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Many people living in low- and middle-income countries are not cov-
ered by civil registration and vital statistics systems. Consequently, a wide
variety of other types of data, including many household sample surveys, are
used to estimate health and population indicators. In this paper we combine
data from sample surveys and demographic surveillance systems to produce
small area estimates of child mortality through time. Small area estimates
are necessary to understand geographical heterogeneity in health indicators
when full-coverage vital statistics are not available. For this endeavor spatio-
temporal smoothing is beneficial to alleviate problems of data sparsity. The
use of conventional hierarchical models requires careful thought since the
survey weights may need to be considered to alleviate bias due to nonran-
dom sampling and nonresponse. The application that motivated this work is
an estimation of child mortality rates in five-year time intervals in regions of
Tanzania. Data come from Demographic and Health Surveys conducted over
the period 1991–2010 and two demographic surveillance system sites. We de-
rive a variance estimator of under five years child mortality that accounts for
the complex survey weighting. For our application, the hierarchical models
we consider include random effects for area, time and survey and we compare
models using a variety of measures including the conditional predictive ordi-
nate (CPO). The method we propose is implemented via the fast and accurate
integrated nested Laplace approximation (INLA).

1. Introduction. Over the past fifteen years the United Nations’ (UN) Millen-
nium Development Goals (MDGs) [UN (2000)] have focused the world’s attention
on improving key indicators of development, health and wellbeing. The require-
ment to monitor progress toward the MDGs has revealed a stunning absence of data
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with which to measure and monitor key indicators related to the MDGs in much of
the developing world, and this has led to great interest in improving both the data
and our ability to use it. In 2015 the UN and its partners are taking stock of expe-
rience with the MDGs and coordinating the establishment of a new set of global
goals [UN (2014d)]—the Sustainable Development Goals (SDGs) [UN (2014e)].
Even before the SDGs are finalized, the UN Secretary General has called for a
Data Revolution for Sustainable Development and appointed a high-level advisory
group to define what it should be [UN (2014b)]. The aim is clear: to rapidly im-
prove the coverage, quality, availability and timeliness of the data used to measure
and monitor progress toward the SDGs. Simultaneously, there is sustained, strong
interest in improving civil registration, vital statistics (CRVS) and the functioning
of statistical offices across the developing world [World Bank and World Health
Organization (2014), Paris21 (2014)]. The key challenges are improving coverage
[UN (2014a)] and timeliness of reporting.

In this context of far-reaching interest in improving data and methods available
to monitor indicators of the SDGs and improve CRVS, in this paper we develop a
general approach that combines data from different sources and provides tempo-
ral, subnational-specific estimates with uncertainty that accounts for the different
designs of the data collection schemes. We demonstrate the method by calculating
spatio-temporal estimates of child mortality in Tanzania using data from multi-
ple Demographic and Health Surveys (DHS) [USAID (2014)] and two health and
demographic surveillance system (HDSS) sites [INDEPTH Network (2014)].

Reducing child mortality is MDG 4 [UN (2014c)], and over the past fifteen
years a great deal of effort and resources have been spent in order to meet MDG
4 targets at the national level in many developing nations. This has driven work
to develop better methods to estimate trends in child mortality at the national
level, and two groups have produced globally comparable trends in child mor-
tality for all nations. The United Nations Inter-agency Group for Child Mortality
Estimation (UN IGME) recently developed a Bayesian B-spline Bias-reduction
(B3) method [Alkema and New (2014), Alkema et al. (2014)], and the Institute for
Health Metrics and Evaluation (IHME) uses a Gaussian process regression [Wang
et al. (2014)]. Both of these methods produce national estimates through time with
measures of uncertainty. None are designed to reveal variation in child mortal-
ity within countries. A recent paper by Dwyer-Lindgren et al. (2014) compared
many Bayesian space–time smoothing models to produced subnational estimates
of U5MR for Zambia. The major methodological limitation of this approach is
that it does not incorporate area-specific sampling variability at the first stage of
analysis, which we show can be quite variable for small areas.

