings can be partitioned into the following nonoverlapping sets:

SC = SC
s,w = {

(u, v) : s − R < u < s + w or s − R < v < s + w
};

SB = SB
s,w = {

(u, v) : u ≤ s − R and v > s + w
};

S+ = S+
s,w = {

(u, v) : u = ∞ and v > s + w
};

S− = S−
s,w = {

(u, v) : u ≤ s − R and v = ∞};
S0 = S0

s,w = 	 \ (
SC

s,w ∪ SB
s,w ∪ S+

s,w ∪ S−
s,w

)
.

Figure 4 shows examples of the first four categories of read pairs: SC
s,w is the set

of pairs where at least one read intersects the window [s, s + w); SB
s,w is the set of

pairs that bracket the window; S+
s,w is the set of hanging plus-strand pairs where

the minus-strand read maps to the right of the window; S−
s,w is the set of hang-

ing minus-strand pairs where the plus-strand read maps to the left of the window.
Finally, S0

s,w contains all of the remaining pairs, which are uninformative about
whether there is a deletion of [s, s + w). To simplify notation, we will sometimes
suppress the suffix s,w.

We use the notation from Section 3.1, where the parameter set of the model is
τ = (s,w, r), where s is the location of the putative variant, w is the width, and
r is the proportion of genomes in the sample that carry the variant. We call those
genomes that carry the variant the carriers, and those that do not carry the variant
the noncarriers.

Let λ1(u, v) be the rate function under the alternative of a deletion with parame-
ters τ . To derive λ1, we consider the probability under the alternative of read pairs
belonging to each of the above sets separately. The deletion should not affect the
rate with which pairs map to S0. Pairs in SC can only come from the noncarrier
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genomes, with probability 1 − r , and thus

λ1(u, v) = λ0(u, v)[1 − r], (u, v) ∈ SC.(3.9)

A pair in SB can be generated in two ways: It can be from a noncarrier chro-
mosome, with rate (1 − r)λ0(u, v), or it can be from a fragment containing the
deletion from the carrier chromosome, with rate r(1 − p)κ(u)κ(v)f (v − u − w).
Thus,

λ1(u, v) = λ0(u, v)
[
1 − r + rf (v −u−w)/f (v −u)

]
, (u, v) ∈ SB.(3.10)

Now consider the hanging minus-strand pairs. A pair mapping to (u, v) ∈ S− can
be from a noncarrier chromosome, with rate (1 − r)λ0(u, v), or it can be from a
carrier chromosome. In the latter case, there are two explanations for the minus-
strand read failing to map: It can be due to sequencing error or it can be due to the
read overlapping the deletion point. Thus, for (u, v) ∈ S−,

λ1(u, v) = (1 − r)λ0(u, v) + r

[
λ0(u, v) + (1 − p)κ(u)

∫ s

s−R
f (t − u)κ(t) dt

]

(3.11)

= λ0(u, v)

[
1 + 2r(1 − p)

p
∫ m
u κ(x)f (x − u)dx

∫ s

s−R
f (t − u)κ(t) dt

]
.

With similar reasoning, we have for (u, v) ∈ S+

λ1(u, v) = λ0(u, v)

[
1 + 2r(1 − p)

p
∫ v

0 κ(x)f (v − x)dx

∫ s+w

s+w−R
f (v − t)κ(t) dt

]
.(3.12)

Now we see that the alternative rate function can be written in the form of (3.3)
with β = 1, kτ = 0 for (u, v) ∈ S0, and kτ equal to the log of the term in square
brackets in (3.9)–(3.12) for (u, v) belonging to, respectively, SC , SB , S+ and S−.
The log-likelihood scan statistic thus evaluates to

�τ = β
[
ZC

τ + ZB
τ + Z+

τ + Z−
τ

] − ψτ (β),(3.13)

where ZC
τ , ZB

τ , Z+
τ and Z−

τ are the sum of the kernel kτ over the sets SC , SB , S+
and S−, respectively. We call ZC

τ , ZB
τ , Z+

τ and Z−
τ signature-specific scores or,

simply, scores, since they summarize the evidence for a deletion from, respectively,
the coverage process, the bracketing pairs, the hanging plus-strand pairs and the
hanging minus-strand pairs. If κ were assumed constant, the scores for the hanging
pairs simplify significantly to

Z+
τ = ∑

i:(x+
i ,x−

i )∈S+
log

{
1 + 2r(1 − p)

p

[
F

(
x−
i − s + w − R

) − F
(
x−
i − s + w

)]}
,

Z−
τ = ∑

i:(x+
i ,x−

i )∈S−
log

{
1 + 2r(1 − p)

p

[
F

(
s − x+

i

) − F
(
s − R − x+

i

)]}
.
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From these simplified versions, we see that the hanging pairs scores are weighted
counts of the hanging pair of the given type in the region before the start of the
deletion (for Z−) or after the end of the deletion (for Z+), where the weights
depend on the insert length distribution F .

The above reasoning can be easily modified to handle insertions. For testing the
alternative of an insertion of width w between template positions s and s + 1 in a
proportion r of the chromosomes, we redefine the sets

SC
s,w = {

(u, v) : s − R < u ≤ s or s − R < v ≤ s
};

SB
s,w = {

(u, v) : u ≤ s − R and v > s
};

S+
s,w = {

(u, v) : u = ∞ and v > s
};

S−
s,w = {

(u, v) : u ≤ s − R and v = ∞}
.

