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BAYESIAN ANALYSIS OF TRAFFIC FLOW ON INTERSTATE I-55:
THE LWR MODEL
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Transportation departments take actions to manage traffic flow and re-
duce travel times based on estimated current and projected traffic condi-
tions. Travel time estimates and forecasts require information on traffic den-
sity which are combined with a model to project traffic flow such as the
Lighthill–Whitham–Richards (LWR) model. We develop a particle filtering
and learning algorithm to estimate the current traffic density state and the
LWR parameters. These inputs are related to the so-called fundamental dia-
gram, which describes the relationship between traffic flow and density. We
build on existing methodology by allowing real-time updating of the poste-
rior uncertainty for the critical density and capacity parameters. Our method-
ology is applied to traffic flow data from interstate highway I-55 in Chicago.
We provide a real-time data analysis of how to learn the drop in capacity as a
result of a major traffic accident. Our algorithm allows us to accurately assess
the uncertainty of the current traffic state at shock waves, where the uncer-
tainty is a mixture distribution. We show that Bayesian learning can correct
the estimation bias that is present in the model with fixed parameters.

1. Introduction. Effectively managing traffic flow to reduce congestion can
improve communities by reducing travel times, reducing pollution and improving
economic efficiency. Transportation departments use information on current and
projected travel times to adjust ramp metering and traffic lights; travelers use pro-
jected travel times to make travel plans and to adjust departure times, transportation
mode and route. Estimated travel times are developed using sophisticated models
of traffic flow that begin with observations on speed and density and develop esti-
mates of road capacity based on estimates of current density and flow.

In their seminal paper, Lighthill and Whitham (1955) describe the theory
of kinematic wave motion which they apply to modeling highway traffic flow.
Richards (1956) independently proposed a similar application. The key assump-
tion is a relationship between traffic flow and density. A model is calibrated us-
ing the characteristics of road segments, such as the number of lanes, free-flow
speed and road type. These characteristics themselves do not explain all the vari-
ation in model parameters and estimates need to be assessed using observations
on current speed, density and lane configurations at sparse points throughout the
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network. Much of the recent improvement in travel time estimation and forecast-
ing has come from improving the estimates of network characteristics [Dervisoglu
et al. (2009), Muralidharan and Horowitz (2009)].

Usually, underlying traffic data is sparse. We observe specific points in a traffic
network using fixed loop-sensors or at random points via GPS-equipped probe
vehicles. Underlying road capacity might vary [Brilon, Geistefeldt and Regler
(2005)] as drivers change speed in response to congestion, weather conditions and
the behavior of other drivers, as well as the number of available lanes change due
to weather conditions, traffic issues and other events. Accurately estimating road
capacity from sparse and noisy observations of traffic speed and density at points
in the traffic network is a significant challenge and improving on these estimates
will lead to better travel time forecasts.

Our approach develops a particle filtering and learning algorithm for estimating
road capacity. We build on existing estimation methods in a number of ways:

1. Incorporation of sequential parameter learning in order to update the model
in real time.

2. A predictive likelihood particle filter that provides an efficient estimation
strategy and is less sensitive to measurement outliers.

We apply our methodology to traffic flow data from Chicago’s interstate I-55
highway and show how parameter learning effectively handles a dynamic environ-
ment, including shock waves. Bayesian learning, which is central to our method-
ology, corrects for bias that results from estimation with fixed parameters. We also
show that our algorithm identifies the drop in road throughput as a result of an
accident.

Particle filtering allows for posterior estimation of the most recent state. The
low computational complexity of particle filtering makes frequent updating fea-
sible, whereas MCMC’s computational cost grows linearly with the length of the
data. For previous MCMC applications in transportation, see Tebaldi and West
(1998) for inferring network route flows, and Westgate et al. (2013) for travel time
reliability for ambulances using noisy GPS for both path travel time and individual
road segment travel time distributions. Anacleto, Queen and Albers (2013) develop
a dynamic Bayesian network to model external intervention techniques to accom-
modate situations with suddenly changing traffic variables. Chiou, Lan and Tseng
(2014) provide a nonparametric prediction model for traffic flow trajectories, and
Chiou (2012) proposes using a functional mixture prediction approach.

Previous work on estimating traffic flows use extensions of the Kalman filter and
rely heavily on Gaussianity assumptions; see Gazis and Knapp (1971), Schreiter
et al. (2010), Wang and Papageorgiou (2005), Work et al. (2008). Sun, Muñoz and
Horowitz (2003) considered mixture Kalman filters for traffic state estimation in
the context of ramp metering control. Particle filters have previously been applied
to traffic flow problems; see Mihaylova, Boel and Hegyi (2007) who use the evo-
lution dynamics as a proposal distribution before resampling, the so-called boot-
strap or sampling/importance resampling (SIR) filter. We improve the efficiency
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for inference and prediction with a fully adopted filter and our approach naturally
incorporates particle learning. We build on existing work on parameter learning in
transportation. For example, Dervisoglu et al. (2009) develop a quantile regression
methodology that re-estimates parameters every five minutes based on traffic flow
and density measurements. Wang and Papageorgiou (2005) propose an extended
Kalman filter with boundary condition estimation. The advantage of particle filter-
ing over traditional Kalman filtering is the ability to handle nonnormal posterior
distributions that result, for example, from nonlinearity. Section 2.6 shows that the
distribution of uncertainty about state is a mixture at some points in time and this
leads us to use particle filters, that do not rely on normality assumption.