In this paper we combine data from multiple surveys with different sampling
designs, and construct subnational estimates through time with uncertainty that
reflects the various data collection schemes. Data come from traditional cluster
sample surveys (DHS) and two HDSS sites. HDSS sites intensively monitor ev-
eryone within a given area, typically to monitor the effects of health intervention
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trials of various types. Estimates of child mortality from both sources of data are
useful but potentially flawed in different ways. National cluster sample surveys are
generally not able to produce useful subnational estimates, and HDSS sites are not
designed to be nationally representative, and are also thought to fall prey to the
Hawthorne effect by which the communities of these sites have improved health
outcomes because they are under observation and, more concretely, because of the
trials being conducted.

We construct subnational estimates of Tanzanian child mortality through time
with uncertainty intervals. This problem is challenging because in addition to
requiring smoothing over space and time, we must also account for the sur-
vey design. When sampling is not simple and random and the design variables
(upon which sampling was based) are not available, the complex sampling de-
sign is accounted for by constructing design weights. Inference is then carried out
using design-based inference, for example, using Horvitz–Thompson estimators
[Horvitz and Thompson (1952)]. In contrast, a conventional space–time random
effects framework, for example, Knorr-Held (2000), is model based, and requires
an explicit likelihood to be specified. In this paper, we marry these two approaches
by constructing a working likelihood based on the asymptotic distribution of a
design-based estimator and then smooth using a space–time–survey hierarchical
prior.

The organization of this paper is as follows. In Section 2 we describe the two
data sources upon which estimation will be based. In Section 3 the calculation
of child mortality estimates with an appropriate standard error is described using
discrete time survival models. Hierarchical Bayesian space–time models are intro-
duced in Section 4. The results of our modeling efforts of under five mortality rates
(U5MR) within Tanzania from 1980–2010 are given in Section 5 and discussed in
Section 6.

2. Data sources. We focus on child mortality using data from five Tanza-
nian Demographic and Health Surveys (TDHS): one Tanzania HIV and Malaria
Indicator survey (THMIS), and two health and demographic surveillance system
(HDSS) sites in Tanzania, Ifakara and Rufiji. Over the period 1980–2010 estimates
of child mortality from the two types of data sources (surveys, surveillance sites)
are generally similar but, as described above, different in useful ways. The HDSS
estimates are accurate (low bias) and precise (small variance) measurements for
comparatively small, geographically-defined populations, and the household sur-
vey estimates are less accurate and much less precise but representative of large
populations.

2.1. Health and demographic surveillance system. The Ifakara Health Insti-
tute (IHI), Tanzania runs a number of health and population research projects in-
cluding two HDSS sites—Ifakara and Rufiji. We collaborated with IHI to estimate
child mortality using data from the Ifakara and Rufiji HDSS sites.



1892 L. D. MERCER ET AL.

The HDSS data are generated through repeated household visits. For the data
we use, each household was visited three times per year at regular intervals. Dur-
ing each visit a “household roster” was updated and all new vital and migration
events for all members of the household were recorded. In addition, potentially
many other questions were asked as part of both routine and “add-on” studies. For
our purposes we require only the basic core HDSS data that include information
on dates of birth, death and migration—the information necessary to accurately
identify observed person time, categorize that time by calendar period and age,
and identify the outcome of interest, death. The Ifakara and Rufigi HDSS sites
contribute data to the Morogoro and Pwani regions of Tanzania, respectively.

2.2. Household surveys. Full TDHS surveys that collected data necessary for
child mortality estimates were conducted in Tanzania in 2010, 2004–2005, 1999,
1996 and 1991–1992, in addition to the THMIS that included child mortality which
was conducted in 2007–2008. The 2010 TDHS, 2007–2008 THMIS and 2004–
2005 TDHS surveys used 2-stage cluster samples. First, enumeration areas were
sampled from the 2002 Tanzania census and, second, a systematic sampling of
households within each enumeration area was carried out. The 1999 TDHS, 1996
TDHS and 1991–1992 TDHS used a 3-stage cluster design, first selecting wards
and branches using the 1988 Tanzania Census as a sampling frame, second using
probability proportional to size sampling to select enumeration areas from each se-
lected ward or branch, and third selecting households from a new list of all house-
holds in each selected enumeration area. The same first and second stage units
were used for all three of the surveys. For all surveys stratification by urban/rural
and region was done at the first stage, with oversampling of Dar es Salaam and
other urban areas. The surveys were designed to be nationally representative and
to be able to provide estimates of contraceptive prevalence at the regional level.
All six household surveys contributed observations to the 21 mainland regions of
Tanzania.