Then λ1(u, v) remains the same as (3.9) for SC , and the same as (3.10) with −w

replaced by +w for SB . For the hanging minus-strand pairs,

λ1(u, v) = λ0(u, v)

[
1+ 2r(1 − p)

p
∫ m
u κ(x)f (x − u)dx

∫ s+w

s−R
f (t −u)κ(t) dt

]
,(3.14)

and, for the hanging plus-strand pairs,

λ1(u, v) = λ0(u, v)

[
1+ 2r(1 − p)

p
∫ v

0 κ(x)f (v − x)dx

∫ s

s−w−R
f (v − t)κ(t) dt

]
.(3.15)

REMARK 1. There is an important difference between insertions and deletions
for the hanging read statistic. For insertions both Z+ and Z− should give a peak at
the point of the insertion in the reference genome, hence they can be combined by
addition. For deletions of the interval (s, s +w), Z− should give a peak at s, while
Z+ should give a peak at s + w. These two statistics will reinforce each other if
w is small enough for the two peaks to overlap. Since w is unknown, alignment
can be accomplished by maximizing the sum of the two statistics over a range of w

values. To compensate for the increased number of multiple comparisons, one must
use a higher significance threshold. As we shall see, the hanging read statistics are
most useful for detecting short variants, where the bracketing pairs statistics have
little power. The ideal range depends on the true value of w and on other unknown
parameters. For simplicity in what follows we ignore this possibility and consider
in our power studies the probability that the higher of the two peaks exceeds the
appropriate threshold.

REMARK 2. Our focus in this paper is detection of insertions and small dele-
tions, which are the hardest to detect by currently available methods. Coverage
based statistics (e.g., ZC) have low sensitivity for these types of variants, and so
we ignore them in our analysis. In the Supplementary Materials, we include some
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discussions about more complex types of variants, such as Tandem Duplications,
Translocations and Inversions. These structural changes can be viewed as spe-
cific compositions of insertions and deletions. Whereas the scans we describe will
likely reject the null and report a signal when the region contains such a compli-
cated structural variant, they are not designed to identify the variant type correctly,
nor are they optimized in terms of sensitivity. A further complicating scenario is
when an individual carries two different structural variants at the same locus, one
on each homologous chromosome copy. With so many possibilities, we recom-
mend that instead of formulating every possible alternative, a practical strategy is
to scan only for insertions and deletions, then apply a second stage classification
of the signals by a more detailed modeling of the reads in the rejected regions.

REMARK 3. Like the simplified model of ZB proposed in Section 3.1, it is
also possible to develop a simplified model for the “hanging read” statistics, Z+
and Z−. If we assume that there is no variability in the insert lengths, that is, σ = 0,
then for a mapped positive strand read beginning in the interval [s − δ, s − δ + R]
the corresponding negative strand will not map (a) whenever there is a deletion be-
ginning at s or (b) with probability p, even if there is no deletion. Hence, a simple
detection statistic would be obtained by counting the number of reads beginning
in each interval of length R, the other end of which does not map, and claiming a
detection of a deletion at s whenever the sum of positive strand reads that begin
[s − δ, s − δ + R] and negative strand reads that begin [s + δ − R, s + δ] is too
large to be determined by chance. An appropriate modification would serve to de-
tect insertions. Some numerical experimentation suggests that this simplified test is
less powerful than the more detailed likelihood-based procedure described above,
although it might be more robust. Numerical examples are given in Section 5.1.

It is not a priori clear whether one should try to combine the scores SC , SB , S+
and S− into a single statistic, as in �τ , or treat them separately, for example, by a
scan with only ZB to target relatively long intervals and Z+ + Z− to target short
intervals, then use a Bonferroni bound to correct for using two different statistics.
In Section 4.5 we will explore the sensitivity of the various types of scans.

4. Analysis of scan statistic from Section 3.1. We first consider scan statis-
tics derived from (3.4) with kernel (3.6) corresponding to the simple mixture model
in Section 3.1. We will derive their p-value approximations and study their power.
Our p-value approximation approach relies on a measure transformation technique
that shifts the distribution toward the desired alternative within the scan window.
Some details of the method are given in the Supplementary Materials. See Sieg-
mund, Yakir and Zhang (2010), Yakir (2013) and the references cited there for a
more comprehensive illustration of this method and its applications to other prob-
lems.
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In the notation introduced earlier, let

Z(t,w, r) =
∫
y

∫ t

t−δ
g(y;w, r)N(ds, dy).

The log-likelihood is given by [cf. (3.4)]

�(t,w, r) = βZ(t,w, r) − 	δ(t)ψ(β;w, r),

where 	δ(t) = ∫ t
t−δ ρ(s) ds and ψ(β;w, r) = ∫ {exp[βg(y;w, r)] − 1}dF0(y).

The expected value of �(t;w, r) can be expressed as 	δ(t)J (β,w, r), where
J (β,w, r) = [βDβψ − ψ], with Dβ denoting differentiation with respect to β .
The parameter J is the Kullback–Leibler information.

We consider detection statistics of the form

maxZ(t;w, r)(4.1)

and

max�(t;w, r).(4.2)

The maximum can extend over (t,w) or over (t,w, r) in some suitable range. We
assume that t changes by discrete amounts � > 0. We start by considering arbi-
trary fixed values of w and r , and then explore the effect on power by considering
a range of values for w, say [w0,w1]. We also consider maximization over a range
of values of r , but our power calculations show that this maximization does not
give a clear boost in sensitivity.

