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Heat waves merit careful study because they inflict severe economic and
societal damage. We use an intuitive, informal working definition of a heat
wave—a persistent event in the tail of the temperature distribution—to moti-
vate an interpretable latent state extreme value model. A latent variable with
dependence in time indicates membership in the heat wave state. The strength
of the temporal dependence of the latent variable controls the frequency and
persistence of heat waves. Within each heat wave, temperatures are modeled
using extreme value distributions, with extremal dependence across time ac-
complished through an extreme value Markov model. One important virtue
of interpretability is that model parameters directly translate into quantities
of interest for risk management, so that questions like whether heat waves
are becoming longer, more severe or more frequent are easily answered by
querying an appropriate fitted model. We demonstrate the latent state model
on two recent, calamitous, examples: the European heat wave of 2003 and the
Russian heat wave of 2010.

1. Introduction. When widespread heat waves occur, they dominate news re-
ports and inspire passionate discussions about climate change and public policy.
The European heat wave of 2003 was estimated to have caused up to an estimated
70,000 additional deaths [Robine et al. (2008)] and cost the 2011 equivalent of
$16 billion [Munich Re (2003), Parry et al. (2007)]. The Russian heat wave of
2010 was responsible for an estimated 55,000 excess deaths, a 25% reduction in
agriculture and $15 billion in economic loss [Barriopedro et al. (2011)]. Perhaps
because of their high public visibility and disastrous public health and economic
consequences, heat waves are the subject of a great deal of scientific research [e.g.,
Amengual et al. (2014), Clark, Brown and Murphy (2006), Easterling et al. (2000),
Fischer and Schär (2010), Frich et al. (2002), Hanlon, Morak and Hegerl (2013),
Huth, Kyselỳ and Pokorná (2000), Meehl and Tebaldi (2004), Otto et al. (2012),
Schär et al. (2004)]. Here we build a model, based on an informal notion of what
a heat wave is, that may be used for studying such events. Our chief objective for
building such a model is for it to be highly interpretable while still realistically
characterizing the upper tail of the temperature distribution.
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We are aware of very few studies that have applied extreme value theory to
the analysis of heat waves. Furrer et al. (2010) applied a conditional points over
threshold model to daily temperatures to make inferences about the frequency,
intensity and duration of heat waves. A more recent example is Reich, Shaby and
Cooley (2014), who modeled serially dependent points above a high threshold
using a transformed max-stable process. In addition to their temporal structure,
heat waves have potentially important spatial features, which neither these works
nor ours attempt to analyze.

Part of the difficulty in analyzing heat waves might be that there is little agree-
ment on exactly what a heat wave is [Huth, Kyselỳ and Pokorná (2000), Karl and
Knight (1997), Khaliq et al. (2005), Palecki, Changnon and Kunkel (2001)]. For
example, Huth, Kyselỳ and Pokorná (2000) defined a heat wave as “the longest
continuous period (i) during which the maximum daily temperature was at least T1
in at least three days, (ii) whose mean maximum daily temperature was at least T1,
and (iii) during which the maximum daily temperature did not drop below T2” for
some specified temperatures T1 and T2 [this definition was also used by Meehl
and Tebaldi (2004) and Peng et al. (2011)]. Reich, Shaby and Cooley (2014) de-
fined a heat wave as a run of consecutive days above some threshold. Furrer et al.
(2010) avoided explicit definitions by pairing their statistical model with a stochas-
tic weather generator, producing draws from which the characteristics of any de-
sired definition of a heat wave can be inferred [the model in Reich, Shaby and
Cooley (2014) also has this potential]. Our model uses an implicit definition of a
heat wave according to membership in a latent state. Once it is fit using MCMC,
it can then function as a weather generator, so it is capable of accommodating any
definition of a heat wave that is germane to a given application.

We use a Bayesian hierarchical model with latent state variables that control
whether the temperature for each day is assigned the heat wave state or the nonheat
wave state. Temporal dependence in the latent state variables is modeled through
a simple two-state Markov chain, with one parameter in the transition matrix con-
trolling the frequency of heat waves and the other controlling the persistence of
heat waves. For each day, the posterior probability of the state variable represents
the degree of confidence with which it is classified as being part of a heat wave.

By employing two states, our model allows the temporal dependence of tem-
peratures that occur in the heat wave state to differ from the dependence structure
when temperatures are behaving “typically.” The heat wave state is modeled with
a Markovian extreme-value threshold-exceedance model that allows temperatures
to exhibit extremal (asymptotic) dependence [Coles (2001), Section 8.4], thereby
capturing the persistence of heat waves. The nonheat wave state is modeled with
Gaussian dependence structure. Importantly, Gaussian dependence cannot exhibit
extremal dependence [Sibuya (1959)]. A Markov model similar to our within-heat-
wave component was used by Smith, Tawn and Coles (1997), who studied daily
minimum temperature exceedances in Wooster, Ohio. However, whereas Smith,
Tawn and Coles (1997) fixed a high threshold and fit the Markov model to the
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exceedances, treating all other observations as censored, here we assign the ex-
treme value Markov model to those temperatures that are in the heat wave state,
and membership in the state is estimated from the data.