All women age 15 to 49 who slept in the household the night before were inter-
viewed in each selected household and response rates were high (above 95% for
households in all surveys). TDHS provides sampling (design) weights, assigned
to each individual in the data set. Limited information is provided for each sur-
vey concerning the calculation of survey weights, but the general explanation in-
dicates that raw survey weights are the inverse of the product of the 2–3 prob-
abilities of selection from each stage. These raw weights were then adjusted to
reflect household response and individual response rates. The 1991–1992 Tanza-
nia DHS final report [Demographic and Health Surveys (1992)] states that “final
individual weights were calculated by normalizing them for each area so that the
total number of weighted cases equals the total number of unweighted cases,” but
this normalization is not discussed in later reports [Demographic and Health Sur-
veys (1997, 2000, 2005, 2010)] or the DHS statistics manual [Rutstein and Rojas
(2006)]. For the purposes of our analysis of child mortality, children identified by
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the women who were interviewed contributed exposure time and deaths. The data
were organized into child-months from birth to either death or date of the mother’s
interview.

3. Calculating child mortality with discrete time survival models. We
modeled child mortality using discrete time survival analysis (DTSA) [Allison
(1984), Jenkins (1995)]. Our main aim is to examine the change in risk as a func-
tion of age and historical period. DTSA allows us to easily estimate the predicted
probabilities which can be used directly in traditional mortality analysis methods
such as life tables, in our case to calculate U5MR. We wish to estimate the U5MR
and define nqx = Pr(dying before x + n|lived until x) and the discrete hazards
model splits the [0,5) period into J intervals [x1, x2), [x2, x3), . . . , [xJ , xJ+1),
where xj+1 = xj + nj so that nj is the length of the interval beginning at xj ,
j = 1, . . . , J . Then U5MR is calculated as

5q0 = 1 −
J∏

j=1

(1 − nj
qxj

).(3.1)

For our purposes, 5q0 is calculated by dividing the first 60 months into six intervals
(J = 6), [0,1), [1,12), [12,24), [24,36), [36,48), [48,60) with (x1, . . . , x6) =
(0,1,12,24,36,48) and (n1, . . . , n6) = (1,11,12,12,12,12). Data were orga-
nized as child-months where each child was at risk during each month observed
from birth up to and including the month of their death. The observed data consist
of, for each birth, a binary sequence up to length 60 with 0/1 corresponding to sur-
vival/death. For example, a child that died in their fourth month would contribute
one child-month to the first age category and three to the second age category. The
first three child-months would be assigned a 0 outcome and the final month would
be assigned a 1.

We use logistic regression to estimate the monthly probability of dying condi-
tional on the state of the child at the beginning of the month. The monthly prob-
ability of death for each interval, 1qx , is the probability of dying in [x, x + 1) for
x ∈ [xj , xj + nj ) and can be estimated using a logistic generalized linear model
(GLM) with J factors for age intervals, logit(1qx) = βj for x ∈ [xj , xj + nj ).
A more detailed discussion of the DTSA method can be found in Clark et al.
(2013).

In the complex survey context that is relevant for the Tanzanian household sur-
veys, an important consideration is that the design weights must be acknowledged.
This is achieved by solving a (design) weighted score statistic [Binder (1983)],
resulting in estimates of the finite population parameter B = [B1, . . . ,BJ ]; see de-
tails in the supplementary material [Mercer et al. (2015)]. Once B̂j are estimated,
we can calculate 1̂qx = exp(B̂j )/[1 + exp(B̂j )] for x ∈ [xj , xj + nj ). The com-
plement of surviving each month of the interval [xj , xj + nj ) is used to calculate
nj

q̂xj
= 1 − (1 − 1̂qx)

nj , which may be substituted into (3.1) to give 5q̂0 (for addi-
tional details see the supplementary material).
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In Section 4 we will construct, for a generic U5MR, a working likelihood based
on the asymptotic distribution

y = logit(5q̂0) ∼ N(η, V̂DES),

where η = log[5q0/(1−5 q0)] and V̂DES is the estimated asymptotic (design-based)
variance estimate of logit(5q̂0), which is obtained via the delta method; the supple-
mentary material contain details of this calculation and a simulation study which
investigates the asymptotic properties of the variance estimate compared with a
jackknife variance estimate [Lohr (2010), Chapter 9] that is often used in the in
the context of child mortality estimates [Pedersen and Liu (2012)].