Real-time estimation and short-run prediction of traffic conditions play a key
role in Intelligent Transportation Systems (ITS). Current Vehicle Navigation Sys-
tems and Traffic Management Systems use forecasts of traffic flow variables, such
as traffic volume, travel speed or traffic density ranging from 5–30 minutes ahead.
There are a number of real-world applications:

Advanced Traveler Information Services (ATIS). Multiple studies have shown
the positive impacts of providing information on traffic flow conditions to the
public [Chorus, Molin and Van Wee (2006)], as it can potentially lead to con-
gestion relief [Arnott, De Palma and Lindsey (1991)]. Travel information is
provided in multiple ways, for example, by transportation system managers
such as local departments of transportation via variable message signs or radio,
automakers through in-dash navigation, technology companies through phone
apps or web, fleet managers and transit operators.

Transportation Planning. Benefits of Intelligent Transportation Systems are
studied by local governments based on system performance data before and
after ITS is deployed. An accurate comparison of the benefits to travel times
requires efficient estimation of the network states.

Control of Transportation Operation. For traffic control applications, we need
to efficiently estimate the formation of traffic congestion. Accurate knowledge
of the current state allows transportation system managers to provide a rea-
sonable forecast of traffic conditions and to improve traffic flows using such
techniques as ramp metering and speed harmonization.

The rest of the paper proceeds as follows. Section 2 develops a statistical treat-
ment for the LWR model by representing it as a nonlinear state-space model. The
key input to the LWR model, the fundamental diagram (or flux function), which
links traffic flow and density is discussed. The parameters of the fundamental dia-
gram need to be estimated in an online fashion. Section 3 provides a particle filter-
ing algorithm for inference and prediction that provides online real-time inference
for fundamental diagram parameters and traffic density state. Section 4 illustrates
how our methodology can learn road capacity when applied to data measured dur-
ing a major highway accident. Section 5 illustrates our methodology with a sim-
ulation study of rush hour traffic on Chicago’s I-55. Finally, Section 6 concludes
with directions for future research.
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FIG. 1. Locations of the Loop Detectors in Chicago.

2. LWR traffic flow model.

2.1. Model and data description. Traffic flow data is available from the Illi-
nois Department of Transportation; see Lake Michigan Interstate Gateway Al-
liance (http://www.travelmidwest.com/), formally the Gary–Chicago–Milwaukee
Corridor (GCM). The data is measured by loop-detector sensors installed on inter-
state highways. Loop-detector is a simple presence sensor that measures when a
vehicle is present and generates an on/off signal. There are over 900 loop-detector
sensors that cover the Chicago metropolitan area. Figure 1 illustrates the loca-
tions of the detectors in the region. Since 2008, Argonne National Laboratory has
been archiving traffic flow data every five minutes from the grid of sensors. Data
contains averaged speed, flow and occupancy. Occupancy is defined as percent of
time a point on the road is occupied by a vehicle and flow is the number of off-on
switches. Illinois uses a single loop-detector setting and speed is estimated based
on the assumption of an average vehicle length.

2.2. Traffic flow parameters. The primary variable of interest is traffic density,
which is a macroscopic characteristic of traffic flow and the control variable of
interest in transportation system management strategies. Traffic density is defined
as a number of vehicles per unit of length. Densities vary between zero and jam
density which corresponds to vehicles being bumper-to-bumper. Typically, jam
density value is around 1 vehicle per 6.5 meters per lane. Another important value
related to density is the critical density, denoted by the density level at which the
maximum flow (throughput) is achieved. The maximum flow measured in vehicles

http://www.travelmidwest.com/
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per unit of time is called capacity, it is typically achieved at density level of around
1 vehicle per 32 meters.

It is natural to divide the flow regimes roughly into two subcategories. Den-
sity values up to 1 vehicle per 32 meters correspond to a free-flow regime, when
there are no interactions between the vehicles, and vehicles travel at the desired
speed. The second regime corresponds to densities above 1 vehicle per 32 meters;
at roughly this density vehicles start interacting with each other and that leads to
slow downs and flow reduction.

Our observed data that comes from a presence sensor is occupancy rather than
density. Occupancy is defined as percentage of time a point on a road segment
was occupied by a vehicle, thus it varies between 0 (empty road) and 100 (com-
plete stand still). Assuming the average vehicle length does not vary over time, the
density and occupancy are related through a simple linear transformation [May
(1990)]. Throughout the paper we assume a constant vehicle length for every sen-
sor in the region and treat density and occupancy interchangeably.

Two other macroscopic traffic flow parameters, namely. Speed and flow, are
related through the following relation:

v(x, t) = q(x, t)

ρ(x, t)
,(2.1)

where v = speed (miles per hour), q = flow (vehicles per hour), ρ = density (ve-
hicles per lane-mile).

The three traffic flow parameters can change over space and time. Tracking these
flow parameters can be particularly challenging due to discontinuities in them that
are called shock waves. A shock wave can be a platoon of vehicles moving on
an otherwise empty road, thus we have a nonzero density propagating in time
and space. In other cases, the shock wave corresponds to a change in the flow
regime, when fast-moving vehicles reach the end of a congestion queue and need
to abruptly slow down, or vice versa, when we have queue dissipation and vehicles
leave a bottleneck and can revert to the desired travel speed.

