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Conventional approaches to statistical inference preclude structures that
facilitate incorporation of supplemental information acquired from similar
circumstances. For example, the analysis of data obtained using perfusion
computed tomography to characterize functional imaging biomarkers in can-
cerous regions of the liver can benefit from partially informative data col-
lected concurrently in noncancerous regions. This paper presents a hierarchi-
cal model structure that leverages all available information about a curve, us-
ing penalized splines, while accommodating important between-source fea-
tures. Our proposed methods flexibly borrow strength from the supplemental
data to a degree that reflects the commensurability of the supplemental curve
with the primary curve. We investigate our method’s properties for nonpara-
metric regression via simulation, and apply it to a set of liver cancer data. We
also apply our method for a semiparametric hazard model to data from a clin-
ical trial that compares time to disease progression for three colorectal cancer
treatments, while supplementing inference with information from a previous
trial that tested the current standard of care.

1. Introduction. Statistical investigations begin by determining which
sources(s) of information will be used to answer the motivating questions and
generate hypotheses for future exploration. Conventional approaches to statisti-
cal inference preclude structures that facilitate incorporation of partially infor-
mative data, imposing polarity on the data selection process. Putatively relevant
supplemental data acquired from broadly similar therapeutic interventions, patient
cohorts, previous investigations or biological processes are often either excluded
from statistical analysis or treated as exchangeable with the primary data. In oncol-
ogy, prospective studies designed to evaluate the performance of an experimental
therapy usually ignore historical information about the control therapy and limit
enrollment to patients presenting lesions with a particular histological subtype,
grade or performance status, or who are naïve to prior therapy. In contrast, studies

Received March 2014; revised March 2015.
1Supported in part by NCI Grant 1-R01-CA157458-01A1.
2Supported in part by Cancer Center Support Grant (CCSG) (P30 CA016672).
Key words and phrases. Bayesian hierarchical model, clinical trials, colorectal cancer, commen-

surate prior, computed tomographic imaging, evidence synthesis, mixture priors, penalized splines,
proportional hazards, semiparametric methods.

1549

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/15-AOAS840
http://www.imstat.org


1550 T. A. MURRAY, B. P. HOBBS AND B. P. CARLIN

with more liberal information inclusion rules, such as intention-to-treat designs,
often pool information from potentially heterogeneous sources or adjust for this
potential heterogeneity using simple linear regressors.

Ignoring relevant, supplemental sources of information reduces the repro-
ducibility and scope of the primary study. On the other hand, using the supple-
mental information while neglecting to account for heterogeneity between the
sources of information obscures understanding of the complex underlying mech-
anisms that produced the primary data and may lead to severely biased infer-
ence. Relaxing this dichotomy would improve the efficiency of the experimen-
tal process and enable investigators to implement statistical models that use all
available information while accommodating important between-source features.
Several models have been proposed for incorporating partially informative sup-
plemental data. Pocock (1976) used generalized linear models with static, data-
independent borrowing using a prespecified amount of between-source variability.
Ibrahim and Chen (2000) proposed data-independent or dynamic nonhierarchi-
cal methods for partially weighting likelihoods. Bayesian [Smith, Spiegelhalter
and Thomas (1995)] and frequentist [Doi, Barendregt and Mozurkewich (2011)]
methods using hierarchical modeling have been developed for estimating between-
source variability for univariate observables or repeated measures with generalized
linear relations among covariates.

Bayesian hierarchical models facilitate dynamic partial pooling of between-
source information and flexibly estimate the extent of borrowing. Here the goal
is limiting bias for estimating primary effects when between-source heterogene-
ity occurs, while improving efficiency when approximate coherence, or commen-
surability, occurs; see Hobbs, Sargent and Carlin (2012) for generalized linear
mixed models, and Hobbs, Carlin and Sargent (2013) and Murray et al. (2014) for
piecewise-exponential time-to-event models. In Section 2 we discuss these meth-
ods, which can be used to borrow strength from supplemental data in parametric
models for regression coefficients and other univariate parameters. We then de-
velop a Bayesian hierarchical model structure to leverage supplemental informa-
tion more generally, including for both nonparametric regression and semiparamet-
ric hazard models with penalized splines. The literature appears devoid of general
methods for flexibly borrowing strength from supplemental data in semi- and non-
parametric models for a group of related parameters that characterize a complex
object (e.g., a curve or surface).

Two oncological applications motivate our methodological developments. The
first, from diagnostic radiology, involves estimating prognostic functional imag-
ing biomarkers acquired using perfusion computed tomography (CT) in cancerous
and cancer-free liver tissue. Perfusion CT is an emerging technology that enables
observation and quantification of characteristics pertaining to the passage of fluid
through blood vessels. Researchers have developed physiological models to quan-
tify a variety of perfusion characteristics derived from analysis of the distribution
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of contrast enhancement in tissue acquired using repeated CT scans during intra-
venous administration of contrast medium. Investigators have used the technology
in a number of organs and tumors, including prostate, colorectal, head and neck,
lung and liver. Miles and Griffiths (2003) review the clinical relevance of perfusion
CT.

Our application considers three characteristics: permeability-surface area prod-
uct (PS), blood volume (BV), and blood flow (BF). Each characteristic is measured
at 7 to 13 acquisition times between 11 and 95 seconds following contrast injec-
tion. Data from 16 individuals comprise a total of 25 regions containing pathology-
verified metastases to the liver from neuroendocrine tumors (i.e., cancerous liver
tissue), and a total of 27 regions consisting of noncancerous liver tissue. PS and BF
are rates measured as milliliters per minute per 100 grams of liver tissue (ml/min
per 100 g), whereas BV is a volume measured as milliliters per 100 grams of liver
tissue (ml per 100 g). Figure 1 displays the observed perfusion CT (CTp) curves
along with Loess estimates of the average CTp curve for each characteristic in
each tissue region. Characterization of the perfusion characteristics in cancerous
tissue has implications for constructing biomarkers to assist in treatment moni-
toring, prognostication and pathophysiological understanding of metastatic tumor

FIG. 1. Individual-by-region perfusion CT (CTp) curves are displayed by tissue region (“Individual
CTp curves”) for permeability-surface area product (PS), blood volume (BV) and blood flow (BF),
over acquisition durations between 11 and 95 seconds after contrast injection. The dots mark actual
observations. The thick “Average CTp curve” is a Loess estimate that ignores potential clustering.
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vasculature. It is important that the acquisition duration cover the range of CTp
curve instability, but once the curve has stabilized, the scan can be terminated.
To limit radiation exposure and cost, the acquisition duration should be minimized
[Ng et al. (2013)]. Critically, because the tissue type is unknown prior to diagnosis,
any proposed acquisition period must ensure stable quantification of CTp charac-
teristics for both types of tissue before CTp can be used for detection of metastatic
sites. Though nonexchangeable, the perfusion CT data obtained in cancer-free liver
tissue may inform the shape and stabilization time of the corresponding CTp curve
in cancerous tissue. Figure 1 shows substantial heterogeneity in the shapes of the
average CTp curves by tissue region for PS, whereas for BV and BF, the average
CTp curves are more similar.