Simulation results were much as one would expect from clustered sampling;
coverage improves when there are more clusters and within a given number of
clusters there is little gain in precision when increasing the sample size. Generally
the performance of the delta method and jackknife intervals is very similar. We pre-
fer the delta method, as it is generally applicable (i.e., to a variety of designs) and
has a far smaller computational burden. We conclude that the asymptotic normal
sampling distribution and the delta method variance result in sufficiently accurate
confidence interval coverage for the cluster and sample sizes considered in our
application. Consequently, we will use the asymptotic distribution with the delta
method variance as a working likelihood.

4. Combining data sources in the hierarchical Bayesian space–time model.

4.1. The first stage. Let 5q̂0its represent the estimate of U5MR from survey
s in region i and in period t . A model-based approach to inference with survey
data may be carried out if the design variables upon which sampling were based,
and associated population totals, are available [Gelman (2007)]. Unfortunately,
these variables are not available for the Tanzania surveys. As an alternative we
summarize the data in area i at time point t from survey s via the asymptotic
distribution of the estimator of the pseudo-maximum likelihood estimator (MLE):

yits = log
[

5q̂0its

1 − 5q̂0its

]
.

We define the area, period and survey summary as ηits = log[5q0its/(1 − 5q0its)].
We take as working likelihood the asymptotic distribution

yits |ηits ∼ N(ηits, V̂DES,its),(4.1)

which has been shown to perform well in the context of small area estimation
from complex surveys [Mercer et al. (2014)]. Dwyer-Lindgren et al. (2014) also
used the pseudo-MLE, but did not incorporate design effects and instead assumed
a common variance across all observations. However, Figure 13 from the supple-
mentary material shows that the variance of the five-year direct estimates can vary
significantly by survey and region.



SAE OF CHILD MORTALITY 1895

TABLE 1
Random effects models for time period t , region i and survey s. In all models μ is the intercept and
αt ∼i.i.d. N(0, σ 2

α), θi ∼i.i.d. N(0, σ 2
θ ), φi ∼ ICAR(σ 2

φ), δit ∼i.i.d. N(0, σ 2
δ ). Specific models contain

random effects with distributions νs ∼i.i.d. N(0, σ 2
ν1), νis ∼i.i.d. N(0, σ 2

ν2), νts ∼i.i.d. N(0, σ 2
ν3),

νits ∼i.i.d. N(0, σ 2
ν4). In the “a” models γt ∼ RW1(σ 2

γ ) and in the “b” models γt ∼ RW2(σ 2
γ )

Model Linear predictor ηits

I μ + αt + γt + θi + φi + δit
II μ + αt + γt + θi + φi + δit + νs

III μ + αt + γt + θi + φi + δit + νs + νis

IV μ + αt + γt + θi + φi + δit + νs + νts

V μ + αt + γt + θi + φi + δit + νs + νts + νis

VI μ + αt + γt + θi + φi + δit + νs + νts + νis + νits

4.2. Second-stage smoothing models. We wish to smooth over time period,
region and surveys, but would like as parsimonious a model as possible, to avoid
overfitting. At the second stage of our model we adopt a model similar to the
“Type I” inseparable space–time model of Knorr-Held (2000). However, unlike
Knorr-Held (2000), our data provides multiple observations for each area i and
time point t through the THMIS, five TDHS and two HDSS, denoted as surveys s.
Thus, we consider models that allow the option of survey-specific effects. The
survey effects could be constant over time and space, could vary with time, vary
with space, or vary by time and space.