2.3. The LWR model and fundamental diagram. In Section 2.2 we consid-
ered traffic flow as a function of location x and time t . The flow-density relation,
which is called the fundamental diagram, allows us to calculate flow via density
q(x, t) = q(ρ(x, t)). The LWR model is a macroscopic traffic flow model. It is a
combination of a conservation law defined via a partial differential equation and
a fundamental diagram. The nonlinear first-order partial differential equation de-
scribes the aggregate behavior of drivers. The density ρ(x, t) and flow q(x, t),
which are continuous scalar functions, satisfy the equation

∂ρ(x, t)

∂t
+ ∂q(x, t)

∂x
= 0.(2.2)
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Derivation of the model is presented in Appendix A. This equation can be solved
numerically by discretizing time and space. In its simplest form, imagine a homo-
geneous road segment (with no change in number of lanes and no intersections)
cut into M cells. Let ρi be the density in cell i (in veh/m) and qi the exit flow of
cell i (in veh/s). For a road segment, with given boundary conditions, the LWR
computes the conditions inside the domain. Boundary conditions can be either
measured by fixed sensors such as loop detectors or estimated from GPS probe
data based as shown by Claudel and Bayen (2010). Statistical inference is required
to update the missing states, learn the parameters of interest and predict forward
using the dynamics of the LWR model, based on noise and possibly partially mea-
sured boundary conditions.

An important feature of the LWR model is the emergence of a shock wave of
traffic due to the density-dependent local propagation velocities. The fundamental
diagram is central to its specification. The diagram describes a functional relation
between flow and density. For example, Figure 2(a) illustrates empirical data of
volume versus occupancy. The theoretical form of the so-called triangular funda-
mental diagram is shown in Figure 2(b). It has two velocities of density variations:
one for free-flow traffic (green) and one for congested traffic (red). This specifi-
cation allows for an efficient Godunov scheme, to solve the nonlinear evolution
dynamics. We need to provide the model with an accurate assessment of the cur-
rent density state vector and the parameters of the fundamental diagram. The fun-
damental diagram is a key input into the specification of the LWR model, which
expresses the relationship between traffic density and flow. Figure 2 motivates the
choice of a so-called triangular diagram by showing the empirical flow and occu-
pancy for a highway segment in the Chicago metropolitan area.

FIG. 2. Fundamental diagram. (a) Measured occupancy-flow relation. (b) Triangular fundamental
diagram. The left panel (a) shows the occupancy-flow relation based on measured data on I-55 North
Bound. The right panel (b) shows theoretical shape of the fundamental and the parameters that
describe the diagram. On both panels the left part of the diagram [triangles in (a) and solid line
in (b)] describes the density variations for free-flow traffic and the right part [crosses in (a) and
dashed line in (b)] describes congested traffic.
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Throughout our analysis we assume a homogeneous road segment with a fun-
damental diagram that does not depend on time and space. By homogeneous, we
mean that the road segment has homogeneous width and number of lanes and no
intersections or traffic merge/diverge sections.

The analytical formula for the triangular fundamental diagram is as follows:

q(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

qc

ρc

ρ, ρ < ρc,

qc

ρjam − ρ

ρjam − ρc

, ρ ≥ ρc,
(2.3)

where qc = representing the critical flow (capacity), ρc = critical density, ρjam =
jam density. We denote the set of three parameters by φ = (qc, ρc, ρjam).

The velocity of a shock wave propagation on a road segment can be calcu-
lated using the fundamental diagram parameters, via the Rankine–Hugoniot rela-
tion [LeVeque (2002)]. It determines the shock wave velocity as the velocity of
the shock w times the jump in density which equals the jump in flow in the two
regions separated by the shock where

w = q(ρl) − q(ρr)

ρl − ρr

and vf = qc

ρc

.(2.4)

The direction of the shock wave propagation depends on the sign of q(ρl)−q(ρr).
Here vf is a free-flow speed on a link and qc = maxρ q(ρ) is the critical flow
or capacity of the link. Correspondingly, ρc = arg maxρ q(ρ) is called the critical
density. The pair (qc, ρc) is the traffic flow breakdown point for a road segment.

Calibrating the model parameters can be done in a number of ways. The stan-
dard approach uses values from the Highway Capacity Manual [Transportation
Research Board (2010)] that provides a look-up table for road capacity based on
road type and number of lanes.

However, in practice, the parameters are not fixed and change over time. To
empirically illustrate the stochastic nature of the parameters, we estimate capacity
and critical density from the measurements for 242 days in 2009, on a segment of
interstate highway I-55 in Chicago. Holidays and weekends as well as days with
unreliable measurements were excluded. Figure 3 plots ρc and qc across the days.
Clearly, there is a linear relation between qc and ρc. Road capacity can vary from
day to day and its distribution has a heavy left tail. On the other hand (for our
data set), the critical density ρc has a relatively tight distribution around the value
0.023 veh/m.

This nonstatic nature of the parameters motivates the need for a sequential on-
line parameter learning algorithm.

2.4. Traffic flow dynamics as a nonlinear state-space model. Let yt denote
the observed traffic density data and yt = (y1, . . . , yt ) be the current history of
data. Let θt be a hidden state vector of traffic densities. We assume that boundary
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FIG. 3. Joint and marginal distributions for critical flow and density.

conditions ρ0t and ρ(M+1)t , which represent traffic states on the downstream and
upstream ends of a road segment, are given, as well as an initial condition θ0. In
practice, boundary conditions are measure from sensors, such as loop detectors
and radars, available at both ends of a road segment, and initial conditions either
assume an empty road or state of traffic measured from cameras or satellites.

We denote

θt = (ρ1t , . . . , ρMt).

The expectation conditional of the next state E(θt+1|θt ) = fφ(θt ) is given by
the solution of the LWR model. Here φ denotes unknown parameters. A numer-
ical Godunov scheme computes fφ(θt ) given the parameters, φ, of the triangular
fundamental diagram.