REMARK 4. The statistic (4.1) is essentially the scan statistic studied by Chan
and Zhang (2007). Chan and Zhang, however, study specific “scoring” functions g

that do not depend on unknown parameters. The rate ρ(t) is also held constant, and
thus under a fixed window size (4.1) is equivalent to (4.2). They do not consider
a general maximum likelihood analysis of alternatives to the null model, and their
calculations are equivalent to using what we have called the formal alternative with
the value β defined by (4.3) below.

4.1. Approximate p-values assuming homogeneity of Poisson rate. Let ρ(t) =
ρ for all t , so 	δ(t) = ρδ is independent of t . Assume β is chosen so that

Eτ

[
�(t;w, r)

] = ρδJ (β;w, r) = x0.(4.3)

Then for large x0 and ρδ, P0{max1≤t≤m �(t;w, r) ≥ x0} ≈

1 − exp
{
−me−x0ρ

[
ξ(β) − ξ(0)

]
(2πρδ)−1/2σ(β)−1

(4.4)

× ν

(
2ρ1/2[ξ(β) − ξ(0)]
[σ 2(β) + σ 2(0)]1/2

)}
,
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where ξ(β) and σ 2(β) are parameters of the local random walk, as explained in
the Supplementary Materials; ν is the function defined in Siegmund (1985) and
given approximately for purposes of numerical evaluation in Siegmund and Yakir
[(2007), page 112]; and where we have for simplicity assumed that F0 is a nonlat-
tice distribution.

REMARK 5. The function ν(y) is always between 0 and 1 and approximately
equals 1 for small values of y > 0. Although using the precise value of ν improves
the quality of the approximation, in what follows we occasionally take ν identically
equal to one. This simplifies some calculations, and numerical experimentation
indicates that it rarely affects the power by more than a few percent.

The approximations when we also maximize over w or over w and r are more
complicated. Consider, for example, the event

R =
{

max
t,w0≤w≤w1

[
�(t;w, r) − xw,r

] ≥ 0
}
.(4.5)

Let J (βw,w, r) = Eτ [�(t;w, r)]/(ρδ), with βw chosen so that ρδJ (β,w, r) =
xw,r . Then P0(R) ≈

1 − exp
{
−mρ

∫ w1

w0

exp(−xw,r)[ξ(βw) − ξ(0)]ν{·}[�(w)]1/2

2π(ρδ)1/2σ(βw)
dw

}
,(4.6)

where the function ν has the same argument as in the preceding approximation,
and where �(w) = Eτ {−D2

w[�(t,w, r) − xw,r ]}.
If one were to also maximize over both w and r , the integral then becomes

two-dimensional, � = �(w, r) is the determinant of the expectation of the nega-
tive Hessian, and there is one more factor of 1/(2π)1/2. A similar result holds if
there are more parameters. It appears that for the examples of this paper there are
significant edge effects when one maximizes over r , so the first order asymptotic
approximation given here may not be adequate, with resulting implications for the
power.

REMARK 6. When we fix the values of the parameters w, r , the statistics
maxt Z(t;w, r) and maxt �(β,w, r) are equivalent in the sense that a suitable
threshold for one is a known linear function of the corresponding threshold for
the other. This is not so if we maximize with respect to w or w, r ; see Table 2 in
Section 5.1.

4.2. Approximation accuracy. We have performed a small Monte Carlo ex-
periment to evaluate the accuracy of (4.4). Results are given in the Supplementary
Materials, where we find that the approximation is slightly conservative but fairly
close to the Monte Carlo value, even when the approximation ν = 1 is used (see
Remark 5).
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It is interesting to compare our approximations to results obtained using the
theory of maxima of Gaussian random fields. Consider, for example, the scenario
m = 2000, ρ = 0.5, δ = 200, w = 2, r = 0.2, σ = 1 (row 8 of Supplementary Ta-
ble 1). Our p-value for x = 5 is 0.056 (using ν = 1) and 0.048 (using computed
value of ν), whereas the Monte Carlo value is 0.044. The approximation in Sieg-
mund and Yakir [(2007), page 112], which is known to be very accurate when the
field is in fact Gaussian, would suggest that the p-value for this scenario is less
than 0.01. The discrepancy becomes larger with larger m, since this pushes the
threshold farther out into the tail of the distribution, where a Gaussian approxima-
tion can be extremely anti-conservative. For example, in the first row of Table 2
in Section 5.1 a 0.05 significance threshold based on the approximations of this
paper would suggest a p-value of 3 × 10−8 if a Gaussian approximation is used. If
we use the 0.05 threshold suggested by Gaussian theory, the actual false positive
rate would be virtually one.

4.3. Nonhomogeneous processes. In the case that the underlying Poisson pro-
cess is nonhomogeneous with intensity ρ(t), the approximations given above ap-
ply with only slight modifications. Consider the case of fixed r . Since the measure
transformation used to derive the approximations decomposes the boundary cross-
ing probability into a sum of m terms, each depending on t , the expressions given
in the exponents in the approximations (4.4) and (4.6) change to a sum of m terms,
instead of a single expression multiplied by m. For the t th term, the definition of
β = βt,w depends on both t and w, since ρδ in the definition of the cumulant gener-
ating function and throughout the approximation is replaced by 	δ(t). In addition,
the factor ρ[ξ(βt,w) − ξ(0)] becomes ρ(t)ξ(βt,w) − ρ(t + δ)ξ(0).