The six candidate models we consider are given in Table 1, with the caption
containing the random effects specification. There are two temporal terms, with
αt being independent and identically distributed random effects that pick up short-
term fluctuations with no structure, and γt being given an (intrinsic) random walk
prior of order 1 or 2 (models type “a” or “b”), to pick up local temporal smooth
fluctuations, for t = 1, . . . , T = 6 time periods. Five-year time periods were chosen
because survey-specific regional sample sizes can be quite small. The UN IGME
has only recently moved to annual estimates at the national level because the sam-
ple size of recent DHS has increased [Pedersen and Liu (2012)]. We are combining
recent and older DHS at a regional level, and thus sample sizes are not sufficiently
large to produce reliable annual estimates.

There are also two spatial terms, corresponding to the convolution model of
Besag, York and Mollié (1991). The independent random effects are denoted θi and
the intrinsic conditional autoregressive (ICAR) terms are φi for i = 1, . . . , I = 21
regions of Tanzania. The latter perform local geographical smoothing. The space–
time interaction terms δit are taken to be independent, which corresponds to the
Type I interaction model of Knorr-Held (2000). Type II–IV interaction models
were considered, which include spatial and/or temporal structure on the prior for
δit , but these models did not substantially modify estimates, so Type I was selected
for parsimony.
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There are S = 8 different surveys that are carried out over the various time
periods (since mothers are surveyed on their complete birth history and so report on
births from previous time periods), the five TDHS and THMIS surveys cover all 21
regions over the different time periods they were administered and the HDSS sites
contribute data for one region each in the last three time periods. The independent
random effects νs allow for these surveys to have a systematic displacement from
the true logit of U5MR. The interactions νts and νis allow these displacements to
vary with period and space, respectively, while νits allow the complete interaction
between survey, period and area. Model I contains crossed random effects only,
since each area is represented in each of the time periods. Models II–VI contain
a combination of nested and crossed random effects. The random walk and ICAR
models are described in Rue and Held (2005).

4.3. Hyperpriors. For a generic set of independent random effects we specify
priors on the precision τ such that a 95% prior interval for the residual odds ratios
lies in the interval [0.5,2], which leads to Gamma(aMARG, bMARG) priors for pre-
cisions [Wakefield (2009)] with aMARG = 0.5, bMARG = 0.001488. For the RW1,
RW2 and ICAR models the precisions have conditional rather than marginal inter-
pretations. Let z represent a random effect from an improper GMRF with “mean”
0 and “precision” τ �Q. Following the supplementary material of Fong, Rue and
Wakefield (2010), we gain compatibility by calculating an approximate measure of
the average marginal “variance” of z in the situation with τ � = 1; call this average
c. Then to put on the same scale, we take aCOND = aMARG and bCOND = bMARG/c.
In the above description, the words mean, precision, and variance are written in
italics to acknowledge that, strictly speaking, these quantities do not exist since
the distribution is improper. However, one may calculate a generalized inverse
using the equation given at the end of Section 4.4 of Fong, Rue and Wakefield
(2010). This method is closely related to that later described by Sørbye and Rue
(2014). The supplementary material contain R code for reproducing these prior
specifications. For the Tanzania data this leads to gamma priors for the RW1 of
τγ ∼ Gamma(0.5,0.00153), for the RW2 of τγ ∼ Gamma(0.5,0.00286), and for
the ICAR of τφ ∼ Gamma(0.5,0.00360).

4.4. Computation. Model fitting was carried out within the R computing en-
vironment. Weighted logistic regressions were fit using the svyglm() function
from the survey package [Lumley (2004)] from which the design-based vari-
ance was extracted (see supplementary material for further details). The hierarchi-
cal Bayesian space–time models were fitted using the Integrated Nested Laplace
Approximation (INLA) [Rue, Martino and Chopin (2009)] as implemented in the
INLA package. INLA provides a fast alternative to MCMC for approximating the
marginal posterior distributions of Markov random field (MRF) models. There is
now extensive evidence that the approximations are accurate for space–time mod-
eling; see for example Fong, Rue and Wakefield (2010), Held, Schrödle and Rue
(2010) and Schrödle and Held (2011).
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4.5. Model selection. In Table 1 we describe twelve plausible random effects
specifications (allowing for RW1 or RW2 models). A number of approaches have
been described for comparing models, including the conditional predictive ordi-
nate (CPO), the deviance information criteria (DIC) as introduced by Spiegelhalter
et al. (2002) and the normalizing constants p(y|M) for the twelve models indexed
by M . Let y−its represent the vector of data with the observation from region i,
time period t and survey s removed. The idea behind the CPO is to predict the den-
sity ordinate of the left-out observation, based on those that remain. Specifically,
the CPO for observation i, t, s is defined as