Our second application, from colorectal cancer, involves estimating progression-
free survival (PFS) with data from two consecutive randomized phase III colorectal
cancer trials, reported by Saltz et al. (2000) and Goldberg et al. (2004). Both trials
used PFS to assess the efficacy of various treatment regimens for patients with pre-
viously untreated metastatic colorectal cancer; disease progression was defined as
a 25% increase in measurable tumor size, presence of a new lesion or death. The
initial trial [Saltz et al. (2000)] compared three treatment regimens: 5-Fluorouracil
and Leucovorin, Irinotecan alone, and Irinotecan and bolus Fluorouracil plus Leu-
covorin (IFL). The results indicated that the IFL regimen was significantly more
efficacious than the other two regimens, and IFL became the “standard of care”
leading into the subsequent trial [Goldberg et al. (2004)], which then compared
an identical IFL regimen with two novel regimens: Oxaliplatin with infused Fluo-
rouracil plus Leucovorin (FOLFOX), and Irinotecan with Oxaliplatin (IROX).

Figure 2 shows that the PFS curves for the IFL regime are commensurate in the
Saltz and Goldberg trials, with the PFS curve in the Goldberg trial tracking just
above that of the Saltz trial, though within the 95% CIs for nearly all of follow-up.
Moreover, Figure 2 suggests that in the Goldberg trial FOLFOX is superior to both
IROX (log-rank test p-value of 0.006) and IFL (log-rank test p-value < 0.001),
and that IFL and IROX perform similarly (log-rank test p-value of 0.404). The
efficiency for estimating the PFS curve of the IFL regimen in the Goldberg trial
may be improved by using nonexchangeable, yet relevant data on the IFL regimen
in the Saltz trial.

The commonality between our two motivating examples is the availability of
supplemental information about unknown curves that may aid our inference in the
primary investigation (i.e., CTp curves among tissue types, and PFS curves of IFL
among clinical trials). In Section 3 we investigate the borrowing properties via sim-
ulation of the proposed hierarchical model structure for nonparametric regression
using penalized splines, and then we analyze the perfusion CT data. In Section 4
we analyze data from the colorectal cancer clinical trials using the proposed hier-
archical structure for a semiparametric hazard model. In Section 5 we close with a
discussion and propose directions for future work.
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FIG. 2. Kaplan–Meier estimates of PFS for the IFL regimen in the Saltz trial (along with 95% CIs),
and the IFL, FOLFOX and IROX regimes in the Goldberg trial.

2. Leveraging supplemental information. We restrict our attention to two
Bayesian methods for leveraging supplemental information, power priors [Ibrahim
and Chen (2000)] and commensurate priors [Hobbs et al. (2011)]. In general,
Bayesian models consist of a likelihood for the data and prior specifications for
the parameters in the likelihood [see, e.g., Carlin and Louis (2009)]. For both these
modeling approaches, the primary and supplemental likelihoods are assumed to
have the same structure (e.g., both Gaussian), and we denote them by L(θ |D) and
L(θ0|D0), respectively. As a result, the supplemental parameter θ0 is analogous to
the primary parameter θ , and information about θ0 can be leveraged to aid poste-
rior inference about θ .

2.1. Existing methods. Power priors assume the sources of information are ex-
changeable (i.e., θ ≡ θ0) and downweight the supplemental likelihood by raising
it to a prespecified power a0 ∈ [0,1]. This strategy works because raising the sup-
plemental likelihood to the power a0 diffuses it. In the extreme case where a0 = 0,
the downweighted supplemental likelihood is a noninformative constant. Formally,
the posterior arises as

p(θ |D,D0) ∝ L(θ |D)L(θ |D0)
a0π(θ).(1)

Alternatively, a0 can be modeled as another unknown parameter in the model
[Ibrahim and Chen (2000)]. Power priors are extremely general, so nothing ex-
plicitly prevents their use in any modeling context. However, they employ a single
parameter (a0) to control between-source borrowing, thereby making differential
borrowing among components of θ infeasible unless L(θ |D) has a convenient fac-
torization, as it generally does not. This is undesirable because the supplemental
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data may provide relevant information for only a subset of θ . Furthermore, when
a0 is assumed unknown, power priors tend to excessively downweight the sup-
plemental likelihood, even when D0 and D are identical [Neelon and O’Malley
(2010)].

Commensurate priors do not assume the sources of information are exchange-
able (i.e., θ �≡ θ0), and instead specify a hierarchical model where the posterior
arises as

p(θ , θ0,η|D,D0) ∝ L(θ |D)L(θ0|D0)π(θ |θ0,η)π(η)π(θ0).(2)

The commensurate prior, π(θ |θ0,η), “centers” θ about θ0, and η controls
between-source borrowing to reflect the commensurability of the two parame-
ters. In practice, π(θ |θ0,η) is defined so that E[θ |θ0,η] = θ0 and Var[θ |θ0,η] is
decreasing in η.

For a unidimensional real-valued parameter θ , a useful approach takes θ |θ0, η ∼
N (θ0, η

−1), a Gaussian distribution with mean θ0 and precision η. Estimation of η

is inherently difficult, but feasible by inducing sparsity over the precision domain
using a “spike-and-slab” prior for η [Hobbs, Sargent and Carlin (2012)]. The spike-
and-slab prior has a mixture density

π(η) ≡ (1 − p0)U(η|sl, su) + p0δR(η),(3)

where 0 ≤ sl < su << R and p0 ∈ [0,1] are prespecified, and δR(η) is one at
R and zero otherwise. The distribution in (3) is locally uniform on the “slab,”
(sl, su), with probability (1 − p0), and places probability mass p0 at the “spike,”
R, otherwise.