Our model has a state-space formulation of an observation and evolution system
given by

Observation: yt+1 = Ht+1θt+1 + εv
t+1; εv

t+1 ∼ N(0,Vt+1),(2.5)

Evolution: θt+1 = fφ(θt ) + εw
t+1; εw

t+1 ∼ N(0,Wt+1),(2.6)

where Vt and Wt are evolution and equation error, respectively, and yt+1 = vector
of measured traffic flow density, fφ = LWR evolution equation calculated via Go-
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FIG. 4. Parameter learning graphical model.

dunov’s schema, φ = (qc, ρc, ρjam) triangular fundamental diagram parameters.
The observation matrix Ht+1 picks out cells with measurements available.

Figure 4 provides the graphical model for the state evolution structure. Our goal
is to develop a particle filter to draw samples from the filtered posteriors p(θt |yt )

and p(φ|yt ). The operator Ht :RM →R
k is the measurement model that depends

on the sensor type, and in our setting we make it linear. In a simplest case Ht = H

is a projection operator, which “removes” nonmeasured elements from the state
vector.

While we treat the parameters φ of the LWR model as static, our model can
easily be extended to allow for stochastic evolutions or characteristics to govern
the dynamics.

2.5. Godunov’s scheme. The LWR model (2.2) describes the evolution of traf-
fic flow on a road segment with uniform topology, as shown in Figure 5 (see
Appendix A). The change in road segment characteristics (crossing, number of
lanes, speed limit, curvature, etc.) can be modeled using a junction. The treatment
of junctions requires specific efforts for physical consistency and mathematical
compatibility with the link model. For uniqueness of the solution of the junction
problem, different conditions have been used, for instance, maximizing the in-
coming flow through the junction was suggested by Daganzo (1995) and Coclite,
Garavello and Piccoli (2005). Holden and Risebro (1995) consider maximizing a
concave function of the incoming flow. A formulation using internal dynamics for
the junction is equivalent [Lebacque (2005)] to the vertex models for the merge
and diverge junction; see Garavello and Piccoli (2006) for more details.

Standard finite difference schemes are too inaccurate for solving the LWR
model; Godunov (1959) showed that a first order finite difference scheme is inac-
curate for calculating with a small time step. Moreover, none of the second order
difference schemes preserve monotonicity of the ρ0, and thus are not applicable.

FIG. 5. Underlying state space for a road segment.
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Given an initial condition ρ0(x), x ∈ [0,L], propagating the LWR model re-
quires solving the associated Cauchy problem. If the initial condition is piecewise
constant (which is the case for many numerical approximations) and self-similar,
this reduces to a Riemann problem. Godunov’s scheme then solves a Riemann
problem between each cell. This is an initial value problem with initial conditions
having a single discontinuity

ρ0(x) =
{

ρl, x < 0,
ρr, x > 0.

(2.7)

For the Riemann problem, the speed of the shock wave propagation is given by
the Rankine–Hugoniot relation (2.4). Heuristically, imagine at initial time t = 0
that there are two regions in the domain with different values of thermodynamic
parameters (flow, density and speed in our case). The two regions are divided by a
thin membrane and at the initial time the membrane is removed. The computational
problem is to find the values of thermodynamic parameters at all future times.

According to Godunov’s scheme, we calculate the iterates

ρn+1
i = ρn

i + τ

h

(
qG

(
ρn

i−1, ρ
n
i

) − qG

(
ρn

i , ρn
i+1

))
,(2.8)

where ρn
i is the density value at the point with coordinates x = ih, t = nτ , with h

a space discretization step and τ a time discretization step.
The function qG(ρl, ρr) is defined by

qG(ρl, ρr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(ρl), ρr < ρl ≤ ρc,
q(ρc), ρr ≤ ρc ≤ ρl ,
q(ρr), ρc ≤ ρr < ρl ,
min

(
q(ρl), q(ρr)

)
, ρl < ρr .

(2.9)

Typically, a virtual cell is introduced on both sides of the domain to include bound-
ary conditions (in and out flow). This leads to a left boundary

ρn+1
0 = ρn

0 + τ

h

(
qG

(
ρn−1, ρ

n
0
) − qG

(
ρn

0 , ρn
1
))

,

with ρn−1 = 1

τ

∫ (n+1/2)τ

(n−1/2)τ
ρ(0, t) dt,

and right boundary

ρn+1
M = ρn

0 + τ

h

(
qG

(
ρn

M−1, ρ
n
M

) − qG

(
ρn

M,ρn
M+1

))
,

with ρn
M+1 = 1

τ

∫ (n+1/2)τ

(n−1/2)τ
ρ(L, t) dt.

Numerical stability in space and time is ensured by the Courant–Friedrichs–Lewy
type condition [Courant, Friedrichs and Lewy (1928)]: τ ≤ h/|vmax|, where vmax
is the maximum wave velocity present in the meshed domain at any given point in
time.
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FIG. 6. Uncertainty of shock wave propagation speed.

2.6. State uncertainty is a mixture distribution. When uncertainty about the
traffic state gets propagated from one time step to another using Godunov’s
scheme, the current unimodal distribution can update to a mixture distribution.
For example, this happens at the location of a shock wave, when the cell on the
right is in a free-flow regime and the cell on the left is in a congested regime.
This can be demonstrated by a simple Monte Carlo experiment. Consider two con-
secutive cells, with densities ρl and ρr correspondingly, both following a trun-
cated normal distribution. Assume ρl ∼ T N(μ = 0.02, σ = 0.01, a = 0, b = 0.2)

and ρr ∼ T N(μ = 0.03, σ = 0.01, a = 0, b = 0.2), where a and b are lower
and upper bounds of a truncated normal distribution correspondingly. Using a
triangular fundamental diagram with qc = 1600 veh/h, ρc = 0.025 veh/m, and
ρjam = 0.2 veh/m, we can calculate the speed of the shock wave propagation w

given by equation 2.4. We then simulate the distribution over w, using N = 1000
samples. Figure 6 shows the results of the experiment. The uncertainty over speed
propagation is a bimodal mixture distribution, implying the uncertainty about the
density at the future times is also a mixture. Our example in Section 5 shows that
the behavior of uncertainty about traffic flow density state matches this bimodal
shape found here.