CPOits = p(yits |y−its) =
∫

p(yits |θ)p(θ |y−its) dθ = Eθ |y−its

[
p(yits |θ)

]
,

where θ represents the totality of parameters and in the U5MR setting the distri-
bution of yits |θ is N(ηits, V̂DES,its). The CPOs can be used to look at local fit or
one can define an overall score for each model:

LCPO = log (CPO) =
I∑

i=1

T∑
t=1

S∑
s=1

log CPOits ,

and good models will have relatively high values of LCPO. Held, Schrödle and
Rue (2010) discuss shortcuts for computation (i.e., avoidance of fitting the model
I × T × S times) using INLA.

We also calculate another widely used model comparison measure, the deviance
information criteria, or DIC [Spiegelhalter et al. (2002)]. To define the DIC with
respect to a generic set of parameters θ , first define an “effective number of pa-
rameters” as

pD = Eθ |y
{−2 log

[
p(y|θ)

]} + 2 log
[
p(y|θ)

] = D + D(θ),

where D is the deviance, θ = E[θ |y] is the posterior mean, D(θ) is the deviance
evaluated at the posterior mean and D = E[D|y]. The DIC is given by

DIC = D(θ) + 2pD = D + pD,

so that we have the sum of a measure of goodness of fit and model complexity. We
are wary of interpretation of DIC in our setting, since Plummer (2008) has shown
that DIC is prone to inappropriately under-penalize large models such as the ones
we are fitting; see also Spiegelhalter et al. (2014).

5. Applying methods to household surveys and HDSS sites in Tanzania.
We fit models Ia–VIb (as summarized in Table 1) to the Tanzania survey data and
Table 2 provides the summaries of various model comparison summaries. Model
Vb is the favored model according to both the DIC, LCPO, and log of the normal-
izing constant criterion. Results for models Vb and VIb are very similar, but we
see from the effective number of parameters that even though the number of 3-way
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TABLE 2
Model comparison: pD is the effective degrees of freedom, as defined for the calculation of the

deviance information criteria (DIC), which also uses the deviance evaluated at the posterior mean,
D; LCPO is defined as

∑
its log(CPOits ). In the “a” models γt ∼ RW1(σ 2

γ ) and in the “b” models

γt ∼ RW2(σ 2
γ )

Model No pars logp(y) pD D DIC LCPO

Ia 181 −297.3 74.5 409.3 483.8 −294.5
IIa 189 −291.0 80.1 384.2 464.3 −287.3
IIIa 313 −244.1 118.9 221.8 340.7 −193.5
IVa 223 −288.6 88.6 367.5 456.2 −283.4
Va 347 −241.2 121.8 210.1 332.0 −183.1
VIa 920 −241.4 134.5 199.4 334.0 −183.9

Ib 181 −293.3 74.2 409.1 483.3 −293.7
IIb 189 −287.0 79.8 383.9 463.7 −286.4
IIIb 313 −239.9 118.6 221.7 340.3 −192.9
IVb 223 −284.5 88.2 367.4 455.6 −282.5
Vb 347 −236.9 121.6 209.9 331.5 −183.1
VIb 920 −237.6 133.3 200.2 333.4 −183.4

interaction random effects is 573, there are only 13 effective parameters due to the
closeness of the interactions to zero. Hence, from this point onward we shall re-
port summaries with respect to model Vb. We begin by summarizing the posterior
distribution, and then describe regional trends.