2. A Markov-switching model for threshold exceedances. We begin build-
ing our model by informally defining a heat wave as a period of persistent ex-
tremely high temperatures. This simple notion leads naturally to a model with two
states, one representing days that are part of a heat wave and one representing all
other days. Persistence implies positive temporal dependence in the state variables,
and extremeness implies temperatures that lie in the upper tail of the distribution.
Because our primary focus is the behavior of the upper tail, it is important to ap-
propriately capture tail dependence, and we rely on models suggested by extreme
value theory to do so. We seek a parsimonious model that represents both persis-
tence and extremeness in the most interpretable way possible, while still providing
a realistic fit to the data.

To define the latent two-state model, let S1, . . . , ST ∈ {0,1} denote the state of
the temperature process on each day. The state variable St takes a value of 1 if day t

is in the heat wave state, and a value of 0 otherwise. The state variables S1, . . . , ST

are dependent in time according to a Markov chain structure with transition matrix

A =
[

1 − a0 a0
1 − a1 a1

]
.

The parameter a0 = P(St = 1|St−1 = 0) determines the probability of entering a
heat wave, and the parameter a1 = P(St = 1|St−1 = 1) determines the probability
of remaining in a heat wave.

Let the time series Y = (Y1, . . . , YT )T denote the observed temperature on days
1, . . . , T . The distribution of each Yt will depend on whether or not the corre-
sponding St positively indicates membership in the heat wave state. Furthermore,
because daily temperature data exhibits strong temporal dependence, we specify
a dependence structure for Y, even conditional on S. Perhaps the simplest way to
model temporal dependence in Y is through a Markov process.

Since we are assuming a Markov structure for Y|S, the likelihood of Y|S may
be written as the product of conditional densities

L(y|s) = f (y1|s1)

T∏
t=2

f (yt |yt−1, st , st−1; θ),

where y = (y1, . . . , yT )T is the vector of observed temperatures and θ is a vec-
tor of parameters that indexes the set of conditional distributions. Therefore, the
conditional likelihood of Y|S may be completely specified by four families of con-
ditional distributions Yt |Yt−1, St = i, St−1 = j for i, j ∈ {0,1}. This type of model,
depicted graphically in Figure 1, is sometimes referred to as a Markov-switching
model [Frühwirth-Schnatter (2006)]. Markov-switching models resemble hidden
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FIG. 1. Graphical representation of the heat wave model. The state variables S1, . . . , ST are mod-
eled as a two-state Markov chain. The distribution of each Yt depends on its corresponding state
variable St , for t = 1, . . . , T . Finally, conditionally on S1, . . . , ST , the observations Y1, . . . , YT are
also modeled as a Markov process. This structure is sometimes referred to as a Markov-switch-
ing model. In a hidden Markov model, there are no arrows directly connecting the observations
Y1, . . . , YT .

Markov models, the latter differing in that Y1, . . . , YT are conditionally indepen-
dent given S1, . . . , ST .

Conditioning on the state variables to separate the likelihood into two main
components, one arising from the heat wave state and one arising from the nonheat
wave state, endows each component with an immediate interpretation: a dedicated
tail model for the heat wave state and a model for the bulk of the distribution for
the nonheat wave state. Building a separate model for the tail of the distribution
is common practice in extreme value analysis. The key concern is that any dis-
tributional assumptions designed to fit the bulk of the distribution well may be
insufficiently flexible to accommodate the behavior of the tail, and attempts to fit
the entire distribution, including the tail, nonparametrically are frustrated by the
dearth of data in the tail. A related consideration when assuming the entire dis-
tribution comes from a single parametric model is that any fitting procedure will
encourage fidelity to the main part of the distribution at the expense of the tail for
the simple reason that, by definition, there is much more data in the bulk than in
the tail. This is especially undesirable when one is primarily interested in learning
about the tail, as we are here. The state variables provide a convenient construct
for building separate models for the tail and the main part of the distribution into
the likelihood.