We prefer to modify the commensurate prior construction suggested by Hobbs,
Sargent and Carlin (2012) as

θ |θ0, τ, ι ∼ [
N

(
θ0, τ

−1)](1−ι)[N (
θ0,R−1)]ι

,
(4)

ι ∼ Bern(p0) and τ ∼ U(sl, su),

where Bern(p0) denotes a Bernoulli distribution with Pr(ι = 1) = p0. Therefore,
the commensurate prior in (3) induces a two-part mixture prior distribution on θ

that consists of a highly concentrated component [i.e., N (θ0,R−1)] and a rela-
tively diffuse component [i.e., N (θ0, τ

−1)], both centered at θ0. The model in (4)
has parallels to Bayesian variable selection methods, in which the two-part mix-
ture prior for a regression coefficient has one component heavily concentrated
about zero and the other vague [see, e.g., George and McCulloch (1997)]. Hence,
the commensurate prior facilitates selective borrowing by inheriting the selective
shrinkage property of the spike-and-slab distributions used in Bayesian variable
selection. In particular, the commensurate prior strongly shrinks θ to θ0 when ev-
idence indicates that this difference is small, thereby improving efficiency, and
minimally affects θ otherwise, thereby limiting bias.
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We specify the spike so that if θ |θ0 ∼ N (θ0,R−1), θ deviates negligibly
from θ0. On the other hand, we specify the slab to contain small values that corre-
spond to modest shrinkage of θ toward θ0. Hence, a N (θ0, s

−1
u ) prior for θ will be

weakly informative. The tails of the prior distribution in (4) are jointly controlled
by sl and su: when sl ≈ 0, smaller values of su provide a prior with heavier tails.
In our experience, posterior inference on θ is insensitive to modest shifts in these
hyperparameters, so we suggest specifying sl near zero, with su small and R large
relative to the magnitude of a meaningful difference between θ and θ0. Posterior
inference can be sensitive to the fourth hyperparameter, p0, the prior probability
of effective equality between θ and θ0. We recommend choosing the value for p0
to deliver satisfactory operating characteristics at the anticipated sample size, such
as mean-squared-error properties over a range of likely true differences between θ

and θ0; see Murray et al. (2014).
Specifying a value for su that is too large can result in a model that is not robust

to between-source heterogeneity, whereas specifying a value for R that is too small
will result in a model that gains little posterior precision for θ even when D0 and D
are equivalent. Specifying too small a value for p0 may also result in a model that
borrows little when D0 ≡ D, whereas specifying too large a value for p0 may result
in a model that borrows too much (resulting in unacceptable bias) in the presence
of substantial between-source heterogeneity. Of course, p0’s influence on posterior
inference diminishes as the primary sample size increases.

2.2. Generalized mixture commensurate priors. The general model structure
described in (2) can accommodate a latent precision parameter (component of η)
for each component of θ . Therefore, the extent to which the supplemental data
influence estimation of the primary effects can be allowed to differ among the
components of θ , yielding flexibility and reducing bias. However, assuming mu-
tual independence between the components of η allows strength to be borrowed
from the supplemental source(s) differentially among the components of θ , re-
ducing efficiency. Though this may be sensible, differential borrowing among the
components of θ may not always be appropriate.

Suppose β = (β1, . . . , βK) is a subset of θ that characterizes a feature in the pri-
mary data (e.g., the shape of a CTp curve), with an analogous definition for β0. We
may wish to borrow from the supplemental data for β0 to a degree that reflects its
coherence with β in its entirety, rather than case-by-case for each βk . Moreover, β
(and β0) may conventionally be assigned a prior that induces smoothness. Ideally,
(2) will inherit the smoothness properties of the conventional prior and simultane-
ously borrow similar amounts for related subgroups of θ (i.e., β). We propose to
model

βk|ιk, βk,0 ∼ [
π∗(βk|βk,0)

]1−ιk
[
π(βk|βk,0)

]ιk ,
(5)

ιk|ν ∼ Bern(ν), ν ∼ B(a1, a2), β0,k ∼ π∗(β0,k),
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where B(a1, a2) denotes a beta distribution with mean a1
a1+a2

and the specifica-
tions for π∗ mirror a conventional analysis of these data. To facilitate borrowing
of strength, we take π(βk|β0,k) in (5) to be heavily concentrated about β0,k ; we
provide exact specifications for each application later. To borrow similar amounts
of strength for each component of β , we assume the ιk are identically distributed
with Pr(ιk = 1) = ν. Thus, the resulting prior is composed of K two-piece mix-
tures and generalizes the commensurate prior defined in (4). Hereafter, we refer to
the general prior structure defined in (5) as a generalized mixture commensurate
(GMC) prior.

3. GMC priors in nonparametric regression analysis. Suppose y =
(y1, . . . , yN) is a real-valued variable (e.g., log blood flow, as in Figure 1) that
depends on a continuous covariate t = (t1, . . . , tN) (e.g., time, as in Figure 1), and
that we model yi ∼ N (φ(ti), σ

2). Often primary interest lies in the shape, deriva-
tives or some other function of φ, and φ requires a smooth but flexible nonparamet-
ric specification, as opposed to a parametric linear specification φ(t) = β0 + β1t .
Penalized splines are a practical choice for modeling φ; see Ruppert, Wand and
Carroll (2003), Chapters 3 and 14. There are many ways to formulate a penalized
spline. Low-rank thin-plate (LRTP) splines are appealing since they are defined by
tractable radial basis functions and tend to exhibit fast Markov chain Monte Carlo
(MCMC) convergence properties in a Bayesian context relative to truncated basis
splines [Crainiceanu, Ruppert and Wand (2005)]. B-splines are another reasonable
Bayesian option because they too tend to exhibit fast MCMC convergence, but
they rely on a recursive algorithm to define the basis functions, making them less
tractable than LRTP splines [Eilers and Marx (1996)]. Our method will work with
either LRTP or B-spline formulations for φ, and we do not anticipate substantial
differences in the behavior of our method under either formulation. Hereafter, we
focus on a LRTP cubic spline specification for φ.