3. Particle filtering of the LWR model.

3.1. A fully adapted particle filter. Particle filtering methods are designed to
provide sequential state inference from the set of filtered posteriors p(θt |yt ); see,
for example, Carpenter, Clifford and Fearnhead (1999), Carvalho et al. (2010),
Gordon, Salmond and Smith (1993), Liu and West (2001), Pitt and Shephard
(1999), Storvik (2002). Our algorithm will be based on the Liu and West (2001)
filter. The major difference is a fully adapted filter that resamples first using the
predictive distribution and propagates forward using the conditional posterior. The
fully adapted filter mitigates particle filter degeneracy, although the usual com-
pounding of the Monte Carlo errors still exists [Godsill, Doucet and West (2004)].

The predictive likelihood for the next observation, yt+1, is required to imple-
ment our particle filter. Given the current state variable θt , the predictive likelihood
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is defined by

p(yt+1|θt , φ) =
∫

p(yt+1|θt+1, φ)p(θt+1|θt , φ) dθt+1.

Propagation of states requires the conditional posterior for the next state p(θt+1|θt ,

φ, yt+1). This density can be computed using the model assumptions via the sys-
tem of distributions

p(yt+1|θt+1, φ) ∼ N(Ht+1θt+1,Vt+1),

p(θt+1|θt , φ) ∼ N
(
fφ(θt ),Wt+1

)
.

Marginalizing out θt+1 leads us to distributions

p(yt+1|θt , φ) ∼ N
(
Ht+1fφ(θt ),Ht+1Wt+1H

T
t+1 + Vt+1

)
.

For propagation of θt+1, we use Bayes’ rule and the conditional posterior

p(θt+1|θt , φ, yt+1) ∼ N(μt+1,Ct+1),

where the mean and variance (μt+1,Ct+1) follow the Kalman recursion [Doucet,
Godsill and Andrieu (2000)]:

Forecast: μf = fφ(θt ), Cf = Wt+1,

Kalman Gain: K = Cf HT
t+1

(
Ht+1Cf HT

t+1 + Vt+1
)−1

,

Measurement Assimilation: μt+1 = μf + K(yt+1 − Ht+1μf ),

Ct+1 = (I − KHt+1)Cf .

To develop our particle filter, we now factorize the joint conditional distribution
as

p(yt+1, θt+1|θt , φ) = p(yt+1|θt , φ)p(θt+1|θt , φ, yt+1).

The goal is to obtain the new filtering distribution p(θt+1|yt+1) from the cur-
rent p(θt |yt ) and to provide a particle approximation to the parameter posterior,
p(φ|yt ). We start with a particle (a.k.a. random histogram of draws) filtering ap-
proximation to the joint distribution of the state and parameters, denoted by

pN (
θt , φ|yt ) = 1

N

N∑
i=1

δ(θt ,φ)(i) ,

where δ is a Dirac measure. As the number of particles increases N → ∞, the
law of large numbers guarantees that this distribution converges to the true filtered
distribution p(θt , φ|yt ).

For the next marginal posterior distribution, the Bayes rule yields

pN (
θt+1|yt+1) =

N∑
i=1

w
(i)
t p

(
θt+1|(θt , φ)(i), yt+1

)
,
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where the particle weights are determined by

w
(i)
t = p(yt+1|(θt , φ)(i))∑N

i=1 p(yt+1|(θt , φ)(i))
.

The algorithm consists of three steps:

Step 1. (Resample) Draw an index k(i) ∼ MultN(w
(1)
t , . . . ,w

(N)
t ) for i =

1, . . . ,N .
Step 2. (Propagate) Draw θ

(i)
t+1 ∼ p(θt+1|(θt , φ)k(i), yt+1) for i = 1, . . . ,N .

Step 3. (Replenish) Draw φ(i) ∼ 1
N

∑N
i=1 δ[−ε,ε](φk(i)),

where δ[−ε,ε](·) denotes the Dirac measure in an interval [−ε, ε]. Thus, we re-
sample φk(i) from mixture uniform distribution with support [φk(i) − ε,φk(i) + ε],
i = 1, . . . ,N , and equal mixing rights. The jittering parameter ε is used to calcu-
late unique φi particles. Both θ

(i)
t+1 in step 2 and φ(i) in step 3 are drawn based on

resampled φk(i), thus the resampling creates a new set of particles (θt , φ)k(i). Steps
1 and 2 of the algorithm were suggested in the auxiliary particle filter of Pitt and
Shephard (1999).

It has been previously shown that particle filters suffer the degeneracy issue
when the number of particles is not sufficient [Bengtsson, Bickel and Li (2008),
Snyder (2011)]. However, our approach relies on predictive likelihood and is less
prone to a degeneracy issue, which plagues standard sample-importance resample
filters.

4. Real-time accident modeling. We illustrate our methodology on a data
set from an accident on I-55. We show how quickly our approach can identify
a drop in capacity (critical flow) due to an accident. On May 9, 2014, a semi-
tractor trailer caught fire (CBS Chicago) at 6:40 AM on interstate highway I-55
near Weber Road in Romeoville, Illinois, which is a southwest suburb of Chicago.
The police shut down the southbound lanes. As is commonplace, the accident was
visible from the other side of the road, and the “rubbernecking” effect, drivers
slowing down to watch an accident, caused a dramatic reduction in capacity and
congestion.