We now turn our attention to the conditional likelihoods f (yt |yt−1, st , st−1; θ).
In the heat wave state, we assume that the temperature is in the far right tail of
the distribution. Extreme value theory says that the marginal distribution of values
in the upper tail is well approximated by a generalized Pareto distribution (GPD)
[Coles (2001)], which has survivor function

P(Y > y|Y > u) =
(

1 + ξ

σ
(y − u)

)−1/ξ

+
,

where u is a high threshold, σ is a scale parameter, and ξ is a shape parameter
that controls the thickness of the tail. Thus, conditionally on St = 1, we want Yt
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to follow a GPD. Furthermore, we want consecutive observations Yt−1 and Yt ,
given St−1 = 1 and St = 1 (i.e., given both are in the heat wave state), to exhibit
extremal dependence because it is clearly seen in the data (see Figures 4, 5). Ex-
tremal dependence between Yt−1 and Yt exists if there is positive probability that
both observations lie in the asymptotic tail of their bivariate distribution, that is, if
limc→∞ P(Yt > c|Yt−1 > c) > 0 for Yt−1 and Yt having the same marginal distri-
bution.

To build the conditional likelihoods for the case where both Yt−1 and Yt are in
the heat wave state, f (yt |yt−1, st = 1, st−1 = 1; θ), with the desired extreme value
properties, we follow Smith, Tawn and Coles (1997) and construct

f (yt |yt−1, st−1 = 1, st = 1; θ) = f (yt−1, yt |st−1 = 1, st = 1; θ)

f (yt−1|st−1 = 1; θ)
,(1)

where the joint density f (yt−1, yt |st−1 = 1, st = 1; θ) is a parametric family with
GPD margins and extremal dependence, and f (yt−1|st−1 = 1; θ) is the density
of the GPD. This definition affords some flexibility in that any valid joint density
with GPD margins and extremal dependence may be used, and several choices
for bivariate parametric families are known [Coles (2001), Chapter 8]. Here, we
choose the simplest such family, the logistic family with parameter α ∈ (0,1].
The bivariate logistic model may be defined through its cumulative distribution
function (CDF),

G(zt−1, zt ) = exp
{−(

z
−1/α
t−1 + z

−1/α
t

)α}
,(2)

where zt−1 and zt are derived from yt−1 and yt by applying the transformation
from GPD to unit Fréchet, z = − log(FGPD(y))−1, where FGPD denotes the CDF
of the GPD. The bivariate likelihoods f (yt−1, yt |st−1 = 1, st = 1; θ) are obtained
by differentiating (2) with respect to yt−1 and yt . For the logistic model, smaller
values of α indicate stronger dependence, with α → 0 representing complete de-
pendence and α = 1 representing complete independence.

The next case that we consider is when St−1 = St = 0, indicating that times t −1
and t are both members of the nonheat wave state. This case is modeled simply
as an AR(1) process with mean μ, variance σ 2

N and autocorrelation parameter φ ∈
(0,1) (negative autocorrelation is physically implausible). That is, the conditional
densities for days outside of heat waves are modeled directly as

f (yt |yt−1, st = 0, st−1 = 0) = N
(
μ + φ(yt−1 − μ),σ 2

N

)
,

where, unlike in the case of the logistic family, larger values of the dependence
parameter φ indicate stronger dependence. The Gaussian AR(1) process is appro-
priate for the bulk of the temperature distribution (see Figures 2, 3), but, unlike the
logistic Markov process defined by (1) and (2), the AR(1) process is asymptoti-
cally independent and therefore inadequate as a model for the tail behavior. More
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elaborate models for the bulk of the temperature distribution are possible, but be-
cause our focus is on the tail, we use the simplest available structure that seems to
fit the data, the Gaussian AR(1).

Finally, we must specify the heterogeneous cases {St−1 = 0, St = 1} and
{St−1 = 1, St = 0}. These represent the transitions into and out of heat waves. The
approach we take here is again similar to that of Smith, Tawn and Coles (1997) in
that we define the conditional densities through corresponding bivariate densities
as in (1), which again have logistic dependence defined through (2). The differ-
ence from the {St−1 = St = 1} case is that here one of the marginal distributions
is Gaussian rather than GPD. This necessitates two modifications. The first is that
for {St−1 = 0, St = 1} (the transition into a heat wave), the density in the denomi-
nator of (1) is normal. The second is that in both heterogeneous cases, one of the
z variables in (2) is the result of a transformation from normal to unit Fréchet,
z = − log(�[(y − μ)/σN ])−1, rather than both being the result of the transforma-
tion from GPD to unit Fréchet. Here, we use a single dependence parameter α01 to
characterize the temporal dependence between the first day of a heat wave and the
day before, and between the last day of a heat wave and the day after.