Without loss of generality, we take t ∈ [0,1] and model

φ(t;β) = β0 + β1t +
K∑

k=2

βk

(|t − t̃k−1|3 − |t̃k−1|3)
,(6)

where t̃ = (0 = t̃0 < t̃1 < · · · < t̃K−1 < t̃K = 1) is a generic partition with K in-
tervals. We discuss this choice later. Typically, a LRTP spline model is formulated
as

φ
(
t;β∗) = β∗

0 + β∗
1 t +

K∑
k=2

β∗
k |t − t̃k−1|3;(7)

however, in (7), β∗
0 is not an intercept because φ(0;β∗) = β∗

0 + ∑K
k=2 β∗

k |t̃k−1|3.
We prefer the modified LRTP (mLRTP) model defined in (6), because it simplifies
interpretation and prior elicitation when the regression includes an intercept, which
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will be the case for the CTp data, and it retains an equivalent interpretation of
(β1, . . . , βK) and (β∗

1 , . . . , β∗
K). In the sequel, we denote β(−0) = (β1, . . . , βK),

that is, the vector β with β0 omitted.
A penalized spline requires prespecification of a fine partition t̃, and smooths

via the prior, whereas a free-knot spline uses complex sampling algorithms (e.g.,
reversible-jump MCMC) to sample over all possible partitions. We prefer penal-
ized splines, since they are computationally much simpler and have proven to be
competitive with free-knot splines when the temporal variation of φ is smooth
[Ruppert, Wand and Carroll (2003), Section 3.16]. Wand (2000) reviews methods
for free-knot spline estimation; we do not consider this approach further. To select
t̃ for a penalized spline, we consider a set of values for K with either equally-
spaced or quantile-spaced t̃k’s, and select the partition that has low posterior mean
deviance and deviance information criterion (DIC) relative to the other partitions
considered [Spiegelhalter et al. (2002)].

Following Crainiceanu, Ruppert and Wand (2005), without supplemental data,
we complete the Bayesian specification of (6) by placing vague priors on β0 and
β1, and a N (0, σ 2

β�−) prior on (β2, . . . , βK)′, where the (j, k)th entry of � is

defined as |t̃j−1 − t̃k−1|3, for j, k = 2, . . . ,K . In practice, we apply the transfor-
mations b0 = β0, b1 = β1, (b2, . . . , bK)′ = �1/2(β2, . . . , βK)′, and σ 2

b = σ 2
β , and

then complete the model specification by assuming

π∗(bk) ≡ N
(
bk|0,104)

for k = 0,1,

π∗(bk|σb) ≡ N
(
bk|0, σ 2

b
)

for k = 2, . . . ,K and(8)

π∗(σb) ≡ U(σb|0.01,100).

The prior in (8) smooths φ by preferring values for (b2, . . . , bK) near zero a priori.

3.1. GMC prior specification. With supplemental data [y0 = (y0,1, . . . , y0,n0),
t0 = (t0,1, . . . , t0,n0)], we also assume y0,i0 |t0,i0 ∼ N (φ0(t0,i0), σ

2
0 ), for i0 =

1, . . . , n0. To ensure that φ and φ0 are analogous, we use the same partition t̃ for φ0,
and model φ0(t;β0) using (6) by replacing β with β0. We apply the transformation
b0,k = β0,k , for k = 0,1, and (b0,2, . . . , b0,K)′ = �1/2(β0,2, . . . , β0,K)′, and use
the prior specifications π∗(b0,k) ≡ N (b0,k|0,104), for k = 0,1, π∗(b0,k|σb0) ≡
N (b0,k|0, σ 2

b0
) for k = 2, . . . ,K , and π∗(σb0) ≡ U(σb0 |0.01,100).

To borrow flexibly for the shape of φ from the supplemental data for φ0, we
apply the GMC prior specification defined in (5) to b(−0) = (b1, . . . , bK) given
b0,(−0) = (b0,1, . . . , b0,K). We assume

π(b(−0)|b0,(−0), ι(−0), σb)

= [
π∗(b1)

](1−ι1)
[
π(b1|b0,1)

]ι1 K∏
k=2

[
π∗(bk|σb)

](1−ιk)
[
π(bk|b0,k)

]ιk ,
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where ι(−0) = (ι1, . . . , ιK), and π∗(b1), π∗(bk|σb) and π∗(σb) are defined in (8).
We set π(bk|b0,k) ≡ N (bk|b0,k,R−1

b ), for k = 1, . . . ,K , where Rb is a prespec-

ified large value. We then specify ιk|ν iid∼ Bern(ν) and ν ∼ B(a1, a2) with fixed,
known hyperparameters a1 and a2 that reflect our prior opinion about the rele-
vance of the supplemental data for the shape of φ.

To allow differential borrowing for the intercept versus the shape of φ, we
specify an independent commensurate prior distribution for b0 given b0,0 follow-
ing (4). We define π(b0|b0,0, ι0, τ ) ≡ [π∗(b0|b0,0, τ )](1−ι0)[π(b0|b0,0)]ι0 , where
π∗(b0|b0,0, τ ) ≡ N (b0|b0,0, τ

−1) and π(b0|b0,0) ≡ N (b0|b0,0,R−1). We then
specify τ ∼ U(sl, su) and ι0 ∼ Bern(p0), where sl , su, R and p0 are prespeci-
fied following the guidance in Section 2. Taken together, the full posterior arises
as

p(b,b0, σb, σb0, ι, ν, τ |D,D0)

∝ L(b|D)L(b0|D0)π(b0|b0,0, ι0, τ )π(ι0)π(τ )π∗(b0,0)
(9)

× π(b(−0)|b0,(−0), ι(−0), σb)π(ι(−0)|ν)π(ν)π∗(σb)

× π∗(b0,(−0)|σb0)π
∗(σb0).

3.2. Simulation assessment. We now investigate via simulation the borrowing
properties of the GMC prior model in (9) for nonparametric regression. To do
so, we sample yi |ti ∼ N {μ(ti), σ

2}, i = 1, . . . ,N , where μ(t) = 5t sin{5t}, and
sample y0,i0 |t0,i0, d ∼ N {μ0(t0,i0 |d), σ 2

0 }, i0 = 1, . . . ,N0, where μ0(t |d) = (5 +
d)t sin((5 + d)t) and d ∈ [0,5]. Hence, the primary data always have the same
true mean structure, and the supplemental data have a mean structure that deviates
from that of the primary according to the value of d , the discordance parameter.
When d = 0, the two curves are the same, and as d increases, the supplemental
curve has increasingly greater curvature than the primary curve. Figure 3 shows
curves for selected values of d .