There are several reasons for capacity reduction during an accident. Under nor-
mal conditions, an average time delay before a vehicle starts accelerating following
a leader is half a second. However, during an accident there is a large difference in
times that drivers took to look at the accident location before accelerating. These
results were obtained by Knoop, Hoogendoorn and Van Zuylen (2008) via an-
alyzed video taken by helicopter from accident locations. Most of the vehicles
would accelerate at the usual rate out of the jam, and the shock wave would move
backward. However, it only requires a small fraction of drivers that keep driving
slowly until they reach the accident location to cause large escape times at the lo-
cation of the incident and hence for the low capacity. There is also heterogeneity
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FIG. 7. Accident location. (a) Accident and loop detector locations. (b) Image of the accident from
the roadside camera. The left panel (a) shows the satellite image with the location of the accident
identified (red rectangle) and two loop detectors located (green circles) on the opposite direction
before and after the accident location (credit: Bing Maps). The right panel (b) shows the image of
the truck on fire taken by Illinois Department of Transportation’s roadside camera on the day of the
accident.

in acceleration delays between left lane (closest to accident) and right lane. On
average, in the left lane, cars take longer before accelerating.

Figure 7(a) shows the map location of the accident. Figure 7(b) shows two of
the loop detectors located before and after the accident location from which the
data was collected.

The length of the road segment between two loop detectors is 845 meters and
we discretized it with four cells, with each space step h = 845/4 = 211 meters and
used time step τ = 5 minutes. This combination of time and space step satisfies the
Courant–Friedrichs–Lewy condition so that numerical stability in space and time
is ensured. Further, a five minute interval was chosen since it is a standard interval
over which the measured data is averaged to provide smooth input data. Our initial
prior on road capacity is assumed to be uniform, with qm ∼ U [1440,1560] veh/h,
and we set critical density to ρm = 0.025 veh/m; both are based on empirical ob-
servations of typical ranges for those parameters as shown in Figure 3. To replenish
the parameters (step 3 of the algorithm), we used εqm = 50 veh/h for capacity and
ερm = 0 veh/m for critical density, as there is no learning for this parameter. The
value for εqm is based on empirical observations, that capacity change usually does
not exceed 50 veh/h within a five minute interval.

We have chosen the measurement noise’s standard deviation to be 0.2 × 10−2

veh/m, and standard deviation for the evolution equation error to be equal to
0.1 × 10−2 veh/m. Given that we did not have access to manufacturer’s speci-
fications of the loop detectors, we use a value within the guidelines of the specifi-
cation. The error for the evolution equation was chosen to be consistent with the
results reported in Chu et al. (2011), where authors report that standard deviation
of the LWR model forecast error is usually under 3%, but higher for congested flow
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when compared with observation data from motorway sensors. In our numerical
example, we use 4%.

To address the problem of model identification, we utilize the relation between
free-flow speed, capacity and critical density, namely, vf = qc/ρc. Based on the
data measured on a typical day during off-peak hours, the free-flow speed vf ≈
17 m/s. Our particle weights are regularized by

w
(i)
t = p(yt+1|(θt , φ)(i))ϕ(q

(i)
c /ρ

(i)
c , vf , σvf

)∑N
i=1[p(yt+1|(θt , φ)(i))ϕ(q

(i)
c /ρ

(i)
c , vf , σvf

)] ,

where ϕ is the p.d.f. of the normally distributed variable. The prior error standard
deviation was set at σvf

= 5 m/s. Choice of both vf and σvf
is based on empirical

observations.
Figure 8(a) compares the road capacity learned by the algorithm on the day

of the accident and from the previous day, which was accident free, with simi-
lar weather conditions. Figure 8(b) shows the measured speed by the south loop
detector on both days. There is a time lag of approximately 15 minutes between
traffic flow speed reverts to a normal level and capacity recovers. This time lag
corresponds to three measurements (data is reported every five minutes) and is
explained by the time it takes the algorithm to learn the capacity.

Our algorithm captures the effect of capacity degradation as a result of the ac-
cident. We provide 95% Bayes credible intervals to demonstrate that uncertainty
about the estimate is larger during the normal operating mode and lower during
the periods of capacity degradation and recovery. If we compare the speed plot
and capacity plot in Figure 8(a) and (b), we can see that the slope of the speed

FIG. 8. Comparison of the learned capacity and measured speed on Thursday, May 8th (normal
day) and Friday, May 9th (accident day). (a) Learned capacity of the road segment. (b) Measured
speed at the south loop detector. On both plots the left vertical line identifies the time when accident
happened (6:40 AM) and the second vertical lime corresponds to the time when all of the lanes
reopened at 8:00 AM, according to the news report. The number of particles was chosen N = 5000.
Accident data was plotted using a solid line and normal day with a dashed line.



BAYESIAN ANALYSIS OF TRAFFIC FLOW 1879

curve on an accident day is much steeper than the slope of the learned capacity
curve; it is due to the fact that there is some delay associated with the learning
process. In other words, the algorithm does not learn that the flow regime has re-
covered instantaneously, but rather it takes three to five measurements before it
learns.