Explicit formulas for the bivariate likelihoods for the days corresponding to
transitions into and out of heat waves, that is, for yt−1, yt |st−1 = 0, st = 1 and
yt−1, yt |st−1 = 1, st = 0, are constructed as follows. First, transform both margins
to U(0,1) by taking, for j = t − 1, t ,

uj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

(
yj − μ

σ 2
N

)
, when sj = 0,

1 −
[
1 + ξ(yj − u)

σ

]−1/ξ

, when sj = 1,

where �(·) is the standard normal CDF. Next, transform both margins to unit
Fréchet using zj = − log(uj )

−1, for j = t − 1, t . The bivariate likelihood is then

f (yt−1, yt |st−1, st ; θ) = Kt−1Kt(Vt−1Vt − Vt−1,t )e
V ,

where V = (z
−1/α01
t−1 + z

−1/α01
t )α01 , Vt−1,t = (1 − 1/α01)(zt−1zt )

−1/α01−1V 1−2/α01

and, for j = t − 1, t , Vj = z
−1/α01−1
j V 1−1/α01 and

Kj =

⎧⎪⎪⎨
⎪⎪⎩

ϕ

(
yj − μ

σ 2
N

)
z2
j exp(1/zj ), when sj = 0,

σ−1u
1+ξ
j z2

j exp(1/zj ), when sj = 1,

where ϕ(·) is the standard normal probability density function (p.d.f.).
The bivariate likelihoods for days within heat waves, that is, for yt−1, yt |st−1 =

1, st = 1, are exactly the same, only the dependence parameter α is substituted for
α01.
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Most of the model parameters have direct physical interpretations, so posterior
inference on them immediately tells us something about the nature of the observed
heat waves. First and foremost, the state variables S1, . . . , SN indicate whether or
not each day is classified as being in a heat wave. By looking at the posterior state
probabilities for each day, we can easily retrospectively identify when and for how
long heat waves occurred, according to the model. The Markov transition proba-
bility a0 represents the propensity of the system to enter into heat waves, and a1
represents the propensity of heat waves to persist once they get started. Hence,
together a0 and a1 describe the expected number and duration of heat waves. The
GPD parameters u,σ and ξ characterize the severity of the heat waves, with u

representing the minimum temperature needed to attain heat wave status. The de-
pendence parameters α, α01 and φ together control the strength of the temporal
dependence in the temperature series. Finally, μ and σ 2

N describe the marginal
behavior of the temperature on days that are not in heat waves.

An interesting feature of the model is that short-lived extremely high tempera-
tures are not necessarily classified as heat waves. The Markov chain structure of
the state variables encourages the model to consider duration in its classification
criteria, so single very hot days, for example, will tend to have low posterior prob-
ability of being in the heat wave state. This phenomenon is illustrated in the results
of the case study found in the next section.

3. Case studies. As case studies, we select temperature time series from Paris
and Moscow, which both recently suffered through high-profile heat waves. To
simplify the analysis, we extract daily maximum temperatures from the sum-
mer months (JJA) from the years 1990–2011 (92 days per year over 22 years),
a time period that is short enough that a stationarity assumption is plausible. Tem-
perature data is available through the European Climate Assessment Database
(http://eca.knmi.nl/). For the time period under consideration, the Paris time se-
ries is complete, and the Moscow time series contains just two missing values.
To remove seasonal effects in the JJA data, we de-seasonalize using the following
procedure. First, we fit a penalized spline to the JJA temperatures, using absolute
error, rather than squared error, as a loss function (using the qsreg function in
the R package fields [Nychka, Furrer and Sain (2014)], with the smoothing pa-
rameter chosen by the default generalized cross-validation criterion). In this way,
we do not allow the magnitude of the extremes to unduly influence the calculation
of the climatological average. Next, we subtract the fitted spline function from the
raw data. Finally, to aid interpretation, we add back the (constant in time) overall
median temperature so that the magnitude remains on the same scale as the original
data, but without the seasonal cycle. Even after removing the seasonally-varying
median in this way, it is possible that some seasonality remains, for example, a
seasonally-varying variance, although we find no evidence of this. With the (first-
order) seasonal cycle removed, now assume that all model parameters are constant
in time.

http://eca.knmi.nl/
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FIG. 2. JJA temperatures yt (i.e., at day t) plotted against the temperature of the previous day, yt−1
(in ◦C). Paris is shown in the left panel, Moscow on the right panel. There is strong autocorrelation
in both cases.

3.1. Exploratory analysis. To check the validity of the model, we run a variety
of diagnostics. Since most of the data does not lie in heat waves, the AR(1) por-
tion of the model is the easiest to check. A scatterplot of yt−1 vs. yt is shown
in Figure 2, which indicates strong autocorrelation at lag 1 in both Paris and
Moscow.