4.4. Piecewise smooth processes. We digress here to consider briefly the
model (2.3) for ChIP-Seq data, where gw is twice continuously differentiable. As-
sume that Zt,w = ∫

gw(t −s) dNs . Let τ = (t,w) and consider P{maxt,w Z(t,w) ≥
x1}, where the max extends over t0 < t < t1 and w0 < w < w1. Then �(t,w) =
βZ(t,w) − ψ(β; t,w), where ψ(β; t,w) = ∫ {exp[βgw(t − s)] − 1}ρ(s) ds,
J (β; t,w) = − ∫ {exp[βgw(t − s)] − 1 − βgw(t − s)}ρ(s) ds, and xw,t = βx1 −
ψ(β; t,w). Putting τ = (t,w) and setting β to satisfy Eτ [Z(t,w)] = x1, we find
that the probability of interest is

≈
∫ t1

t0

∫ w1

w0

exp
[−J (β; t,w)

]
(4.7)

×
[
Eτ {−D2[�(t,w) − xw,t ]}

β2 Varτ �t

]1/2

dw dt/(2π)3/2.

In the case ρ(t) = ρ for all t , the integrand is a constant function of t , except
near the end points, so the integral with respect to t can be simplified to multipli-
cation by t1 − t0. See Siegmund and Worsley (1995) for justification and examples
in the case of Gaussian processes. A version of this approximation is used for the
statistics Z+,Z− for hanging reads, as shown in Section 3.3.
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4.5. Marginal power. The statistics of the preceding section are all of the form
maxτ Yτ . To study their power, suppose P{Yτ ≥ x} is maximized at τ = τ0 un-
der the alternative. It seems reasonable to define the local power of the detection
scheme to

P{Yτ0 ≥ x} + P

{
Yτ0 < x,max

τ
Yτ ≥ x

}
.(4.8)

Since the second term is usually small compared to the first, we define P{Yτ0 ≥ x}
to be the marginal power. In this section we consider again a homogeneous process
and use the marginal power, evaluated by means of a normal approximation, to
compare different scan designs.

In our numerical study we assume that δ = 200, m = 1,000,000, ρ = 0.5 and
maximize over [0.5 < w ≤ 5]. We compare the marginal power of four differ-
ent scans: (1) Z = maxt,w Z(t;w, r0), (2) � = maxt,w �(t;w, r0), where r0 = 0.1,
(3) �2 = maxt,w,r �(t;w, r), where the maximum over r is restricted to the range
0.03 ≤ r ≤ 0.2, and (4)

�(w0,w1;0.1) = max
[
max

t
�(t,w0,0.1)/b0,max

t
�(t,w1,0.1)/b1

]
,

where w0 = 1.0, w1 = 3.5.
We assumed the standard deviation σ of the null insert size distribution F0 is

one. When σ is not 1, a shift of size w in our computations corresponds to an
actual change of size σw.

For all statistics the significance level based on the approximations given above
with ν = 1 is about 0.05. For �(2;0.1), Z and �, we obtained the thresholds 11.4,
11.54 and 12.05, respectively. For �2, the situation is more complicated, since the
tail probability is largest at the largest values of r . Hence, as an overall approxima-
tion for the significance level, we have added, to the approximations involving the
max over w and r0 ≤ r ≤ r1 given above, an edge correction involving max over
w at r1. The edge correction produced the threshold 12.87. For �(w0,w1;0.1)

we used a Bonferroni bound to combine the two statistics, where b0 = 12.34 and
b1 = 11.9 were chosen so that the individual statistics had 0.025 significance level.
The column headed “Opt” gives the power for the statistic maxt �(t;w, r) for the
indicated values of w, r and the 0.05 threshold (which depends on w, r and is omit-
ted). Since this problem is statistically irregular, we do not know whether using
the true parameters to define the log-likelihood ratio actually achieves maximum
power. It does, however, seem a reasonable measure of the power that might be
achieved with complete knowledge of the parameters. The statistic �, which uses
a nominal fixed value r0 = 0.1 and is adaptive with respect to w, does remarkably
well.

From these numbers it appears that when r is not too far from the assumed value,
r0, the statistic Z is slightly more powerful than �, but it can be considerably less
powerful when r is quite different from r0. The statistic �2 seems less powerful
than �, even when the actual value of r is not close to the assumed value r0. It
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TABLE 1
Parameters are ρ = 0.5, r = 0.1, δ = 200, m = 1,000,000; max over w ∈ [0.5,5], r ∈ [0.03,0.3]

r1 w1 “Opt” �(2,0.1) Z(0.1) �(1,3.5;0.1) � �2

0.1 2.5 0.53 0.52 0.52 0.47 0.50 0.45
0.1 3.0 0.82 0.80 0.81 0.80 0.80 0.78
0.1 2.25 0.32 0.32 0.31 0.21 0.29 0.24

0.3 1.4 0.54 0.43 0.38 0.47 0.50 0.46
0.3 2.0 0.96 0.96 0.95 0.95 0.96 0.96

0.5 1.0 0.63 0.31 0.26 0.48 0.59 0.54
0.5 1.5 0.99 0.96 0.95 0.98 0.98 0.98

0.03 4.0 0.55 0.37 0.43 0.46 0.50 0.47
0.03 4.5 0.70 0.51 0.58 0.61 0.66 0.64

0.02 5.0 0.64 0.38 0.48 0.50 0.58 0.55

is possible that the performance of �2 has been adversely affected by our ad hoc
method of controlling the significance level. The statistic �(1,3.5;0.1) is much
simpler than � and seems to be only slightly, but consistently less powerful over
the range of parameters considered here.