In each run, we sample d uniformly from the set {0, 0.05, 0.10, 0.20, 0.35, 0.50,
0.75, 1, 1.50, 2, 3, 4, 5}. Given d , we then generate primary and supplemental
data sets with N = N0 = 50, error variances σ 2 = σ 2

0 = 1, and equally spaced t

and t0 values over [0,1]. For each data set pair, (D = (y, t),D0 = (y0, t0)), we

FIG. 3. Mean curves for the supplemental data for a subset of discordance parameter (d) values.
The mean curve for the primary data is denoted by the solid line (i.e., d = 0).
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fit the GMC prior model developed in Section 3.1. We use the mLRTP model
defined in (6) with K = 10 and t̃ spaced equally over [0,1] for both φ0(t0;β0) and
φ(t;β). After preliminary investigation, we set sl = 0, su = 2, R = 2000, p0 =
0.50, and π(ν) ≡ B(ν|0.50,0.50). The latter two choices represent an indifferent
prior opinion about the relevance of the supplemental data for both the shape and
the intercept of φ. We choose to place an extremely vague yet indifferent prior
on ν to allow the primary and supplemental data to have substantial influence on
whether to borrow for curve shape.

We used the R2jags package to call JAGS from R, and ran two chains for
20,000 iterations of burn-in, followed by 200,000 iterations for posterior estima-
tion. We also fit the mLRTP model defined in (6) with prior specifications de-
scribed in (8) to the primary data alone, as well as to the data set obtained by
simply pooling the primary and supplemental data. These models feature lower
MCMC autocorrelation, and thus required only two chains with 2000 iterations
of burn-in, followed by 20,000 iterations for posterior estimation. These choices
reflect preliminary investigations to ensure acceptable MCMC convergence and
relatively small MC standard errors for the intercept and functional effect coeffi-
cients. Estimation of the GMC model took about 45 seconds, whereas estimation
of each comparison model took about 5 seconds.

To evaluate the three models, we calculated four criteria at each run: mean
error (ME), root-mean-square error (RMSE), mean pointwise credible interval
width (CrIW), and mean pointwise coverage probability (CP). Alternatively, we
could calculate simultaneous confidence bands following Krivobokova, Kneib and
Claeskens (2010), Section 3. We define the four criteria as

ME
(
d(m)) = N−1

N∑
i=1

[
φ̂

(
ti |d(m)) − μ

(
ti |d(m))],

RMSE
(
d(m)) =

{
N−1

N∑
i=1

[
φ̂

(
ti |d(m)) − μ

(
ti |d(m))]2

}1/2

,

CrIW
(
d(m)) = N−1

N∑
i=1

[
φ̂0.975

(
ti |d(m)) − φ̂0.025

(
ti |d(m))],

CP
(
d(m)) = N−1

N∑
i=1

I
{
μ

(
ti |d(m)) ∈ [

φ̂0.025
(
ti |d(m)), φ̂0.975

(
ti |d(m))]},

for m = 1, . . . ,M , where φ̂(t |d(m)) denotes the posterior mean estimate for
φ(t |d(m)), and φ̂q(t |d(m)) denotes the qth quantile posterior estimate of φ(t |d(m))

in the mth run. We then compare the sampling average of each criterion over
the M simulated data set pairs as a function of d , the discordance parameter.
Specifically, we visually compare Loess estimates of each evaluation criteria as
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FIG. 4. Simulation assessment of the GMC prior spline model (solid) versus a conventional spline
model fit to the primary data alone (dashed) and to the data set obtained by pooling the supplemental
and primary data (dot-dashed). These methods are compared on sampling averages of mean error
(top left), root-mean-square error (top right), mean credible interval width (bottom right) and mean
pointwise coverage probability (bottom left) as a function of d , the discordance parameter. All results
are based on M = 2000 runs.

a function of the discordance parameter. One simulation iteration takes about 60
seconds, which entails generating a pair of data sets, fitting the three models,
and then calculating and saving the evaluation criteria, along with the sampled
value of d in that run. We reduced overall computation time using the snow-
fall package for R to conduct the simulation runs in parallel. A R program to
implement this simulation is available through the third author’s software page
http://www.biostat.umn.edu/~brad/software.html.

The results of our simulation investigation are illustrated in Figure 4. Each panel
shows the Loess estimates of the sampling average of the corresponding evaluation
criteria as a function of d for three models: the GMC prior model (solid), the con-
ventional model fit to the primary data alone (dashed), and the conventional model
fit to the pooled data (dot-dashed). As expected, inferential properties for the GMC
prior model reflect those for the pooled approach under true concordance (i.e.,
d = 0) and approach primary data alone for increasing degrees of discordance.
The primary-alone approach has the largest average CrIW and RMSE under true
concordance, but its properties do not deteriorate for increasing degrees of discor-
dance (because it does not acknowledge the supplemental data). By contrast, the
pooling approach has the smallest CrIW and RMSE under true concordance, but
its performance on all four evaluation criteria deteriorates substantially as discor-
dance increases.

The ME plot (top left panel) in Figure 4 demonstrates that the GMC prior model
has bias properties that interpolate the two conventional approaches for near con-

http://www.biostat.umn.edu/~brad/software.html
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cordance, but near d = 1 it learns to effectively ignore the supplemental informa-
tion. Furthermore, the RMSE (top right panel) shows that the GMC prior model
learns to borrow strongly from the supplemental information when the sources
are commensurate (i.e., slight discordance), achieving RMSE similar to that of the
pooling approach. Similarly, the CrIW plot (bottom right panel) shows for slight
discordance that the credible intervals from the GMC prior model are nearly as
tight as those for the pooling approach. Conversely, when the supplemental curve
has greater oscillation than the primary curve, the GMC prior approach has credi-
ble interval width similar to those of the primary-alone approach. Last, the CP plot
(bottom left panel) shows that the mean pointwise coverage probabilities for the
GMC prior model are similar to those of the conventional spline model fit to the
primary data alone.

3.3. Application: Liver imaging study. We now apply our GMC prior model
structure to estimate the temporal features of each perfusion characteristic in can-
cerous liver tissue. Recall that similar information derived from noncancerous tis-
sue is potentially valuable supplemental information because the shape of the av-
erage CTp curve in noncancerous regions may provide relevant information about
the shape of the corresponding average CTp curve in cancerous regions. The data
consist of 7 to 13 readings acquired at times between 11 and 100 seconds af-
ter contrast injection in 0 to 2 cancerous and noncancerous regions of interest
(ROIs) among 16 individuals. For each perfusion characteristic, there are 687 to-
tal readings from fifteen individuals who each contribute Ni = 11–13 readings in
MT,i = 1–2 cancerous and MN,i = 1–2 noncancerous ROIs, and one individual
who contributes 7 readings in 1 noncancerous ROI.