5.1. Summarizing the posterior distribution. Table 3 provides numerical sum-
maries and the proportion of total variation explained by each random effect. The
total variance is

σ 2
α + s2

γ + σ 2
θ + s2

φ + σ 2
δ + σ 2

νs
+ σ 2

νsi
+ σ 2

νst
,

where s2
γ and s2

φ are empirical estimates of the marginal variances in the RW2 and
ICAR models. The structured temporal and unstructured spatial random effects
explain 77% of the total variation. Hence, there is strong temporal structure and
large spatial heterogeneity, which we shall discuss subsequently. The third largest
contribution to the variation is 11% from the survey–space interaction. Different
survey teams are sent to different regions, which explains to some extent this rela-
tively large contribution.

5.2. Model validation. To validate the model, we removed all of the obser-
vations in area i for time point t and then generated 95% intervals around the
posterior mean 5q̃0,it using the variance of the observed response, defined as
S̃2

its = σ̃ 2
it + V̂DES,its, where σ̃ 2

it is the variance of the posterior distribution of
logit(5q̃0,it ) and V̂DES,its is the design-based variance described in Section 3. This
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TABLE 3
Summaries of variance components. The proportion of variation is calculated as the contribution
the relevant set of random effects makes to the total variation. In the case of the RW2 and ICAR

models, the relevant contribution is evaluated empirically, since the variance parameter is
conditional rather than marginal

Variance Interpretation Median (95% interval) Percentage variation

σ 2
α Indept time 0.002 (0.001, 0.012) 1.3

σ 2
γ RW2 time 0.009 (0.002, 0.054) 46.0

σ 2
θ Indept space 0.068 (0.033, 0.133) 31.3

σ 2
φ ICAR space 0.017 (0.002, 0.378) 4.9

σ 2
δ Indept space–time interaction 0.005 (0.001, 0.013) 2.3

σ 2
νs

Indept survey 0.002 (0.001, 0.013) 1.4

σ 2
νst

Indept survey–time interaction 0.004 (0.001, 0.011) 2.0

σ 2
νsi

Indept survey–space interaction 0.024 (0.015, 0.038) 10.9

was completed for the 21 regions and 6 time points (figures shown in the sup-
plementary material). Intervals contained the design-based estimates 92.5% of the
time overall. Time/area-specific coverages range from 89.9–96.9% and the cover-
age for the final time point is 93.2%.

5.3. Regional estimates and projections. For region i and 5-year period t , esti-
mates, projections and credible intervals of U5MR are taken from posterior draws
of

5q0,it = expit(μ + αt + γt + θi + φi + δit ).

Figure 1 shows maps of the posterior median estimates of child mortality (per
1000 births) by region for the six observed 5-year time periods. Child mortality
has decreased markedly over the 30-year period considered, but overall more than
5% of infants still die before they turn 5, and there are strong regional differences.
Figures 2 and 3 display the observed direct estimates and smoothed results for
the Morgoro and Pwani regions, respectively. Additionally, each plot shows the
projected U5MR for the 2010–2014 time period. The direct estimates have a great
deal of variability between surveys, especially for the first four time points, and
design-based intervals are very wide. Smoothed rates and projections for all 21
regions are located in the supplementary material.

6. Discussion. We have described a general method for spatiotemporal
smoothing of a health outcome, with the data arising from complex surveys and
surveillance. The method was illustrated with child mortality in regions of Tan-
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FIG. 1. The solid line represents five-year model-smoothed estimates of 5q0 in Pwani region, TZA,
with 95% confidence intervals as vertical lines. The dashed lines display the five-year direct estimates
from the region by household survey and surveillance site, with 95% confidence intervals as vertical
lines.

FIG. 2. Regional five-year direct and model-based smoothed of 5q0 in Pwani, TZA, with 95%
confidence intervals.
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FIG. 3. The solid line represents five-year model-smoothed estimates of 5q0 in Morogoro region,
TZA, with 95% confidence intervals as vertical lines. The dashed lines display the five-year direct
estimates from the region by household survey and surveillance site, with 95% confidence intervals
as vertical lines.

zania over 1980–2009 using data from household surveys and surveillance sites.
A great advantage of the model is that there is a fast implementation within the
R computing environment using the existing survey and INLA packages. The
supplementary material contain example code. As an example, fitting the most
complex model for the Tanzania data took just 18.7 seconds on a Macbook Pro.3

In our hierarchical modeling approach, we explicitly acknowledge the weights
by taking as (pseudo-)likelihood the (design-based) sampling distribution of the
estimator. In the supplementary material we illustrate the effect of the weights
on both the estimates and the standard errors. Another use of our model is for
prediction, with the RW2 terms drawn from the relevant conditional distribution.