The rate parameter ρ of the driving Poisson process is effectively the sample
size, hence an important determinant of the power. Smaller values of ρ lead to
lower significance thresholds but, even so, to less power.

5. Analysis of scan statistics from Section 3.3. We now consider the more
detailed model to detect insertions and deletions proposed in Section 3.3. The log-
likelihood ratio statistic under this model is a sum of the signature-specific scores.
In practice, each score can be used on its own as a scan statistic or the scores can be
summed in various combinations. Our power comparisons below show that the dif-
ferent scores achieve power in different regions of the parameter space. Although
summing them improves power under very special conditions, overall it often re-
sults in a loss of power compared to applying each score individually and then ad-
justing the p-value by the Bonferroni inequality. Hence, we discuss p-value control
only for the individual score ZB

t and the sum of the hanging read scores, Z+ +Z−.
The parameters w, r are set to fixed values in the case of deletions, where, to align
peaks, we maximize over a range of w as discussed above. It would be possible to
maximize these statistics with respect to the unknown parameters w, r , but some
numerical experimentation shows that it is possible—and much simpler—to select
robust values.

Consider first the score ZB for detecting deletions using bracketing pairs. Here,
the parameter τ is the triple (s,w, r). The kernel function corresponding to the
alternative is kτ (z) = log[1 − r + rf (v − u + w)/f (v − u)]I (z ∈ SB

s,w). It will
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be convenient to put g(x) = g(x;w, r) = log[1 − r + rf (x + w)/f (x)], so the
cumulant generating function of ZB

τ is given by

ψτ (β) = (1 − p)

∫
u<s−R

κ(u)

∫
v>s+w

κ(v)f (v − u)

(5.1)
× {

exp
[
βg(v − u)

] − 1
}
dv du,

which for a homogeneous process simplifies to (1 − p)κ2ψ0(β), where

ψ0(β) =
∫ ∞
w+R

(x − w − R)f (x)
{
exp

[
βg(x)

] − 1
}
dx.(5.2)

A similar analysis applies to insertions, in which case w is the negative of the in-
sert size, the range of integration for v in (5.1) changes to v > s, and the range of
integration in (5.2) changes to (R,∞). Given the cumulant generating function,
the false positive rate for a scan using ZB

τ can be obtained along the lines of the re-
sults for the mixture model. In particular, for fixed w, r we have the approximation
(4.4) with δ = 1, since δ is incorporated into the definition of ψ0.

If we model increased dispersion as suggested in (2.4), (5.2) becomes

ψ0(β) =
∫ ∞
w+R

(x − w − R)f (x)
{[

1 + α
(
exp

[
βg(x)

] − 1
)]j − 1

}
dx/jα.(5.3)

For the mean of the local random walk the integral becomes∫ ∞
w+R

g(x)f (x)
{
exp

[
βg(x)

][
1 + α

(
exp

[
βg(x)

] − 1
)](j−1) − 1

}
dx.

Numerical examples for scans using ZB
τ , with R = 36, p = 0.03, δ = 200,

σ = 10, indicate that the statistics behave similarly to those discussed for the toy
mixture model. One distinction worth noting between insertions and deletions in
this model is that while power increases with the length of a deletion, it can de-
crease for insertions when w becomes a substantial fraction of the insert length,
since an insert must span the insertion in the target genome for the read pair to be
informative.

Now consider the scores Z+ and Z−, or their sum, which uses hanging reads for
detection. For example, the kernel function for Z− is kτ (z) = log(1 + 2rp−1(1 −
p){F(s − u) − F(s − R − u)})I (z ∈ S−

s,w). Since these kernels are continuous
and vanish at ±∞, we can use a version of the approximations (4.7), modified as
described in Remark 1.

5.1. Power comparison. We now examine the power of the scans based on the
bracketing pair score ZB and the hanging pair score ZH = Z++Z−. The marginal
power is computed as described in Section 4.5.

The sequencing and library preparation parameters that influence power are the
length of the read, R, the mean δ and standard deviation σ of the insert length dis-
tribution, and the sequencing coverage (that is, the average value of Rκ2). Power of
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the hanging reads score also depends heavily on the value of p, the probability of a
mapping error leading to a hanging read under the null hypothesis. Together, these
parameters determine the null distribution. Table 2 in the Supplementary Materi-
als shows the value of R and the estimated values of δ, σ and p for a few typical
publicly available data sets. Earlier sequencing data sets had read length 36; the
read length is now 100 and expected to increase further. Insert sizes usually range
between 200 and 1000. Increased insert lengths come at a cost of an increased
standard deviation, and thus the overall effect on the power of the trend toward
longer inserts is not so clear. The rate of hanging reads also varies widely between
data sets, and is usually between 0.001 and 0.05. We will analyze power under two
settings that we found in the empirical data: R = 36, p = 0.03, δ = 200, σ = 10
and R = 100, p = 0.033, δ = 220, σ = 63. We also consider a few examples with
longer insert lengths and smaller p.