Individual acquisition times ti,�, � = 1, . . . ,Ni , are necessarily identical for all
ROIs and all perfusion characteristics. Thus, we let yr,i,j,�, for j = 1, . . . ,Mr,i ,
denote a reading at time ti,�. We denote the average CTp curve for a given perfusion
characteristic in cancerous tissue and noncancerous tissue by φT (t) and φN(t),
respectively. We assume each individual’s CTp curve deviates from the average
CTp curve smoothly over time, and we denote these deviation curves by ψr,i(t),
r = T , N and i = 1, . . . ,16. We then model

yr,i,j,� ∼ N
{
φr(ti,�) + ψr,i(ti,�), σ

2
e,r

}
.(10)

We use the mLRTP model defined in (6) for φr and ψr,i , parametrized by βr and
αr,i , respectively. Therefore, the first derivative of the average CTp curve is

φ′
r (t;βr ) = βr,1 +

K∑
k=2

sign(t − t̃k−1)3βr,k(t − t̃k−1)
2, r = N,T .(11)

To shrink the individual deviation curves ψr,i(t;αr,i) toward the average CTp
curve φr(t;βr ), we assume αr,i,k ∼ N (0, σ 2

a,r,i), for k = 0, . . . ,K , r = N,T and
i = 1, . . . ,16.
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For our conventional model, we use the prior specifications on βN and βT

described in (8), and specify vague N (0,104) priors for bN,0 and bT,0. For the
GMC prior model, we apply the prior developed in Section 3.1 for βT given βN .
That is, we specify a GMC prior for βT ,(−0) = (βT ,1, . . . ,βT ,K) given βN,(−0) =
(βN,1, . . . ,βN,K) and an independent commensurate prior for bT,0 given bN,0.
This choice enables differential borrowing from the noncancerous tissue data for
the intercept versus the curve shape parameters, and simultaneously enables bor-
rowing similar amounts among curve shape parameters. Thus, if the average CTp
curve in noncancerous regions differs from the average CTp curve in cancerous
regions only for the intercept, the model still permits borrowing for the CTp curve
shape. Last, we place vague U(0.01,100) priors on each of the standard deviation
parameters (σe,r , σb,r , σa,r,i ).

We let t ∈ (0,1] by taking t = t∗−t∗min
t∗max−t∗min

, where t∗ is the original timescale.
Preliminary analysis of the noncancerous regions was used to specify the hyperpa-
rameters R = 500, sl = 0.01, su = 0.50, p0 = 0.10, a1 = 0.10 and a2 = 0.90. To
select a partition, we fit our conventional model (i.e., independent spline models
for the average CTp curve in each tissue type) for each perfusion parameter us-
ing K = 5, 10, 15 and 25 with t̃ equally spaced over [0,1], and using K = 5, 10
and 15 with t̃ placed at equally spaced quantiles of the observed acquisition times.
The model using K = 10 with quantile-spaced knots resulted in low deviance and
low DIC relative to models with the other partitions for all three perfusion char-
acteristics, so we chose to conduct our analysis using this partition. We estimated
the conventional model using 40,000 posterior samples after 2000 burn-in samples
from two MCMC chains. We estimated the GMC model posterior using 200,000
posterior samples after 20,000 burn-in samples from two MCMC chains; there was
greater autocorrelation for the basis coefficient parameters than the conventional
model.

Table 1 reports the posterior mean borrowing parameters (i.e., ιk’s) from the
GMC model for the three perfusion characteristics. Values near 1 indicate strong
borrowing for the corresponding basis parameter. The first column reports the pos-
terior mean for ι0, which corresponds to the intercept. PS and BF show virtually
zero borrowing for the intercept, whereas BV shows little borrowing. The remain-
ing columns illustrate borrowing for the basis parameters that control the shape

TABLE 1
Posterior borrowing parameter estimates (i.e., ιk ’s). ι0 corresponds to the CTp curve intercept, and

the remaining ιk ’s correspond to CTp curve shape. Values near one indicate strong borrowing

Perfusion characteristic ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7 ι8 ι9 ι10

PS 0.00 0.23 0.00 0.00 0.24 0.43 0.24 0.05 0.15 0.03 0.34
BV 0.20 0.92 0.95 0.92 0.82 0.86 0.90 0.82 0.88 0.96 0.96
BF 0.02 0.96 0.98 0.92 0.92 0.93 0.94 0.92 0.96 0.98 0.99
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FIG. 5. The first column displays posterior mean CTp curves from the conventional model analysis
for cancerous (solid black) and noncancerous regions (dotted grey), along with 95% pointwise CrIs.
The second column displays the same results for the GMC model analysis. The third column com-
pares the posterior mean first derivative of the CTp curve in cancerous tissue from the conventional
model (solid black) and the GMC prior model (dotted grey), along with 95% pointwise CrIs.

(and thus, first derivative) of the CTp curve, which we have restricted to have sim-
ilar magnitude by assuming ιk|ν ∼ Bern(ν), for k = 1, . . . ,10, a priori. For PS,
these parameters all have posterior means less than 0.43, and many less than 0.25,
which indicates little borrowing for CTp curve shape. In contrast, these parame-
ters all exceed 0.82 for BV, and 0.92 for BF. Thus, for BF and BV the GMC model
borrows substantially from the supplemental information in noncancerous tissue
for CTp curve shape in cancerous tissue.

The first row in Figure 5 indicates that both the shape and intercept of the PS
curve differ substantially by tissue type and that the results of the conventional
model analysis (first column) and the GMC prior model analysis (second column)
are virtually indistinguishable. Consequently, the first derivative of the CTp curve
in cancerous tissue (third column) is estimated with similar precision in either the
conventional or GMC model analysis. In fact, the GMC prior model results in 95%
pointwise credible intervals (CrIs) that are 4% wider on average than those of the
conventional model analysis. Regardless, the PS CTp curve in cancerous tissue
has not stabilized after 95 seconds, so longer acquisition durations for PS appear
necessary, which is consistent with the findings by Ng et al. (2013).