Our model contains a relatively complex combination of nested and crossed
random effects and we described a particular approach to hyperprior selection.
As with any such suggestion, it is beneficial to examine prior sensitivity, and the
supplementary material contain details of a sensitivity study that we performed for
the Tanzania data.

An integral part of our method involves calculating and pooling estimates of
child mortality from household surveys and demographic surveillance sites and
allowing both to inform our overall estimates by region and for the country as a
whole. A byproduct of this procedure is an ability to carefully compare the DHS-
based and demographic surveillance-based estimates of child mortality in the re-
gions that include HDSS sites. As Figures 2 and 3 make clear, the central estimates

3Processor: 2.9 GHz Intel Core i7; memory: 8 GB 1600 MHz DDR3.
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from the two different data collection schemes are very similar. This adds more
weight to similar findings by others [Byass et al. (2007), Fottrell, Enquselassie and
Byass (2009), Hammer et al. (2006)] and reduces concerns about the Hawthorne
effect preventing measures of child mortality from HDSS sites from being more
widely relevant, that is, similar to surrounding populations.

Although we have demonstrated our method with a single country and out-
come, it is sufficiently general to be applied to produce spatiotemporal estimates
of a variety of indicators. Because this approach provides consistent, precise esti-
mates across both time and space utilizing data from a variety of sources, including
complex sample surveys, accounting for study designs, it should be considered as
an approach for producing subnational estimates of child mortality and other key
health, demographic and development indicators. However, countries with a sub-
stantial HIV/AIDs burden may suffer from underreporting biases. The UN IGME
preprocesses data in a number of countries, including Tanzania, to take account of
underreporting biases because of HIV/AIDS. We base our analysis on direct sub-
national estimates of U5MR, and so do not adjust for this bias, but our smoothed
results do not differ substantially from the UN results at the national level and so
we believe that any bias from this source will be small.

The world’s rapidly growing appetite for timely, subnational estimates of key
development indicators will continue to motivate innovative new developments in
both data collection and analysis. In addition to providing a means to improve
indicator estimates using different sources of data, our results also hint at the pos-
sibility of eventually creating integrated data collection and analysis schemes that
build on existing infrastructure to yield some of the functionality of full-coverage
CRVS. Clark et al. (2012) and Ye et al. (2012) begin to discuss ideas in this vein,
for example, how one might utilize both sample surveys and demographic surveil-
lance to continuously provide indicators equivalent to what is normally produced
by vital registration. The method and results we present in this paper encourage
future development of those ideas.

Acknowledgments. We would like to acknowledge the hard work and com-
mitment of the HDSS field teams and the data team, and thank the residents in the
surveillance areas for offering their time for interviews and sharing their valuable
personal information over the years.

SUPPLEMENTARY MATERIAL

Supplement to “Space–time smoothing models for complex survey data:
Small area estimation for child mortality” (DOI: 10.1214/15-AOAS872SUPP;
.pdf). The organization of the supplementary material is as follows. In Section 1
we provide the details of the discrete survival model. In Section 2 we provide the
derivation of the standard error for U5M. Section 3 describes a simulation study
aimed to test the coverage performance of the derived standard error against the

http://dx.doi.org/10.1214/15-AOAS872SUPP
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jackknife standard error used by DHS. In Section 4 we describe the hyperprior
specifications for the Bayesian hierarchical model. Section 5 provides a summary
of the posterior distribution of the random effects. In Section 6 we provide a com-
parison of weighted and unweighted direct estimates of U5M. In Section 7 we have
included some exploratory analysis looking at the rates and magnitude of regional
decreases in U5M and how they relate to the fourth millennium development goal
of two thirds reduction in child mortality by 2015. The results of our model val-
idation are presented in Section 8. Lastly, Section 9 includes example R code for
the analyses.
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