Although the values of R, p, δ and σ more or less fall within standard ranges,
depth of coverage can vary widely across studies, depending on the goals of the
experiment. “Low-coverage” usually refers to cases where each genomic position
is covered by an average of 10 reads or less, and “high coverage” to cases where
each genomic position is covered by an average of 40 reads or more. In some stud-
ies, for example, in the sequencing of virus populations, extremely high coverage
in the hundreds or thousands is desired. These are so-called “deep sequencing”
experiments, where the mutations of interest are sometimes present at very low
frequencies (r < 1%) in the sample.

We will examine two scenarios for coverage. For the first, κ2 = 0.27, which
represents coverage of ∼ 30× when read length is 100 bases. This scenario is a
common setting in current sequencing experiments. For the second, κ2 = 5 and we
study only the R = 100 setting, which represents deep sequencing with an average
coverage of 500. The latter setting is common in the sequencing of bacterial and
viral genomes, as well as in targeted sequencing experiments. In both cases, we let
m = 1,000,000. Larger values of m are likely to occur in practice, but do not seem
to yield additional insights.

We found through simulations and numerical studies that, as for the toy mixture
model, the power of the scores is not particularly sensitive to the assumed values
of r and w used to define the scores. Thus, for simplicity, we set w = 30 base pairs
in ZH for insertion, and |w| = 30 base pairs for ZB . The assumed value of r is set
to 0.1 in all statistics.

For the most part, power increases with the true size of the signal (w) and its
true frequency in the sample (r), both of which are properties of the alternative
distribution. These are chosen so that at least one of ZB and ZH has moderate
power. We expect to find that ZH has relatively more power than ZB to detect
short variants, and relatively less to detect longer variants.

Consider first the case of insertions under moderate coverage (κ2 = 0.27).
Marginal power for varying values of (r,w) is given in Table 2. Observe that when
R = 36, ZB has better power than ZH when the insertion is large, provided that it
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TABLE 2
Marginal power: insertions

R, δ,σ ,p r w Hanging reads Bracketing pairs

36, 200, 10, 0.03 0.5 10 0.94 0.00
36, 200, 10, 0.03 0.5 20 0.98 0.74
36, 200, 10, 0.03 0.5 100 1.00 1.00
36, 200, 10, 0.03 0.2 50 0.66 0.71
36, 200, 10, 0.03 0.1 100 0.11 0.80
36, 200, 10, 0.03 0.1 150 0.11 0.51
100, 220, 63, 0.033 0.5 10 1.00 0.00
100, 220, 63, 0.033 0.5 100 1.00 0.00
100, 220, 63, 0.033 0.1 100 0.46 0.00
100, 220, 63, 0.033 0.1 200 0.91 0.00
100, 220, 63, 0.01 0.1 200 0.79 0.00
100, 220, 63, 0.033 0.2 10 0.70 0.00
100, 220, 63, 0.01 0.2 10 0.94 0.00
100, 220, 63, 0.033 0.2 100 0.97 0.00
100, 400, 63, 0.033 0.5 100 1.00 0.72
100, 400, 63, 0.033 0.3 200 1.00 0.21

is still substantially smaller than the value of δ. The statistic ZH has better power
than ZB to detect short insertions at high frequency. When R = 100, ZB has no
power in the situations studied here, except for the case where the mean insert
length was 400.

Table 3 shows the power for detecting deletions of varying (r,w) when coverage
is moderate. The power of ZB for deletions increases monotonically with the size
of the deletion. In comparison to ZH , ZB has better power when deletion size is
large and when r is small. As in the case of insertions, ZH has better power for
longer reads, and it is preferable to ZB when the true value of r is large. The power
of ZH does not depend on the size of the deleted region. Note that the larger value
of σ that appears to be a concomitant of the larger values of R and δ can lead to a
loss of power for ZB .

We can also consider the effect on the significance threshold of the model of
excess variability. Assume that each fragment is produced in a binomial number of
copies, conditioned to be at least one, with parameters j,α. For example, let j = 5
and α = 0.03, which leads to a roughly 15% increase in the null variance of the
statistics. For the bracketing pair statistic, the true false positive rate would increase
from 0.05 to about 0.25; and it would be about the same for the hanging read
statistic. Hence, a small amount of excess variability, if not properly accounted
for, can lead to a substantial increase in the false positive errors.

Finally, we consider the case of detecting low-frequency mutations using deep
sequencing (R = 100, δ = 400, σ = 63, p = 0.033, κ2 = 5). We consider only
deletions and examine the setting where the length of the deletion is large and the
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TABLE 3
Marginal power: detecting deletions with κ2 = 0.27, m = 106

R, δ, σ , p r w Hanging reads Bracketing pairs

36, 200, 10, 0.03 0.5 10 0.71 0.00
36, 200, 10, 0.03 0.5 20 0.71 0.84
36, 200, 10, 0.03 0.5 100 0.71 1.00
36, 200, 10, 0.03 0.1 100 0.00 0.99
36, 200, 10, 0.03 0.1 150 0.00 0.99
36, 200, 10, 0.03 0.05 150 0.00 0.96
36, 200, 10, 0.03 0.01 150 0.00 0.64
36, 200, 10, 0.03 0.01 250 0.00 0.75
100, 220, 63, 0.033 0.5 10 0.99 0.00
100, 220, 63, 0.033 0.3 10 0.80 0.00
100, 220, 63, 0.033 0.3 100 0.80 0.40
100, 220, 63, 0.033 0.3 150 0.80 0.95
100, 220, 63, 0.033 0.2 150 0.36 0.75
100, 400, 63, 0.033 0.2 100 0.36 0.35
100, 400, 63, 0.01 0.2 100 0.81 0.36
100, 400, 63, 0.01 0.2 150 0.81 0.94

frequency is small. Table 4 shows the marginal power for varying (r,w). Compared
to Table 3, we see that ZB is more competitive against ZH in the high depth, low
r , large w scenario.