The second row in Figure 5 corresponds to BV. Here the GMC prior model,
relative to the conventional model, results in a noncancerous CTp curve that is
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more similar for both the intercept and the shape to that of the cancerous tissue CTp
curve. Moreover, the GMC model gains precision over the conventional model
for the first derivative estimate of the cancerous tissue CTp curve via borrowing
from the noncancerous tissue CTp curve shape. The average 95% pointwise CrIs
for the GMC model are 18% tighter than those of the conventional model. The
third row corresponds to BF and illustrates that the posterior CTp curve estimates
are similar for the two modeling approaches. However, the first derivative of the
cancerous tissue CTp curve is estimated more precisely for the GMC model than
the conventional model, resulting in 27% tighter 95% pointwise CrIs on average.
For both BF and BV, we can infer a shorter acquisition duration using the GMC
prior model than using the conventional model, although we did not impose precise
stability criteria here.

4. GMC priors in semiparametric survival analysis. We now describe a
flexible semiparametric survival model and then apply our GMC prior technology
to the colorectal cancer clinical trials data described in Section 1. For simplicity,
assume each observation consists of a possibly right-censored time t ∈ (0,1], a bi-
nary event indicator c and a binary treatment indicator z.

4.1. Piecewise-exponential proportional hazards model. A flexible survival
model commonly favored by Bayesians is the piecewise-exponential proportional
hazards model, which is constructed by partitioning the time axis into K in-
tervals t̃ = (0 = t̃0 < t̃1 < · · · < t̃K−1 < t̃K = 1) and assuming the baseline
hazard is constant in each interval [cf. Ibrahim, Chen and Sinha (2001), Sec-
tion 3.1]. Under this model, the likelihood for an observation (t, c, z) is given by
h(t |z;γ , ρ)c exp{− ∫ t

0 h(s|z;γ , ρ) ds}, where

h(t |z;γ , ρ) = exp(γk + ρz) for t ∈ Ik = (t̃k−1, t̃k], k = 1, . . . ,K.(12)

Thus, h(t |z;γ , ρ) is assumed to be piecewise-constant, where γk denotes the log-
hazard in the kth interval of the time-axis partition t̃ for treatment assignment
z = 0, and ρ denotes the log-hazard ratio for treatment assignment z = 1 relative
to z = 0. Following Ibrahim, Chen and Sinha (2001), we select K using a DIC
comparison over a small set of partitions. To resist overfitting, we specify a cor-
related prior process for π∗(γ ). We focus on the random-walk prior process for
π∗(γ ) introduced by Fahrmeir and Lang (2001). Formally, we specify

π∗(γ1) ≡ N
(
γ1|0,104)

,

π∗(γk|γk−1, σγ ) ≡ N
(
γk|γk−1, σ

2
γ

)
for k = 2, . . . ,K and(13)

π∗(σγ ) ≡ U(σγ |0.01,100).

The prior process in (13) smooths adjacent γk’s toward each other by assuming
their first differences are exchangeable. We also assume ρ is independent of γ
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a priori, and specify a vague N (0,104) prior. The model defined in (12) is useful
in the absence of supplemental data, and the parameter space can be decomposed
into separable subsets, γ characterizes the baseline hazard and ρ characterizes the
treatment effect.

4.2. Application: Colorectal cancer trials. Extending Hobbs, Carlin and Sar-
gent (2013), we apply our GMC prior model structure to supplement the infer-
ence on the progression-free survival (PFS) curve among all three regimens in the
trial reported by Goldberg et al. (2004) using the historical information on the
IFL regimen from the trial reported by Saltz et al. (2000). We use the piecewise-
exponential proportional-hazards model to estimate the PFS curves for the two
trials from these data. During the first two years of follow-up, the primary (Gold-
berg) data set contains 197 progression events among 211 persons treated with
IFL, 190 events among 216 persons treated with FOLFOX, and 189 events among
206 persons treated with IROX. For the primary data, we have two binary treat-
ment indicators for assignment to the FOLFOX (zF ) and IROX (zI ) regimens,
respectively, so following (12) we model

h(t |z;γ ,ρ) = exp(γk + ρF zF + ρI zI ) for t ∈ (t̃k−1, t̃k],
where k = 1, . . . ,K . The supplemental (Saltz) data contain 172 progression events
during the first two years of follow-up among 224 persons treated with IFL. The
model for the supplemental data is defined analogously, though zF = zI = 0 for
all the supplemental observations. Therefore, the supplemental hazard model is
completely parametrized by γ 0, which, as required, is analogous to γ .

We specify a GMC prior to flexibly borrow strength from the supplemental
information on the IFL regimen. Namely, we specify the random-walk prior pro-
cess defined by (13) for π∗(γ 0), and apply the GMC prior structure on γ . In this
setting, the prior specification follows as γ1|γ0,1, ι1 ∼ [N (γ1|0,104)]1−ι1[N (γ1|
γ0,1,R−1

γ )]ι1, γk|γk−1, γ0,k, ιk, σγ ∼ [N (γk|γk−1, σ
2
γ )]1−ιk [N (γk|γ0,k,R−1

γ )]ιk ,
for k = 2, . . . ,K , and ιk|νγ ∼ Bern(νγ ), for k = 1, . . . ,K , where Rγ is prespeci-
fied. Next, we place a B(a1, a2) prior on νγ , where a1 and a2 are also prespecified.
Last, we place vague U(0.01,100) priors on each of the standard deviation pa-
rameters (i.e., σγ and σγ 0

) and vague N (0,104) priors on the treatment effect
parameters (i.e., ρF and ρI ).

We transformed the timescale so that t ∈ (0,1], then selected Rγ = 10,000 and
specified a vague B(0.10,0.90) prior for νγ , which represents a vague, yet skep-
tical prior opinion about the relevance of the supplemental data. For estimation,
we used 200,000 posterior samples for estimation after 50,000 iterations of burn-
in from two MCMC chains. For comparison, we also fit conventional piecewise-
exponential proportional hazards models with the same time-axis partition and
random-walk prior process to the primary (Goldberg) data alone, supplemental
(Saltz) data alone, and the data set obtained by naively pooling the two sources
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FIG. 6. The left panel displays the posterior mean PFS curve for the IFL regimen along with 95%
pointwise CrIs from the conventional piecewise-constant-hazard analysis of the primary (Goldberg)
data alone and the supplemental (Saltz) data alone. The middle panel displays the same results
from the GMC prior model analysis and the conventional model analysis of the dataset obtained by
pooling the two sources of information. The third panel displays a posterior histogram for νγ , which
controls borrowing for the baseline hazard among trials. For reference, the prior assigned to νγ is
also displayed (grey line).

of information. To estimate these conventional models, we used 20,000 posterior
estimation draws after 2000 burn-in draws from two MCMC chains, again the
shorter chain length justified by faster convergence and lower post-convergence
autocorrelations.