Next, we plot empirical partial autocorrelation functions for each city in Fig-
ure 3. In both cities, we see a large value at lag 1, quickly decaying to near zero by
lag 2. This pattern is consistent with an AR(1) model. To further check the validity
of the AR(1) assumption, we fit AR(p) models to each year of data separately and
choose p using AIC. In the majority of years, AIC chooses p = 1. We conclude
that the simple structure we have specified for the nonheat wave days is adequate.

To check for extremal dependence, we again look at a scatterplot of yt against
yt−1, but this time we first transform the data to the Fréchet scale using a rank
transformation (Figure 4). If asymptotic dependence were not present, Figure 4
would show points lining up along the yt−1- and yt -axes. What we see instead is
that points lie in the interior of the plot, a pattern that indicates asymptotic depen-
dence [Coles (2001)].

As an additional check for extremal dependence, we examine estimates of the
quantity χ = limu→∞ χ(u), where χ(u) = P {Yt > u|Yt−1 > u} [Coles, Heffernan
and Tawn (1999)], for the two cities. A value of χ = 0 indicates asymptotic inde-
pendence, while any 0 < χ < 1 indicates asymptotic dependence. In practice, we
estimate χ(u) for many values of u and examine its behavior as u gets large. Plots
of χ̂ (u) are shown in Figure 5, with the x-axis transformed to the quantile scale for
clarity. In both cases, the curves remain comfortably away from zero, except at the
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FIG. 3. Partial autocorrelation functions for the temperature data. Paris is shown in the left panel,
Moscow on the right panel. The large value at lag 1 and the small values at all other lags are
consistent with the AR(1) assumption. Values between the dashed lines are not significantly different
from zero at α = 0.05.

far right-hand edge of the Moscow plot where there is almost no data, again sug-
gesting that asymptotic dependence is present in the data at lag 1. (For additional
exploratory analysis, see the Supplemental Materials [Shaby et al. (2015)].)

FIG. 4. JJA daily temperatures yt plotted against the temperature of previous day, yt−1, on the
Fréchet scale. Paris is shown in the left panel, Moscow on the right panel. The presence of many
points lying in the interior of the plot (i.e., away from the axes) suggests strong asymptotic depen-
dence at lag 1.
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FIG. 5. Estimates of χ(u), for increasing values of u (with the u-axes on the quantile scale). Paris
is shown in the left panel, Moscow on the right panel. Since χ = 0 indicates extremal independence,
these plots indicate the presence of asymptotic dependence.

3.2. Prior specification and computing. Since these exploratory checks are
consistent with the proposed model, we move ahead. The next step is to specify
prior distributions on the model parameters. For the GPD marginal parameters, we
choose a vague normal for logσ , a uniform on (−0.5,0.5) for ξ , and a normal with
a small variance centered on the 0.98 quantile (33◦ for Moscow and 35◦ for Paris)
for the threshold u. The priors on ξ and u are informative, but, we believe, justi-
fied. Previous studies of summer high temperatures routinely estimate ξ at around
−0.22, so the chosen uniform prior will have little effect other than ensuring that
the posterior have no support on (−∞,−0.5], the region for which the GPD is not
regular (i.e., standard likelihood results do not apply [Smith (1985)]). The tight
normal prior on u encourages the GPD to be applied only to the tail of the dis-
tribution, but not so far into the tail as to be irrelevant. The informative prior on
u is necessary to achieve good convergence, and less restrictive than the standard
practice in extreme value analysis of fixing u at a prespecified value. A sensitivity
analysis for the prior on u is reported in the Supplementary Materials.

For the Gaussian marginal parameters, we choose vague normal priors for both
μ and logσ 2

N . The dependence parameters α, α01 and φ are given uninformative
uniform (0,1) priors. Finally, conjugate beta priors are specified for the Markov
transition probabilities a0 and a1.

Posterior simulation is carried out using a block Gibbs sampler, with conjugate
updates for a0 and a1, and Metropolis updates for all other model parameters. The
state variables S1, . . . , ST are updated jointly using a forward-filtering backward-
sampling algorithm [Frühwirth-Schnatter (2006)] within the Gibbs sampler. Miss-
ing values are handled seamlessly by treating them as unknown parameters and
drawing from their predictive distributions at each MCMC iteration.
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3.3. Results. For each day in the study period, the sampler outputs the pos-
terior probability of being in a heat wave. A useful place to start examining the
results is by looking at these posterior probabilities for time periods that include
the famous heat waves that motivated this study. Figure 6 shows the temperature
time series from the summer of 2003 in Paris and the summer of 2010 in Moscow.

The y-axis in Figure 6 is the observed temperature, and the color of each dot
is proportional to the posterior probability of membership in the heat wave state.
These plots show that the model correctly identifies these well-known events. Fur-
thermore, it locates fairly clear beginning and end points of each event, the loca-
tions of which are not so obvious from just looking at the time series in the case of
Moscow in 2010.