6. Structural variant detection.

6.1. Comparisons to mainstream algorithms on spike-in data. Simulated and
real data sets were prepared to evaluate the effectiveness of the likelihood-based
approach to structural variant detection described in Section 3.3. The simulation
imitates a real sequencing experiment by taking a one megabase region of the hu-
man reference genome hg19, adding deletions and insertions in silico, fragmenting

TABLE 4
Marginal power: detecting deletions with R = 100,

δ = 400, σ = 63, p = 0.033, κ2 = 5

r w Hanging reads Bracketing pairs

0.10 5 1.00 0.00
0.07 50 0.99 0.02
0.07 100 0.99 0.96
0.05 150 0.80 1.00
0.02 200 0.02 0.93
0.01 250 0.00 0.71
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the resulting sequence and mapping the fragment ends back to hg19 (more details
in the supplement). This way, the type, position, length and mixture proportion of
the variants can be controlled. On the spike-in data set, the accuracy of a given
algorithm can be measured by precision and sensitivity, defined as

Precision = #True Positives

# Positives
×100%; Sensitivity = # True Positives

#True
×100%.

Precision is the true discovery rate, with the positive and true positive counts con-
strained to signals of a certain type and size. For each program and each type of
signal, we also computed the combined accuracy, which is the harmonic mean
of precision and sensitivity. Our likelihood-based approach, as implemented un-
der the default setting in the software SWAN, is compared to four existing algo-
rithms: BreakDancer [Chen et al. (2009)], CNVnator [Abyzov et al. (2011)], Delly
[Rausch et al. (2012)] and Pindel [Ye et al. (2009)]. Among the many existing al-
gorithms for calling structural variants, these four algorithms were shown by the
1000 Genomes Project [The Genomes Project Consortium (2015)] to be competi-
tive and have become mainstream.

First, we compared the accuracy of SWAN to existing approaches for detecting
homozygous variants. As shown in the left panel of Figure 5, SWAN is the only
program capable of detecting medium to large insertions (100 bp to 10 kbp), while
also maintaining high precision and sensitivity for small insertions and deletions
of all sizes. BreakDancer can find medium to large deletions, but breaks down
for small deletions. CNVnator is sensitive for large deletions, as expected since
it relies only on changes in coverage. Delly uses both hanging reads and insert
size, which allows it to detect deletions as small as 50 bp, although its accuracy is
low for small deletions. Finally, we found Pindel to be more accurate than the other
existing methods, as reported by the authors [Ye et al. (2009)]. Like SWAN, Pindel
can detect different size deletions while also capturing some very small insertions
with size around half of the read length. However, unlike SWAN, Pindel has no
power for medium to large insertions (size > read length). We attribute the wide
spectrum accuracy of SWAN to the fact that it combines multiple signature-specific
scores. When one signal is missing or weak, SWAN relies on other signals.

Next, we examined the performance of SWAN when only a half or a quarter of
the DNA in the sample contains a mutation. The half (50%) setting corresponds to
the heterozygous case in diploid samples, while the quarter (25%) setting corre-
sponds to more difficult cases such as tumor samples where the variant is a somatic
mutation present in only a sub-clone of cells. The results are summarized in the
right panel of Figure 5. For most of the tested variant types, including all sizes
of insertions and medium to large deletions, SWAN maintains >90% in accuracy,
precision and sensitivity. This accuracy holds for both half and quarter mixtures.
For small deletions (100 bp, roughly 3 times the insert size standard deviation),
we see a drop in the sensitivity of SWAN to approximately 50% for the quarter
mixture. For very small deletions (50 bp), we see a drop in sensitivity for the 50%
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FIG. 5. The plots on the left show the F-1 accuracy, precision and sensitivity of five programs
(BD = Breakdancer, CN = CNVnator, DL = Delly, PD = Pindel and SW = SWAN) on spike-in data.
The variant size is coded as negative for insertions and positive for deletions. The plots on the right
show the F-1 accuracy, precision and sensitivity of SWAN for variants at varying purity levels.

mixture and an additional drop at the 25% setting. Therefore, in this low-noise
setting, SWAN is sensitive for all except very small deletions.

6.2. Analysis of platinum genomes trio data. We also analyzed a family trio
comprised of NA12877 (father), NA12878 (mother) and NA12882 (son) that was
sequenced as part of the Platinum Genomes project at Illumina [Eberle et al.
(2014)] on the HiSeq 2000 system. The BAM files were download from the
EMBL-EBI website with study accession PRJEB3381 and sample accessions
ERS189473, ERS189474 and ERS189490. These data, whose summary statistics
are described in Table 2 of the Supplementary Materials, are of very high quality
by most sequencing metrics. The insert size distributions of the three samples are
unimodal and normal shaped. For simplicity we restrict our analysis to the insert
size score.