Under normal conditions, a full-width freeway lane has a capacity of 2000 pas-
senger vehicles per hour [Transportation Research Board (2010)], with a truck be-
ing counted as 1.5 passenger cars. In Illinois, the loop detectors give reliable data
for the vehicle counts but not for different vehicle classes and it is hard to identify
the share of trucks in the traffic flow; consequently, the flow is measured in vehi-
cles per hour and not in passenger car units per hour. Thus, the learned capacity is
around 1500 veh/h on a normal day, that is consistent with the theoretical estimate
from the highway capacity manual. On the accident day we detect a reduction in
capacity of up to 66%. This is similar to the results of Knoop, Hoogendoorn and
Van Zuylen (2008) who use helicopter images from Netherlands roads to observe
a 50% reduction of capacity, due to the reduction of the discharge rate at the bot-
tleneck (accident location) due to rubbernecking. A larger drop in our case might
be explained by regional differences in driving style. American drivers might be
driving more carefully in the presence of an accident, and by the fact that a truck on
fire is more “spectacular” than a regular vehicle crash, with people spending more
time to observe. Such a drop in the flow rates is remarkable given the absence of
any physical obstacles.

5. Calibration experiment. The previous example illustrates a drop in ca-
pacity due to an accident. However, we do not know if the drop size is properly
estimated since the ground truth is unobserved. To demonstrate that our algorithm
properly captures state and parameter dynamics, we must use simulated data with a
realistic traffic flow pattern. We simulate data that mimics traffic flow on Chicago’s
I-55 highway. Figure 9 below shows traffic patterns on February 6th, 2009 (Friday)
and all five work days of the following week (week of February 9th). Several con-
clusions can be drawn from the traffic patterns:

(i) Break down start times are different from day to day, even on the same day of
the week (Fridays) of different weeks.

(ii) The duration of the flow at the lowest speed is different, with Wednesday
being the worst and Thursday the best.

(iii) The breakdown period is shorter than the recovery period.

The latter point follows from the asymmetric shape of the triangular fundamental
diagram, where the free-flow speed vf (speed at which drivers arrive to the end
of the congestion queue) is higher than the backward wave propagation speed w

(speed at which drivers depart from the front of the congestion queue).
Our road segment is 1.5 kilometers long and we choose a time horizon of 1600

seconds. Figure 10 shows our road segment model and its discretization scheme
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FIG. 9. Chicago I-55 Work Day Morning Peak Traffic Patterns. The x-axis corresponds to the time
of the day.

with five internal cells and 2 boundary cells. Our discretization grid cell is of length
h = 300 meters and time interval of τ = 5 seconds. The initial conditions are set
to be uniform traffic density of 0.01 veh/m.

To mimic a typical morning commute pattern, we have chosen boundary condi-
tions so that our simulated data set begins with a free-flow traffic regime followed

FIG. 10. Simulated stretch of a freeway. The arrow shows the direction of the traffic flow. It is
assumed that measurements from circled first and last cells of the domain are available.
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FIG. 11. Boundary conditions used to produce simulated data. (a) Left (cell 0). (b) Right (cell 6).

by a breakdown and then recovery. The breakdown starts 3 minutes into the sim-
ulation and the recovery starts at the 10 minute mark. In the left boundary cell
(cell 0) we have a constant vehicle density followed by a drop in density to zero;
see Figure 11(a). It mimics the constant inflow of morning commuters that even-
tually stops. On the right boundary cell (cell 6) we have uncontested density at
the beginning, followed by density of 0.145 veh/m, which represents heavily con-
gested traffic flow, and followed by a drop in density to zero; see Figure 11(b).
The right boundary condition corresponds to a location where an on-ramp merges
into a highway. When the flow on the ramp is high, a bottleneck is created at the
merge location. The boundary conditions are shown in Figure 11. Over the course
of simulation we changed the traffic flow parameters. Capacity and critical density
parameters used to produce simulated data are shown in Figure 13.

To simulate the measured data, we compute the solution of the LWR model for
the measurement cells 1 and 5 and add noise to it. We have chosen the noise stan-
dard deviation to be 0.8 × 10−2 veh/m, and standard deviation for the evolution
equation error to be equal to 0.1 × 10−2 veh/m.

Figure 12 compares the estimated traffic density in cell 3 with the true simulated
traffic density for two different scenarios. In the first scenario we used the parame-
ter learning step of the algorithm and in the second scenario we kept capacity and
critical density parameters fixed. We can see the sensitivity to parameter learning.
Without learning, the density profile is shifted in a meaningful way. Clearly, full
Bayesian parameter learning corrects this bias.

To illustrate the dynamics of parameter learning, we change the LWR param-
eters ρc and qc several times throughout the simulation, as mentioned above. In
principle, we could also directly model φt with its own state evolution.

Figure 13 shows the expected value and 95th percentile of the filtered posterior
distribution of the model parameters. We can see, as expected, there is a certain
delay between the underlying parameter change and the filtering algorithm cap-
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FIG. 12. Estimated density at cell 3. (a) With parameter learning. (b) Without parameter learning.
The blue line on both plots is ground truth and the dotted line is the filtered value computed by the
algorithm. The number of particles was chosen N = 1000.

tures the change. Change in capacity is picked up faster than change in critical
density.

In Section 2.6 we showed that the distribution over traffic density is a mixture
distribution at the locations when the density in the left cell is below critical density
and the density in the right cell is above. To further demonstrate this fact, Figure 14
shows the distribution over density at cell 3 before and after the shock wave travels
through the cell.

Figure 12 shows that a shock wave travels through cell 3 between t = 600 and
t = 700. We can see that the distribution over state is unimodal at those time steps.
However, in between, it is a mixture.

Appendix B develops the projection operator H and the necessary Kalman re-
cursions for this and the following examples.

FIG. 13. True and learned values of parameters and 90% confidence interval band. (a) Critical
density learning. (b) Capacity learning.
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FIG. 14. Uncertainty distribution about traffic flow density estimated by filtering algorithm at cell
3. Panel (a) shows distribution at the time right before the shock wave reaches the cell. Panels (b)–(e)
show the time when the shock wave travels through the cell. Panel (f) shows distribution at the time
after the shock wave moves beyond the cell. (a) t = 565, (b) t = 615, (c) t = 645, (d) t = 680,
(e) t = 690, (f) t = 700.