The bottom panel of Figure 6 also demonstrates the interesting feature described
at the end of Section 2, where a very hot day in Moscow on August 17 is not classi-
fied as a heat wave, even though it was noticeably warmer than other days that were
classified as heat waves. This is because the value of a1 that the model estimates
defines a heat wave as having rather strong persistence with high probability, and
August 17 stands apart from its closest neighbors, whereas the cooler days toward

FIG. 6. Temperature data from the European heat wave of 2003, which hit France especially hard,
and the Russian heat wave of 2010. Color coding of the dots indicates the posterior probability of
being in State 1. Note that in Moscow, August 17 was hotter than, say, August 14, but the model did
not classify it as a heat wave because it was a single hot day. Similarly in Paris in the middle of July.
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the end of the 2010 heat wave were members of a contiguous mass. This feature of
the model conforms to our notion of what a heat wave is: it must be both very hot
and persistent—just being hot is not enough. In this way, the fitted model contains
an implicit definition of a heat wave, inclusion in State 1 given the data.

Figure 7 shows two summer high temperature time series from Moscow, 1996
and 2001. The model output suggests that there might have been a heat wave in
1996. However, even though the annual maximum in 1996 was higher than the
annual maximum in 2001, the hot period in 2001 was classified more confidently
as being a heat wave. This is again because of persistence; the hot period in 1996
lasted a short time and showed weak temporal dependence, while the hot period
in 2001, though cooler, lasted longer and showed stronger temporal dependence
consistent with the posterior estimate of α.

Figure 8 shows kernel density estimates of the posterior densities of the parame-
ters a1 and α. The Markov transition probability a1 is the probability of remaining
in a heat wave, given that one has already started. Comparing the two curves, it
appears that the model is more confident that Moscow (solid curve) tends to have
persistent heat waves than it is about Paris (dashed curve), although for both cities

FIG. 7. Even though the annual maximum in 1996 was higher than that in 2001, the model classifies
the hot period in 2001 more confidently as a heat wave, probably because of the prolonged period
and strong temporal dependence in 2001.
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FIG. 8. Kernel density estimates of the marginal posterior densities of a1 and α.

almost all of the mass lies well to the right of 0.5. The logistic dependence param-
eter α controls the temporal dependence of temperatures within heat waves. From
Figure 8, we see that while posterior means for the two cities are similar, the model
again allows posterior mass to concentrate more for Moscow at around 0.6, well
away from the extreme cases of independence and complete dependence. The rel-
atively high posterior precision in Moscow probably reflects the larger number of
heat waves that occurred there during the study period [Figure 9(b)]. The combined
interpretation of the two parameters shown in Figure 8 is that with high probabil-
ity, Moscow, when it does experience heat waves, tends to experience longer heat
waves with more stable temperatures.

The expected length and frequency of the heat waves is directly calculable from
a0 and a1, and posterior distributions of these expectations are straightforward
to estimate from the MCMC sample. This type of exercise is useful for making
predictions in a stationary world. In addition to looking ahead using expectation-
type calculations, it is interesting to do retrospective analysis of actual heat waves
during the study period.

Figure 9 demonstrates a retrospective analysis. The left-hand panel (a) shows
the posterior probability mass function (p.m.f.) of the length of heat waves that
occurred in Paris and Moscow from 1990–2011. The most prominent feature of
Figure 9(a) is the large amount of probability mass for Moscow at large dura-
tions. This massive right tail mostly reflects the extremely long 2010 heat wave.
Figure 9(b) shows that heat waves in Moscow tended to be more numerous than
those in Paris. However, we see in Figure 9(c) that heat waves in Paris tended to be
much hotter. Putting together these three characteristics, it appears that heat waves
in Paris from 1990–2011 were hotter, though shorter and less frequent, than those
in Moscow.

An anonymous referee points out that this behavior is as expected. Moscow has
a more continental climate, enabling stable anticyclonic conditions (or blocking
episodes), associated with clear skies and excesses of downward solar radiation, to
persist for long periods. In contrast, Western Europe is under the influence of the
jet stream and its westerly winds directly coming from the Western Atlantic ocean,
which inhibits the maintenance of blocking situations. The higher temperatures
observed in Paris are likely due to the effect of latitude.
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FIG. 9. A retrospective analysis of heat waves during the study period. Panel (a) shows the posterior
p.m.f. of the length of the heat waves that occurred in Paris (shaded) and Moscow (crosshatched),
and panel (b) shows the posterior p.m.f. of the number of heat waves that occurred. Panel (c) shows
that the temperatures that occurred during heat waves were much higher in Paris than in Moscow.