Since the majority of our insertion/deletion discoveries are less than one
kb while existing validated structural variants are mainly of larger sizes [The
Genomes Project Consortium (2015)], we will use the familial relationship in the
trio data to assess the accuracy of SWAN detections. In total, SWAN reported 8874
events comprised of 8813 deletions and 61 insertions in the son (NA12882), 9235
events comprised of 9150 deletions and 85 insertions in the father (NA12877)
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FIG. 6. The total and overlapping number of detections made by SWAN on the samples NA12877,
NA12878 and NA12882. NA12877 and NA12878 are parents to NA12882.

and 8939 events comprised of 8859 deletions and 80 insertions in the mother
(NA12878); see Figure 6. Among the deletions, the frequency of deletions dimin-
ishes rapidly as the length increases; see Figure 1 in the Supplementary Materials.
While the size distribution of structural variants (SVs) is not well characterized for
smaller deletions and insertions, results from Chaisson et al. (2015) show a sim-
ilar rapid decrease (for events >1 kb). Our findings support their claim and also
imply that an exponential rate of decrease remains true for smaller deletions. This
observation agrees with Li et al. (2011), where the authors used de novo assem-
bly to find small SVs and reported an exponential rate of decrease for SVs less
than 1 kb in length. Results from the 1000 Genome Project [The Genomes Project
Consortium (2015)] have a similar exponential trend in deletion size.

Another interesting aspect is the sharing of SV events between different pairs of
the trio. As shown in the Venn Diagram of Figure 6, 57% and 55.4% of the 8874
events detected in the child overlap with those made in the mother and the father,
respectively. (The Illumina provided VCF files show overlapping SNP calls are
77% and 78% for the same data.) In total, 77% of the detections in the child have
overlap in one or both parents. In contrast, of the detections made in the mother,
about 49% overlap with those made in the father, and of the detections made in the
father, 48% overlap with calls made in the mother. From familial overlap analysis,
it is impossible to estimate sensitivity and specificity, since a SWAN call in the
child which is not shared in the parents may be a false positive in the child, a false
negative in one or both parents, or a true de novo SV in the child. Nevertheless,
the fact that we have a significantly higher overlap between the child and at least
one parent, compared to the overlap between parents, lends some support for our
results.
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7. Summary and discussion. We studied scan statistics for Poisson-type
data, with emphasis on several statistics that are useful for detecting local ge-
nomic signals in next-generation sequencing experiments, in particular, for struc-
tural variant detection by paired-end whole genome sequencing. Despite their dif-
ferent formulations, analytic significance approximations for these statistics can be
obtained through a general framework that involves embedding the statistics into
an exponential family (3.3) and applying the measure transformation technique
described in Siegmund, Yakir and Zhang (2011); see also Yakir (2013).

We analyzed in detail a mixture model which may be viewed as a simplified
version of the model for bracketing read pairs (3.10) but may also be of broader
interest. We developed approximations for the significance level and power which
reveal a complex picture regarding the dependence of power on the choice of scan-
ning parameter(s), the assumed homogeneity of the process and the values of nui-
sance parameters. The key observations are summarized in Section 4.5.

For structural variant detection using paired-end sequencing, we formulated a
model that incorporates three different features of the data: Read coverage, mapped
insert length and hanging read pairs. While the bracketing pairs statistics have
increasing power to detect longer deletions, their power to detect insertions first
increases, then decreases with the length of the insertion. The power of the hanging
read statistics to detect deletions does not depend on the length of the deletion,
while their power to detect insertions increases with the length of the insertion and
approaches an asymptote typically less than one.

In the empirical data that we have examined, fragments with larger mean in-
sert lengths also have substantially larger standard deviations. Also, such libraries
tend to exhibit skewness and sometimes even multimodality. A consequence of the
contemporary move to increase read and insert length is that, relatively speaking,
the hanging read statistics gain power, but the bracketing pairs statistics can lose
substantial power.

Our analyses in Section 5 assume constant, known read coverage κ , although
read coverage fluctuates along the genome. If we allow κ to vary, the thresh-
olds would change with genomic position. A compromise might be to segment
the genome into blocks of approximately homogeneous read coverage, then scan
each block separately. The global p-value would then be computed from the sum
of the block-wise p-values. In implementing this approach, one may want to ignore
regions of low coverage, since a substantial amount of power is inevitably lost in
those regions and cannot be recovered by adjustment of the significance threshold.
It is also straightforward to adapt our threshold analysis to the case where the re-
gional read coverage is estimated, but, unless the region is very short (on the order
of a few hundreds of base pairs), accounting for variability in the estimate of the
background rate has negligible impact.

An open question is whether or how different statistics should be combined to
improve detection accuracy. We found in our power analysis that summing the
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scores, as in the log-likelihood, is rarely better than applying each score individ-
ually. The reason is that for most alternative settings there is one score that is
substantially more powerful than the others, and incorporating the others by sim-
ple addition contributes mainly noise. Thus, it appears to be better to apply each
score individually and then combine detections using a Bonferroni correction.

While we have been focusing mainly on control of the family-wise error rate,
in genomic studies the false discovery rate (FDR) is often an appealing mode of
multiple testing control. The boundary crossing probabilities can be converted into
the expected number of false discoveries under the null and used for FDR control
as described in Siegmund, Zhang and Yakir (2011).
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SUPPLEMENTARY MATERIAL

Supplement to “Scan statistics on Poisson random fields with applica-
tions in genomics” (DOI: 10.1214/15-AOAS892SUPP; .pdf). Detailed comments
on complex structural variants, moment calculations, expectation and covariance
structure of the local field, details of p-value calculations and Monte Carlo accu-
racy evaluations of Section 4.2. Also contains details of spike-in experiment and
summaries of real sequencing data sets.
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