6. Discussion. In this paper we analyze the LWR traffic flow model with ap-
plication to Chicago’s interstate I-55 highway. We show how particle filtering and
learning provides a real-time estimate of the density states. We sequentially learn
the parameters of the fundamental diagram which is the central input for the LWR
dynamics of traffic flow. Our results have a number of important implications for
transportation system management applications. In particular, a real-time assess-
ment of model states and parameters corrects the biases in estimating the current
density of states used for forecasting.

Our methodology quickly handles the drop in capacity due to a major traffic
accident on Chicago’s interstate I-55 highway. We also use a calibration study
to show how close a filtered state vector is to the true one. When measurements
are sparse in space and the parameters are fixed, pure filtering would misestimate
the current state. However, our approach corrects this by incorporating parame-
ters learning simultaneously. This leads to an accurate estimation of traffic density.

There are a number of possible avenues for a future approach. First, the LWR
model is only valid when the relationship between flow and density is time inde-
pendent. Second, the model does not describe traffic behavior within a queue or
when particular instabilities such as stop and go traffic exist. Third, the model is
not realistic for free-flowing traffic, as vehicle bypassing that happens frequently
in this regime is not captured. Although, from a system management perspective,
free-flow traffic is not an issue, extending our approach to higher order traffic flow
models will lead to improvements in estimation.
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Developing methods to incorporate model monitoring is an important area of
future research. For example, alternative models might correspond to different
assumptions about the shape of the fundamental diagram. We can statistically
discriminate two models using a sequential likelihood ratio (Bayes factor), Bt ,
given by

Bt = p(y1, . . . , yt |M1)

p(y1, . . . , yt |M0)
,

where p(y1, . . . , yt |Mi) = ∏t
j=1 p(yj |y1:j−1,Mi). This is simply a product of

marginal predictive densities, which the particle filter approximates by

pN(yj |y1:j−1,M) = 1

N

N∑
i=1

p
(
yj |θi

j−1,M
)
.

Another avenue is to extend our particle algorithm to a transportation network with
simultaneous tracking of multiple segments. This will make our methodology ap-
plicable to real-life transportation networks of a large metropolitan area. Within
our framework, it is feasible to filter over the boundary conditions. This also ap-
plies in the case of GPS probes, where inferring the boundary conditions is a hard
task, since location and time of the measurement are random and one rarely ob-
serves the boundary conditions.

APPENDIX A: DERIVATION OF FLOW MODEL

Let q(x, t), ρ(x, t) and v(x, t) denote traffic flow, density and speed at position
x at time t . Kinematic wave theory establishes a relationship between density ρ

and flow q , which is known as the fundamental diagram given by the functional
equation q(x, t) = q(ρ(x, t)) where q(x, t) is flow. The conservation law implies
that with no inflow or outflow

∂ρ(x, t)

∂t
+ ∂q(x, t)

∂x
= 0.(A.1)

Combined with fundamental diagram function, we obtain the equation for
ρ(x, t):

∂ρ(x, t)

∂t
+ ∂q(ρ)

∂ρ

∂ρ(x, t)

∂x
= 0.

The term w = ∂q(ρ)/∂ρ is called the wave velocity. To get a more intuitive under-
standing of the problem, it is convenient to use the cumulative flow N(x, t), the
number of vehicles that pass location x by time t . Then the conservation law can
be derived by evaluating

∂N

∂t
= q(x, t),

∂N

∂x
= −ρ(x, t).
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Assuming that N(x, t) is smooth,

∂2N

∂x ∂t
= ∂2N

∂t ∂x
,

we get the conservation law (A.1). In practice, the function N has discontinuity of
the first kind (first derivative), however, the conservation law holds in the case of
discontinuities as long as N(x, t) is continuous along the shock path. The method
of characteristics can be used to solve the equation (A.1). Specifically, from (A.1)
ρ(x, t) is constant (dρ/ds = 0) along a characteristic curve (wave) described by

dt

ds
= q ′(ρ).

Eliminating s gives

ρ(x, t) = ρ
(
x − q ′(ρ0)t

)
.

Thus, density is constant along the straight line with slope dq/dρ (characteristic
line) and the slope is nothing but a shock propagation speed. For a free-flow speed
the shock moves forward and for jammed traffic it moves backward. In Newell’s
case the forward shock propagation speed is vf and the backward shock propaga-
tions speed is given by w.

APPENDIX B: DERIVATION OF KALMAN RECURSION

Measurements are taken at the first and last cells of the road segment and noise
is independently distributed, with covariance structure Vt = V = vI2 and Wt =
W = wI5. The operator Ht and the Kalman gain matrix Kt are of the following
form:

Ht = H =
(

1 0 0 0 0
0 0 0 0 1

)
and Kt = K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w

v + w
0

0 0
0 0
0 0

0
w

v + w

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This leads us to the following Kalman updates:

Ct+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w

(
1 − w

v + w

)
0 0 0 0

0 w 0 0 0
0 0 w 0 0
0 0 0 w 0

0 0 0 0 w

(
1 − w

v + w

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

μt+1 =
(
μ

f
1 + w(y1 − μ

f
1 )

v + w
,μ

f
2 ,μ

f
3 ,μ

f
4 ,μ

f
5 + w(y2 − μ

f
5 )

v + w

)T

.
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The variance of the predictive likelihood distribution is given by

HWHT + V =
(

v + w 0
0 v + w

)
.
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