3.4. Alternative definitions of heat waves. To explore the behavior of the
model under alternative definitions of heat waves, we use it as a stochastic weather
generator and compute the posterior distribution of frequency, duration and mean
temperature of heat waves, where heat waves are defined according to criteria
found in the literature. For each MCMC iteration, we simulate 500 summers worth
of random draws from the model, conditional on the model parameters at that
iteration. This results in a posterior sample of summers, from which we can ap-
ply any definitions of heat waves that we choose. Following Meehl and Tebaldi
(2004), we use two common criteria. The first defines a heat wave as the three-
day period in any given year with the highest average low temperature, based on
the idea that stretches without relief from extreme heat may have large health im-
pacts [Karl and Knight (1997)]. Since we are working with daily high temperatures
rather than daily lows, we modify this “worst annual event” definition accordingly.
The second considers two thresholds T1 and T2 and defines a heat wave as the
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longest contiguous period during which the daily high temperature exceeds T1 at
least three times, the daily high temperature is always above T2, and the average
daily high temperature is greater than T1 [Huth, Kyselỳ and Pokorná (2000)]. The
thresholds T1 and T2 are set, respectively, at the 0.975 and 0.81 empirical quantiles
[Meehl and Tebaldi (2004)].

Figures 10 (Paris) and 11 (Moscow) show features of our simulated heat waves,
under the three definitions of heat waves (the definition implicit in our latent state
model—a contiguous block of days for which S = 1, the threshold-based defini-
tion, and the “worst annual event” definition). We plot the posterior density of the
duration of heat waves [Figures 10(a) and 11(a)], the frequency of heat waves [Fig-
ures 10(b) and 11(b)] and the mean temperature during heat waves [Figures 10(c)

FIG. 10. Comparisons of Paris heat waves under different definitions. Panel (a) shows kernel den-
sity estimates of the posterior distribution of the duration of heat waves, where heat waves are defined
implicitly by the latent state model, as well as using a threshold definition. The threshold definition
produces heat waves that are longer than the implicit definition. Panel (b) shows the posterior densi-
ties of the frequency of heat waves under the same two definitions of heat waves. The two definitions
(coincidentally) produce heat waves at similar frequencies. Panel (c) shows the posterior densities
of the mean daily high temperatures during heat waves, under the two previous definitions, plus the
“worst annual event” definition. This latter definition is less restrictive, and hence produces heat
waves that are cooler than the other two. All posterior distributions are sampled by drawing from the
latent state model, conditional on model parameters at each iteration of the MCMC sampler.
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FIG. 11. Comparisons of Moscow heat waves under different definitions. Panels (a), (b) and (c)
show the same basic patterns seen in Figure 10. In comparison with Figure 10, the most noticeable
difference is that posterior densities for the implicit definition and the threshold definition coincide
more closely for Moscow than for Paris. Just as for Paris, Panel (c) shows that the “worst annual
event” definition produces the least severe heat waves, as expected.

and 11(c)]. By definition, the “worst annual event” type of heat wave occurs ex-
actly once per year for three days, making duration and frequency trivial.

The overall patterns in heat wave characteristics are similar across cities. The
implicit latent state definition produces shorter heat waves than the threshold defi-
nition. The frequency of implicitly-defined and threshold-based heat waves is sim-
ilar, but the posterior distribution is slightly more diffuse for the implicit definition.
For the mean daily high temperature during heat waves, the “worst annual event”
heat waves are cooler than the other two, which is expected because the implicit
and threshold definitions find heat waves less frequently than once annually, and
hence exclude the less extreme annual events. The posterior distribution of mean
temperatures is noticeably more peaked for the threshold than for the implicit def-
inition.

3.5. Assessing model fit. Popular tools for assessing the fit of a Bayesian
model to a given data set (e.g., deviance information criterion [Spiegelhalter et al.
(2002)], proper scoring rules [Gneiting and Raftery (2007)]) work by comparing
the fits of competing models and choosing the one with the highest score. Here,
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our goal is interpretability, not achieving the best possible fit to the data, so these
tools are not ideal. However, we still need to determine whether the fit is ade-
quate. To check compatibility with the data without making comparisons among
competing models, we use the posterior predictive checks of Gelman, Meng and
Stern (1996). The idea is to make posterior predictive draws from the model and
see whether those draws resemble the observed data set according to a suite of
relevant summary statistics. If the summaries of the observed data set fall within
an acceptable range of the summaries of the simulated data sets, then the model is
deemed adequate.