We begin with a comparison of the estimated PFS curves for the IFL regimen
from the four analyses. The left panel in Figure 6 indicates that the estimated PFS
curve from the Goldberg data (solid, with shaded grey 95% pointwise CrIs) over-
laps substantially with the PFS curve estimated from the Saltz data (dashed, with
dotted 95% pointwise CrIs), suggesting the Saltz data provide relevant informa-
tion. The middle panel in Figure 6 illustrates that the GMC analysis (solid, with
shaded grey 95% pointwise CrIs) results in a PFS estimate nearly indistinguishable
from that of the conventional analysis of the pooled data set (dashed, with dotted
95% pointwise CrIs), though shifted very slightly toward the primary information.
The GMC prior model achieved a PFS curve estimate with noticeably greater pre-
cision than that of the conventional analysis that ignores the supplemental data
without requiring bold a priori assumptions regarding the relevance of the Saltz
data. Finally, the rightmost panel in Figure 6 displays a posterior histogram of νγ

that has much of its mass shifted toward one. In fact, the ιk’s had posterior means
of at least 0.87, with an average of 0.94, indicating that the GMC prior model
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TABLE 2
Hazard-ratio estimates for the FOLFOX and IROX regimens relative to the IFL regimen, and

estimates of median days to disease progression for each treatment regimen from the four analyses
of the Goldberg data and Saltz data

Drug regimen IFL FOLFOX IROX

Analysis Hazard ratios (95% CrIs)
Goldberg alone – 0.70 (0.57, 0.86) 0.92 (0.75, 1.12)
Pooled analysis – 0.66 (0.56, 0.79) 0.87 (0.73, 1.04)
GMC prior analysis – 0.66 (0.56, 0.79) 0.87 (0.73, 1.04)

Median days to disease progression (95% CrIs)
Saltz alone 200 (168, 236) – –
Goldberg alone 205 (182, 227) 262 (235, 293) 217 (194, 242)
Pooled analysis 200 (182, 217) 263 (245, 286) 221 (201, 240)
GMC prior analysis 200 (184, 216) 265 (245, 286) 221 (203, 240)

has learned that the supplemental FOLFOX data from the Saltz trial are indeed
relevant.

Turning to the comparative effectiveness of three regimens, Table 2 shows
that the hazard ratios (95% CrIs) from the GMC prior model analysis for FOL-
FOX and IROX versus IFL are 0.66 (0.56,0.79) and 0.87 (0.73,1.04), respectively.
The hazard ratios from the conventional analysis of the Goldberg data alone are
slightly larger with notably wider CrI widths, 0.70 (0.57,0.86) for FOLFOX and
0.92 (0.75,1.12) for IROX. By contrast, the hazard-ratio estimates and CrI widths
from the conventional analysis of the pooled data set are indistinguishable from
the GMC prior model analysis. Table 2 also contains the posterior estimates from
each analysis of median PFS for the IFL, FOLFOX and IROX regimens. The con-
ventional analysis of the Saltz data alone estimates median PFS in the IFL regimen
to be 200 (168, 236) days, broadly similar to the estimate of 205 (182, 227) days
provided by the conventional analysis of the Goldberg data alone. The estimates of
median days to disease progression for each regimen from the pooled analysis of
these data are also nearly identical to the estimates from the GMC prior analysis,
namely, 200, 265 and 221 days for the IFL, FOLFOX and IROX regimens, respec-
tively. The estimates from the GMC prior model are consistent with the results
reported by Goldberg et al. (2004), who found FOLFOX to be the superior regi-
men, and significantly better than IFL. In addition, the GMC prior analysis yields
stronger evidence that IROX may be better than IFL for PFS, though the difference
remains statistically insignificant.

5. Discussion and future work. Our proposed methods for prior specifica-
tion in functional and survival data models with penalized splines facilitate data-
dependent borrowing that is robust to biased estimation of primary effects when
conflict among information sources occurs. The simulation study illustrates the
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beneficial flexible borrowing properties the proposed methods offer. The appli-
cation in perfusion CT illustrates potential gains in CTp curve estimation from
using supplemental data collected concurrently. By contrast, the colorectal cancer
application illustrates the use of these methods for semiparametric survival mod-
eling to flexibly borrow from supplemental data on a control therapy collected in
a previous trial. A hierarchical model with the proposed structure allows the de-
gree of borrowing to be estimated differentially for each feature (e.g., CTp curve
intercept versus shape). The amount of strength being borrowed between sources
reflects the evidence of commensurability for that feature. When substantial evi-
dence indicates that sources differ for a feature, the proposed method will learn to
effectively ignore the supplemental data for that feature, yet possibly still borrow
strength for another feature. For minor discordance or concordance, the proposed
method also facilitates partial (rather than full) pooling of information from the
supplemental source, hence a modest yet justifiable gain in efficiency. Our general
modeling strategy enables data-driven estimation of heterogeneity among infor-
mation sources for complex functional relationships, and thus provides a sensible
and justifiable synthesis of clinical information.

In future work, we plan to extend the commensurate prior approach to set-
tings that have multiple supplemental sources of information. This setting sub-
stantially complicates the construction of a hierarchical model that facilitates flex-
ible borrowing for each supplemental source. Ideally, the method will facilitate
data-dependent differential borrowing from various sources, learning from which
to borrow and which to ignore as primary data accumulate. We also hope to de-
velop concise, interpretable summaries that quantify the amount of strength be-
ing borrowed from each information source, thereby allowing the use of these
models in an adaptive trial [see Hobbs, Carlin and Sargent (2013)]. We will
also consider using posterior summaries of ν in (5) to determine whether the
curves are commensurate among information sources, for example, by assessing
Pr(ν > 0.80|D,D0) > 0.90. Furthermore, we are currently studying the proper-
ties of the piecewise-exponential model used in the colorectal cancer application,
which relies on a simple, yet flexible piecewise-constant assumption for the base-
line hazard. We are developing extensions that use a piecewise-linear model for
the baseline hazard function, relax the proportional hazards assumption, and allow
functional covariate effects with shape constraints (e.g., monotonicity).
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