We have already made many draws from the posterior predictive distribution
from the analysis in Section 3.4, so we can use those for model assessment. Since
we are interested in heat waves, we choose summary statistics that describe the
extremes of the temperature distribution. To assess the marginal fit, we compute
the 0.99 and 0.999 empirical quantiles. To assess the fit of the dependence, we
compute an estimate of the extremal index [Ferro and Segers (2003)] at the 0.975
observed quantile (denoted as ϑ̂ in Table 1), which can be interpreted as the inverse
of the mean size of clusters of observations above the chosen threshold, as well
as χ̂ (u) at time lags of 1 and 5 days and at several values of u. We compute
each summary statistic for each posterior predictive draw and report the 0.025 and
0.975 quantiles. If the observed statistics fall within their corresponding predictive
intervals, we declare that the model fits the data satisfactorily.

Table 1 shows the results of the posterior predictive checks. For both Paris and
Moscow, the observed summary statistics fall within the posterior 95% intervals of
the chosen statistics. The only hint of a problem is for χ̂ (32) at lag 1 for Moscow,
where the observed statistic falls on the endpoint of the predictive interval. Other
than that, the predictive diagnostic indicates that the model provides a suitable fit
to the data.

TABLE 1
Posterior predictive intervals for summary statistics. Each column corresponds to a summary
statistic. The statistics q0.99 and q0.999 (the empirical 0.99 and 0.999 quantiles) describe the
extremes of the marginal predictive distributions, and the statistics ϑ̂ (the extremal index) and

χ̂h(u) (extremal dependence at time lag h and threshold u) describe the strength of the asymptotic
dependence. For both Paris and Moscow, the top and bottom rows correspond to the 0.025 and

0.975 quantiles of the posterior draws, and the middle row corresponds to the observed quantities

q0.99 q0.999 ϑ̂ χ̂1(28) χ̂5(28) χ̂1(32) χ̂5(32) χ̂1(36) χ̂5(36)

q0.025 33.62 33.62 0.205 0.529 0.232 0.303 0.030 0.000 0.000
Paris obs. 35.33 38.48 0.561 0.607 0.297 0.389 0.102 0.462 0.231

q0.975 38.32 43.17 0.867 1.000 1.000 1.000 1.000 0.686 0.386

q0.025 32.50 34.83 0.225 0.494 0.165 0.244 0.000 0.000 0.000
Moscow obs. 34.13 36.89 0.245 0.662 0.356 0.600 0.280 0.375 0.125

q0.975 35.82 39.25 0.754 0.758 0.517 0.600 0.333 0.571 0.167
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4. Discussion. We have presented a simple Bayesian latent state model for
studying heat waves. The chief virtue of this model is its interpretability; the latent
state vector S directly indicates which days are part of heat waves, and the Markov
transition probabilities represent the frequency and duration of heat waves. In ad-
dition to the easy interpretability, the latent state model has the advantage that,
unlike other extreme value models, there is no need to prespecify a threshold over
which the GPD applies or to use censored likelihoods for data below the threshold,
giving it a certain elegance.

One feature that is extremely useful is the ability to sample from the fitted
model, allowing it to act as a weather generator (Section 3.4). In this way, our
model is adaptable to any operational definition of heat waves that is germane
to the application at hand. An additional feature of our approach is that missing
values, endemic to meteorological data, are easily handled by treating them as
unknown parameters.

A limitation of our approach is that it only considers maximum daily temper-
atures, but other aspects of heat waves might be of interest to analysts. A more
complete picture of heat waves might include, for example, the daily minimum
temperature or measures of heat stress.

In the case studies, we have assumed stationary that might not be realistic for
other data sets, but extensions are straightforward. A more intricate analysis would
allow, for example, a seasonal trend in u and μ. In addition, it would be a simple
matter to include an inter-annual trend for model parameters, which would allow
for the investigation of long-term changes in the behavior of heat waves.

Another improvement would be to borrow strength across space using Gaussian
process priors, which would provide improved statistical efficiency at the expense
of a more complicated forward-filtering backward-sampling algorithm. Candidates
for spatial priors are the Markov transition probabilities a0 and a1, the GPD pa-
rameters u,σ and ξ , and possibly even the dependence parameters α,α01 and φ.
A related extension is to replace the two-state Markov chain on the states with a
logistic regression-type model, where the state probabilities would depend on a
spatially and temporally dependent random process, and possibly on covariates as
well. This type of model is appealing, but it sacrifices much of the interpretability
that is so desirable.
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SUPPLEMENTARY MATERIAL

Additional analysis (DOI: 10.1214/00-10.1214/15-AOAS873SUPP; .pdf). The
Supplement contains additional exploratory analysis related to the case study, a
sensitivity analysis for the prior distribution of the GPD threshold u, and results of
the model run on 2003 temperatures at several additional sites throughout Western
Europe.

http://dx.doi.org/10.1214/00-10.1214/15-AOAS873SUPP
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